sae_j1850_vpw: rewrite decoder to improve usability and maintenance
[libsigrokdecode/gsi.git] / decoders / parallel / pd.py
blob1e3120858a7a4f750cd1ee3810a803c4439b7435
1 ##
2 ## This file is part of the libsigrokdecode project.
3 ##
4 ## Copyright (C) 2013-2016 Uwe Hermann <uwe@hermann-uwe.de>
5 ##
6 ## This program is free software; you can redistribute it and/or modify
7 ## it under the terms of the GNU General Public License as published by
8 ## the Free Software Foundation; either version 2 of the License, or
9 ## (at your option) any later version.
11 ## This program is distributed in the hope that it will be useful,
12 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 ## GNU General Public License for more details.
16 ## You should have received a copy of the GNU General Public License
17 ## along with this program; if not, see <http://www.gnu.org/licenses/>.
20 import sigrokdecode as srd
21 from common.srdhelper import bitpack
23 '''
24 OUTPUT_PYTHON format:
26 Packet:
27 [<ptype>, <pdata>]
29 <ptype>, <pdata>
30 - 'ITEM', [<item>, <itembitsize>]
31 - 'WORD', [<word>, <wordbitsize>, <worditemcount>]
33 <item>:
34 - A single item (a number). It can be of arbitrary size. The max. number
35 of bits in this item is specified in <itembitsize>.
37 <itembitsize>:
38 - The size of an item (in bits). For a 4-bit parallel bus this is 4,
39 for a 16-bit parallel bus this is 16, and so on.
41 <word>:
42 - A single word (a number). It can be of arbitrary size. The max. number
43 of bits in this word is specified in <wordbitsize>. The (exact) number
44 of items in this word is specified in <worditemcount>.
46 <wordbitsize>:
47 - The size of a word (in bits). For a 2-item word with 8-bit items
48 <wordbitsize> is 16, for a 3-item word with 4-bit items <wordbitsize>
49 is 12, and so on.
51 <worditemcount>:
52 - The size of a word (in number of items). For a 4-item word (no matter
53 how many bits each item consists of) <worditemcount> is 4, for a 7-item
54 word <worditemcount> is 7, and so on.
55 '''
57 NUM_CHANNELS = 16
59 class Pin:
60 CLOCK = 0
61 DATA_0 = CLOCK + 1
62 DATA_N = DATA_0 + NUM_CHANNELS
63 # BEWARE! DATA_N points _beyond_ the data partition (Python range(3)
64 # semantics, useful to have to simplify other code locations).
65 RESET = DATA_N
67 class Ann:
68 ITEM, WORD, WARN = range(3)
70 class ChannelError(Exception):
71 pass
73 class Decoder(srd.Decoder):
74 api_version = 3
75 id = 'parallel'
76 name = 'Parallel'
77 longname = 'Parallel sync bus'
78 desc = 'Generic parallel synchronous bus.'
79 license = 'gplv2+'
80 inputs = ['logic']
81 outputs = ['parallel']
82 tags = ['Util']
83 optional_channels = tuple(
84 [{'id': 'clk', 'name': 'CLK', 'desc': 'Clock line'}] +
86 {'id': 'd%d' % i, 'name': 'D%d' % i, 'desc': 'Data line %d' % i}
87 for i in range(NUM_CHANNELS)
88 ] +
89 [{'id': 'rst', 'name': 'RST', 'desc': 'RESET line'}]
91 options = (
92 {'id': 'clock_edge', 'desc': 'Clock edge to sample on',
93 'default': 'rising', 'values': ('rising', 'falling', 'either')},
94 {'id': 'reset_polarity', 'desc': 'Reset line polarity',
95 'default': 'low-active', 'values': ('low-active', 'high-active')},
96 {'id': 'wordsize', 'desc': 'Data wordsize (# bus cycles)',
97 'default': 0},
98 {'id': 'endianness', 'desc': 'Data endianness',
99 'default': 'little', 'values': ('little', 'big')},
101 annotations = (
102 ('item', 'Item'),
103 ('word', 'Word'),
104 ('warning', 'Warning'),
106 annotation_rows = (
107 ('items', 'Items', (Ann.ITEM,)),
108 ('words', 'Words', (Ann.WORD,)),
109 ('warnings', 'Warnings', (Ann.WARN,)),
111 binary = (
112 ('binary', 'Binary'),
115 def __init__(self):
116 self.reset()
118 def reset(self):
119 self.pend_item = None
120 self.word_items = []
122 def start(self):
123 self.out_python = self.register(srd.OUTPUT_PYTHON)
124 self.out_binary = self.register(srd.OUTPUT_BINARY)
125 self.out_ann = self.register(srd.OUTPUT_ANN)
127 def putg(self, ss, es, ann, txts):
128 self.put(ss, es, self.out_ann, [ann, txts])
130 def putpy(self, ss, es, ann, data):
131 self.put(ss, es, self.out_python, [ann, data])
133 def putbin(self, ss, es, ann_class, data):
134 self.put(ss, es, self.out_binary, [ann_class, data])
136 def flush_word(self, bus_width):
137 if not self.word_items:
138 return
139 word_size = self.options['wordsize']
141 items = self.word_items
142 ss, es = items[0][0], items[-1][1]
143 items = [i[2] for i in items]
144 if self.options['endianness'] == 'big':
145 items.reverse()
146 word = sum([d << (i * bus_width) for i, d in enumerate(items)])
148 txts = [self.fmt_word.format(word)]
149 self.putg(ss, es, Ann.WORD, txts)
150 self.putpy(ss, es, 'WORD', (word, bus_width, word_size))
152 if len(items) != word_size:
153 txts = ['incomplete word size', 'word size', 'ws']
154 self.putg(ss, es, Ann.WARN, txts)
156 self.word_items.clear()
158 def queue_word(self, now, item, bus_width):
159 wordsize = self.options['wordsize']
160 if not wordsize:
161 return
163 # Terminate a previously seen item of a word first. Emit the
164 # word's annotation when the last item's end was seen.
165 if self.word_items:
166 ss, _, data = self.word_items[-1]
167 es = now
168 self.word_items[-1] = (ss, es, data)
169 if len(self.word_items) == wordsize:
170 self.flush_word(bus_width)
172 # Start tracking the currently seen item (yet unknown end time).
173 if item is not None:
174 pend = (now, None, item)
175 self.word_items.append(pend)
177 def handle_bits(self, now, item, bus_width):
179 # Optionally flush a previously started item.
180 if self.pend_item:
181 ss, _, data = self.pend_item
182 self.pend_item = None
183 es = now
184 txts = [self.fmt_item.format(data)]
185 self.putg(ss, es, Ann.ITEM, txts)
186 self.putpy(ss, es, 'ITEM', (data, bus_width))
187 self.putbin(ss, es, 0, data.to_bytes(1, byteorder='big'))
189 # Optionally queue the currently seen item.
190 if item is not None:
191 self.pend_item = (now, None, item)
193 # Pass the current item to the word accumulation logic.
194 self.queue_word(now, item, bus_width)
196 def decode(self):
197 # Determine which (optional) channels have input data. Insist in
198 # a non-empty input data set. Cope with sparse connection maps.
199 # Store enough state to later "compress" sampled input data.
200 data_indices = [
201 idx if self.has_channel(idx) else None
202 for idx in range(Pin.DATA_0, Pin.DATA_N)
204 has_data = [idx for idx in data_indices if idx is not None]
205 if not has_data:
206 raise ChannelError('Need at least one data channel.')
207 max_connected = max(has_data)
209 # Pre-determine which input data to strip off, the width of
210 # individual items and multiplexed words, as well as format
211 # strings here. This simplifies call sites which run in tight
212 # loops later.
213 upper_data_bound = max_connected + 1
214 num_item_bits = upper_data_bound - Pin.DATA_0
215 num_word_items = self.options['wordsize']
216 num_word_bits = num_item_bits * num_word_items
217 num_digits = (num_item_bits + 4 - 1) // 4
218 self.fmt_item = "{{:0{}x}}".format(num_digits)
219 num_digits = (num_word_bits + 4 - 1) // 4
220 self.fmt_word = "{{:0{}x}}".format(num_digits)
222 # Determine .wait() conditions, depending on the presence of a
223 # clock signal. Either inspect samples on the configured edge of
224 # the clock, or inspect samples upon ANY edge of ANY of the pins
225 # which provide input data.
226 conds = []
227 cond_idx_clock = None
228 cond_idx_data_0 = None
229 cond_idx_data_N = None
230 cond_idx_reset = None
231 has_clock = self.has_channel(Pin.CLOCK)
232 if has_clock:
233 cond_idx_clock = len(conds)
234 edge = {
235 'rising': 'r',
236 'falling': 'f',
237 'either': 'e',
238 }.get(self.options['clock_edge'])
239 conds.append({Pin.CLOCK: edge})
240 else:
241 cond_idx_data_0 = len(conds)
242 conds.extend([{idx: 'e'} for idx in has_data])
243 cond_idx_data_N = len(conds)
244 has_reset = self.has_channel(Pin.RESET)
245 if has_reset:
246 cond_idx_reset = len(conds)
247 conds.append({Pin.RESET: 'e'})
248 reset_active = {
249 'low-active': 0,
250 'high-active': 1,
251 }.get(self.options['reset_polarity'])
253 # Keep processing the input stream. Assume "always zero" for
254 # not-connected input lines. Pass data bits (all inputs except
255 # clock and reset) to the handle_bits() method. Handle reset
256 # edges first and data changes then, within the same iteration.
257 # This results in robust operation for low-oversampled input.
258 in_reset = False
259 while True:
260 try:
261 pins = self.wait(conds)
262 except EOFError as e:
263 break
264 clock_edge = cond_idx_clock is not None and self.matched[cond_idx_clock]
265 data_edge = cond_idx_data_0 is not None and [idx for idx in range(cond_idx_data_0, cond_idx_data_N) if self.matched[idx]]
266 reset_edge = cond_idx_reset is not None and self.matched[cond_idx_reset]
268 if reset_edge:
269 in_reset = pins[Pin.RESET] == reset_active
270 if in_reset:
271 self.handle_bits(self.samplenum, None, num_item_bits)
272 self.flush_word(num_item_bits)
273 if in_reset:
274 continue
276 if clock_edge or data_edge:
277 data_bits = [0 if idx is None else pins[idx] for idx in data_indices]
278 data_bits = data_bits[:num_item_bits]
279 item = bitpack(data_bits)
280 self.handle_bits(self.samplenum, item, num_item_bits)
282 self.handle_bits(self.samplenum, None, num_item_bits)
283 # TODO Determine whether a WARN annotation needs to get emitted.
284 # The decoder has not seen the end of the last accumulated item.
285 # Instead it just ran out of input data.