3 * =========== DOCUMENTATION
===========
5 * Online html documentation available at
6 * http
://www
.netlib
.org
/lapack
/explore
-html
/
9 *> Download SLARFT
+ dependencies
10 *> <a href
="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarft.f">
12 *> <a href
="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarft.f">
14 *> <a href
="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarft.f">
21 * SUBROUTINE SLARFT
( DIRECT
, STOREV
, N
, K
, V
, LDV
, TAU
, T
, LDT
)
23 * .. Scalar Arguments
..
24 * CHARACTER DIRECT
, STOREV
25 * INTEGER K
, LDT
, LDV
, N
27 * .. Array Arguments
..
28 * REAL T
( LDT
, * ), TAU
( * ), V
( LDV
, * )
37 *> SLARFT forms the triangular factor T of a
real block reflector H
38 *> of order n
, which is defined as a product of k elementary reflectors
.
40 *> If DIRECT
= 'F', H
= H
(1) H
(2) . . . H
(k
) and T is upper triangular
;
42 *> If DIRECT
= 'B', H
= H
(k
) . . . H
(2) H
(1) and T is lower triangular
.
44 *> If STOREV
= 'C', the vector which defines the elementary reflector
45 *> H
(i
) is stored in the i
-th column of the array V
, and
47 *> H
= I
- V
* T
* V**T
49 *> If STOREV
= 'R', the vector which defines the elementary reflector
50 *> H
(i
) is stored in the i
-th row of the array V
, and
52 *> H
= I
- V**T
* T
* V
60 *> DIRECT is CHARACTER*1
61 *> Specifies the order in which the elementary reflectors are
62 *> multiplied
to form the block reflector
:
63 *> = 'F': H
= H
(1) H
(2) . . . H
(k
) (Forward
)
64 *> = 'B': H
= H
(k
) . . . H
(2) H
(1) (Backward
)
69 *> STOREV is CHARACTER*1
70 *> Specifies how the vectors which define the elementary
71 *> reflectors are stored
(see also Further Details
):
79 *> The order of the block reflector H
. N
>= 0.
85 *> The order of the triangular factor T
(= the number of
86 *> elementary reflectors
). K
>= 1.
91 *> V is
REAL array
, dimension
92 *> (LDV
,K
) if STOREV
= 'C'
93 *> (LDV
,N
) if STOREV
= 'R'
94 *> The matrix V
. See further details
.
100 *> The leading
dimension of the array V
.
101 *> If STOREV
= 'C', LDV
>= max
(1,N
); if STOREV
= 'R', LDV
>= K
.
106 *> TAU is
REAL array
, dimension (K
)
107 *> TAU
(i
) must contain the scalar factor of the elementary
113 *> T is
REAL array
, dimension (LDT
,K
)
114 *> The k by k triangular factor T of the block reflector
.
115 *> If DIRECT
= 'F', T is upper triangular
; if DIRECT
= 'B', T is
116 *> lower triangular
. The rest of the array is not used
.
122 *> The leading
dimension of the array T
. LDT
>= K
.
128 *> \author Univ
. of Tennessee
129 *> \author Univ
. of California Berkeley
130 *> \author Univ
. of Colorado Denver
135 *> \ingroup realOTHERauxiliary
137 *> \par Further Details
:
138 * =====================
142 *> The shape of the matrix V and the storage of the vectors which define
143 *> the H
(i
) is best illustrated by the following example with n
= 5 and
144 *> k
= 3. The elements equal
to 1 are not stored
.
146 *> DIRECT
= 'F' and STOREV
= 'C': DIRECT
= 'F' and STOREV
= 'R':
148 *> V
= ( 1 ) V
= ( 1 v1 v1 v1 v1
)
149 *> ( v1
1 ) ( 1 v2 v2 v2
)
150 *> ( v1 v2
1 ) ( 1 v3 v3
)
154 *> DIRECT
= 'B' and STOREV
= 'C': DIRECT
= 'B' and STOREV
= 'R':
156 *> V
= ( v1 v2 v3
) V
= ( v1 v1
1 )
157 *> ( v1 v2 v3
) ( v2 v2 v2
1 )
158 *> ( 1 v2 v3
) ( v3 v3 v3 v3
1 )
163 * =====================================================================
164 SUBROUTINE SLARFT
( DIRECT
, STOREV
, N
, K
, V
, LDV
, TAU
, T
, LDT
)
166 * -- LAPACK auxiliary routine
(version
3.4.1) --
167 * -- LAPACK is a software package provided by Univ
. of Tennessee
, --
168 * -- Univ
. of California Berkeley
, Univ
. of Colorado Denver and NAG Ltd
..--
171 * .. Scalar Arguments
..
172 CHARACTER DIRECT
, STOREV
173 INTEGER K
, LDT
, LDV
, N
175 * .. Array Arguments
..
176 REAL T
( LDT
, * ), TAU
( * ), V
( LDV
, * )
179 * =====================================================================
183 PARAMETER ( ONE
= 1.0E+0, ZERO
= 0.0E+0 )
185 * .. Local Scalars
..
186 INTEGER I
, J
, PREVLASTV
, LASTV
188 * .. External Subroutines
..
189 EXTERNAL SGEMV
, STRMV
191 * .. External Functions
..
195 * .. Executable Statements
..
197 * Quick
return if possible
202 IF( LSAME
( DIRECT
, 'F' ) ) THEN
205 PREVLASTV
= MAX
( I
, PREVLASTV
)
206 IF( TAU
( I
).EQ
.ZERO
) THEN
217 IF( LSAME
( STOREV
, 'C' ) ) THEN
218 * Skip any trailing zeros
.
219 DO LASTV
= N
, I
+1, -1
220 IF( V
( LASTV
, I
).NE
.ZERO
) EXIT
223 T
( J
, I
) = -TAU
( I
) * V
( I
, J
)
225 J
= MIN
( LASTV
, PREVLASTV
)
227 * T
(1:i
-1,i
) := - tau
(i
) * V
(i
:j
,1:i
-1)**T
* V
(i
:j
,i
)
229 CALL SGEMV
( 'Transpose', J
-I
, I
-1, -TAU
( I
),
230 $ V
( I
+1, 1 ), LDV
, V
( I
+1, I
), 1, ONE
,
233 * Skip any trailing zeros
.
234 DO LASTV
= N
, I
+1, -1
235 IF( V
( I
, LASTV
).NE
.ZERO
) EXIT
238 T
( J
, I
) = -TAU
( I
) * V
( J
, I
)
240 J
= MIN
( LASTV
, PREVLASTV
)
242 * T
(1:i
-1,i
) := - tau
(i
) * V
(1:i
-1,i
:j
) * V
(i
,i
:j
)**T
244 CALL SGEMV
( 'No transpose', I
-1, J
-I
, -TAU
( I
),
245 $ V
( 1, I
+1 ), LDV
, V
( I
, I
+1 ), LDV
,
246 $ ONE
, T
( 1, I
), 1 )
249 * T
(1:i
-1,i
) := T
(1:i
-1,1:i
-1) * T
(1:i
-1,i
)
251 CALL STRMV
( 'Upper', 'No transpose', 'Non-unit', I
-1, T
,
252 $ LDT
, T
( 1, I
), 1 )
255 PREVLASTV
= MAX
( PREVLASTV
, LASTV
)
264 IF( TAU
( I
).EQ
.ZERO
) THEN
276 IF( LSAME
( STOREV
, 'C' ) ) THEN
277 * Skip any leading zeros
.
279 IF( V
( LASTV
, I
).NE
.ZERO
) EXIT
282 T
( J
, I
) = -TAU
( I
) * V
( N
-K
+I
, J
)
284 J
= MAX
( LASTV
, PREVLASTV
)
286 * T
(i
+1:k
,i
) = -tau
(i
) * V
(j
:n
-k
+i
,i
+1:k
)**T
* V
(j
:n
-k
+i
,i
)
288 CALL SGEMV
( 'Transpose', N
-K
+I
-J
, K
-I
, -TAU
( I
),
289 $ V
( J
, I
+1 ), LDV
, V
( J
, I
), 1, ONE
,
292 * Skip any leading zeros
.
294 IF( V
( I
, LASTV
).NE
.ZERO
) EXIT
297 T
( J
, I
) = -TAU
( I
) * V
( J
, N
-K
+I
)
299 J
= MAX
( LASTV
, PREVLASTV
)
301 * T
(i
+1:k
,i
) = -tau
(i
) * V
(i
+1:k
,j
:n
-k
+i
) * V
(i
,j
:n
-k
+i
)**T
303 CALL SGEMV
( 'No transpose', K
-I
, N
-K
+I
-J
,
304 $
-TAU
( I
), V
( I
+1, J
), LDV
, V
( I
, J
), LDV
,
305 $ ONE
, T
( I
+1, I
), 1 )
308 * T
(i
+1:k
,i
) := T
(i
+1:k
,i
+1:k
) * T
(i
+1:k
,i
)
310 CALL STRMV
( 'Lower', 'No transpose', 'Non-unit', K
-I
,
311 $ T
( I
+1, I
+1 ), LDT
, T
( I
+1, I
), 1 )
313 PREVLASTV
= MIN
( PREVLASTV
, LASTV
)