srd: drop deprecated PyEval_InitThreads() on Python 3.9+
[libsigrokdecode/gsi.git] / decoders / jtag_stm32 / pd.py
blob82558b820f97577b768637f1da74c8e7921a0e63
1 ##
2 ## This file is part of the libsigrokdecode project.
3 ##
4 ## Copyright (C) 2012-2015 Uwe Hermann <uwe@hermann-uwe.de>
5 ##
6 ## This program is free software; you can redistribute it and/or modify
7 ## it under the terms of the GNU General Public License as published by
8 ## the Free Software Foundation; either version 2 of the License, or
9 ## (at your option) any later version.
11 ## This program is distributed in the hope that it will be useful,
12 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 ## GNU General Public License for more details.
16 ## You should have received a copy of the GNU General Public License
17 ## along with this program; if not, see <http://www.gnu.org/licenses/>.
20 import sigrokdecode as srd
22 # JTAG debug port data registers (in IR[3:0]) and their sizes (in bits)
23 # Note: The ARM DAP-DP is not IEEE 1149.1 (JTAG) compliant (as per ARM docs),
24 # as it does not implement the EXTEST, SAMPLE, and PRELOAD instructions.
25 # Instead, BYPASS is decoded for any of these instructions.
26 ir = {
27 '1111': ['BYPASS', 1], # Bypass register
28 '1110': ['IDCODE', 32], # ID code register
29 '1010': ['DPACC', 35], # Debug port access register
30 '1011': ['APACC', 35], # Access port access register
31 '1000': ['ABORT', 35], # Abort register # TODO: 32 bits? Datasheet typo?
34 # Boundary scan data registers (in IR[8:4]) and their sizes (in bits)
35 bs_ir = {
36 '11111': ['BYPASS', 1], # Bypass register
39 # ARM Cortex-M3 r1p1-01rel0 ID code
40 cm3_idcode = 0x3ba00477
42 # http://infocenter.arm.com/help/topic/com.arm.doc.ddi0413c/Chdjibcg.html
43 cm3_idcode_ver = {
44 0x3: 'JTAG-DP',
45 0x2: 'SW-DP',
47 cm3_idcode_part = {
48 0xba00: 'JTAG-DP',
49 0xba10: 'SW-DP',
52 # http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka14408.html
53 jedec_id = {
54 5: {
55 0x3b: 'ARM Ltd.',
59 # JTAG ID code in the STM32F10xxx BSC (boundary scan) TAP
60 jtag_idcode = {
61 0x06412041: 'Low-density device, rev. A',
62 0x06410041: 'Medium-density device, rev. A',
63 0x16410041: 'Medium-density device, rev. B/Z/Y',
64 0x06414041: 'High-density device, rev. A/Z/Y',
65 0x06430041: 'XL-density device, rev. A',
66 0x06418041: 'Connectivity-line device, rev. A/Z',
69 # ACK[2:0] in the DPACC/APACC registers (unlisted values are reserved)
70 ack_val = {
71 '001': 'WAIT',
72 '010': 'OK/FAULT',
75 # 32bit debug port registers (addressed via A[3:2])
76 dp_reg = {
77 '00': 'Reserved', # Must be kept at reset value
78 '01': 'DP CTRL/STAT',
79 '10': 'DP SELECT',
80 '11': 'DP RDBUFF',
83 # APB-AP registers (each of them 32 bits wide)
84 apb_ap_reg = {
85 0x00: ['CSW', 'Control/status word'],
86 0x04: ['TAR', 'Transfer address'],
87 # 0x08: Reserved SBZ
88 0x0c: ['DRW', 'Data read/write'],
89 0x10: ['BD0', 'Banked data 0'],
90 0x14: ['BD1', 'Banked data 1'],
91 0x18: ['BD2', 'Banked data 2'],
92 0x1c: ['BD3', 'Banked data 3'],
93 # 0x20-0xf4: Reserved SBZ
94 0x800000000: ['ROM', 'Debug ROM address'],
95 0xfc: ['IDR', 'Identification register'],
98 # TODO: Split off generic ARM/Cortex-M3 parts into another protocol decoder?
100 # Bits[31:28]: Version (here: 0x3)
101 # JTAG-DP: 0x3, SW-DP: 0x2
102 # Bits[27:12]: Part number (here: 0xba00)
103 # JTAG-DP: 0xba00, SW-DP: 0xba10
104 # Bits[11:1]: JEDEC (JEP-106) manufacturer ID (here: 0x23b)
105 # Bits[11:8]: Continuation code ('ARM Ltd.': 0x04)
106 # Bits[7:1]: Identity code ('ARM Ltd.': 0x3b)
107 # Bits[0:0]: Reserved (here: 0x1)
108 def decode_device_id_code(bits):
109 id_hex = '0x%x' % int('0b' + bits, 2)
110 ver = cm3_idcode_ver.get(int('0b' + bits[-32:-28], 2), 'UNKNOWN')
111 part = cm3_idcode_part.get(int('0b' + bits[-28:-12], 2), 'UNKNOWN')
112 ids = jedec_id.get(int('0b' + bits[-12:-8], 2) + 1, {})
113 manuf = ids.get(int('0b' + bits[-7:-1], 2), 'UNKNOWN')
114 return (id_hex, manuf, ver, part)
116 # DPACC is used to access debug port registers (CTRL/STAT, SELECT, RDBUFF).
117 # APACC is used to access all Access Port (AHB-AP) registers.
119 # APACC/DPACC, when transferring data IN:
120 # Bits[34:3] = DATA[31:0]: 32bit data to transfer (write request)
121 # Bits[2:1] = A[3:2]: 2-bit address (debug/access port register)
122 # Bits[0:0] = RnW: Read request (1) or write request (0)
123 def data_in(instruction, bits):
124 data, a, rnw = bits[:-3], bits[-3:-1], bits[-1]
125 data_hex = '0x%x' % int('0b' + data, 2)
126 r = 'Read request' if (rnw == '1') else 'Write request'
127 # reg = dp_reg[a] if (instruction == 'DPACC') else apb_ap_reg[a]
128 reg = dp_reg[a] if (instruction == 'DPACC') else a # TODO
129 return 'New transaction: DATA: %s, A: %s, RnW: %s' % (data_hex, reg, r)
131 # APACC/DPACC, when transferring data OUT:
132 # Bits[34:3] = DATA[31:0]: 32bit data which is read (read request)
133 # Bits[2:0] = ACK[2:0]: 3-bit acknowledge
134 def data_out(bits):
135 data, ack = bits[:-3], bits[-3:]
136 data_hex = '0x%x' % int('0b' + data, 2)
137 ack_meaning = ack_val.get(ack, 'Reserved')
138 return 'Previous transaction result: DATA: %s, ACK: %s' \
139 % (data_hex, ack_meaning)
141 class Decoder(srd.Decoder):
142 api_version = 3
143 id = 'jtag_stm32'
144 name = 'JTAG / STM32'
145 longname = 'Joint Test Action Group / ST STM32'
146 desc = 'ST STM32-specific JTAG protocol.'
147 license = 'gplv2+'
148 inputs = ['jtag']
149 outputs = []
150 tags = ['Debug/trace']
151 annotations = (
152 ('item', 'Item'),
153 ('field', 'Field'),
154 ('command', 'Command'),
155 ('warning', 'Warning'),
157 annotation_rows = (
158 ('items', 'Items', (0,)),
159 ('fields', 'Fields', (1,)),
160 ('commands', 'Commands', (2,)),
161 ('warnings', 'Warnings', (3,)),
164 def __init__(self):
165 self.reset()
167 def reset(self):
168 self.state = 'IDLE'
169 self.samplenums = None
171 def start(self):
172 self.out_ann = self.register(srd.OUTPUT_ANN)
174 def putx(self, data):
175 self.put(self.ss, self.es, self.out_ann, data)
177 def putf(self, s, e, data):
178 self.put(self.samplenums[s][0], self.samplenums[e][1], self.out_ann, data)
180 def handle_reg_bypass(self, cmd, bits):
181 self.putx([0, ['BYPASS: ' + bits]])
183 def handle_reg_idcode(self, cmd, bits):
184 bits = bits[1:]
186 id_hex, manuf, ver, part = decode_device_id_code(bits)
187 cc = '0x%x' % int('0b' + bits[-12:-8], 2)
188 ic = '0x%x' % int('0b' + bits[-7:-1], 2)
190 self.putf(0, 0, [1, ['Reserved', 'Res', 'R']])
191 self.putf(8, 11, [0, ['Continuation code: %s' % cc, 'CC', 'C']])
192 self.putf(1, 7, [0, ['Identity code: %s' % ic, 'IC', 'I']])
193 self.putf(1, 11, [1, ['Manufacturer: %s' % manuf, 'Manuf', 'M']])
194 self.putf(12, 27, [1, ['Part: %s' % part, 'Part', 'P']])
195 self.putf(28, 31, [1, ['Version: %s' % ver, 'Version', 'V']])
196 self.putf(32, 32, [1, ['BYPASS (BS TAP)', 'BS', 'B']])
198 self.putx([2, ['IDCODE: %s (%s: %s/%s)' % \
199 decode_device_id_code(bits)]])
201 def handle_reg_dpacc(self, cmd, bits):
202 bits = bits[1:]
203 s = data_in('DPACC', bits) if (cmd == 'DR TDI') else data_out(bits)
204 self.putx([2, [s]])
206 def handle_reg_apacc(self, cmd, bits):
207 bits = bits[1:]
208 s = data_in('APACC', bits) if (cmd == 'DR TDI') else data_out(bits)
209 self.putx([2, [s]])
211 def handle_reg_abort(self, cmd, bits):
212 bits = bits[1:]
213 # Bits[31:1]: reserved. Bit[0]: DAPABORT.
214 a = '' if (bits[0] == '1') else 'No '
215 s = 'DAPABORT = %s: %sDAP abort generated' % (bits[0], a)
216 self.putx([2, [s]])
218 # Warn if DAPABORT[31:1] contains non-zero bits.
219 if (bits[:-1] != ('0' * 31)):
220 self.putx([3, ['WARNING: DAPABORT[31:1] reserved!']])
222 def handle_reg_unknown(self, cmd, bits):
223 bits = bits[1:]
224 self.putx([2, ['Unknown instruction: %s' % bits]])
226 def decode(self, ss, es, data):
227 cmd, val = data
229 self.ss, self.es = ss, es
231 if cmd != 'NEW STATE':
232 # The right-most char in the 'val' bitstring is the LSB.
233 val, self.samplenums = val
234 self.samplenums.reverse()
236 if cmd == 'IR TDI':
237 # Switch to the state named after the instruction, or 'UNKNOWN'.
238 # The STM32F10xxx has two serially connected JTAG TAPs, the
239 # boundary scan tap (5 bits) and the Cortex-M3 TAP (4 bits).
240 # See UM 31.5 "STM32F10xxx JTAG TAP connection" for details.
241 self.state = ir.get(val[5:9], ['UNKNOWN', 0])[0]
242 bstap_ir = bs_ir.get(val[:5], ['UNKNOWN', 0])[0]
243 self.putf(4, 8, [1, ['IR (BS TAP): ' + bstap_ir]])
244 self.putf(0, 3, [1, ['IR (M3 TAP): ' + self.state]])
245 self.putx([2, ['IR: %s' % self.state]])
247 # State machine
248 if self.state == 'BYPASS':
249 # Here we're interested in incoming bits (TDI).
250 if cmd != 'DR TDI':
251 return
252 handle_reg = getattr(self, 'handle_reg_%s' % self.state.lower())
253 handle_reg(cmd, val)
254 self.state = 'IDLE'
255 elif self.state in ('IDCODE', 'ABORT', 'UNKNOWN'):
256 # Here we're interested in outgoing bits (TDO).
257 if cmd != 'DR TDO':
258 return
259 handle_reg = getattr(self, 'handle_reg_%s' % self.state.lower())
260 handle_reg(cmd, val)
261 self.state = 'IDLE'
262 elif self.state in ('DPACC', 'APACC'):
263 # Here we're interested in incoming and outgoing bits (TDI/TDO).
264 if cmd not in ('DR TDI', 'DR TDO'):
265 return
266 handle_reg = getattr(self, 'handle_reg_%s' % self.state.lower())
267 handle_reg(cmd, val)
268 if cmd == 'DR TDO': # Assumes 'DR TDI' comes before 'DR TDO'.
269 self.state = 'IDLE'