2 ******************************************************************************
3 * @addtogroup OpenPilotModules OpenPilot Modules
5 * @addtogroup ActuatorModule Actuator Module
6 * @brief Compute servo/motor settings based on @ref ActuatorDesired "desired actuator positions" and aircraft type.
7 * This is where all the mixing of channels is computed.
11 * @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2015.
12 * The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
13 * @brief Actuator module. Drives the actuators (servos, motors etc).
15 * @see The GNU Public License (GPL) Version 3
17 *****************************************************************************/
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 3 of the License, or
22 * (at your option) any later version.
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
26 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
35 #include <openpilot.h>
37 #include "accessorydesired.h"
39 #include "actuatorsettings.h"
40 #include "systemsettings.h"
41 #include "actuatordesired.h"
42 #include "actuatorcommand.h"
43 #include "flightstatus.h"
44 #include <flightmodesettings.h>
45 #include "mixersettings.h"
46 #include "mixerstatus.h"
47 #include "cameradesired.h"
48 #include "hwsettings.h"
49 #include "manualcontrolcommand.h"
51 #include <systemsettings.h>
52 #include <sanitycheck.h>
53 #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
54 #include <vtolpathfollowersettings.h>
56 #undef PIOS_INCLUDE_INSTRUMENTATION
57 #ifdef PIOS_INCLUDE_INSTRUMENTATION
58 #include <pios_instrumentation.h>
59 static int8_t counter
;
60 // Counter 0xAC700001 total Actuator body execution time(excluding queue waits etc).
64 #define MAX_QUEUE_SIZE 2
66 #if defined(PIOS_ACTUATOR_STACK_SIZE)
67 #define STACK_SIZE_BYTES PIOS_ACTUATOR_STACK_SIZE
69 #define STACK_SIZE_BYTES 1312
72 #define TASK_PRIORITY (tskIDLE_PRIORITY + 4) // device driver
73 #define FAILSAFE_TIMEOUT_MS 100
74 #define MAX_MIX_ACTUATORS ACTUATORCOMMAND_CHANNEL_NUMELEM
76 #define CAMERA_BOOT_DELAY_MS 7000
78 #define ACTUATOR_ONESHOT_CLOCK 12000000
79 #define ACTUATOR_ONESHOT125_PULSE_FACTOR 1.5f
80 #define ACTUATOR_ONESHOT42_PULSE_FACTOR 0.5f
81 #define ACTUATOR_MULTISHOT_PULSE_FACTOR 0.24f
82 #define ACTUATOR_PWM_CLOCK 1000000
87 static xQueueHandle queue
;
88 static xTaskHandle taskHandle
;
89 static FrameType_t frameType
= FRAME_TYPE_MULTIROTOR
;
90 static SystemSettingsThrustControlOptions thrustType
= SYSTEMSETTINGS_THRUSTCONTROL_THROTTLE
;
91 static bool camStabEnabled
;
93 static uint8_t pinsMode
[MAX_MIX_ACTUATORS
];
94 // used to inform the actuator thread that actuator update rate is changed
95 static ActuatorSettingsData actuatorSettings
;
96 static bool spinWhileArmed
;
98 // used to inform the actuator thread that mixer settings are changed
99 static MixerSettingsData mixerSettings
;
100 static int mixer_settings_count
= 2;
103 static void actuatorTask(void *parameters
);
104 static int16_t scaleChannel(float value
, int16_t max
, int16_t min
, int16_t neutral
);
105 static int16_t scaleMotor(float value
, int16_t max
, int16_t min
, int16_t neutral
, float maxMotor
, float minMotor
, bool armed
, bool alwaysStabilizeWhenArmed
, float throttleDesired
);
106 static void setFailsafe();
107 static float MixerCurveFullRangeProportional(const float input
, const float *curve
, uint8_t elements
, bool multirotor
);
108 static float MixerCurveFullRangeAbsolute(const float input
, const float *curve
, uint8_t elements
, bool multirotor
);
109 static bool set_channel(uint8_t mixer_channel
, uint16_t value
);
110 static void actuator_update_rate_if_changed(bool force_update
);
111 static void MixerSettingsUpdatedCb(UAVObjEvent
*ev
);
112 static void ActuatorSettingsUpdatedCb(UAVObjEvent
*ev
);
113 static void SettingsUpdatedCb(UAVObjEvent
*ev
);
114 float ProcessMixer(const int index
, const float curve1
, const float curve2
,
115 ActuatorDesiredData
*desired
,
116 bool multirotor
, bool fixedwing
);
118 // this structure is equivalent to the UAVObjects for one mixer.
122 } __attribute__((packed
)) Mixer_t
;
125 * @brief Module initialization
128 int32_t ActuatorStart()
131 xTaskCreate(actuatorTask
, "Actuator", STACK_SIZE_BYTES
/ 4, NULL
, TASK_PRIORITY
, &taskHandle
);
132 PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_ACTUATOR
, taskHandle
);
133 #ifdef PIOS_INCLUDE_WDG
134 PIOS_WDG_RegisterFlag(PIOS_WDG_ACTUATOR
);
136 SettingsUpdatedCb(NULL
);
137 MixerSettingsUpdatedCb(NULL
);
138 ActuatorSettingsUpdatedCb(NULL
);
143 * @brief Module initialization
146 int32_t ActuatorInitialize()
148 // Register for notification of changes to ActuatorSettings
149 ActuatorSettingsInitialize();
150 ActuatorSettingsConnectCallback(ActuatorSettingsUpdatedCb
);
152 // Register for notification of changes to MixerSettings
153 MixerSettingsInitialize();
154 MixerSettingsConnectCallback(MixerSettingsUpdatedCb
);
156 // Listen for ActuatorDesired updates (Primary input to this module)
157 ActuatorDesiredInitialize();
158 queue
= xQueueCreate(MAX_QUEUE_SIZE
, sizeof(UAVObjEvent
));
159 ActuatorDesiredConnectQueue(queue
);
161 // Register AccessoryDesired (Secondary input to this module)
162 AccessoryDesiredInitialize();
164 // Check if CameraStab module is enabled
165 HwSettingsOptionalModulesData optionalModules
;
166 HwSettingsInitialize();
167 HwSettingsOptionalModulesGet(&optionalModules
);
168 camStabEnabled
= (optionalModules
.CameraStab
== HWSETTINGS_OPTIONALMODULES_ENABLED
);
170 // Primary output of this module
171 ActuatorCommandInitialize();
173 #ifdef DIAG_MIXERSTATUS
174 // UAVO only used for inspecting the internal status of the mixer during debug
175 MixerStatusInitialize();
178 #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
179 VtolPathFollowerSettingsInitialize();
180 VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb
);
182 SystemSettingsInitialize();
183 SystemSettingsConnectCallback(&SettingsUpdatedCb
);
187 MODULE_INITCALL(ActuatorInitialize
, ActuatorStart
);
190 * @brief Main Actuator module task
192 * Universal matrix based mixer for VTOL, helis and fixed wing.
193 * Converts desired roll,pitch,yaw and throttle to servo/ESC outputs.
195 * Because of how the Throttle ranges from 0 to 1, the motors should too!
197 * Note this code depends on the UAVObjects for the mixers being all being the same
198 * and in sequence. If you change the object definition, make sure you check the code!
200 * @return -1 if error, 0 if success
202 static void actuatorTask(__attribute__((unused
)) void *parameters
)
205 portTickType lastSysTime
;
206 portTickType thisSysTime
;
207 uint32_t dTMilliseconds
;
209 ActuatorCommandData command
;
210 ActuatorDesiredData desired
;
211 MixerStatusData mixerStatus
;
212 FlightModeSettingsData settings
;
213 FlightStatusData flightStatus
;
214 float throttleDesired
;
215 float collectiveDesired
;
217 #ifdef PIOS_INCLUDE_INSTRUMENTATION
218 counter
= PIOS_Instrumentation_CreateCounter(0xAC700001);
220 /* Read initial values of ActuatorSettings */
222 ActuatorSettingsGet(&actuatorSettings
);
224 /* Read initial values of MixerSettings */
225 MixerSettingsGet(&mixerSettings
);
227 /* Force an initial configuration of the actuator update rates */
228 actuator_update_rate_if_changed(true);
230 // Go to the neutral (failsafe) values until an ActuatorDesired update is received
234 lastSysTime
= xTaskGetTickCount();
236 #ifdef PIOS_INCLUDE_WDG
237 PIOS_WDG_UpdateFlag(PIOS_WDG_ACTUATOR
);
240 // Wait until the ActuatorDesired object is updated
241 uint8_t rc
= xQueueReceive(queue
, &ev
, FAILSAFE_TIMEOUT_MS
/ portTICK_RATE_MS
);
242 #ifdef PIOS_INCLUDE_INSTRUMENTATION
243 PIOS_Instrumentation_TimeStart(counter
);
247 /* Update of ActuatorDesired timed out. Go to failsafe */
252 // Check how long since last update
253 thisSysTime
= xTaskGetTickCount();
254 dTMilliseconds
= (thisSysTime
== lastSysTime
) ? 1 : (thisSysTime
- lastSysTime
) * portTICK_RATE_MS
;
255 lastSysTime
= thisSysTime
;
257 FlightStatusGet(&flightStatus
);
258 FlightModeSettingsGet(&settings
);
259 ActuatorDesiredGet(&desired
);
260 ActuatorCommandGet(&command
);
262 // read in throttle and collective -demultiplex thrust
263 switch (thrustType
) {
264 case SYSTEMSETTINGS_THRUSTCONTROL_THROTTLE
:
265 throttleDesired
= desired
.Thrust
;
266 ManualControlCommandCollectiveGet(&collectiveDesired
);
268 case SYSTEMSETTINGS_THRUSTCONTROL_COLLECTIVE
:
269 ManualControlCommandThrottleGet(&throttleDesired
);
270 collectiveDesired
= desired
.Thrust
;
273 ManualControlCommandThrottleGet(&throttleDesired
);
274 ManualControlCommandCollectiveGet(&collectiveDesired
);
277 bool armed
= flightStatus
.Armed
== FLIGHTSTATUS_ARMED_ARMED
;
278 bool activeThrottle
= (throttleDesired
< -0.001f
|| throttleDesired
> 0.001f
); // for ground and reversible motors
279 bool positiveThrottle
= (throttleDesired
> 0.00f
);
280 bool multirotor
= (GetCurrentFrameType() == FRAME_TYPE_MULTIROTOR
); // check if frame is a multirotor.
281 bool fixedwing
= (GetCurrentFrameType() == FRAME_TYPE_FIXED_WING
); // check if frame is a fixedwing.
282 bool alwaysArmed
= settings
.Arming
== FLIGHTMODESETTINGS_ARMING_ALWAYSARMED
;
283 bool alwaysStabilizeWhenArmed
= flightStatus
.AlwaysStabilizeWhenArmed
== FLIGHTSTATUS_ALWAYSSTABILIZEWHENARMED_TRUE
;
286 alwaysStabilizeWhenArmed
= false; // Do not allow always stabilize when alwaysArmed is active. This is dangerous.
290 throttleDesired
= 0.00f
; // this also happens in scaleMotors as a per axis check
293 if ((frameType
== FRAME_TYPE_GROUND
&& !activeThrottle
) || (frameType
!= FRAME_TYPE_GROUND
&& throttleDesired
<= 0.00f
) || !armed
) {
294 // throttleDesired should never be 0 or go below 0.
295 // force set all other controls to zero if throttle is cut (previously set in Stabilization)
296 // todo: can probably remove this
297 if (!(multirotor
&& alwaysStabilizeWhenArmed
&& armed
)) { // we don't do this if this is a multirotor AND AlwaysStabilizeWhenArmed is true and the model is armed
298 if (actuatorSettings
.LowThrottleZeroAxis
.Roll
== ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE
) {
299 desired
.Roll
= 0.00f
;
301 if (actuatorSettings
.LowThrottleZeroAxis
.Pitch
== ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE
) {
302 desired
.Pitch
= 0.00f
;
304 if (actuatorSettings
.LowThrottleZeroAxis
.Yaw
== ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE
) {
310 #ifdef DIAG_MIXERSTATUS
311 MixerStatusGet(&mixerStatus
);
314 if ((mixer_settings_count
< 2) && !ActuatorCommandReadOnly()) { // Nothing can fly with less than two mixers.
319 AlarmsClear(SYSTEMALARMS_ALARM_ACTUATOR
);
321 float curve1
= 0.0f
; // curve 1 is the throttle curve applied to all motors.
324 // Interpolate curve 1 from throttleDesired as input.
325 // assume reversible motor/mixer initially. We can later reverse this. The difference is simply that -ve throttleDesired values
327 curve1
= MixerCurveFullRangeProportional(throttleDesired
, mixerSettings
.ThrottleCurve1
, MIXERSETTINGS_THROTTLECURVE1_NUMELEM
, multirotor
);
329 // The source for the secondary curve is selectable
330 AccessoryDesiredData accessory
;
331 uint8_t curve2Source
= mixerSettings
.Curve2Source
;
332 switch (curve2Source
) {
333 case MIXERSETTINGS_CURVE2SOURCE_THROTTLE
:
334 // assume reversible motor/mixer initially
335 curve2
= MixerCurveFullRangeProportional(throttleDesired
, mixerSettings
.ThrottleCurve2
, MIXERSETTINGS_THROTTLECURVE2_NUMELEM
, multirotor
);
337 case MIXERSETTINGS_CURVE2SOURCE_ROLL
:
338 // Throttle curve contribution the same for +ve vs -ve roll
340 curve2
= MixerCurveFullRangeProportional(desired
.Roll
, mixerSettings
.ThrottleCurve2
, MIXERSETTINGS_THROTTLECURVE2_NUMELEM
, multirotor
);
342 curve2
= MixerCurveFullRangeAbsolute(desired
.Roll
, mixerSettings
.ThrottleCurve2
, MIXERSETTINGS_THROTTLECURVE2_NUMELEM
, multirotor
);
345 case MIXERSETTINGS_CURVE2SOURCE_PITCH
:
346 // Throttle curve contribution the same for +ve vs -ve pitch
348 curve2
= MixerCurveFullRangeProportional(desired
.Pitch
, mixerSettings
.ThrottleCurve2
,
349 MIXERSETTINGS_THROTTLECURVE2_NUMELEM
, multirotor
);
351 curve2
= MixerCurveFullRangeAbsolute(desired
.Pitch
, mixerSettings
.ThrottleCurve2
,
352 MIXERSETTINGS_THROTTLECURVE2_NUMELEM
, multirotor
);
355 case MIXERSETTINGS_CURVE2SOURCE_YAW
:
356 // Throttle curve contribution the same for +ve vs -ve yaw
358 curve2
= MixerCurveFullRangeProportional(desired
.Yaw
, mixerSettings
.ThrottleCurve2
, MIXERSETTINGS_THROTTLECURVE2_NUMELEM
, multirotor
);
360 curve2
= MixerCurveFullRangeAbsolute(desired
.Yaw
, mixerSettings
.ThrottleCurve2
, MIXERSETTINGS_THROTTLECURVE2_NUMELEM
, multirotor
);
363 case MIXERSETTINGS_CURVE2SOURCE_COLLECTIVE
:
364 // assume reversible motor/mixer initially
365 curve2
= MixerCurveFullRangeProportional(collectiveDesired
, mixerSettings
.ThrottleCurve2
,
366 MIXERSETTINGS_THROTTLECURVE2_NUMELEM
, multirotor
);
368 case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY0
:
369 case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY1
:
370 case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY2
:
371 case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY3
:
372 case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY4
:
373 case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY5
:
374 if (AccessoryDesiredInstGet(mixerSettings
.Curve2Source
- MIXERSETTINGS_CURVE2SOURCE_ACCESSORY0
, &accessory
) == 0) {
375 // Throttle curve contribution the same for +ve vs -ve accessory....maybe not want we want.
376 curve2
= MixerCurveFullRangeAbsolute(accessory
.AccessoryVal
, mixerSettings
.ThrottleCurve2
, MIXERSETTINGS_THROTTLECURVE2_NUMELEM
, multirotor
);
386 float *status
= (float *)&mixerStatus
; // access status objects as an array of floats
387 Mixer_t
*mixers
= (Mixer_t
*)&mixerSettings
.Mixer1Type
;
388 float maxMotor
= -1.0f
; // highest motor value. Addition method needs this to be -1.0f, division method needs this to be 1.0f
389 float minMotor
= 1.0f
; // lowest motor value Addition method needs this to be 1.0f, division method needs this to be -1.0f
391 for (int ct
= 0; ct
< MAX_MIX_ACTUATORS
; ct
++) {
392 // During boot all camera actuators should be completely disabled (PWM pulse = 0).
393 // command.Channel[i] is reused below as a channel PWM activity flag:
394 // 0 - PWM disabled, >0 - PWM set to real mixer value using scaleChannel() later.
395 // Setting it to 1 by default means "Rescale this channel and enable PWM on its output".
396 command
.Channel
[ct
] = 1;
398 uint8_t mixer_type
= mixers
[ct
].type
;
400 if (mixer_type
== MIXERSETTINGS_MIXER1TYPE_DISABLED
) {
401 // Set to minimum if disabled. This is not the same as saying PWM pulse = 0 us
406 if ((mixer_type
== MIXERSETTINGS_MIXER1TYPE_MOTOR
)) {
407 float nonreversible_curve1
= curve1
;
408 float nonreversible_curve2
= curve2
;
409 if (nonreversible_curve1
< 0.0f
) {
410 nonreversible_curve1
= 0.0f
;
412 if (nonreversible_curve2
< 0.0f
) {
413 if (!multirotor
) { // allow negative throttle if multirotor. function scaleMotors handles the sanity checks.
414 nonreversible_curve2
= 0.0f
;
417 status
[ct
] = ProcessMixer(ct
, nonreversible_curve1
, nonreversible_curve2
, &desired
, multirotor
, fixedwing
);
418 // If not armed or motors aren't meant to spin all the time
420 (!spinWhileArmed
&& !positiveThrottle
)) {
421 status
[ct
] = -1; // force min throttle
423 // If armed meant to keep spinning,
424 else if ((spinWhileArmed
&& !positiveThrottle
) ||
428 // allow throttle values lower than 0 if multirotor.
429 // Values will be scaled to 0 if they need to be in the scaleMotor function
432 } else if (mixer_type
== MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR
) {
433 status
[ct
] = ProcessMixer(ct
, curve1
, curve2
, &desired
, multirotor
, fixedwing
);
434 // Reversable Motors are like Motors but go to neutral instead of minimum
435 // If not armed or motor is inactive - no "spinwhilearmed" for this engine type
436 if (!armed
|| !activeThrottle
) {
437 status
[ct
] = 0; // force neutral throttle
439 } else if (mixer_type
== MIXERSETTINGS_MIXER1TYPE_SERVO
) {
440 status
[ct
] = ProcessMixer(ct
, curve1
, curve2
, &desired
, multirotor
, fixedwing
);
444 // If an accessory channel is selected for direct bypass mode
445 // In this configuration the accessory channel is scaled and mapped
446 // directly to output. Note: THERE IS NO SAFETY CHECK HERE FOR ARMING
447 // these also will not be updated in failsafe mode. I'm not sure what
448 // the correct behavior is since it seems domain specific. I don't love
450 if ((mixer_type
>= MIXERSETTINGS_MIXER1TYPE_ACCESSORY0
) &&
451 (mixer_type
<= MIXERSETTINGS_MIXER1TYPE_ACCESSORY5
)) {
452 if (AccessoryDesiredInstGet(mixer_type
- MIXERSETTINGS_MIXER1TYPE_ACCESSORY0
, &accessory
) == 0) {
453 status
[ct
] = accessory
.AccessoryVal
;
459 if ((mixer_type
>= MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1
) &&
460 (mixer_type
<= MIXERSETTINGS_MIXER1TYPE_CAMERAYAW
)) {
461 if (camStabEnabled
) {
462 CameraDesiredData cameraDesired
;
463 CameraDesiredGet(&cameraDesired
);
464 switch (mixer_type
) {
465 case MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1
:
466 status
[ct
] = cameraDesired
.RollOrServo1
;
468 case MIXERSETTINGS_MIXER1TYPE_CAMERAPITCHORSERVO2
:
469 status
[ct
] = cameraDesired
.PitchOrServo2
;
471 case MIXERSETTINGS_MIXER1TYPE_CAMERAYAW
:
472 status
[ct
] = cameraDesired
.Yaw
;
481 // Disable camera actuators for CAMERA_BOOT_DELAY_MS after boot
482 if (thisSysTime
< (CAMERA_BOOT_DELAY_MS
/ portTICK_RATE_MS
)) {
483 command
.Channel
[ct
] = 0;
488 // If mixer type is motor we need to find which motor has the highest value and which motor has the lowest value.
489 // For use in function scaleMotor
490 if (mixers
[ct
].type
== MIXERSETTINGS_MIXER1TYPE_MOTOR
) {
491 if (maxMotor
< status
[ct
]) {
492 maxMotor
= status
[ct
];
494 if (minMotor
> status
[ct
]) {
495 minMotor
= status
[ct
];
500 // Set real actuator output values scaling them from mixers. All channels
501 // will be set except explicitly disabled (which will have PWM pulse = 0).
502 for (int i
= 0; i
< MAX_MIX_ACTUATORS
; i
++) {
503 if (command
.Channel
[i
]) {
504 if (mixers
[i
].type
== MIXERSETTINGS_MIXER1TYPE_MOTOR
) { // If mixer is for a motor we need to find the highest value of all motors
505 command
.Channel
[i
] = scaleMotor(status
[i
],
506 actuatorSettings
.ChannelMax
[i
],
507 actuatorSettings
.ChannelMin
[i
],
508 actuatorSettings
.ChannelNeutral
[i
],
512 alwaysStabilizeWhenArmed
,
514 } else { // else we scale the channel
515 command
.Channel
[i
] = scaleChannel(status
[i
],
516 actuatorSettings
.ChannelMax
[i
],
517 actuatorSettings
.ChannelMin
[i
],
518 actuatorSettings
.ChannelNeutral
[i
]);
524 command
.UpdateTime
= dTMilliseconds
;
525 if (command
.UpdateTime
> command
.MaxUpdateTime
) {
526 command
.MaxUpdateTime
= command
.UpdateTime
;
528 // Update output object
529 ActuatorCommandSet(&command
);
530 // Update in case read only (eg. during servo configuration)
531 ActuatorCommandGet(&command
);
533 #ifdef DIAG_MIXERSTATUS
534 MixerStatusSet(&mixerStatus
);
538 // Update servo outputs
541 for (int n
= 0; n
< ACTUATORCOMMAND_CHANNEL_NUMELEM
; ++n
) {
542 success
&= set_channel(n
, command
.Channel
[n
]);
548 command
.NumFailedUpdates
++;
549 ActuatorCommandSet(&command
);
550 AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR
, SYSTEMALARMS_ALARM_CRITICAL
);
552 #ifdef PIOS_INCLUDE_INSTRUMENTATION
553 PIOS_Instrumentation_TimeEnd(counter
);
560 * Process mixing for one actuator
562 float ProcessMixer(const int index
, const float curve1
, const float curve2
,
563 ActuatorDesiredData
*desired
, bool multirotor
, bool fixedwing
)
565 const Mixer_t
*mixers
= (Mixer_t
*)&mixerSettings
.Mixer1Type
; // pointer to array of mixers in UAVObjects
566 const Mixer_t
*mixer
= &mixers
[index
];
567 float differential
= 1.0f
;
569 // Apply differential only for fixedwing and Roll servos
570 if (fixedwing
&& (mixerSettings
.FirstRollServo
> 0) &&
571 (mixer
->type
== MIXERSETTINGS_MIXER1TYPE_SERVO
) &&
572 (mixer
->matrix
[MIXERSETTINGS_MIXER1VECTOR_ROLL
] != 0)) {
573 // Positive differential
574 if (mixerSettings
.RollDifferential
> 0) {
575 // Check for first Roll servo (should be left aileron or elevon) and Roll desired (positive/negative)
576 if (((index
== mixerSettings
.FirstRollServo
- 1) && (desired
->Roll
> 0.0f
))
577 || ((index
!= mixerSettings
.FirstRollServo
- 1) && (desired
->Roll
< 0.0f
))) {
578 differential
-= (mixerSettings
.RollDifferential
* 0.01f
);
580 } else if (mixerSettings
.RollDifferential
< 0) {
581 if (((index
== mixerSettings
.FirstRollServo
- 1) && (desired
->Roll
< 0.0f
))
582 || ((index
!= mixerSettings
.FirstRollServo
- 1) && (desired
->Roll
> 0.0f
))) {
583 differential
-= (-mixerSettings
.RollDifferential
* 0.01f
);
588 float result
= ((((float)mixer
->matrix
[MIXERSETTINGS_MIXER1VECTOR_THROTTLECURVE1
]) * curve1
) +
589 (((float)mixer
->matrix
[MIXERSETTINGS_MIXER1VECTOR_THROTTLECURVE2
]) * curve2
) +
590 (((float)mixer
->matrix
[MIXERSETTINGS_MIXER1VECTOR_ROLL
]) * desired
->Roll
* differential
) +
591 (((float)mixer
->matrix
[MIXERSETTINGS_MIXER1VECTOR_PITCH
]) * desired
->Pitch
) +
592 (((float)mixer
->matrix
[MIXERSETTINGS_MIXER1VECTOR_YAW
]) * desired
->Yaw
)) / 128.0f
;
594 if (mixer
->type
== MIXERSETTINGS_MIXER1TYPE_MOTOR
) {
595 if (!multirotor
) { // we allow negative throttle with a multirotor
596 if (result
< 0.0f
) { // zero throttle
607 * Interpolate a throttle curve
608 * Full range input (-1 to 1) for yaw, roll, pitch
609 * Output range (-1 to 1) reversible motor/throttle curve
611 * Input of -1 -> -lookup(1)
612 * Input of 0 -> lookup(0)
613 * Input of 1 -> lookup(1)
615 static float MixerCurveFullRangeProportional(const float input
, const float *curve
, uint8_t elements
, bool multirotor
)
617 float unsigned_value
= MixerCurveFullRangeAbsolute(input
, curve
, elements
, multirotor
);
620 return -unsigned_value
;
622 return unsigned_value
;
627 * Interpolate a throttle curve
628 * Full range input (-1 to 1) for yaw, roll, pitch
629 * Output range (0 to 1) non-reversible motor/throttle curve
631 * Input of -1 -> lookup(1)
632 * Input of 0 -> lookup(0)
633 * Input of 1 -> lookup(1)
635 static float MixerCurveFullRangeAbsolute(const float input
, const float *curve
, uint8_t elements
, bool multirotor
)
637 float abs_input
= fabsf(input
);
638 float scale
= abs_input
* (float)(elements
- 1);
641 scale
-= (float)idx1
; // remainder
646 if (idx2
>= elements
) {
647 idx2
= elements
- 1; // clamp to highest entry in table
648 if (idx1
>= elements
) {
650 // if multirotor frame we can return throttle values higher than 100%.
651 // Since the we don't have elements in the curve higher than 100% we return
652 // the last element multiplied by the throttle float
653 if (input
< 2.0f
) { // this limits positive throttle to 200% of max value in table (Maybe this is too much allowance)
654 return curve
[idx2
] * input
;
656 return curve
[idx2
] * 2.0f
; // return 200% of max value in table
663 float unsigned_value
= curve
[idx1
] * (1.0f
- scale
) + curve
[idx2
] * scale
;
664 return unsigned_value
;
669 * Convert channel from -1/+1 to servo pulse duration in microseconds
671 static int16_t scaleChannel(float value
, int16_t max
, int16_t min
, int16_t neutral
)
677 valueScaled
= (int16_t)(value
* ((float)(max
- neutral
))) + neutral
;
679 valueScaled
= (int16_t)(value
* ((float)(neutral
- min
))) + neutral
;
683 if (valueScaled
> max
) {
686 if (valueScaled
< min
) {
690 if (valueScaled
< max
) {
693 if (valueScaled
> min
) {
702 * Move and compress all motor outputs so that none goes below neutral,
703 * and all motors are below or equal to max.
705 static inline int16_t scaleMotorMoveAndCompress(float valueMotor
, int16_t max
, int16_t neutral
, float maxMotor
, float minMotor
)
707 // The valueMotor parameter is the desired motor value somewhere in the
708 // [minMotor, maxMotor] range, which is [< -1.00, > 1.00].
710 // Before converting valueMotor to the [neutral, max] range, we scale
711 // valueMotor to a value in the [0.0f, 1.0f] range.
713 // This is done by, first, conceptually moving all three values valueMotor,
714 // minMotor, and maxMotor, equally so that the [minMotor, maxMotor] range,
715 // are contained or overlaps with the [0.0f, 1.0f] range.
717 // Then if the [minMotor, maxMotor] range is larger than 1.0f, the values
718 // are compressed enough to shrink the [minMotor + move, maxMotor + move]
719 // range to fit within the [0.0f, 1.0f] range.
721 // First move the values so that the source range [minMotor, maxMotor]
722 // covers the target range [0.0f, 1.0f] as much as possible.
723 float moveValue
= 0.0f
;
725 if (minMotor
<= 0.0f
) {
726 // Negative minMotor always adjust to 0.
727 moveValue
= -minMotor
;
728 } else if (maxMotor
> 1.0f
) {
729 // A too large maxMotor value adjust the range down towards, but not past, the minMotor value.
730 float beyondMax
= maxMotor
- 1.0f
;
731 moveValue
= -(beyondMax
< minMotor
? beyondMax
: minMotor
);
734 // Then calculate the compress value, if the source range is greater than 1.0f.
735 float compressValue
= 1.0f
;
737 float rangeMotor
= maxMotor
- minMotor
;
738 if (rangeMotor
> 1.0f
) {
739 compressValue
= rangeMotor
;
742 // Combine the movement and compression, to get the value within [0.0f, 1.0f]
743 float movedAndCompressedValue
= (valueMotor
+ moveValue
) / compressValue
;
745 // And last, convert the value into the [neutral, max] range.
746 int16_t valueScaled
= movedAndCompressedValue
* ((float)(max
- neutral
)) + neutral
;
748 if (valueScaled
> max
) {
749 valueScaled
= max
; // clamp to max value only after scaling is done.
752 PIOS_Assert(valueScaled
>= neutral
);
758 * Constrain motor values to keep any one motor value from going too far out of range of another motor
760 static int16_t scaleMotor(float value
, int16_t max
, int16_t min
, int16_t neutral
, float maxMotor
, float minMotor
, bool armed
, bool alwaysStabilizeWhenArmed
, float throttleDesired
)
765 valueScaled
= scaleMotorMoveAndCompress(value
, max
, neutral
, maxMotor
, minMotor
);
767 // not sure what to do about reversed polarity right now. Why would anyone do this?
768 valueScaled
= scaleChannel(value
, max
, min
, neutral
);
771 // I've added the bool alwaysStabilizeWhenArmed to this function. Right now we command the motors at min or a range between neutral and max.
772 // NEVER should a motor be command at between min and neutral. I don't like the idea of stabilization ever commanding a motor to min, but we give people the option
773 // This prevents motors startup sync issues causing possible ESC failures.
777 // if not armed return min EVERYTIME!
779 } else if (!alwaysStabilizeWhenArmed
&& (throttleDesired
<= 0.0f
) && spinWhileArmed
) {
780 // all motors idle is alwaysStabilizeWhenArmed is false, throttle is less than or equal to neutral and spin while armed
781 // stabilize when armed?
782 valueScaled
= neutral
;
783 } else if (!spinWhileArmed
&& (throttleDesired
<= 0.0f
)) {
792 * Set actuator output to the neutral values (failsafe)
794 static void setFailsafe()
796 /* grab only the parts that we are going to use */
797 int16_t Channel
[ACTUATORCOMMAND_CHANNEL_NUMELEM
];
799 ActuatorCommandChannelGet(Channel
);
801 const Mixer_t
*mixers
= (Mixer_t
*)&mixerSettings
.Mixer1Type
; // pointer to array of mixers in UAVObjects
803 // Reset ActuatorCommand to safe values
804 for (int n
= 0; n
< ACTUATORCOMMAND_CHANNEL_NUMELEM
; ++n
) {
805 if (mixers
[n
].type
== MIXERSETTINGS_MIXER1TYPE_MOTOR
) {
806 Channel
[n
] = actuatorSettings
.ChannelMin
[n
];
807 } else if (mixers
[n
].type
== MIXERSETTINGS_MIXER1TYPE_SERVO
|| mixers
[n
].type
== MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR
) {
808 // reversible motors need calibration wizard that allows channel neutral to be the 0 velocity point
809 Channel
[n
] = actuatorSettings
.ChannelNeutral
[n
];
816 AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR
, SYSTEMALARMS_ALARM_CRITICAL
);
818 // Update servo outputs
819 for (int n
= 0; n
< ACTUATORCOMMAND_CHANNEL_NUMELEM
; ++n
) {
820 set_channel(n
, Channel
[n
]);
822 // Send the updated command
825 // Update output object's parts that we changed
826 ActuatorCommandChannelSet(Channel
);
830 * determine buzzer or blink sequence
833 typedef enum { BUZZ_BUZZER
= 0, BUZZ_ARMING
= 1, BUZZ_INFO
= 2, BUZZ_MAX
= 3 } buzzertype
;
835 static inline bool buzzerState(buzzertype type
)
837 // This is for buzzers that take a PWM input
839 static uint32_t tune
[BUZZ_MAX
] = { 0 };
840 static uint32_t tunestate
[BUZZ_MAX
] = { 0 };
843 uint32_t newTune
= 0;
845 if (type
== BUZZ_BUZZER
) {
846 // Decide what tune to play
847 if (AlarmsGet(SYSTEMALARMS_ALARM_BATTERY
) > SYSTEMALARMS_ALARM_WARNING
) {
848 newTune
= 0b11110110110000; // pause, short, short, short, long
849 } else if (AlarmsGet(SYSTEMALARMS_ALARM_GPS
) >= SYSTEMALARMS_ALARM_WARNING
) {
850 newTune
= 0x80000000; // pause, short
854 } else { // BUZZ_ARMING || BUZZ_INFO
856 FlightStatusArmedGet(&arming
);
858 newTune
= 0x80000000; // 0b1000...
860 // Merge the error pattern for InfoLed
861 if (type
== BUZZ_INFO
) {
862 if (AlarmsGet(SYSTEMALARMS_ALARM_BATTERY
) > SYSTEMALARMS_ALARM_WARNING
) {
863 newTune
|= 0b00000000001111111011111110000000;
864 } else if (AlarmsGet(SYSTEMALARMS_ALARM_GPS
) >= SYSTEMALARMS_ALARM_WARNING
) {
865 newTune
|= 0b00000000000000110110110000000000;
868 // fast double blink pattern if armed
869 if (arming
== FLIGHTSTATUS_ARMED_ARMED
) {
870 newTune
|= 0xA0000000; // 0b101000...
874 // Do we need to change tune?
875 if (newTune
!= tune
[type
]) {
876 tune
[type
] = newTune
;
877 // resynchronize all tunes on change, so they stay in sync
878 for (int i
= 0; i
< BUZZ_MAX
; i
++) {
879 tunestate
[i
] = tune
[i
];
885 static portTickType lastSysTime
= 0;
886 portTickType thisSysTime
= xTaskGetTickCount();
889 // For now, only look at the battery alarm, because functions like AlarmsHasCritical() can block for some time; to be discussed
891 if (thisSysTime
> lastSysTime
) {
892 dT
= thisSysTime
- lastSysTime
;
894 lastSysTime
= 0; // avoid the case where SysTimeMax-lastSysTime <80
897 buzzOn
= (tunestate
[type
] & 1);
900 // Go to next bit in alarm_seq_state
901 for (int i
= 0; i
< BUZZ_MAX
; i
++) {
903 if (tunestate
[i
] == 0) { // All done, re-start the tune
904 tunestate
[i
] = tune
[i
];
907 lastSysTime
= thisSysTime
;
914 #if defined(ARCH_POSIX) || defined(ARCH_WIN32)
915 static bool set_channel(uint8_t mixer_channel
, uint16_t value
)
920 static bool set_channel(uint8_t mixer_channel
, uint16_t value
)
922 switch (actuatorSettings
.ChannelType
[mixer_channel
]) {
923 case ACTUATORSETTINGS_CHANNELTYPE_PWMALARMBUZZER
:
924 PIOS_Servo_Set(actuatorSettings
.ChannelAddr
[mixer_channel
],
925 buzzerState(BUZZ_BUZZER
) ? actuatorSettings
.ChannelMax
[mixer_channel
] : actuatorSettings
.ChannelMin
[mixer_channel
]);
928 case ACTUATORSETTINGS_CHANNELTYPE_ARMINGLED
:
929 PIOS_Servo_Set(actuatorSettings
.ChannelAddr
[mixer_channel
],
930 buzzerState(BUZZ_ARMING
) ? actuatorSettings
.ChannelMax
[mixer_channel
] : actuatorSettings
.ChannelMin
[mixer_channel
]);
933 case ACTUATORSETTINGS_CHANNELTYPE_INFOLED
:
934 PIOS_Servo_Set(actuatorSettings
.ChannelAddr
[mixer_channel
],
935 buzzerState(BUZZ_INFO
) ? actuatorSettings
.ChannelMax
[mixer_channel
] : actuatorSettings
.ChannelMin
[mixer_channel
]);
938 case ACTUATORSETTINGS_CHANNELTYPE_PWM
:
940 uint8_t mode
= pinsMode
[actuatorSettings
.ChannelAddr
[mixer_channel
]];
942 case ACTUATORSETTINGS_BANKMODE_ONESHOT125
:
943 // Remap 1000-2000 range to 125-250µs
944 PIOS_Servo_Set(actuatorSettings
.ChannelAddr
[mixer_channel
], value
* ACTUATOR_ONESHOT125_PULSE_FACTOR
);
946 case ACTUATORSETTINGS_BANKMODE_ONESHOT42
:
947 // Remap 1000-2000 range to 41,666-83,333µs
948 PIOS_Servo_Set(actuatorSettings
.ChannelAddr
[mixer_channel
], value
* ACTUATOR_ONESHOT42_PULSE_FACTOR
);
950 case ACTUATORSETTINGS_BANKMODE_MULTISHOT
:
951 // Remap 1000-2000 range to 5-25µs
952 PIOS_Servo_Set(actuatorSettings
.ChannelAddr
[mixer_channel
], (value
* ACTUATOR_MULTISHOT_PULSE_FACTOR
) - 180);
955 PIOS_Servo_Set(actuatorSettings
.ChannelAddr
[mixer_channel
], value
);
961 #if defined(PIOS_INCLUDE_I2C_ESC)
962 case ACTUATORSETTINGS_CHANNELTYPE_MK
:
963 return PIOS_SetMKSpeed(actuatorSettings
->ChannelAddr
[mixer_channel
], value
);
965 case ACTUATORSETTINGS_CHANNELTYPE_ASTEC4
:
966 return PIOS_SetAstec4Speed(actuatorSettings
->ChannelAddr
[mixer_channel
], value
);
975 #endif /* if defined(ARCH_POSIX) || defined(ARCH_WIN32) */
978 * @brief Update the servo update rate
980 static void actuator_update_rate_if_changed(bool force_update
)
982 static uint16_t prevBankUpdateFreq
[ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM
];
983 static uint8_t prevBankMode
[ACTUATORSETTINGS_BANKMODE_NUMELEM
];
984 bool updateMode
= force_update
|| (memcmp(prevBankMode
, actuatorSettings
.BankMode
, sizeof(prevBankMode
)) != 0);
985 bool updateFreq
= force_update
|| (memcmp(prevBankUpdateFreq
, actuatorSettings
.BankUpdateFreq
, sizeof(prevBankUpdateFreq
)) != 0);
987 // check if any setting is changed
988 if (updateMode
|| updateFreq
) {
989 /* Something has changed, apply the settings to HW */
991 uint16_t freq
[ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM
];
992 uint32_t clock
[ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM
] = { 0 };
993 for (uint8_t i
= 0; i
< ACTUATORSETTINGS_BANKMODE_NUMELEM
; i
++) {
994 if (force_update
|| (actuatorSettings
.BankMode
[i
] != prevBankMode
[i
])) {
995 PIOS_Servo_SetBankMode(i
,
996 actuatorSettings
.BankMode
[i
] ==
997 ACTUATORSETTINGS_BANKMODE_PWM
?
998 PIOS_SERVO_BANK_MODE_PWM
:
999 PIOS_SERVO_BANK_MODE_SINGLE_PULSE
1002 switch (actuatorSettings
.BankMode
[i
]) {
1003 case ACTUATORSETTINGS_BANKMODE_ONESHOT125
:
1004 case ACTUATORSETTINGS_BANKMODE_ONESHOT42
:
1005 case ACTUATORSETTINGS_BANKMODE_MULTISHOT
:
1006 freq
[i
] = 100; // Value must be small enough so CCr isn't update until the PIOS_Servo_Update is triggered
1007 clock
[i
] = ACTUATOR_ONESHOT_CLOCK
; // Setup an 12MHz timer clock
1009 case ACTUATORSETTINGS_BANKMODE_PWMSYNC
:
1011 clock
[i
] = ACTUATOR_PWM_CLOCK
;
1014 freq
[i
] = actuatorSettings
.BankUpdateFreq
[i
];
1015 clock
[i
] = ACTUATOR_PWM_CLOCK
;
1020 memcpy(prevBankMode
,
1021 actuatorSettings
.BankMode
,
1022 sizeof(prevBankMode
));
1024 PIOS_Servo_SetHz(freq
, clock
, ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM
);
1026 memcpy(prevBankUpdateFreq
,
1027 actuatorSettings
.BankUpdateFreq
,
1028 sizeof(prevBankUpdateFreq
));
1029 // retrieve mode from related bank
1030 for (uint8_t i
= 0; i
< MAX_MIX_ACTUATORS
; i
++) {
1031 uint8_t bank
= PIOS_Servo_GetPinBank(i
);
1032 pinsMode
[i
] = actuatorSettings
.BankMode
[bank
];
1037 static void ActuatorSettingsUpdatedCb(__attribute__((unused
)) UAVObjEvent
*ev
)
1039 ActuatorSettingsGet(&actuatorSettings
);
1040 spinWhileArmed
= actuatorSettings
.MotorsSpinWhileArmed
== ACTUATORSETTINGS_MOTORSSPINWHILEARMED_TRUE
;
1041 if (frameType
== FRAME_TYPE_GROUND
) {
1042 spinWhileArmed
= false;
1044 actuator_update_rate_if_changed(false);
1047 static void MixerSettingsUpdatedCb(__attribute__((unused
)) UAVObjEvent
*ev
)
1049 MixerSettingsGet(&mixerSettings
);
1050 mixer_settings_count
= 0;
1051 Mixer_t
*mixers
= (Mixer_t
*)&mixerSettings
.Mixer1Type
;
1052 for (int ct
= 0; ct
< MAX_MIX_ACTUATORS
; ct
++) {
1053 if (mixers
[ct
].type
!= MIXERSETTINGS_MIXER1TYPE_DISABLED
) {
1054 mixer_settings_count
++;
1058 static void SettingsUpdatedCb(__attribute__((unused
)) UAVObjEvent
*ev
)
1060 frameType
= GetCurrentFrameType();
1061 #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
1062 uint8_t TreatCustomCraftAs
;
1063 VtolPathFollowerSettingsTreatCustomCraftAsGet(&TreatCustomCraftAs
);
1065 if (frameType
== FRAME_TYPE_CUSTOM
) {
1066 switch (TreatCustomCraftAs
) {
1067 case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING
:
1068 frameType
= FRAME_TYPE_FIXED_WING
;
1070 case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL
:
1071 frameType
= FRAME_TYPE_MULTIROTOR
;
1073 case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_GROUND
:
1074 frameType
= FRAME_TYPE_GROUND
;
1080 SystemSettingsThrustControlGet(&thrustType
);