1 /* LibTomPoly, Polynomial Basis Math -- Tom St Denis
3 * LibTomPoly is a public domain library that provides
4 * polynomial basis arithmetic support. It relies on
5 * LibTomMath for large integer support.
7 * This library is free for all purposes without any
8 * express guarantee that it works.
10 * Tom St Denis, tomstdenis@iahu.ca, http://poly.libtomcrypt.org
17 /* this structure holds a polynomial */
19 int used
, /* number of terms */
20 alloc
; /* number of terms available (total) */
21 mp_int characteristic
, /* characteristic, zero if not finite */
22 *terms
; /* terms of polynomial */
26 /* default number of terms */
30 #define PB_EQ 0 /* They're exactly equal */
31 #define PB_DEG_LT 1 /* The left has a lower degree */
32 #define PB_DEG_EQ 2 /* same degree */
33 #define PB_DEG_GT 3 /* The left has a higher degree */
35 int pb_init(pb_poly
*a
, mp_int
*characteristic
);
36 int pb_init_size(pb_poly
*a
, mp_int
*characteristic
, int size
);
37 int pb_init_copy(pb_poly
*a
, pb_poly
*b
);
38 int pb_init_multi(mp_int
*characteristic
, pb_poly
*pb
, ...);
39 void pb_clear_multi(pb_poly
*mp
, ...);
40 void pb_clear(pb_poly
*a
);
42 int pb_shrink(pb_poly
*a
);
43 int pb_grow(pb_poly
*a
, int size
);
44 void pb_clamp(pb_poly
*a
);
46 /* dest(x) := src(x) */
47 int pb_copy(pb_poly
*src
, pb_poly
*dest
);
50 int pb_cmp(pb_poly
*a
, pb_poly
*b
);
52 /* swap contents of a(x) and b(x) */
53 void pb_exch(pb_poly
*a
, pb_poly
*b
);
56 void pb_zero(pb_poly
*a
);
58 /* a(x) = a(x) / I(x)^x */
59 int pb_rshd(pb_poly
*a
, int x
);
61 /* a(x) = a(x) * I(x)^x */
62 int pb_lshd(pb_poly
*a
, int x
);
64 /* c(x) = a(x) + b(x) */
65 int pb_add(pb_poly
*a
, pb_poly
*b
, pb_poly
*c
);
67 /* c(x) = a(x) - b(x) */
68 int pb_sub(pb_poly
*a
, pb_poly
*b
, pb_poly
*c
);
70 /* c(x) = a(x) * b(x) */
71 int pb_mul(pb_poly
*a
, pb_poly
*b
, pb_poly
*c
);
73 /* c(x) * b(x) + d(x) = a(x) */
74 int pb_div(pb_poly
*a
, pb_poly
*b
, pb_poly
*c
, pb_poly
*d
);
76 /* c(x) = a(x) mod b(x) */
77 int pb_mod(pb_poly
*a
, pb_poly
*b
, pb_poly
*c
);
79 /* d(x) = (a(x) + b(x)) mod c(x) */
80 int pb_addmod(pb_poly
*a
, pb_poly
*b
, pb_poly
*c
, pb_poly
*d
);
82 /* d(x) = (a(x) - b(x)) mod c(x) */
83 int pb_submod(pb_poly
*a
, pb_poly
*b
, pb_poly
*c
, pb_poly
*d
);
85 /* d(x) = (a(x) * b(x)) mod c(x) */
86 int pb_mulmod(pb_poly
*a
, pb_poly
*b
, pb_poly
*c
, pb_poly
*d
);
91 /* makes b equal to the monic polynomial form of a */
92 int pb_monic(pb_poly
*a
, pb_poly
*b
);
94 /* returns the monic GCD of a,b in GF(p^k)[x] */
95 int pb_gcd(pb_poly
*a
, pb_poly
*b
, pb_poly
*c
);
97 /* Extended euclidean algorithm of (a, b) produces a*u1 + b*u2 = u3 */
98 int pb_exteuclid(pb_poly
*a
, pb_poly
*b
, pb_poly
*U1
, pb_poly
*U2
, pb_poly
*U3
);
100 /* finds the inverse of a modulo b and stores it in c such that a*c == 1 mod b */
101 int pb_invmod(pb_poly
*a
, pb_poly
*b
, pb_poly
*c
);
103 /* computes Y == G^X mod P [accepts negative values for X] */
104 int pb_exptmod (pb_poly
* G
, mp_int
* X
, pb_poly
* P
, pb_poly
* Y
);
106 /* is a(x) irreducible (GF(p)[x] only) */
107 int pb_isirreduc(pb_poly
*a
, int *res
);
111 int pb_rawsize(pb_poly
*a
);
112 int pb_toraw(pb_poly
*a
, unsigned char *dst
);
113 int pb_readraw(pb_poly
*a
, unsigned char *buf
, int len
);