3 int main(int argc
, char *argv
[])
5 std::cout
.precision(2);
7 // demo static functions
8 Eigen::Matrix3f m3
= Eigen::Matrix3f::Random();
9 Eigen::Matrix4f m4
= Eigen::Matrix4f::Identity();
11 std::cout
<< "*** Step 1 ***\nm3:\n" << m3
<< "\nm4:\n" << m4
<< std::endl
;
13 // demo non-static set... functions
15 m3
.diagonal().setOnes();
17 std::cout
<< "*** Step 2 ***\nm3:\n" << m3
<< "\nm4:\n" << m4
<< std::endl
;
19 // demo fixed-size block() expression as lvalue and as rvalue
20 m4
.block
<3,3>(0,1) = m3
;
21 m3
.row(2) = m4
.block
<1,3>(2,0);
23 std::cout
<< "*** Step 3 ***\nm3:\n" << m3
<< "\nm4:\n" << m4
<< std::endl
;
25 // demo dynamic-size block()
27 int rows
= 3, cols
= 3;
28 m4
.block(0,1,3,3).setIdentity();
29 std::cout
<< "*** Step 4 ***\nm4:\n" << m4
<< std::endl
;
33 m4
.diagonal().block(1,2).setOnes();
34 std::cout
<< "*** Step 5 ***\nm4.diagonal():\n" << m4
.diagonal() << std::endl
;
35 std::cout
<< "m4.diagonal().start(3)\n" << m4
.diagonal().start(3) << std::endl
;
37 // demo coeff-wise operations
39 m3
= m3
.cwise().cos();
40 std::cout
<< "*** Step 6 ***\nm3:\n" << m3
<< "\nm4:\n" << m4
<< std::endl
;
42 // sums of coefficients
43 std::cout
<< "*** Step 7 ***\n m4.sum(): " << m4
.sum() << std::endl
;
44 std::cout
<< "m4.col(2).sum(): " << m4
.col(2).sum() << std::endl
;
45 std::cout
<< "m4.colwise().sum():\n" << m4
.colwise().sum() << std::endl
;
46 std::cout
<< "m4.rowwise().sum():\n" << m4
.rowwise().sum() << std::endl
;
48 // demo intelligent auto-evaluation
49 m4
= m4
* m4
; // auto-evaluates so no aliasing problem (performance penalty is low)
50 Eigen::Matrix4f other
= (m4
* m4
).lazy(); // forces lazy evaluation
51 m4
= m4
+ m4
; // here Eigen goes for lazy evaluation, as with most expressions
52 m4
= -m4
+ m4
+ 5 * m4
; // same here, Eigen chooses lazy evaluation for all that.
53 m4
= m4
* (m4
+ m4
); // here Eigen chooses to first evaluate m4 + m4 into a temporary.
54 // indeed, here it is an optimization to cache this intermediate result.
55 m3
= m3
* m4
.block
<3,3>(1,1); // here Eigen chooses NOT to evaluate block() into a temporary
56 // because accessing coefficients of that block expression is not more costly than accessing
57 // coefficients of a plain matrix.
58 m4
= m4
* m4
.transpose(); // same here, lazy evaluation of the transpose.
59 m4
= m4
* m4
.transpose().eval(); // forces immediate evaluation of the transpose
61 std::cout
<< "*** Step 8 ***\nm3:\n" << m3
<< "\nm4:\n" << m4
<< std::endl
;