LP-89 - Port OP_15.05.01 fixes. Release notes:
[librepilot.git] / flight / libraries / inc / CoordinateConversions.h
blob02369c45cfee4b453e4194f31b65c6fd27a9f407
1 /**
2 ******************************************************************************
4 * @file CoordinateConverions.h
5 * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
6 * @brief Header for Coordinate conversions library in CoordinateConversions.c
7 * - all angles in deg
8 * - distances in meters
9 * - altitude above WGS-84 elipsoid
11 * @see The GNU Public License (GPL) Version 3
13 *****************************************************************************/
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 3 of the License, or
18 * (at your option) any later version.
20 * This program is distributed in the hope that it will be useful, but
21 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
22 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
23 * for more details.
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
30 #ifndef COORDINATECONVERSIONS_H_
31 #define COORDINATECONVERSIONS_H_
33 // ****** convert Lat,Lon,Alt to ECEF ************
34 void LLA2ECEF(int32_t LLAi[3], double ECEF[3]);
36 // ****** convert ECEF to Lat,Lon,Alt (ITERATIVE!) *********
37 uint16_t ECEF2LLA(double ECEF[3], float LLA[3]);
39 void RneFromLLA(int32_t LLAi[3], float Rne[3][3]);
41 // ****** find rotation matrix from rotation vector
42 void Rv2Rot(float Rv[3], float R[3][3]);
44 // ****** find roll, pitch, yaw from quaternion ********
45 void Quaternion2RPY(const float q[4], float rpy[3]);
47 // ****** find quaternion from roll, pitch, yaw ********
48 void RPY2Quaternion(const float rpy[3], float q[4]);
50 // ** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
51 void Quaternion2R(float q[4], float Rbe[3][3]);
53 // ** Find first row of Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
54 // ** This vector corresponds to the fuselage/roll vector xB **
55 void QuaternionC2xB(const float q0, const float q1, const float q2, const float q3, float x[3]);
56 void Quaternion2xB(const float q[4], float x[3]);
58 // ** Find second row of Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
59 // ** This vector corresponds to the spanwise/pitch vector yB **
60 void QuaternionC2yB(const float q0, const float q1, const float q2, const float q3, float y[3]);
61 void Quaternion2yB(const float q[4], float y[3]);
63 // ** Find third row of Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
64 // ** This vector corresponds to the vertical/yaw vector zB **
65 void QuaternionC2zB(const float q0, const float q1, const float q2, const float q3, float z[3]);
66 void Quaternion2zB(const float q[4], float z[3]);
68 // ****** Express LLA in a local NED Base Frame ********
69 void LLA2Base(int32_t LLAi[3], double BaseECEF[3], float Rne[3][3], float NED[3]);
71 // ****** Express ECEF in a local NED Base Frame ********
72 void ECEF2Base(double ECEF[3], double BaseECEF[3], float Rne[3][3], float NED[3]);
74 // ****** convert Rotation Matrix to Quaternion ********
75 // ****** if R converts from e to b, q is rotation from e to b ****
76 void R2Quaternion(float R[3][3], float q[4]);
78 // ****** Rotation Matrix from Two Vector Directions ********
79 // ****** given two vector directions (v1 and v2) known in two frames (b and e) find Rbe ***
80 // ****** solution is approximate if can't be exact ***
81 uint8_t RotFrom2Vectors(const float v1b[3], const float v1e[3], const float v2b[3], const float v2e[3], float Rbe[3][3]);
83 // ****** Vector Cross Product ********
84 void CrossProduct(const float v1[3], const float v2[3], float result[3]);
86 // ****** Vector Magnitude ********
87 float VectorMagnitude(const float v[3]);
89 void quat_inverse(float q[4]);
90 void quat_copy(const float q[4], float qnew[4]);
91 void quat_mult(const float q1[4], const float q2[4], float qout[4]);
92 void rot_mult(float R[3][3], const float vec[3], float vec_out[3]);
93 /**
94 * matrix_mult_3x3f - perform a multiplication between two 3x3 float matrices
95 * result = a*b
96 * @param a
97 * @param b
98 * @param result
100 static inline void matrix_mult_3x3f(float a[3][3], float b[3][3], float result[3][3])
102 result[0][0] = a[0][0] * b[0][0] + a[1][0] * b[0][1] + a[2][0] * b[0][2];
103 result[0][1] = a[0][1] * b[0][0] + a[1][1] * b[0][1] + a[2][1] * b[0][2];
104 result[0][2] = a[0][2] * b[0][0] + a[1][2] * b[0][1] + a[2][2] * b[0][2];
106 result[1][0] = a[0][0] * b[1][0] + a[1][0] * b[1][1] + a[2][0] * b[1][2];
107 result[1][1] = a[0][1] * b[1][0] + a[1][1] * b[1][1] + a[2][1] * b[1][2];
108 result[1][2] = a[0][2] * b[1][0] + a[1][2] * b[1][1] + a[2][2] * b[1][2];
110 result[2][0] = a[0][0] * b[2][0] + a[1][0] * b[2][1] + a[2][0] * b[2][2];
111 result[2][1] = a[0][1] * b[2][0] + a[1][1] * b[2][1] + a[2][1] * b[2][2];
112 result[2][2] = a[0][2] * b[2][0] + a[1][2] * b[2][1] + a[2][2] * b[2][2];
115 static inline void matrix_inline_scale_3f(float a[3][3], float scale)
117 a[0][0] *= scale;
118 a[0][1] *= scale;
119 a[0][2] *= scale;
121 a[1][0] *= scale;
122 a[1][1] *= scale;
123 a[1][2] *= scale;
125 a[2][0] *= scale;
126 a[2][1] *= scale;
127 a[2][2] *= scale;
130 static inline void rot_about_axis_x(const float rotation, float R[3][3])
132 float s = sinf(rotation);
133 float c = cosf(rotation);
135 R[0][0] = 1;
136 R[0][1] = 0;
137 R[0][2] = 0;
139 R[1][0] = 0;
140 R[1][1] = c;
141 R[1][2] = -s;
143 R[2][0] = 0;
144 R[2][1] = s;
145 R[2][2] = c;
148 static inline void rot_about_axis_y(const float rotation, float R[3][3])
150 float s = sinf(rotation);
151 float c = cosf(rotation);
153 R[0][0] = c;
154 R[0][1] = 0;
155 R[0][2] = s;
157 R[1][0] = 0;
158 R[1][1] = 1;
159 R[1][2] = 0;
161 R[2][0] = -s;
162 R[2][1] = 0;
163 R[2][2] = c;
166 static inline void rot_about_axis_z(const float rotation, float R[3][3])
168 float s = sinf(rotation);
169 float c = cosf(rotation);
171 R[0][0] = c;
172 R[0][1] = -s;
173 R[0][2] = 0;
175 R[1][0] = s;
176 R[1][1] = c;
177 R[1][2] = 0;
179 R[2][0] = 0;
180 R[2][1] = 0;
181 R[2][2] = 1;
184 #endif // COORDINATECONVERSIONS_H_