1 // This file is part of Eigen, a lightweight C++ template library
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
16 template<typename MatrixType
> void reverse(const MatrixType
& m
)
18 typedef typename
MatrixType::Index Index
;
19 typedef typename
MatrixType::Scalar Scalar
;
20 typedef Matrix
<Scalar
, MatrixType::RowsAtCompileTime
, 1> VectorType
;
22 Index rows
= m
.rows();
23 Index cols
= m
.cols();
25 // this test relies a lot on Random.h, and there's not much more that we can do
26 // to test it, hence I consider that we will have tested Random.h
27 MatrixType m1
= MatrixType::Random(rows
, cols
);
28 VectorType v1
= VectorType::Random(rows
);
30 MatrixType m1_r
= m1
.reverse();
31 // Verify that MatrixBase::reverse() works
32 for ( int i
= 0; i
< rows
; i
++ ) {
33 for ( int j
= 0; j
< cols
; j
++ ) {
34 VERIFY_IS_APPROX(m1_r(i
, j
), m1(rows
- 1 - i
, cols
- 1 - j
));
38 Reverse
<MatrixType
> m1_rd(m1
);
39 // Verify that a Reverse default (in both directions) of an expression works
40 for ( int i
= 0; i
< rows
; i
++ ) {
41 for ( int j
= 0; j
< cols
; j
++ ) {
42 VERIFY_IS_APPROX(m1_rd(i
, j
), m1(rows
- 1 - i
, cols
- 1 - j
));
46 Reverse
<MatrixType
, BothDirections
> m1_rb(m1
);
47 // Verify that a Reverse in both directions of an expression works
48 for ( int i
= 0; i
< rows
; i
++ ) {
49 for ( int j
= 0; j
< cols
; j
++ ) {
50 VERIFY_IS_APPROX(m1_rb(i
, j
), m1(rows
- 1 - i
, cols
- 1 - j
));
54 Reverse
<MatrixType
, Vertical
> m1_rv(m1
);
55 // Verify that a Reverse in the vertical directions of an expression works
56 for ( int i
= 0; i
< rows
; i
++ ) {
57 for ( int j
= 0; j
< cols
; j
++ ) {
58 VERIFY_IS_APPROX(m1_rv(i
, j
), m1(rows
- 1 - i
, j
));
62 Reverse
<MatrixType
, Horizontal
> m1_rh(m1
);
63 // Verify that a Reverse in the horizontal directions of an expression works
64 for ( int i
= 0; i
< rows
; i
++ ) {
65 for ( int j
= 0; j
< cols
; j
++ ) {
66 VERIFY_IS_APPROX(m1_rh(i
, j
), m1(i
, cols
- 1 - j
));
70 VectorType v1_r
= v1
.reverse();
71 // Verify that a VectorType::reverse() of an expression works
72 for ( int i
= 0; i
< rows
; i
++ ) {
73 VERIFY_IS_APPROX(v1_r(i
), v1(rows
- 1 - i
));
76 MatrixType m1_cr
= m1
.colwise().reverse();
77 // Verify that PartialRedux::reverse() works (for colwise())
78 for ( int i
= 0; i
< rows
; i
++ ) {
79 for ( int j
= 0; j
< cols
; j
++ ) {
80 VERIFY_IS_APPROX(m1_cr(i
, j
), m1(rows
- 1 - i
, j
));
84 MatrixType m1_rr
= m1
.rowwise().reverse();
85 // Verify that PartialRedux::reverse() works (for rowwise())
86 for ( int i
= 0; i
< rows
; i
++ ) {
87 for ( int j
= 0; j
< cols
; j
++ ) {
88 VERIFY_IS_APPROX(m1_rr(i
, j
), m1(i
, cols
- 1 - j
));
92 Scalar x
= internal::random
<Scalar
>();
94 Index r
= internal::random
<Index
>(0, rows
-1),
95 c
= internal::random
<Index
>(0, cols
-1);
97 m1
.reverse()(r
, c
) = x
;
98 VERIFY_IS_APPROX(x
, m1(rows
- 1 - r
, cols
- 1 - c
));
101 m1.colwise().reverse()(r, c) = x;
102 VERIFY_IS_APPROX(x, m1(rows - 1 - r, c));
104 m1.rowwise().reverse()(r, c) = x;
105 VERIFY_IS_APPROX(x, m1(r, cols - 1 - c));
109 void test_array_reverse()
111 for(int i
= 0; i
< g_repeat
; i
++) {
112 CALL_SUBTEST_1( reverse(Matrix
<float, 1, 1>()) );
113 CALL_SUBTEST_2( reverse(Matrix2f()) );
114 CALL_SUBTEST_3( reverse(Matrix4f()) );
115 CALL_SUBTEST_4( reverse(Matrix4d()) );
116 CALL_SUBTEST_5( reverse(MatrixXcf(3, 3)) );
117 CALL_SUBTEST_6( reverse(MatrixXi(6, 3)) );
118 CALL_SUBTEST_7( reverse(MatrixXcd(20, 20)) );
119 CALL_SUBTEST_8( reverse(Matrix
<float, 100, 100>()) );
120 CALL_SUBTEST_9( reverse(Matrix
<float,Dynamic
,Dynamic
,RowMajor
>(6,3)) );
122 #ifdef EIGEN_TEST_PART_3
123 Vector4f x
; x
<< 1, 2, 3, 4;
124 Vector4f y
; y
<< 4, 3, 2, 1;
125 VERIFY(x
.reverse()[1] == 3);
126 VERIFY(x
.reverse() == y
);