3 /** \eigenManualPage TutorialGeometry Space transformations
5 In this page, we will introduce the many possibilities offered by the \ref Geometry_Module "geometry module" to deal with 2D and 3D rotations and projective or affine transformations.
9 Eigen's Geometry module provides two different kinds of geometric transformations:
10 - Abstract transformations, such as rotations (represented by \ref AngleAxis "angle and axis" or by a \ref Quaternion "quaternion"), \ref Translation "translations", \ref Scaling "scalings". These transformations are NOT represented as matrices, but you can nevertheless mix them with matrices and vectors in expressions, and convert them to matrices if you wish.
11 - Projective or affine transformation matrices: see the Transform class. These are really matrices.
13 \note If you are working with OpenGL 4x4 matrices then Affine3f and Affine3d are what you want. Since Eigen defaults to column-major storage, you can directly use the Transform::data() method to pass your transformation matrix to OpenGL.
15 You can construct a Transform from an abstract transformation, like this:
17 Transform t(AngleAxis(angle,axis));
22 t = AngleAxis(angle,axis);
24 But note that unfortunately, because of how C++ works, you can \b not do this:
26 Transform t = AngleAxis(angle,axis);
28 <span class="note">\b Explanation: In the C++ language, this would require Transform to have a non-explicit conversion constructor from AngleAxis, but we really don't want to allow implicit casting here.
31 \section TutorialGeoElementaryTransformations Transformation types
33 <table class="manual">
34 <tr><th>Transformation type</th><th>Typical initialization code</th></tr>
36 \ref Rotation2D "2D rotation" from an angle</td><td>\code
37 Rotation2D<float> rot2(angle_in_radian);\endcode</td></tr>
39 3D rotation as an \ref AngleAxis "angle + axis"</td><td>\code
40 AngleAxis<float> aa(angle_in_radian, Vector3f(ax,ay,az));\endcode
41 <span class="note">The axis vector must be normalized.</span></td></tr>
43 3D rotation as a \ref Quaternion "quaternion"</td><td>\code
44 Quaternion<float> q; q = AngleAxis<float>(angle_in_radian, axis);\endcode</td></tr>
46 N-D Scaling</td><td>\code
50 Scaling(vecN)\endcode</td></tr>
52 N-D Translation</td><td>\code
53 Translation<float,2>(tx, ty)
54 Translation<float,3>(tx, ty, tz)
55 Translation<float,N>(s)
56 Translation<float,N>(vecN)\endcode</td></tr>
58 N-D \ref TutorialGeoTransform "Affine transformation"</td><td>\code
59 Transform<float,N,Affine> t = concatenation_of_any_transformations;
60 Transform<float,3,Affine> t = Translation3f(p) * AngleAxisf(a,axis) * Scaling(s);\endcode</td></tr>
62 N-D Linear transformations \n
63 <em class=note>(pure rotations, \n scaling, etc.)</em></td><td>\code
64 Matrix<float,N> t = concatenation_of_rotations_and_scalings;
65 Matrix<float,2> t = Rotation2Df(a) * Scaling(s);
66 Matrix<float,3> t = AngleAxisf(a,axis) * Scaling(s);\endcode</td></tr>
69 <strong>Notes on rotations</strong>\n To transform more than a single vector the preferred
70 representations are rotation matrices, while for other usages Quaternion is the
71 representation of choice as they are compact, fast and stable. Finally Rotation2D and
72 AngleAxis are mainly convenient types to create other rotation objects.
74 <strong>Notes on Translation and Scaling</strong>\n Like AngleAxis, these classes were
75 designed to simplify the creation/initialization of linear (Matrix) and affine (Transform)
76 transformations. Nevertheless, unlike AngleAxis which is inefficient to use, these classes
77 might still be interesting to write generic and efficient algorithms taking as input any
78 kind of transformations.
80 Any of the above transformation types can be converted to any other types of the same nature,
81 or to a more generic type. Here are some additional examples:
82 <table class="manual">
84 Rotation2Df r; r = Matrix2f(..); // assumes a pure rotation matrix
85 AngleAxisf aa; aa = Quaternionf(..);
86 AngleAxisf aa; aa = Matrix3f(..); // assumes a pure rotation matrix
87 Matrix2f m; m = Rotation2Df(..);
88 Matrix3f m; m = Quaternionf(..); Matrix3f m; m = Scaling(..);
89 Affine3f m; m = AngleAxis3f(..); Affine3f m; m = Scaling(..);
90 Affine3f m; m = Translation3f(..); Affine3f m; m = Matrix3f(..);
95 <a href="#" class="top">top</a>\section TutorialGeoCommontransformationAPI Common API across transformation types
97 To some extent, Eigen's \ref Geometry_Module "geometry module" allows you to write
98 generic algorithms working on any kind of transformation representations:
99 <table class="manual">
101 Concatenation of two transformations</td><td>\code
102 gen1 * gen2;\endcode</td></tr>
103 <tr class="alt"><td>Apply the transformation to a vector</td><td>\code
104 vec2 = gen1 * vec1;\endcode</td></tr>
105 <tr><td>Get the inverse of the transformation</td><td>\code
106 gen2 = gen1.inverse();\endcode</td></tr>
107 <tr class="alt"><td>Spherical interpolation \n (Rotation2D and Quaternion only)</td><td>\code
108 rot3 = rot1.slerp(alpha,rot2);\endcode</td></tr>
113 <a href="#" class="top">top</a>\section TutorialGeoTransform Affine transformations
114 Generic affine transformations are represented by the Transform class which internaly
115 is a (Dim+1)^2 matrix. In Eigen we have chosen to not distinghish between points and
116 vectors such that all points are actually represented by displacement vectors from the
117 origin ( \f$ \mathbf{p} \equiv \mathbf{p}-0 \f$ ). With that in mind, real points and
118 vector distinguish when the transformation is applied.
119 <table class="manual">
121 Apply the transformation to a \b point </td><td>\code
123 p2 = t * p1;\endcode</td></tr>
125 Apply the transformation to a \b vector </td><td>\code
127 vec2 = t.linear() * vec1;\endcode</td></tr>
129 Apply a \em general transformation \n to a \b normal \b vector
130 (<a href="http://femto.cs.uiuc.edu/faqs/cga-faq.html#S5.27">explanations</a>)</td><td>\code
132 MatrixNf normalMatrix = t.linear().inverse().transpose();
133 n2 = (normalMatrix * n1).normalized();\endcode</td></tr>
135 Apply a transformation with \em pure \em rotation \n to a \b normal \b vector
136 (no scaling, no shear)</td><td>\code
137 n2 = t.linear() * n1;\endcode</td></tr>
139 OpenGL compatibility \b 3D </td><td>\code
140 glLoadMatrixf(t.data());\endcode</td></tr>
142 OpenGL compatibility \b 2D </td><td>\code
143 Affine3f aux(Affine3f::Identity());
144 aux.linear().topLeftCorner<2,2>() = t.linear();
145 aux.translation().start<2>() = t.translation();
146 glLoadMatrixf(aux.data());\endcode</td></tr>
149 \b Component \b accessors
150 <table class="manual">
152 full read-write access to the internal matrix</td><td>\code
153 t.matrix() = matN1xN1; // N1 means N+1
154 matN1xN1 = t.matrix();
157 coefficient accessors</td><td>\code
158 t(i,j) = scalar; <=> t.matrix()(i,j) = scalar;
159 scalar = t(i,j); <=> scalar = t.matrix()(i,j);
162 translation part</td><td>\code
163 t.translation() = vecN;
164 vecN = t.translation();
167 linear part</td><td>\code
172 extract the rotation matrix</td><td>\code
173 matNxN = t.rotation();
178 \b Transformation \b creation \n
179 While transformation objects can be created and updated concatenating elementary transformations,
180 the Transform class also features a procedural API:
181 <table class="manual">
182 <tr><th></th><th>procedural API</th><th>equivalent natural API </th></tr>
183 <tr><td>Translation</td><td>\code
184 t.translate(Vector_(tx,ty,..));
185 t.pretranslate(Vector_(tx,ty,..));
186 \endcode</td><td>\code
187 t *= Translation_(tx,ty,..);
188 t = Translation_(tx,ty,..) * t;
190 <tr class="alt"><td>\b Rotation \n <em class="note">In 2D and for the procedural API, any_rotation can also \n be an angle in radian</em></td><td>\code
191 t.rotate(any_rotation);
192 t.prerotate(any_rotation);
193 \endcode</td><td>\code
195 t = any_rotation * t;
197 <tr><td>Scaling</td><td>\code
198 t.scale(Vector_(sx,sy,..));
200 t.prescale(Vector_(sx,sy,..));
202 \endcode</td><td>\code
203 t *= Scaling(sx,sy,..);
205 t = Scaling(sx,sy,..) * t;
208 <tr class="alt"><td>Shear transformation \n ( \b 2D \b only ! )</td><td>\code
211 \endcode</td><td></td></tr>
214 Note that in both API, any many transformations can be concatenated in a single expression as shown in the two following equivalent examples:
215 <table class="manual">
217 t.pretranslate(..).rotate(..).translate(..).scale(..);
220 t = Translation_(..) * t * RotationType(..) * Translation_(..) * Scaling(..);
226 <a href="#" class="top">top</a>\section TutorialGeoEulerAngles Euler angles
227 <table class="manual">
228 <tr><td style="max-width:30em;">
229 Euler angles might be convenient to create rotation objects.
230 On the other hand, since there exist 24 different conventions, they are pretty confusing to use. This example shows how
231 to create a rotation matrix according to the 2-1-2 convention.</td><td>\code
233 m = AngleAxisf(angle1, Vector3f::UnitZ())
234 * * AngleAxisf(angle2, Vector3f::UnitY())
235 * * AngleAxisf(angle3, Vector3f::UnitZ());