LP-311 Remove basic/advanced stabilization tab auto-switch (autotune/txpid lock issues)
[librepilot.git] / ground / gcs / src / libs / eigen / blas / dspmv.f
blobf6e121e7651cb60d425fae48f146f8e25e841651
1 SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
2 * .. Scalar Arguments ..
3 DOUBLE PRECISION ALPHA,BETA
4 INTEGER INCX,INCY,N
5 CHARACTER UPLO
6 * ..
7 * .. Array Arguments ..
8 DOUBLE PRECISION AP(*),X(*),Y(*)
9 * ..
11 * Purpose
12 * =======
14 * DSPMV performs the matrix-vector operation
16 * y := alpha*A*x + beta*y,
18 * where alpha and beta are scalars, x and y are n element vectors and
19 * A is an n by n symmetric matrix, supplied in packed form.
21 * Arguments
22 * ==========
24 * UPLO - CHARACTER*1.
25 * On entry, UPLO specifies whether the upper or lower
26 * triangular part of the matrix A is supplied in the packed
27 * array AP as follows:
29 * UPLO = 'U' or 'u' The upper triangular part of A is
30 * supplied in AP.
32 * UPLO = 'L' or 'l' The lower triangular part of A is
33 * supplied in AP.
35 * Unchanged on exit.
37 * N - INTEGER.
38 * On entry, N specifies the order of the matrix A.
39 * N must be at least zero.
40 * Unchanged on exit.
42 * ALPHA - DOUBLE PRECISION.
43 * On entry, ALPHA specifies the scalar alpha.
44 * Unchanged on exit.
46 * AP - DOUBLE PRECISION array of DIMENSION at least
47 * ( ( n*( n + 1 ) )/2 ).
48 * Before entry with UPLO = 'U' or 'u', the array AP must
49 * contain the upper triangular part of the symmetric matrix
50 * packed sequentially, column by column, so that AP( 1 )
51 * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
52 * and a( 2, 2 ) respectively, and so on.
53 * Before entry with UPLO = 'L' or 'l', the array AP must
54 * contain the lower triangular part of the symmetric matrix
55 * packed sequentially, column by column, so that AP( 1 )
56 * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
57 * and a( 3, 1 ) respectively, and so on.
58 * Unchanged on exit.
60 * X - DOUBLE PRECISION array of dimension at least
61 * ( 1 + ( n - 1 )*abs( INCX ) ).
62 * Before entry, the incremented array X must contain the n
63 * element vector x.
64 * Unchanged on exit.
66 * INCX - INTEGER.
67 * On entry, INCX specifies the increment for the elements of
68 * X. INCX must not be zero.
69 * Unchanged on exit.
71 * BETA - DOUBLE PRECISION.
72 * On entry, BETA specifies the scalar beta. When BETA is
73 * supplied as zero then Y need not be set on input.
74 * Unchanged on exit.
76 * Y - DOUBLE PRECISION array of dimension at least
77 * ( 1 + ( n - 1 )*abs( INCY ) ).
78 * Before entry, the incremented array Y must contain the n
79 * element vector y. On exit, Y is overwritten by the updated
80 * vector y.
82 * INCY - INTEGER.
83 * On entry, INCY specifies the increment for the elements of
84 * Y. INCY must not be zero.
85 * Unchanged on exit.
87 * Further Details
88 * ===============
90 * Level 2 Blas routine.
92 * -- Written on 22-October-1986.
93 * Jack Dongarra, Argonne National Lab.
94 * Jeremy Du Croz, Nag Central Office.
95 * Sven Hammarling, Nag Central Office.
96 * Richard Hanson, Sandia National Labs.
98 * =====================================================================
100 * .. Parameters ..
101 DOUBLE PRECISION ONE,ZERO
102 PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
103 * ..
104 * .. Local Scalars ..
105 DOUBLE PRECISION TEMP1,TEMP2
106 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
107 * ..
108 * .. External Functions ..
109 LOGICAL LSAME
110 EXTERNAL LSAME
111 * ..
112 * .. External Subroutines ..
113 EXTERNAL XERBLA
114 * ..
116 * Test the input parameters.
118 INFO = 0
119 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
120 INFO = 1
121 ELSE IF (N.LT.0) THEN
122 INFO = 2
123 ELSE IF (INCX.EQ.0) THEN
124 INFO = 6
125 ELSE IF (INCY.EQ.0) THEN
126 INFO = 9
127 END IF
128 IF (INFO.NE.0) THEN
129 CALL XERBLA('DSPMV ',INFO)
130 RETURN
131 END IF
133 * Quick return if possible.
135 IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
137 * Set up the start points in X and Y.
139 IF (INCX.GT.0) THEN
140 KX = 1
141 ELSE
142 KX = 1 - (N-1)*INCX
143 END IF
144 IF (INCY.GT.0) THEN
145 KY = 1
146 ELSE
147 KY = 1 - (N-1)*INCY
148 END IF
150 * Start the operations. In this version the elements of the array AP
151 * are accessed sequentially with one pass through AP.
153 * First form y := beta*y.
155 IF (BETA.NE.ONE) THEN
156 IF (INCY.EQ.1) THEN
157 IF (BETA.EQ.ZERO) THEN
158 DO 10 I = 1,N
159 Y(I) = ZERO
160 10 CONTINUE
161 ELSE
162 DO 20 I = 1,N
163 Y(I) = BETA*Y(I)
164 20 CONTINUE
165 END IF
166 ELSE
167 IY = KY
168 IF (BETA.EQ.ZERO) THEN
169 DO 30 I = 1,N
170 Y(IY) = ZERO
171 IY = IY + INCY
172 30 CONTINUE
173 ELSE
174 DO 40 I = 1,N
175 Y(IY) = BETA*Y(IY)
176 IY = IY + INCY
177 40 CONTINUE
178 END IF
179 END IF
180 END IF
181 IF (ALPHA.EQ.ZERO) RETURN
182 KK = 1
183 IF (LSAME(UPLO,'U')) THEN
185 * Form y when AP contains the upper triangle.
187 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
188 DO 60 J = 1,N
189 TEMP1 = ALPHA*X(J)
190 TEMP2 = ZERO
191 K = KK
192 DO 50 I = 1,J - 1
193 Y(I) = Y(I) + TEMP1*AP(K)
194 TEMP2 = TEMP2 + AP(K)*X(I)
195 K = K + 1
196 50 CONTINUE
197 Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
198 KK = KK + J
199 60 CONTINUE
200 ELSE
201 JX = KX
202 JY = KY
203 DO 80 J = 1,N
204 TEMP1 = ALPHA*X(JX)
205 TEMP2 = ZERO
206 IX = KX
207 IY = KY
208 DO 70 K = KK,KK + J - 2
209 Y(IY) = Y(IY) + TEMP1*AP(K)
210 TEMP2 = TEMP2 + AP(K)*X(IX)
211 IX = IX + INCX
212 IY = IY + INCY
213 70 CONTINUE
214 Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
215 JX = JX + INCX
216 JY = JY + INCY
217 KK = KK + J
218 80 CONTINUE
219 END IF
220 ELSE
222 * Form y when AP contains the lower triangle.
224 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
225 DO 100 J = 1,N
226 TEMP1 = ALPHA*X(J)
227 TEMP2 = ZERO
228 Y(J) = Y(J) + TEMP1*AP(KK)
229 K = KK + 1
230 DO 90 I = J + 1,N
231 Y(I) = Y(I) + TEMP1*AP(K)
232 TEMP2 = TEMP2 + AP(K)*X(I)
233 K = K + 1
234 90 CONTINUE
235 Y(J) = Y(J) + ALPHA*TEMP2
236 KK = KK + (N-J+1)
237 100 CONTINUE
238 ELSE
239 JX = KX
240 JY = KY
241 DO 120 J = 1,N
242 TEMP1 = ALPHA*X(JX)
243 TEMP2 = ZERO
244 Y(JY) = Y(JY) + TEMP1*AP(KK)
245 IX = JX
246 IY = JY
247 DO 110 K = KK + 1,KK + N - J
248 IX = IX + INCX
249 IY = IY + INCY
250 Y(IY) = Y(IY) + TEMP1*AP(K)
251 TEMP2 = TEMP2 + AP(K)*X(IX)
252 110 CONTINUE
253 Y(JY) = Y(JY) + ALPHA*TEMP2
254 JX = JX + INCX
255 JY = JY + INCY
256 KK = KK + (N-J+1)
257 120 CONTINUE
258 END IF
259 END IF
261 RETURN
263 * End of DSPMV .