WinCE: Post integration cleanup
[libusbx.git] / libusb / os / wince_usb.c
blob354c0e6fd008cbe457335a88de27cab7fd3d3a7d
1 /*
2 * Windows CE backend for libusbx 1.0
3 * Copyright © 2011-2013 RealVNC Ltd.
4 * Large portions taken from Windows backend, which is
5 * Copyright © 2009-2010 Pete Batard <pbatard@gmail.com>
6 * With contributions from Michael Plante, Orin Eman et al.
7 * Parts of this code adapted from libusb-win32-v1 by Stephan Meyer
8 * Major code testing contribution by Xiaofan Chen
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <libusbi.h>
27 #include <stdint.h>
28 #include <errno.h>
29 #include <inttypes.h>
31 #include "wince_usb.h"
33 // Forward declares
34 static int wince_clock_gettime(int clk_id, struct timespec *tp);
35 unsigned __stdcall wince_clock_gettime_threaded(void* param);
37 // Global variables
38 uint64_t hires_frequency, hires_ticks_to_ps;
39 int errno;
40 const uint64_t epoch_time = UINT64_C(116444736000000000); // 1970.01.01 00:00:000 in MS Filetime
41 enum windows_version windows_version = WINDOWS_CE;
42 static int concurrent_usage = -1;
43 // Timer thread
44 // NB: index 0 is for monotonic and 1 is for the thread exit event
45 HANDLE timer_thread = NULL;
46 HANDLE timer_mutex = NULL;
47 struct timespec timer_tp;
48 volatile LONG request_count[2] = {0, 1}; // last one must be > 0
49 HANDLE timer_request[2] = { NULL, NULL };
50 HANDLE timer_response = NULL;
51 HANDLE driver_handle = INVALID_HANDLE_VALUE;
54 * Converts a windows error to human readable string
55 * uses retval as errorcode, or, if 0, use GetLastError()
57 #if defined(ENABLE_LOGGING)
58 static char* windows_error_str(uint32_t retval)
60 static TCHAR wErr_string[ERR_BUFFER_SIZE];
61 static char err_string[ERR_BUFFER_SIZE];
63 DWORD size;
64 size_t i;
65 uint32_t error_code, format_error;
67 error_code = retval?retval:GetLastError();
69 safe_stprintf(wErr_string, ERR_BUFFER_SIZE, _T("[%d] "), error_code);
71 size = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, NULL, error_code,
72 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), &wErr_string[safe_tcslen(wErr_string)],
73 ERR_BUFFER_SIZE - (DWORD)safe_tcslen(wErr_string), NULL);
74 if (size == 0) {
75 format_error = GetLastError();
76 if (format_error)
77 safe_stprintf(wErr_string, ERR_BUFFER_SIZE,
78 _T("Windows error code %u (FormatMessage error code %u)"), error_code, format_error);
79 else
80 safe_stprintf(wErr_string, ERR_BUFFER_SIZE, _T("Unknown error code %u"), error_code);
81 } else {
82 // Remove CR/LF terminators
83 for (i=safe_tcslen(wErr_string)-1; ((wErr_string[i]==0x0A) || (wErr_string[i]==0x0D)); i--) {
84 wErr_string[i] = 0;
87 if (WideCharToMultiByte(CP_ACP, 0, wErr_string, -1, err_string, ERR_BUFFER_SIZE, NULL, NULL) < 0)
89 strcpy(err_string, "Unable to convert error string");
91 return err_string;
93 #endif
95 static struct wince_device_priv *_device_priv(struct libusb_device *dev)
97 return (struct wince_device_priv *) dev->os_priv;
100 // ceusbkwrapper to libusb error code mapping
101 static int translate_driver_error(int error)
103 switch (error) {
104 case ERROR_INVALID_PARAMETER:
105 return LIBUSB_ERROR_INVALID_PARAM;
106 case ERROR_CALL_NOT_IMPLEMENTED:
107 case ERROR_NOT_SUPPORTED:
108 return LIBUSB_ERROR_NOT_SUPPORTED;
109 case ERROR_NOT_ENOUGH_MEMORY:
110 return LIBUSB_ERROR_NO_MEM;
111 case ERROR_INVALID_HANDLE:
112 return LIBUSB_ERROR_NO_DEVICE;
113 case ERROR_BUSY:
114 return LIBUSB_ERROR_BUSY;
116 // Error codes that are either unexpected, or have
117 // no suitable LIBUSB_ERROR equivilant.
118 case ERROR_CANCELLED:
119 case ERROR_INTERNAL_ERROR:
120 default:
121 return LIBUSB_ERROR_OTHER;
125 static int init_dllimports()
127 DLL_LOAD(ceusbkwrapper.dll, UkwOpenDriver, TRUE);
128 DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceList, TRUE);
129 DLL_LOAD(ceusbkwrapper.dll, UkwReleaseDeviceList, TRUE);
130 DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceAddress, TRUE);
131 DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceDescriptor, TRUE);
132 DLL_LOAD(ceusbkwrapper.dll, UkwGetConfigDescriptor, TRUE);
133 DLL_LOAD(ceusbkwrapper.dll, UkwCloseDriver, TRUE);
134 DLL_LOAD(ceusbkwrapper.dll, UkwCancelTransfer, TRUE);
135 DLL_LOAD(ceusbkwrapper.dll, UkwIssueControlTransfer, TRUE);
136 DLL_LOAD(ceusbkwrapper.dll, UkwClaimInterface, TRUE);
137 DLL_LOAD(ceusbkwrapper.dll, UkwReleaseInterface, TRUE);
138 DLL_LOAD(ceusbkwrapper.dll, UkwSetInterfaceAlternateSetting, TRUE);
139 DLL_LOAD(ceusbkwrapper.dll, UkwClearHaltHost, TRUE);
140 DLL_LOAD(ceusbkwrapper.dll, UkwClearHaltDevice, TRUE);
141 DLL_LOAD(ceusbkwrapper.dll, UkwGetConfig, TRUE);
142 DLL_LOAD(ceusbkwrapper.dll, UkwSetConfig, TRUE);
143 DLL_LOAD(ceusbkwrapper.dll, UkwResetDevice, TRUE);
144 DLL_LOAD(ceusbkwrapper.dll, UkwKernelDriverActive, TRUE);
145 DLL_LOAD(ceusbkwrapper.dll, UkwAttachKernelDriver, TRUE);
146 DLL_LOAD(ceusbkwrapper.dll, UkwDetachKernelDriver, TRUE);
147 DLL_LOAD(ceusbkwrapper.dll, UkwIssueBulkTransfer, TRUE);
148 DLL_LOAD(ceusbkwrapper.dll, UkwIsPipeHalted, TRUE);
149 return LIBUSB_SUCCESS;
152 static int init_device(struct libusb_device *dev, UKW_DEVICE drv_dev,
153 unsigned char bus_addr, unsigned char dev_addr)
155 struct wince_device_priv *priv = _device_priv(dev);
156 int r = LIBUSB_SUCCESS;
158 dev->bus_number = bus_addr;
159 dev->device_address = dev_addr;
160 priv->dev = drv_dev;
162 if (!UkwGetDeviceDescriptor(priv->dev, &(priv->desc))) {
163 r = translate_driver_error(GetLastError());
165 return r;
168 // Internal API functions
169 static int wince_init(struct libusb_context *ctx)
171 int i, r = LIBUSB_ERROR_OTHER;
172 HANDLE semaphore;
173 TCHAR sem_name[11+1+8]; // strlen(libusb_init)+'\0'+(32-bit hex PID)
175 _stprintf(sem_name, _T("libusb_init%08X"), (unsigned int)GetCurrentProcessId()&0xFFFFFFFF);
176 semaphore = CreateSemaphore(NULL, 1, 1, sem_name);
177 if (semaphore == NULL) {
178 usbi_err(ctx, "could not create semaphore: %s", windows_error_str(0));
179 return LIBUSB_ERROR_NO_MEM;
182 // A successful wait brings our semaphore count to 0 (unsignaled)
183 // => any concurent wait stalls until the semaphore's release
184 if (WaitForSingleObject(semaphore, INFINITE) != WAIT_OBJECT_0) {
185 usbi_err(ctx, "failure to access semaphore: %s", windows_error_str(0));
186 CloseHandle(semaphore);
187 return LIBUSB_ERROR_NO_MEM;
190 // NB: concurrent usage supposes that init calls are equally balanced with
191 // exit calls. If init is called more than exit, we will not exit properly
192 if ( ++concurrent_usage == 0 ) { // First init?
193 // Initialize pollable file descriptors
194 init_polling();
196 // Load DLL imports
197 if (init_dllimports() != LIBUSB_SUCCESS) {
198 usbi_err(ctx, "could not resolve DLL functions");
199 r = LIBUSB_ERROR_NOT_SUPPORTED;
200 goto init_exit;
203 // try to open a handle to the driver
204 driver_handle = UkwOpenDriver();
205 if (driver_handle == INVALID_HANDLE_VALUE) {
206 usbi_err(ctx, "could not connect to driver");
207 r = LIBUSB_ERROR_NOT_SUPPORTED;
208 goto init_exit;
211 // Windows CE doesn't have a way of specifying thread affinity, so this code
212 // just has to hope QueryPerformanceCounter doesn't report different values when
213 // running on different cores.
214 r = LIBUSB_ERROR_NO_MEM;
215 for (i = 0; i < 2; i++) {
216 timer_request[i] = CreateEvent(NULL, TRUE, FALSE, NULL);
217 if (timer_request[i] == NULL) {
218 usbi_err(ctx, "could not create timer request event %d - aborting", i);
219 goto init_exit;
222 timer_response = CreateSemaphore(NULL, 0, MAX_TIMER_SEMAPHORES, NULL);
223 if (timer_response == NULL) {
224 usbi_err(ctx, "could not create timer response semaphore - aborting");
225 goto init_exit;
227 timer_mutex = CreateMutex(NULL, FALSE, NULL);
228 if (timer_mutex == NULL) {
229 usbi_err(ctx, "could not create timer mutex - aborting");
230 goto init_exit;
232 timer_thread = CreateThread(NULL, 0, wince_clock_gettime_threaded, NULL, 0, NULL);
233 if (timer_thread == NULL) {
234 usbi_err(ctx, "Unable to create timer thread - aborting");
235 goto init_exit;
238 // At this stage, either we went through full init successfully, or didn't need to
239 r = LIBUSB_SUCCESS;
241 init_exit: // Holds semaphore here.
242 if (!concurrent_usage && r != LIBUSB_SUCCESS) { // First init failed?
243 if (driver_handle != INVALID_HANDLE_VALUE) {
244 UkwCloseDriver(driver_handle);
245 driver_handle = INVALID_HANDLE_VALUE;
247 if (timer_thread) {
248 SetEvent(timer_request[1]); // actually the signal to quit the thread.
249 if (WAIT_OBJECT_0 != WaitForSingleObject(timer_thread, INFINITE)) {
250 usbi_warn(ctx, "could not wait for timer thread to quit");
251 TerminateThread(timer_thread, 1); // shouldn't happen, but we're destroying
252 // all objects it might have held anyway.
254 CloseHandle(timer_thread);
255 timer_thread = NULL;
257 for (i = 0; i < 2; i++) {
258 if (timer_request[i]) {
259 CloseHandle(timer_request[i]);
260 timer_request[i] = NULL;
263 if (timer_response) {
264 CloseHandle(timer_response);
265 timer_response = NULL;
267 if (timer_mutex) {
268 CloseHandle(timer_mutex);
269 timer_mutex = NULL;
273 if (r != LIBUSB_SUCCESS)
274 --concurrent_usage; // Not expected to call libusb_exit if we failed.
276 ReleaseSemaphore(semaphore, 1, NULL); // increase count back to 1
277 CloseHandle(semaphore);
278 return r;
281 static void wince_exit(void)
283 int i;
284 HANDLE semaphore;
285 TCHAR sem_name[11+1+8]; // strlen(libusb_init)+'\0'+(32-bit hex PID)
287 _stprintf(sem_name, _T("libusb_init%08X"), (unsigned int)GetCurrentProcessId()&0xFFFFFFFF);
288 semaphore = CreateSemaphore(NULL, 1, 1, sem_name);
289 if (semaphore == NULL) {
290 return;
293 // A successful wait brings our semaphore count to 0 (unsignaled)
294 // => any concurent wait stalls until the semaphore release
295 if (WaitForSingleObject(semaphore, INFINITE) != WAIT_OBJECT_0) {
296 CloseHandle(semaphore);
297 return;
300 // Only works if exits and inits are balanced exactly
301 if (--concurrent_usage < 0) { // Last exit
302 exit_polling();
304 if (timer_thread) {
305 SetEvent(timer_request[1]); // actually the signal to quit the thread.
306 if (WAIT_OBJECT_0 != WaitForSingleObject(timer_thread, INFINITE)) {
307 usbi_dbg("could not wait for timer thread to quit");
308 TerminateThread(timer_thread, 1);
310 CloseHandle(timer_thread);
311 timer_thread = NULL;
313 for (i = 0; i < 2; i++) {
314 if (timer_request[i]) {
315 CloseHandle(timer_request[i]);
316 timer_request[i] = NULL;
319 if (timer_response) {
320 CloseHandle(timer_response);
321 timer_response = NULL;
323 if (timer_mutex) {
324 CloseHandle(timer_mutex);
325 timer_mutex = NULL;
327 if (driver_handle != INVALID_HANDLE_VALUE) {
328 UkwCloseDriver(driver_handle);
329 driver_handle = INVALID_HANDLE_VALUE;
333 ReleaseSemaphore(semaphore, 1, NULL); // increase count back to 1
334 CloseHandle(semaphore);
337 static int wince_get_device_list(
338 struct libusb_context *ctx,
339 struct discovered_devs **discdevs)
341 UKW_DEVICE devices[MAX_DEVICE_COUNT];
342 struct discovered_devs * new_devices = *discdevs;
343 DWORD count = 0, i;
344 struct libusb_device *dev;
345 unsigned char bus_addr, dev_addr;
346 unsigned long session_id;
347 BOOL success, need_unref = FALSE;
348 DWORD release_list_offset = 0;
349 int r = LIBUSB_SUCCESS;
351 success = UkwGetDeviceList(driver_handle, devices, MAX_DEVICE_COUNT, &count);
352 if (!success) {
353 int libusbErr = translate_driver_error(GetLastError());
354 usbi_err(ctx, "could not get devices: %s", windows_error_str(0));
355 return libusbErr;
357 for(i = 0; i < count; ++i) {
358 release_list_offset = i;
359 success = UkwGetDeviceAddress(devices[i], &bus_addr, &dev_addr, &session_id);
360 if (!success) {
361 r = translate_driver_error(GetLastError());
362 usbi_err(ctx, "could not get device address for %d: %s", i, windows_error_str(0));
363 goto err_out;
365 dev = usbi_get_device_by_session_id(ctx, session_id);
366 if (dev) {
367 usbi_dbg("using existing device for %d/%d (session %ld)",
368 bus_addr, dev_addr, session_id);
369 // Release just this element in the device list (as we already hold a
370 // reference to it).
371 UkwReleaseDeviceList(driver_handle, &devices[i], 1);
372 release_list_offset++;
373 } else {
374 usbi_dbg("allocating new device for %d/%d (session %ld)",
375 bus_addr, dev_addr, session_id);
376 dev = usbi_alloc_device(ctx, session_id);
377 if (!dev) {
378 r = LIBUSB_ERROR_NO_MEM;
379 goto err_out;
381 need_unref = TRUE;
382 r = init_device(dev, devices[i], bus_addr, dev_addr);
383 if (r < 0)
384 goto err_out;
385 r = usbi_sanitize_device(dev);
386 if (r < 0)
387 goto err_out;
389 new_devices = discovered_devs_append(new_devices, dev);
390 if (!discdevs) {
391 r = LIBUSB_ERROR_NO_MEM;
392 goto err_out;
394 need_unref = FALSE;
396 *discdevs = new_devices;
397 return r;
398 err_out:
399 *discdevs = new_devices;
400 if (need_unref)
401 libusb_unref_device(dev);
402 // Release the remainder of the unprocessed device list.
403 // The devices added to new_devices already will still be passed up to libusb,
404 // which can dispose of them at its leisure.
405 UkwReleaseDeviceList(driver_handle, &devices[release_list_offset], count - release_list_offset);
406 return r;
409 static int wince_open(struct libusb_device_handle *handle)
411 // Nothing to do to open devices as a handle to it has
412 // been retrieved by wince_get_device_list
413 return LIBUSB_SUCCESS;
416 static void wince_close(struct libusb_device_handle *handle)
418 // Nothing to do as wince_open does nothing.
421 static int wince_get_device_descriptor(
422 struct libusb_device *device,
423 unsigned char *buffer, int *host_endian)
425 struct wince_device_priv *priv = _device_priv(device);
427 *host_endian = 1;
428 memcpy(buffer, &priv->desc, DEVICE_DESC_LENGTH);
429 return LIBUSB_SUCCESS;
432 static int wince_get_active_config_descriptor(
433 struct libusb_device *device,
434 unsigned char *buffer, size_t len, int *host_endian)
436 struct wince_device_priv *priv = _device_priv(device);
437 DWORD actualSize = len;
438 *host_endian = 1;
439 if (!UkwGetConfigDescriptor(priv->dev, UKW_ACTIVE_CONFIGURATION, buffer, len, &actualSize)) {
440 return translate_driver_error(GetLastError());
442 return actualSize;
445 static int wince_get_config_descriptor(
446 struct libusb_device *device,
447 uint8_t config_index,
448 unsigned char *buffer, size_t len, int *host_endian)
450 struct wince_device_priv *priv = _device_priv(device);
451 DWORD actualSize = len;
452 *host_endian = 0;
453 if (!UkwGetConfigDescriptor(priv->dev, config_index, buffer, len, &actualSize)) {
454 return translate_driver_error(GetLastError());
456 return actualSize;
459 static int wince_get_configuration(
460 struct libusb_device_handle *handle,
461 int *config)
463 struct wince_device_priv *priv = _device_priv(handle->dev);
464 UCHAR cv = 0;
465 if (!UkwGetConfig(priv->dev, &cv)) {
466 return translate_driver_error(GetLastError());
468 (*config) = cv;
469 return LIBUSB_SUCCESS;
472 static int wince_set_configuration(
473 struct libusb_device_handle *handle,
474 int config)
476 struct wince_device_priv *priv = _device_priv(handle->dev);
477 // Setting configuration 0 places the device in Address state.
478 // This should correspond to the "unconfigured state" required by
479 // libusb when the specified configuration is -1.
480 UCHAR cv = (config < 0) ? 0 : config;
481 if (!UkwSetConfig(priv->dev, cv)) {
482 return translate_driver_error(GetLastError());
484 return LIBUSB_SUCCESS;
487 static int wince_claim_interface(
488 struct libusb_device_handle *handle,
489 int interface_number)
491 struct wince_device_priv *priv = _device_priv(handle->dev);
492 if (!UkwClaimInterface(priv->dev, interface_number)) {
493 return translate_driver_error(GetLastError());
495 return LIBUSB_SUCCESS;
498 static int wince_release_interface(
499 struct libusb_device_handle *handle,
500 int interface_number)
502 struct wince_device_priv *priv = _device_priv(handle->dev);
503 if (!UkwSetInterfaceAlternateSetting(priv->dev, interface_number, 0)) {
504 return translate_driver_error(GetLastError());
506 if (!UkwReleaseInterface(priv->dev, interface_number)) {
507 return translate_driver_error(GetLastError());
509 return LIBUSB_SUCCESS;
512 static int wince_set_interface_altsetting(
513 struct libusb_device_handle *handle,
514 int interface_number, int altsetting)
516 struct wince_device_priv *priv = _device_priv(handle->dev);
517 if (!UkwSetInterfaceAlternateSetting(priv->dev, interface_number, altsetting)) {
518 return translate_driver_error(GetLastError());
520 return LIBUSB_SUCCESS;
523 static int wince_clear_halt(
524 struct libusb_device_handle *handle,
525 unsigned char endpoint)
527 struct wince_device_priv *priv = _device_priv(handle->dev);
528 if (!UkwClearHaltHost(priv->dev, endpoint)) {
529 return translate_driver_error(GetLastError());
531 if (!UkwClearHaltDevice(priv->dev, endpoint)) {
532 return translate_driver_error(GetLastError());
534 return LIBUSB_SUCCESS;
537 static int wince_reset_device(
538 struct libusb_device_handle *handle)
540 struct wince_device_priv *priv = _device_priv(handle->dev);
541 if (!UkwResetDevice(priv->dev)) {
542 return translate_driver_error(GetLastError());
544 return LIBUSB_SUCCESS;
547 static int wince_kernel_driver_active(
548 struct libusb_device_handle *handle,
549 int interface_number)
551 struct wince_device_priv *priv = _device_priv(handle->dev);
552 BOOL result = FALSE;
553 if (!UkwKernelDriverActive(priv->dev, interface_number, &result)) {
554 return translate_driver_error(GetLastError());
556 return result ? 1 : 0;
559 static int wince_detach_kernel_driver(
560 struct libusb_device_handle *handle,
561 int interface_number)
563 struct wince_device_priv *priv = _device_priv(handle->dev);
564 if (!UkwDetachKernelDriver(priv->dev, interface_number)) {
565 return translate_driver_error(GetLastError());
567 return LIBUSB_SUCCESS;
570 static int wince_attach_kernel_driver(
571 struct libusb_device_handle *handle,
572 int interface_number)
574 struct wince_device_priv *priv = _device_priv(handle->dev);
575 if (!UkwAttachKernelDriver(priv->dev, interface_number)) {
576 return translate_driver_error(GetLastError());
578 return LIBUSB_SUCCESS;
581 static void wince_destroy_device(
582 struct libusb_device *dev)
584 struct wince_device_priv *priv = _device_priv(dev);
585 UkwReleaseDeviceList(driver_handle, &priv->dev, 1);
588 static void wince_clear_transfer_priv(
589 struct usbi_transfer *itransfer)
591 struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
592 struct winfd wfd = fd_to_winfd(transfer_priv->pollable_fd.fd);
593 // No need to cancel transfer as it is either complete or abandoned
594 wfd.itransfer = NULL;
595 CloseHandle(wfd.handle);
596 usbi_free_fd(transfer_priv->pollable_fd.fd);
599 static int wince_cancel_transfer(
600 struct usbi_transfer *itransfer)
602 struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
603 struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev);
604 struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
606 if (!UkwCancelTransfer(priv->dev, transfer_priv->pollable_fd.overlapped, UKW_TF_NO_WAIT)) {
607 return translate_driver_error(GetLastError());
609 return LIBUSB_SUCCESS;
612 static int wince_submit_control_or_bulk_transfer(struct usbi_transfer *itransfer)
614 struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
615 struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev);
616 struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
617 struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev);
618 BOOL direction_in, ret;
619 struct winfd wfd;
620 DWORD flags;
621 HANDLE eventHandle;
622 PUKW_CONTROL_HEADER setup = NULL;
623 const BOOL control_transfer = transfer->type == LIBUSB_TRANSFER_TYPE_CONTROL;
625 transfer_priv->pollable_fd = INVALID_WINFD;
626 if (control_transfer) {
627 setup = (PUKW_CONTROL_HEADER) transfer->buffer;
628 direction_in = setup->bmRequestType & LIBUSB_ENDPOINT_IN;
629 } else {
630 direction_in = transfer->endpoint & LIBUSB_ENDPOINT_IN;
632 flags = direction_in ? UKW_TF_IN_TRANSFER : UKW_TF_OUT_TRANSFER;
633 flags |= UKW_TF_SHORT_TRANSFER_OK;
635 eventHandle = CreateEvent(NULL, FALSE, FALSE, NULL);
636 if (eventHandle == NULL) {
637 usbi_err(ctx, "Failed to create event for async transfer");
638 return LIBUSB_ERROR_NO_MEM;
641 wfd = usbi_create_fd(eventHandle, direction_in ? RW_READ : RW_WRITE, itransfer, &wince_cancel_transfer);
642 if (wfd.fd < 0) {
643 CloseHandle(eventHandle);
644 return LIBUSB_ERROR_NO_MEM;
647 transfer_priv->pollable_fd = wfd;
648 if (control_transfer) {
649 // Split out control setup header and data buffer
650 DWORD bufLen = transfer->length - sizeof(UKW_CONTROL_HEADER);
651 PVOID buf = (PVOID) &transfer->buffer[sizeof(UKW_CONTROL_HEADER)];
653 ret = UkwIssueControlTransfer(priv->dev, flags, setup, buf, bufLen, &transfer->actual_length, wfd.overlapped);
654 } else {
655 ret = UkwIssueBulkTransfer(priv->dev, flags, transfer->endpoint, transfer->buffer,
656 transfer->length, &transfer->actual_length, wfd.overlapped);
658 if (!ret) {
659 int libusbErr = translate_driver_error(GetLastError());
660 usbi_err(ctx, "UkwIssue%sTransfer failed: error %d",
661 control_transfer ? "Control" : "Bulk", GetLastError());
662 wince_clear_transfer_priv(itransfer);
663 return libusbErr;
665 usbi_add_pollfd(ctx, transfer_priv->pollable_fd.fd, direction_in ? POLLIN : POLLOUT);
666 itransfer->flags |= USBI_TRANSFER_UPDATED_FDS;
668 return LIBUSB_SUCCESS;
671 static int wince_submit_iso_transfer(struct usbi_transfer *itransfer)
673 return LIBUSB_ERROR_NOT_SUPPORTED;
676 static int wince_submit_transfer(
677 struct usbi_transfer *itransfer)
679 struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
681 switch (transfer->type) {
682 case LIBUSB_TRANSFER_TYPE_CONTROL:
683 case LIBUSB_TRANSFER_TYPE_BULK:
684 case LIBUSB_TRANSFER_TYPE_INTERRUPT:
685 return wince_submit_control_or_bulk_transfer(itransfer);
686 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
687 return wince_submit_iso_transfer(itransfer);
688 default:
689 usbi_err(TRANSFER_CTX(transfer), "unknown endpoint type %d", transfer->type);
690 return LIBUSB_ERROR_INVALID_PARAM;
694 static void wince_transfer_callback(struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size)
696 struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
697 struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
698 struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev);
699 int status;
701 usbi_dbg("handling I/O completion with errcode %d", io_result);
703 if (io_result == ERROR_NOT_SUPPORTED &&
704 transfer->type != LIBUSB_TRANSFER_TYPE_CONTROL) {
705 /* For functional stalls, the WinCE USB layer (and therefore the USB Kernel Wrapper
706 * Driver) will report USB_ERROR_STALL/ERROR_NOT_SUPPORTED in situations where the
707 * endpoint isn't actually stalled.
709 * One example of this is that some devices will occasionally fail to reply to an IN
710 * token. The WinCE USB layer carries on with the transaction until it is completed
711 * (or cancelled) but then completes it with USB_ERROR_STALL.
713 * This code therefore needs to confirm that there really is a stall error, by both
714 * checking the pipe status and requesting the endpoint status from the device.
716 BOOL halted = FALSE;
717 usbi_dbg("checking I/O completion with errcode ERROR_NOT_SUPPORTED is really a stall");
718 if (UkwIsPipeHalted(priv->dev, transfer->endpoint, &halted)) {
719 /* Pipe status retrieved, so now request endpoint status by sending a GET_STATUS
720 * control request to the device. This is done synchronously, which is a bit
721 * naughty, but this is a special corner case.
723 WORD wStatus = 0;
724 DWORD written = 0;
725 UKW_CONTROL_HEADER ctrlHeader;
726 ctrlHeader.bmRequestType = LIBUSB_REQUEST_TYPE_STANDARD |
727 LIBUSB_ENDPOINT_IN | LIBUSB_RECIPIENT_ENDPOINT;
728 ctrlHeader.bRequest = LIBUSB_REQUEST_GET_STATUS;
729 ctrlHeader.wValue = 0;
730 ctrlHeader.wIndex = transfer->endpoint;
731 ctrlHeader.wLength = sizeof(wStatus);
732 if (UkwIssueControlTransfer(priv->dev,
733 UKW_TF_IN_TRANSFER | UKW_TF_SEND_TO_ENDPOINT,
734 &ctrlHeader, &wStatus, sizeof(wStatus), &written, NULL)) {
735 if (written == sizeof(wStatus) &&
736 (wStatus & STATUS_HALT_FLAG) == 0) {
737 if (!halted || UkwClearHaltHost(priv->dev, transfer->endpoint)) {
738 usbi_dbg("Endpoint doesn't appear to be stalled, overriding error with success");
739 io_result = ERROR_SUCCESS;
740 } else {
741 usbi_dbg("Endpoint doesn't appear to be stalled, but the host is halted, changing error");
742 io_result = ERROR_IO_DEVICE;
749 switch(io_result) {
750 case ERROR_SUCCESS:
751 itransfer->transferred += io_size;
752 status = LIBUSB_TRANSFER_COMPLETED;
753 break;
754 case ERROR_CANCELLED:
755 usbi_dbg("detected transfer cancel");
756 status = LIBUSB_TRANSFER_CANCELLED;
757 break;
758 case ERROR_NOT_SUPPORTED:
759 case ERROR_GEN_FAILURE:
760 usbi_dbg("detected endpoint stall");
761 status = LIBUSB_TRANSFER_STALL;
762 break;
763 case ERROR_SEM_TIMEOUT:
764 usbi_dbg("detected semaphore timeout");
765 status = LIBUSB_TRANSFER_TIMED_OUT;
766 break;
767 case ERROR_OPERATION_ABORTED:
768 if (itransfer->flags & USBI_TRANSFER_TIMED_OUT) {
769 usbi_dbg("detected timeout");
770 status = LIBUSB_TRANSFER_TIMED_OUT;
771 } else {
772 usbi_dbg("detected operation aborted");
773 status = LIBUSB_TRANSFER_CANCELLED;
775 break;
776 default:
777 usbi_err(ITRANSFER_CTX(itransfer), "detected I/O error: %s", windows_error_str(io_result));
778 status = LIBUSB_TRANSFER_ERROR;
779 break;
781 wince_clear_transfer_priv(itransfer);
782 if (status == LIBUSB_TRANSFER_CANCELLED) {
783 usbi_handle_transfer_cancellation(itransfer);
784 } else {
785 usbi_handle_transfer_completion(itransfer, (enum libusb_transfer_status)status);
789 static void wince_handle_callback (struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size)
791 struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
793 switch (transfer->type) {
794 case LIBUSB_TRANSFER_TYPE_CONTROL:
795 case LIBUSB_TRANSFER_TYPE_BULK:
796 case LIBUSB_TRANSFER_TYPE_INTERRUPT:
797 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
798 wince_transfer_callback (itransfer, io_result, io_size);
799 break;
800 default:
801 usbi_err(ITRANSFER_CTX(itransfer), "unknown endpoint type %d", transfer->type);
805 static int wince_handle_events(
806 struct libusb_context *ctx,
807 struct pollfd *fds, POLL_NFDS_TYPE nfds, int num_ready)
809 struct wince_transfer_priv* transfer_priv = NULL;
810 POLL_NFDS_TYPE i = 0;
811 BOOL found = FALSE;
812 struct usbi_transfer *transfer;
813 DWORD io_size, io_result;
815 usbi_mutex_lock(&ctx->open_devs_lock);
816 for (i = 0; i < nfds && num_ready > 0; i++) {
818 usbi_dbg("checking fd %d with revents = %04x", fds[i].fd, fds[i].revents);
820 if (!fds[i].revents) {
821 continue;
824 num_ready--;
826 // Because a Windows OVERLAPPED is used for poll emulation,
827 // a pollable fd is created and stored with each transfer
828 usbi_mutex_lock(&ctx->flying_transfers_lock);
829 list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) {
830 transfer_priv = usbi_transfer_get_os_priv(transfer);
831 if (transfer_priv->pollable_fd.fd == fds[i].fd) {
832 found = TRUE;
833 break;
836 usbi_mutex_unlock(&ctx->flying_transfers_lock);
838 if (found && HasOverlappedIoCompleted(transfer_priv->pollable_fd.overlapped)) {
839 io_result = (DWORD)transfer_priv->pollable_fd.overlapped->Internal;
840 io_size = (DWORD)transfer_priv->pollable_fd.overlapped->InternalHigh;
841 usbi_remove_pollfd(ctx, transfer_priv->pollable_fd.fd);
842 // let handle_callback free the event using the transfer wfd
843 // If you don't use the transfer wfd, you run a risk of trying to free a
844 // newly allocated wfd that took the place of the one from the transfer.
845 wince_handle_callback(transfer, io_result, io_size);
846 } else if (found) {
847 usbi_err(ctx, "matching transfer for fd %x has not completed", fds[i]);
848 return LIBUSB_ERROR_OTHER;
849 } else {
850 usbi_err(ctx, "could not find a matching transfer for fd %x", fds[i]);
851 return LIBUSB_ERROR_NOT_FOUND;
855 usbi_mutex_unlock(&ctx->open_devs_lock);
856 return LIBUSB_SUCCESS;
860 * Monotonic and real time functions
862 unsigned __stdcall wince_clock_gettime_threaded(void* param)
864 LARGE_INTEGER hires_counter, li_frequency;
865 LONG nb_responses;
866 int timer_index;
868 // Init - find out if we have access to a monotonic (hires) timer
869 if (!QueryPerformanceFrequency(&li_frequency)) {
870 usbi_dbg("no hires timer available on this platform");
871 hires_frequency = 0;
872 hires_ticks_to_ps = UINT64_C(0);
873 } else {
874 hires_frequency = li_frequency.QuadPart;
875 // The hires frequency can go as high as 4 GHz, so we'll use a conversion
876 // to picoseconds to compute the tv_nsecs part in clock_gettime
877 hires_ticks_to_ps = UINT64_C(1000000000000) / hires_frequency;
878 usbi_dbg("hires timer available (Frequency: %"PRIu64" Hz)", hires_frequency);
881 // Main loop - wait for requests
882 while (1) {
883 timer_index = WaitForMultipleObjects(2, timer_request, FALSE, INFINITE) - WAIT_OBJECT_0;
884 if ( (timer_index != 0) && (timer_index != 1) ) {
885 usbi_dbg("failure to wait on requests: %s", windows_error_str(0));
886 continue;
888 if (request_count[timer_index] == 0) {
889 // Request already handled
890 ResetEvent(timer_request[timer_index]);
891 // There's still a possiblity that a thread sends a request between the
892 // time we test request_count[] == 0 and we reset the event, in which case
893 // the request would be ignored. The simple solution to that is to test
894 // request_count again and process requests if non zero.
895 if (request_count[timer_index] == 0)
896 continue;
898 switch (timer_index) {
899 case 0:
900 WaitForSingleObject(timer_mutex, INFINITE);
901 // Requests to this thread are for hires always
902 if (QueryPerformanceCounter(&hires_counter) != 0) {
903 timer_tp.tv_sec = (long)(hires_counter.QuadPart / hires_frequency);
904 timer_tp.tv_nsec = (long)(((hires_counter.QuadPart % hires_frequency)/1000) * hires_ticks_to_ps);
905 } else {
906 // Fallback to real-time if we can't get monotonic value
907 // Note that real-time clock does not wait on the mutex or this thread.
908 wince_clock_gettime(USBI_CLOCK_REALTIME, &timer_tp);
910 ReleaseMutex(timer_mutex);
912 nb_responses = InterlockedExchange((LONG*)&request_count[0], 0);
913 if ( (nb_responses)
914 && (ReleaseSemaphore(timer_response, nb_responses, NULL) == 0) ) {
915 usbi_dbg("unable to release timer semaphore %d: %s", windows_error_str(0));
917 continue;
918 case 1: // time to quit
919 usbi_dbg("timer thread quitting");
920 return 0;
923 usbi_dbg("ERROR: broken timer thread");
924 return 1;
927 static int wince_clock_gettime(int clk_id, struct timespec *tp)
929 FILETIME filetime;
930 ULARGE_INTEGER rtime;
931 DWORD r;
932 SYSTEMTIME st;
933 switch(clk_id) {
934 case USBI_CLOCK_MONOTONIC:
935 if (hires_frequency != 0) {
936 while (1) {
937 InterlockedIncrement((LONG*)&request_count[0]);
938 SetEvent(timer_request[0]);
939 r = WaitForSingleObject(timer_response, TIMER_REQUEST_RETRY_MS);
940 switch(r) {
941 case WAIT_OBJECT_0:
942 WaitForSingleObject(timer_mutex, INFINITE);
943 *tp = timer_tp;
944 ReleaseMutex(timer_mutex);
945 return LIBUSB_SUCCESS;
946 case WAIT_TIMEOUT:
947 usbi_dbg("could not obtain a timer value within reasonable timeframe - too much load?");
948 break; // Retry until successful
949 default:
950 usbi_dbg("WaitForSingleObject failed: %s", windows_error_str(0));
951 return LIBUSB_ERROR_OTHER;
955 // Fall through and return real-time if monotonic was not detected @ timer init
956 case USBI_CLOCK_REALTIME:
957 // We follow http://msdn.microsoft.com/en-us/library/ms724928%28VS.85%29.aspx
958 // with a predef epoch_time to have an epoch that starts at 1970.01.01 00:00
959 // Note however that our resolution is bounded by the Windows system time
960 // functions and is at best of the order of 1 ms (or, usually, worse)
961 GetSystemTime(&st);
962 SystemTimeToFileTime(&st, &filetime);
963 rtime.LowPart = filetime.dwLowDateTime;
964 rtime.HighPart = filetime.dwHighDateTime;
965 rtime.QuadPart -= epoch_time;
966 tp->tv_sec = (long)(rtime.QuadPart / 10000000);
967 tp->tv_nsec = (long)((rtime.QuadPart % 10000000)*100);
968 return LIBUSB_SUCCESS;
969 default:
970 return LIBUSB_ERROR_INVALID_PARAM;
974 const struct usbi_os_backend wince_backend = {
975 "Windows CE",
976 wince_init,
977 wince_exit,
979 wince_get_device_list,
980 wince_open,
981 wince_close,
983 wince_get_device_descriptor,
984 wince_get_active_config_descriptor,
985 wince_get_config_descriptor,
987 wince_get_configuration,
988 wince_set_configuration,
989 wince_claim_interface,
990 wince_release_interface,
992 wince_set_interface_altsetting,
993 wince_clear_halt,
994 wince_reset_device,
996 wince_kernel_driver_active,
997 wince_detach_kernel_driver,
998 wince_attach_kernel_driver,
1000 wince_destroy_device,
1002 wince_submit_transfer,
1003 wince_cancel_transfer,
1004 wince_clear_transfer_priv,
1006 wince_handle_events,
1008 wince_clock_gettime,
1009 sizeof(struct wince_device_priv),
1010 sizeof(struct wince_device_handle_priv),
1011 sizeof(struct wince_transfer_priv),