2 ******************************************************************************
4 * @file CoordinateConverions.h
5 * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
6 * @brief Header for Coordinate conversions library in CoordinateConversions.c
8 * - distances in meters
9 * - altitude above WGS-84 elipsoid
11 * @see The GNU Public License (GPL) Version 3
13 *****************************************************************************/
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 3 of the License, or
18 * (at your option) any later version.
20 * This program is distributed in the hope that it will be useful, but
21 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
22 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
30 #ifndef COORDINATECONVERSIONS_H_
31 #define COORDINATECONVERSIONS_H_
33 // ****** convert Lat,Lon,Alt to ECEF ************
34 void LLA2ECEF(int32_t LLAi
[3], double ECEF
[3]);
36 // ****** convert ECEF to Lat,Lon,Alt (ITERATIVE!) *********
37 uint16_t ECEF2LLA(double ECEF
[3], float LLA
[3]);
39 void RneFromLLA(int32_t LLAi
[3], float Rne
[3][3]);
41 // ****** find rotation matrix from rotation vector
42 void Rv2Rot(float Rv
[3], float R
[3][3]);
44 // ****** find roll, pitch, yaw from quaternion ********
45 void Quaternion2RPY(const float q
[4], float rpy
[3]);
47 // ****** find quaternion from roll, pitch, yaw ********
48 void RPY2Quaternion(const float rpy
[3], float q
[4]);
50 // ** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
51 void Quaternion2R(float q
[4], float Rbe
[3][3]);
53 // ** Find first row of Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
54 // ** This vector corresponds to the fuselage/roll vector xB **
55 void QuaternionC2xB(const float q0
, const float q1
, const float q2
, const float q3
, float x
[3]);
56 void Quaternion2xB(const float q
[4], float x
[3]);
58 // ** Find second row of Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
59 // ** This vector corresponds to the spanwise/pitch vector yB **
60 void QuaternionC2yB(const float q0
, const float q1
, const float q2
, const float q3
, float y
[3]);
61 void Quaternion2yB(const float q
[4], float y
[3]);
63 // ** Find third row of Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
64 // ** This vector corresponds to the vertical/yaw vector zB **
65 void QuaternionC2zB(const float q0
, const float q1
, const float q2
, const float q3
, float z
[3]);
66 void Quaternion2zB(const float q
[4], float z
[3]);
68 // ****** Express LLA in a local NED Base Frame ********
69 void LLA2Base(int32_t LLAi
[3], double BaseECEF
[3], float Rne
[3][3], float NED
[3]);
71 // ****** Express ECEF in a local NED Base Frame ********
72 void ECEF2Base(double ECEF
[3], double BaseECEF
[3], float Rne
[3][3], float NED
[3]);
74 // ****** convert Rotation Matrix to Quaternion ********
75 // ****** if R converts from e to b, q is rotation from e to b ****
76 void R2Quaternion(float R
[3][3], float q
[4]);
78 // ****** Rotation Matrix from Two Vector Directions ********
79 // ****** given two vector directions (v1 and v2) known in two frames (b and e) find Rbe ***
80 // ****** solution is approximate if can't be exact ***
81 uint8_t RotFrom2Vectors(const float v1b
[3], const float v1e
[3], const float v2b
[3], const float v2e
[3], float Rbe
[3][3]);
83 // ****** Vector Cross Product ********
84 void CrossProduct(const float v1
[3], const float v2
[3], float result
[3]);
86 // ****** Vector Magnitude ********
87 float VectorMagnitude(const float v
[3]);
89 void quat_inverse(float q
[4]);
90 void quat_copy(const float q
[4], float qnew
[4]);
91 void quat_mult(const float q1
[4], const float q2
[4], float qout
[4]);
92 void rot_mult(float R
[3][3], const float vec
[3], float vec_out
[3]);
94 * matrix_mult_3x3f - perform a multiplication between two 3x3 float matrices
100 static inline void matrix_mult_3x3f(float a
[3][3], float b
[3][3], float result
[3][3])
102 result
[0][0] = a
[0][0] * b
[0][0] + a
[1][0] * b
[0][1] + a
[2][0] * b
[0][2];
103 result
[0][1] = a
[0][1] * b
[0][0] + a
[1][1] * b
[0][1] + a
[2][1] * b
[0][2];
104 result
[0][2] = a
[0][2] * b
[0][0] + a
[1][2] * b
[0][1] + a
[2][2] * b
[0][2];
106 result
[1][0] = a
[0][0] * b
[1][0] + a
[1][0] * b
[1][1] + a
[2][0] * b
[1][2];
107 result
[1][1] = a
[0][1] * b
[1][0] + a
[1][1] * b
[1][1] + a
[2][1] * b
[1][2];
108 result
[1][2] = a
[0][2] * b
[1][0] + a
[1][2] * b
[1][1] + a
[2][2] * b
[1][2];
110 result
[2][0] = a
[0][0] * b
[2][0] + a
[1][0] * b
[2][1] + a
[2][0] * b
[2][2];
111 result
[2][1] = a
[0][1] * b
[2][0] + a
[1][1] * b
[2][1] + a
[2][1] * b
[2][2];
112 result
[2][2] = a
[0][2] * b
[2][0] + a
[1][2] * b
[2][1] + a
[2][2] * b
[2][2];
115 static inline void matrix_inline_scale_3f(float a
[3][3], float scale
)
130 static inline void rot_about_axis_x(const float rotation
, float R
[3][3])
132 float s
= sinf(rotation
);
133 float c
= cosf(rotation
);
148 static inline void rot_about_axis_y(const float rotation
, float R
[3][3])
150 float s
= sinf(rotation
);
151 float c
= cosf(rotation
);
166 static inline void rot_about_axis_z(const float rotation
, float R
[3][3])
168 float s
= sinf(rotation
);
169 float c
= cosf(rotation
);
184 #endif // COORDINATECONVERSIONS_H_