Merge pull request #578 from PX4/fix_mp_prime_strong_lucas_lefridge_compilation
[libtommath.git] / tommath_private.h
blobbe620dbc943506960ef5b1d1ec751eb77255c608
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis */
2 /* SPDX-License-Identifier: Unlicense */
4 #ifndef TOMMATH_PRIVATE_H_
5 #define TOMMATH_PRIVATE_H_
7 #include "tommath.h"
8 #include "tommath_class.h"
9 #include <limits.h>
12 * Private symbols
13 * ---------------
15 * On Unix symbols can be marked as hidden if libtommath is compiled
16 * as a shared object. By default, symbols are visible.
17 * On Win32 a .def file must be used to specify the exported symbols.
19 #if defined(__GNUC__) && __GNUC__ >= 4 && !defined(_WIN32) && !defined(__CYGWIN__)
20 # define MP_PRIVATE __attribute__ ((visibility ("hidden")))
21 #else
22 # define MP_PRIVATE
23 #endif
25 /* Hardening libtommath
26 * --------------------
28 * By default memory is zeroed before calling
29 * MP_FREE to avoid leaking data. This is good
30 * practice in cryptographical applications.
32 * Note however that memory allocators used
33 * in cryptographical applications can often
34 * be configured by itself to clear memory,
35 * rendering the clearing in tommath unnecessary.
36 * See for example https://github.com/GrapheneOS/hardened_malloc
37 * and the option CONFIG_ZERO_ON_FREE.
39 * Furthermore there are applications which
40 * value performance more and want this
41 * feature to be disabled. For such applications
42 * define MP_NO_ZERO_ON_FREE during compilation.
44 #ifdef MP_NO_ZERO_ON_FREE
45 # define MP_FREE_BUF(mem, size) MP_FREE((mem), (size))
46 # define MP_FREE_DIGS(mem, digits) MP_FREE((mem), sizeof (mp_digit) * (size_t)(digits))
47 #else
48 # define MP_FREE_BUF(mem, size) \
49 do { \
50 size_t fs_ = (size); \
51 void* fm_ = (mem); \
52 if (fm_ != NULL) { \
53 s_mp_zero_buf(fm_, fs_); \
54 MP_FREE(fm_, fs_); \
55 } \
56 } while (0)
57 # define MP_FREE_DIGS(mem, digits) \
58 do { \
59 int fd_ = (digits); \
60 mp_digit* fm_ = (mem); \
61 if (fm_ != NULL) { \
62 s_mp_zero_digs(fm_, fd_); \
63 MP_FREE(fm_, sizeof (mp_digit) * (size_t)fd_); \
64 } \
65 } while (0)
66 #endif
68 /* Tunable cutoffs
69 * ---------------
71 * - In the default settings, a cutoff X can be modified at runtime
72 * by adjusting the corresponding X_CUTOFF variable.
74 * - Tunability of the library can be disabled at compile time
75 * by defining the MP_FIXED_CUTOFFS macro.
77 * - There is an additional file tommath_cutoffs.h, which defines
78 * the default cutoffs. These can be adjusted manually or by the
79 * autotuner.
83 #ifdef MP_FIXED_CUTOFFS
84 # include "tommath_cutoffs.h"
85 # define MP_MUL_KARATSUBA_CUTOFF MP_DEFAULT_MUL_KARATSUBA_CUTOFF
86 # define MP_SQR_KARATSUBA_CUTOFF MP_DEFAULT_SQR_KARATSUBA_CUTOFF
87 # define MP_MUL_TOOM_CUTOFF MP_DEFAULT_MUL_TOOM_CUTOFF
88 # define MP_SQR_TOOM_CUTOFF MP_DEFAULT_SQR_TOOM_CUTOFF
89 #endif
91 /* define heap macros */
92 #ifndef MP_MALLOC
93 /* default to libc stuff */
94 # include <stdlib.h>
95 # define MP_MALLOC(size) malloc(size)
96 # define MP_REALLOC(mem, oldsize, newsize) realloc((mem), (newsize))
97 # define MP_CALLOC(nmemb, size) calloc((nmemb), (size))
98 # define MP_FREE(mem, size) free(mem)
99 #else
100 /* prototypes for our heap functions */
101 extern void *MP_MALLOC(size_t size);
102 extern void *MP_REALLOC(void *mem, size_t oldsize, size_t newsize);
103 extern void *MP_CALLOC(size_t nmemb, size_t size);
104 extern void MP_FREE(void *mem, size_t size);
105 #endif
107 /* feature detection macro */
108 #ifdef _MSC_VER
109 /* Prevent false positive: not enough arguments for function-like macro invocation */
110 #pragma warning(disable: 4003)
111 #endif
112 #define MP_STRINGIZE(x) MP__STRINGIZE(x)
113 #define MP__STRINGIZE(x) ""#x""
114 #define MP_HAS(x) (sizeof(MP_STRINGIZE(x##_C)) == 1u)
116 #define MP_MIN(x, y) (((x) < (y)) ? (x) : (y))
117 #define MP_MAX(x, y) (((x) > (y)) ? (x) : (y))
119 #define MP_TOUPPER(c) ((((c) >= 'a') && ((c) <= 'z')) ? (((c) + 'A') - 'a') : (c))
121 #define MP_EXCH(t, a, b) do { t _c = a; a = b; b = _c; } while (0)
123 #define MP_IS_2EXPT(x) (((x) != 0u) && (((x) & ((x) - 1u)) == 0u))
125 /* TODO: same as above for bigint, merge (is it used elsewhere?) or change name */
126 #define MP_IS_POWER_OF_TWO(a) (((mp_count_bits((a)) - 1) == mp_cnt_lsb((a))) )
128 /* Static assertion */
129 #define MP_STATIC_ASSERT(msg, cond) typedef char mp_static_assert_##msg[(cond) ? 1 : -1];
131 #define MP_SIZEOF_BITS(type) ((size_t)CHAR_BIT * sizeof(type))
133 #define MP_MAX_COMBA (int)(1uL << (MP_SIZEOF_BITS(mp_word) - (2u * (size_t)MP_DIGIT_BIT)))
134 #define MP_WARRAY (int)(1uL << ((MP_SIZEOF_BITS(mp_word) - (2u * (size_t)MP_DIGIT_BIT)) + 1u))
136 #if defined(MP_16BIT)
137 typedef uint32_t mp_word;
138 #define MP_WORD_SIZE 4
139 #elif ((defined (MP_64BIT)) && !(defined(MP_31BIT)) )
140 typedef unsigned long mp_word __attribute__((mode(TI)));
141 #define MP_WORD_SIZE 16
142 #else
143 typedef uint64_t mp_word;
144 #define MP_WORD_SIZE 8
145 #endif
147 MP_STATIC_ASSERT(correct_word_size, sizeof(mp_word) == (2u * sizeof(mp_digit)))
149 /* default number of digits */
150 #ifndef MP_DEFAULT_DIGIT_COUNT
151 # ifndef MP_LOW_MEM
152 # define MP_DEFAULT_DIGIT_COUNT 32
153 # else
154 # define MP_DEFAULT_DIGIT_COUNT 8
155 # endif
156 #endif
158 /* Minimum number of available digits in mp_int, MP_DEFAULT_DIGIT_COUNT >= MP_MIN_DIGIT_COUNT
159 * - Must be at least 3 for s_mp_div_school.
160 * - Must be large enough such that the mp_set_u64 setter can
161 * store uint64_t in the mp_int without growing
163 #ifndef MP_MIN_DIGIT_COUNT
164 # define MP_MIN_DIGIT_COUNT MP_MAX(3, (((int)MP_SIZEOF_BITS(uint64_t) + MP_DIGIT_BIT) - 1) / MP_DIGIT_BIT)
165 #endif
166 MP_STATIC_ASSERT(prec_geq_min_prec, MP_DEFAULT_DIGIT_COUNT >= MP_MIN_DIGIT_COUNT)
167 MP_STATIC_ASSERT(min_prec_geq_3, MP_MIN_DIGIT_COUNT >= 3)
168 MP_STATIC_ASSERT(min_prec_geq_uint64size,
169 MP_MIN_DIGIT_COUNT >= ((((int)MP_SIZEOF_BITS(uint64_t) + MP_DIGIT_BIT) - 1) / MP_DIGIT_BIT))
171 /* Maximum number of digits.
172 * - Must be small enough such that mp_bit_count does not overflow.
173 * - Must be small enough such that mp_radix_size for base 2 does not overflow.
174 * mp_radix_size needs two additional bytes for zero termination and sign.
176 #define MP_MAX_DIGIT_COUNT ((INT_MAX - 2) / MP_DIGIT_BIT)
178 #if defined(__STDC_IEC_559__) || defined(__GCC_IEC_559) \
179 || defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) \
180 || defined(__i386__) || defined(_M_X86) || defined(_M_IX86) \
181 || defined(__aarch64__) || defined(__arm__)
182 #define MP_HAS_SET_DOUBLE
183 #endif
186 The mp_log functions rely on the size of mp_word being larger than INT_MAX and in case
187 there is a really weird architecture we try to check for it. Not a 100% reliable
188 test but it has a safe fallback.
190 #if !(((UINT_MAX == UINT32_MAX) && (MP_WORD_SIZE > 4)) \
191 || ((UINT_MAX == UINT16_MAX) && (MP_WORD_SIZE > 2)))
192 #define S_MP_WORD_TOO_SMALL_C
193 #endif
195 /* random number source */
196 extern MP_PRIVATE mp_err(*s_mp_rand_source)(void *out, size_t size);
198 /* lowlevel functions, do not call! */
199 MP_PRIVATE bool s_mp_get_bit(const mp_int *a, int b) MP_WUR;
200 MP_PRIVATE int s_mp_log_2expt(const mp_int *a, mp_digit base) MP_WUR;
202 MP_PRIVATE mp_err s_mp_add(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
203 MP_PRIVATE mp_err s_mp_div_3(const mp_int *a, mp_int *c, mp_digit *d) MP_WUR;
204 MP_PRIVATE mp_err s_mp_div_recursive(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) MP_WUR;
205 MP_PRIVATE mp_err s_mp_div_school(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) MP_WUR;
206 MP_PRIVATE mp_err s_mp_div_small(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) MP_WUR;
207 MP_PRIVATE mp_err s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) MP_WUR;
208 MP_PRIVATE mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) MP_WUR;
209 MP_PRIVATE mp_err s_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
210 MP_PRIVATE mp_err s_mp_invmod_odd(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
212 MP_PRIVATE mp_err s_mp_montgomery_reduce_comba(mp_int *x, const mp_int *n, mp_digit rho) MP_WUR;
213 MP_PRIVATE mp_err s_mp_mul(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR;
214 MP_PRIVATE mp_err s_mp_mul_balance(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
215 MP_PRIVATE mp_err s_mp_mul_comba(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR;
216 MP_PRIVATE mp_err s_mp_mul_high(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR;
217 MP_PRIVATE mp_err s_mp_mul_high_comba(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR;
218 MP_PRIVATE mp_err s_mp_mul_karatsuba(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
219 MP_PRIVATE mp_err s_mp_mul_toom(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
220 MP_PRIVATE mp_err s_mp_prime_is_divisible(const mp_int *a, bool *result) MP_WUR;
221 MP_PRIVATE mp_err s_mp_rand_platform(void *p, size_t n) MP_WUR;
222 MP_PRIVATE mp_err s_mp_sqr(const mp_int *a, mp_int *b) MP_WUR;
223 MP_PRIVATE mp_err s_mp_sqr_comba(const mp_int *a, mp_int *b) MP_WUR;
224 MP_PRIVATE mp_err s_mp_sqr_karatsuba(const mp_int *a, mp_int *b) MP_WUR;
225 MP_PRIVATE mp_err s_mp_sqr_toom(const mp_int *a, mp_int *b) MP_WUR;
226 MP_PRIVATE mp_err s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
227 MP_PRIVATE void s_mp_copy_digs(mp_digit *d, const mp_digit *s, int digits);
228 MP_PRIVATE void s_mp_zero_buf(void *mem, size_t size);
229 MP_PRIVATE void s_mp_zero_digs(mp_digit *d, int digits);
230 MP_PRIVATE mp_err s_mp_radix_size_overestimate(const mp_int *a, const int radix, size_t *size);
232 #define MP_PRECISION_FIXED_LOG ( (int) (((sizeof(mp_word) * CHAR_BIT) / 2) - 1))
233 #define MP_UPPER_LIMIT_FIXED_LOG ( (int) ( (sizeof(mp_word) * CHAR_BIT) - 1))
234 MP_PRIVATE mp_err s_mp_fp_log(const mp_int *a, mp_int *c) MP_WUR;
235 MP_PRIVATE mp_err s_mp_fp_log_d(const mp_int *a, mp_word *c) MP_WUR;
237 #ifdef MP_SMALL_STACK_SIZE
239 #if defined(__GNUC__)
240 /* We use TLS (Thread Local Storage) to manage the instance of the WARRAY
241 * per thread.
242 * The compilers we're usually looking at are GCC, Clang and MSVC.
243 * Both GCC and Clang are straight-forward with TLS, so it's enabled there.
244 * Using MSVC the tests were OK with the static library, but failed when
245 * the library was built as a DLL. As a result we completely disable
246 * support for MSVC.
247 * If your compiler can handle TLS properly without too much hocus pocus,
248 * feel free to open a PR to add support for it.
250 #define mp_thread __thread
251 #else
252 #error "MP_SMALL_STACK_SIZE not supported with your compiler"
253 #endif
255 #define MP_SMALL_STACK_SIZE_C
256 #define MP_ALLOC_WARRAY(name) *name = s_mp_warray_get()
257 #define MP_FREE_WARRAY(name) s_mp_warray_put(name)
258 #define MP_CHECK_WARRAY(name) do { if ((name) == NULL) { return MP_MEM; } } while(0)
259 #else
260 #define MP_ALLOC_WARRAY(name) name[MP_WARRAY]
261 #define MP_FREE_WARRAY(name)
262 #define MP_CHECK_WARRAY(name)
263 #endif
265 #ifndef mp_thread
266 #define mp_thread
267 #endif
269 typedef struct {
270 void *w_free, *w_used;
271 } st_warray;
273 extern MP_PRIVATE mp_thread st_warray s_mp_warray;
275 MP_PRIVATE void *s_mp_warray_get(void);
276 MP_PRIVATE void s_mp_warray_put(void *w);
278 #define MP_RADIX_MAP_REVERSE_SIZE 80u
279 extern MP_PRIVATE const char s_mp_radix_map[];
280 extern MP_PRIVATE const uint8_t s_mp_radix_map_reverse[];
281 extern MP_PRIVATE const mp_digit s_mp_prime_tab[];
283 /* number of primes */
284 #define MP_PRIME_TAB_SIZE 256
286 #define MP_GET_ENDIANNESS(x) \
287 do{\
288 int16_t n = 0x1; \
289 char *p = (char *)&n; \
290 x = (p[0] == '\x01') ? MP_LITTLE_ENDIAN : MP_BIG_ENDIAN; \
291 } while (0)
293 /* code-generating macros */
294 #define MP_SET_UNSIGNED(name, type) \
295 void name(mp_int * a, type b) \
297 int i = 0; \
298 while (b != 0u) { \
299 a->dp[i++] = ((mp_digit)b & MP_MASK); \
300 if (MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) { break; } \
301 b >>= ((MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) ? 0 : MP_DIGIT_BIT); \
303 a->used = i; \
304 a->sign = MP_ZPOS; \
305 s_mp_zero_digs(a->dp + a->used, a->alloc - a->used); \
308 #define MP_SET_SIGNED(name, uname, type, utype) \
309 void name(mp_int * a, type b) \
311 uname(a, (b < 0) ? -(utype)b : (utype)b); \
312 if (b < 0) { a->sign = MP_NEG; } \
315 #define MP_INIT_INT(name , set, type) \
316 mp_err name(mp_int * a, type b) \
318 mp_err err; \
319 if ((err = mp_init(a)) != MP_OKAY) { \
320 return err; \
322 set(a, b); \
323 return MP_OKAY; \
326 #define MP_GET_MAG(name, type) \
327 type name(const mp_int* a) \
329 int i = MP_MIN(a->used, (int)((MP_SIZEOF_BITS(type) + MP_DIGIT_BIT - 1) / MP_DIGIT_BIT)); \
330 type res = 0u; \
331 while (i --> 0) { \
332 res <<= ((MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) ? 0 : MP_DIGIT_BIT); \
333 res |= (type)a->dp[i]; \
334 if (MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) { break; } \
336 return res; \
339 #define MP_GET_SIGNED(name, mag, type, utype) \
340 type name(const mp_int* a) \
342 utype res = mag(a); \
343 return mp_isneg(a) ? (type)-res : (type)res; \
346 #endif