Merged in f5soh/librepilot/LP-575_fedora_package (pull request #491)
[librepilot.git] / ground / gcs / src / libs / utils / coordinateconversions.cpp
blobc6ceb0f017b0401c608da2bd9577958dbac8615c
1 /**
2 ******************************************************************************
4 * @file coordinateconversions.cpp
5 * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
6 * @brief General conversions with different coordinate systems.
7 * - all angles in deg
8 * - distances in meters
9 * - altitude above WGS-84 elipsoid
11 * @see The GNU Public License (GPL) Version 3
13 *****************************************************************************/
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 3 of the License, or
18 * (at your option) any later version.
20 * This program is distributed in the hope that it will be useful, but
21 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
22 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
23 * for more details.
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
30 #include "coordinateconversions.h"
31 #include <stdint.h>
32 #include <QDebug>
33 #include <math.h>
35 #define RAD2DEG (180.0 / M_PI)
36 #define DEG2RAD (M_PI / 180.0)
38 namespace Utils {
39 CoordinateConversions::CoordinateConversions()
42 /**
43 * Get rotation matrix from ECEF to NED for that LLA
44 * @param[in] LLA Longitude latitude altitude for this location
45 * @param[out] Rne[3][3] Rotation matrix
47 void CoordinateConversions::RneFromLLA(double LLA[3], float Rne[3][3])
49 float sinLat, sinLon, cosLat, cosLon;
51 sinLat = (float)sin(DEG2RAD * LLA[0]);
52 sinLon = (float)sin(DEG2RAD * LLA[1]);
53 cosLat = (float)cos(DEG2RAD * LLA[0]);
54 cosLon = (float)cos(DEG2RAD * LLA[1]);
56 Rne[0][0] = -sinLat * cosLon; Rne[0][1] = -sinLat * sinLon; Rne[0][2] = cosLat;
57 Rne[1][0] = -sinLon; Rne[1][1] = cosLon; Rne[1][2] = 0;
58 Rne[2][0] = -cosLat * cosLon; Rne[2][1] = -cosLat * sinLon; Rne[2][2] = -sinLat;
61 /**
62 * Convert from LLA coordinates to ECEF coordinates
63 * @param[in] LLA[3] latitude longitude alititude coordinates in
64 * @param[out] ECEF[3] location in ECEF coordinates
66 void CoordinateConversions::LLA2ECEF(double LLA[3], double ECEF[3])
68 const double a = 6378137.0; // Equatorial Radius
69 const double e = 8.1819190842622e-2; // Eccentricity
70 double sinLat, sinLon, cosLat, cosLon;
71 double N;
73 sinLat = sin(DEG2RAD * LLA[0]);
74 sinLon = sin(DEG2RAD * LLA[1]);
75 cosLat = cos(DEG2RAD * LLA[0]);
76 cosLon = cos(DEG2RAD * LLA[1]);
78 N = a / sqrt(1.0 - e * e * sinLat * sinLat); // prime vertical radius of curvature
80 ECEF[0] = (N + LLA[2]) * cosLat * cosLon;
81 ECEF[1] = (N + LLA[2]) * cosLat * sinLon;
82 ECEF[2] = ((1 - e * e) * N + LLA[2]) * sinLat;
85 /**
86 * Convert from ECEF coordinates to LLA coordinates
87 * @param[in] ECEF[3] location in ECEF coordinates
88 * @param[out] LLA[3] latitude longitude alititude coordinates
90 int CoordinateConversions::ECEF2LLA(double ECEF[3], double LLA[3])
92 const double a = 6378137.0; // Equatorial Radius
93 const double e = 8.1819190842622e-2; // Eccentricity
94 double x = ECEF[0], y = ECEF[1], z = ECEF[2];
95 double Lat, N, NplusH, delta, esLat;
96 uint16_t iter;
98 LLA[1] = RAD2DEG * atan2(y, x);
99 N = a;
100 NplusH = N;
101 delta = 1;
102 Lat = 1;
103 iter = 0;
105 while (((delta > 1.0e-14) || (delta < -1.0e-14)) && (iter < 100)) {
106 delta = Lat - atan(z / (sqrt(x * x + y * y) * (1 - (N * e * e / NplusH))));
107 Lat = Lat - delta;
108 esLat = e * sin(Lat);
109 N = a / sqrt(1 - esLat * esLat);
110 NplusH = sqrt(x * x + y * y) / cos(Lat);
111 iter += 1;
114 LLA[0] = RAD2DEG * Lat;
115 LLA[2] = NplusH - N;
117 if (iter == 500) {
118 return 0;
119 } else { return 1; }
123 * Get the current location in Longitude, Latitude Altitude (above WSG-84 ellipsoid)
124 * @param[in] BaseECEF the ECEF of the home location (in m)
125 * @param[in] NED the offset from the home location (in m)
126 * @param[out] position three element double for position in decimal degrees and altitude in meters
127 * @returns
128 * @arg 0 success
129 * @arg -1 for failure
131 int CoordinateConversions::NED2LLA_HomeECEF(double BaseECEFm[3], double NED[3], double position[3])
133 int i;
134 // stored value is in cm, convert to m
135 double BaseLLA[3];
136 double ECEF[3];
137 float Rne[3][3];
139 // Get LLA address to compute conversion matrix
140 ECEF2LLA(BaseECEFm, BaseLLA);
141 RneFromLLA(BaseLLA, Rne);
143 /* P = ECEF + Rne' * NED */
144 for (i = 0; i < 3; i++) {
145 ECEF[i] = BaseECEFm[i] + Rne[0][i] * NED[0] + Rne[1][i] * NED[1] + Rne[2][i] * NED[2];
148 ECEF2LLA(ECEF, position);
150 return 0;
154 * Get the current location in Longitude, Latitude, Altitude (above WSG-84 ellipsoid)
155 * @param[in] homeLLA the latitude, longitude, and altitude of the home location (in [m])
156 * @param[in] NED the offset from the home location (in [m])
157 * @param[out] position three element double for position in decimal degrees and altitude in meters
158 * @returns
159 * @arg 0 success
160 * @arg -1 for failure
162 int CoordinateConversions::NED2LLA_HomeLLA(double homeLLA[3], double NED[3], double position[3])
164 double T[3];
166 T[0] = homeLLA[2] + 6.378137E6f * M_PI / 180.0;
167 T[1] = cosf(homeLLA[0] * M_PI / 180.0) * (homeLLA[2] + 6.378137E6f) * M_PI / 180.0;
168 T[2] = -1.0f;
170 position[0] = homeLLA[0] + NED[0] / T[0];
171 position[1] = homeLLA[1] + NED[1] / T[1];
172 position[2] = homeLLA[2] + NED[2] / T[2];
174 return 0;
177 void CoordinateConversions::LLA2Base(double LLA[3], double BaseECEF[3], float Rne[3][3], float NED[3])
179 double ECEF[3];
180 float diff[3];
182 LLA2ECEF(LLA, ECEF);
184 diff[0] = (float)(ECEF[0] - BaseECEF[0]);
185 diff[1] = (float)(ECEF[1] - BaseECEF[1]);
186 diff[2] = (float)(ECEF[2] - BaseECEF[2]);
188 NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2];
189 NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2];
190 NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2];
193 // ****** find roll, pitch, yaw from quaternion ********
194 void CoordinateConversions::Quaternion2RPY(const float q[4], float rpy[3])
196 float R13, R11, R12, R23, R33;
197 float q0s = q[0] * q[0];
198 float q1s = q[1] * q[1];
199 float q2s = q[2] * q[2];
200 float q3s = q[3] * q[3];
202 R13 = 2 * (q[1] * q[3] - q[0] * q[2]);
203 R11 = q0s + q1s - q2s - q3s;
204 R12 = 2 * (q[1] * q[2] + q[0] * q[3]);
205 R23 = 2 * (q[2] * q[3] + q[0] * q[1]);
206 R33 = q0s - q1s - q2s + q3s;
208 rpy[1] = RAD2DEG * asinf(-R13); // pitch always between -pi/2 to pi/2
209 rpy[2] = RAD2DEG * atan2f(R12, R11);
210 rpy[0] = RAD2DEG * atan2f(R23, R33);
212 // TODO: consider the cases where |R13| ~= 1, |pitch| ~= pi/2
215 // ****** find quaternion from roll, pitch, yaw ********
216 void CoordinateConversions::RPY2Quaternion(const float rpy[3], float q[4])
218 float phi, theta, psi;
219 float cphi, sphi, ctheta, stheta, cpsi, spsi;
221 phi = DEG2RAD * rpy[0] / 2;
222 theta = DEG2RAD * rpy[1] / 2;
223 psi = DEG2RAD * rpy[2] / 2;
224 cphi = cosf(phi);
225 sphi = sinf(phi);
226 ctheta = cosf(theta);
227 stheta = sinf(theta);
228 cpsi = cosf(psi);
229 spsi = sinf(psi);
231 q[0] = cphi * ctheta * cpsi + sphi * stheta * spsi;
232 q[1] = sphi * ctheta * cpsi - cphi * stheta * spsi;
233 q[2] = cphi * stheta * cpsi + sphi * ctheta * spsi;
234 q[3] = cphi * ctheta * spsi - sphi * stheta * cpsi;
236 if (q[0] < 0) { // q0 always positive for uniqueness
237 q[0] = -q[0];
238 q[1] = -q[1];
239 q[2] = -q[2];
240 q[3] = -q[3];
244 // ** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
245 void CoordinateConversions::Quaternion2R(const float q[4], float Rbe[3][3])
247 float q0s = q[0] * q[0], q1s = q[1] * q[1], q2s = q[2] * q[2], q3s = q[3] * q[3];
249 Rbe[0][0] = q0s + q1s - q2s - q3s;
250 Rbe[0][1] = 2 * (q[1] * q[2] + q[0] * q[3]);
251 Rbe[0][2] = 2 * (q[1] * q[3] - q[0] * q[2]);
252 Rbe[1][0] = 2 * (q[1] * q[2] - q[0] * q[3]);
253 Rbe[1][1] = q0s - q1s + q2s - q3s;
254 Rbe[1][2] = 2 * (q[2] * q[3] + q[0] * q[1]);
255 Rbe[2][0] = 2 * (q[1] * q[3] + q[0] * q[2]);
256 Rbe[2][1] = 2 * (q[2] * q[3] - q[0] * q[1]);
257 Rbe[2][2] = q0s - q1s - q2s + q3s;
260 // ** Find quaternion vector from a rotation matrix, Rbe, a matrix which rotates a vector from earth frame to body frame **
261 void CoordinateConversions::R2Quaternion(float const Rbe[3][3], float q[4])
263 qreal w, x, y, z;
265 // w always >= 0
266 w = sqrt(std::max(0.0, 1.0 + Rbe[0][0] + Rbe[1][1] + Rbe[2][2])) / 2.0;
267 x = sqrt(std::max(0.0, 1.0 + Rbe[0][0] - Rbe[1][1] - Rbe[2][2])) / 2.0;
268 y = sqrt(std::max(0.0, 1.0 - Rbe[0][0] + Rbe[1][1] - Rbe[2][2])) / 2.0;
269 z = sqrt(std::max(0.0, 1.0 - Rbe[0][0] - Rbe[1][1] + Rbe[2][2])) / 2.0;
271 x = copysign(x, (Rbe[1][2] - Rbe[2][1]));
272 y = copysign(y, (Rbe[2][0] - Rbe[0][2]));
273 z = copysign(z, (Rbe[0][1] - Rbe[1][0]));
275 q[0] = w;
276 q[1] = x;
277 q[2] = y;
278 q[3] = z;