add LM 5 hw, caryatid
[light-and-matter.git] / lm / em / c.rbtex
blobb4629f06d89c0d9975ba77abf0b01cbccbb7f1c5
1 <%
2   require "../eruby_util.rb"
3 %>
5 <% if false then figure_in_toc("einstein") end %>
7 <%
8   chapter(
9     '23',
10     %q{Relativity and magnetism},
11     'ch:relativity',
12     '',
13     {'opener'=>''}
14   )
17 Many people imagine Einstein's theory of relativity as something exotic and speculative. It's certainly
18 not speculative at this point in history, since you use it every time you use a GPS receiver. But it's
19 even less exotic than that. Every time you stick a magnet to your refrigerator, you're making use of
20 relativity. The title of this chapter is ``Electromagnetism,'' but we'll start out by digging a little deeper
21 into relativity as preparation for understanding what magnetism is and where it comes from.
23 <% begin_sec("Relativistic distortion of Space and Time") %>\label{sec:x-t-distortion}
24 <% begin_sec("Time distortion arising from motion and gravity") %>
25 Let's refer back to the results of the Hafele-Keating experiment described on
26 p.~\pageref{hafele-keating}. Hafele and Keating were testing specific quantitative predictions of relativity, and they verified them to within
27 their experiment's error bars. Let's work backward instead, and
28 inspect the empirical results for clues as to how time works.
30 The east-going clock lost time, ending up off by $-59\pm10$ nanoseconds, while the west-going one gained $273\pm7$ ns.
31 Since two traveling clocks experienced effects in opposite directions,
32 we can tell that the rate at which time flows depends on the motion
33 of the observer. The east-going clock was moving in the same direction as the earth's rotation, so its velocity
34 relative to the earth's center was greater than that of the clock that remained in Washington, while the west-going clock's velocity was
35 correspondingly reduced. The fact that the east-going clock fell behind, and the west-going one got ahead,
36 shows that the effect of motion is to make time go more slowly. This effect of motion on time was predicted by
37 Einstein in his original 1905 paper on relativity, written when he was 26.
38 <% marg(70) %>
40   fig(
41     'hafele-keating-directions',
42     %q{All three clocks are moving to the east. Even though the west-going plane is moving to the west relative to the air, the air is moving
43            to the east due to the earth's rotation.}
44   )
46 <% end_marg %>
48 If this had been the only effect in the Hafele-Keating experiment, then we would have expected to see effects on the
49 two flying clocks that were equal in size. Making up some simple numbers to keep the arithmetic transparent, suppose that the earth rotates
50 from west to east at 1000 km/hr, and that the planes fly at 300 km/hr. Then the speed of the clock on the ground
51 is 1000 km/hr, the speed of the clock on the east-going plane is 1300 km/hr, and that of the west-going clock 700 km/hr.
52 Since the speeds of 700, 1000, and 1300 km/hr have equal spacing on either side of 1000, we would expect the discrepancies
53 of the moving clocks relative to the one in the lab to be equal in size but opposite in sign.
55 In fact, the two effects are unequal in size: $-59$ ns and 273 ns. This
56 implies that there is a second effect involved, simply due to the planes' being up in the air. 
57 This was verified more directly in a 1978 experiment by Iijima and Fujiwara, figure \figref{iijima}, in which identical atomic
58 clocks were kept at rest at the top and bottom of a mountain near Tokyo.
59 This experiment, unlike the Hafele-Keating one, isolates one effect on time, the gravitational one: time's
60 rate of flow increases with height in a gravitational field. Einstein didn't figure out
61 how to incorporate gravity into relativity until 1915, after much frustration and many false starts. The
62 simpler version of the theory without gravity is known as special relativity, the full version as general
63 relativity. We'll restrict ourselves to special relativity until chapter \ref{ch:genrel}, and that means that what we want to
64 focus on right now is the distortion of time due to motion, not gravity.\label{iijima}
67   fig(   
68     'iijima',
69     %q{%
70        A graph 
71        showing the time difference between two atomic clocks. One clock was kept at Mitaka Observatory, at 58 m above sea level.
72        The other was moved back and forth to a second observatory, Norikura Corona Station, at the peak of the Norikura volcano, 2876 m above sea level.
73        The plateaus on the graph are data from the periods when the clocks were compared side by side at Mitaka. The difference between one plateau and the next
74        shows a gravitational effect on the rate of flow of time, accumulated during the period when the mobile clock was at the top of Norikura.
75        Cf.~problem \ref{hw:pound-rebka}, p.~\pageref{hw:pound-rebka}.
76     },
77     {
78       'width'=>'wide','sidecaption'=>false
79     }
80   )
83 We can now see in more detail how to apply the correspondence principle. The behavior of the three clocks in the
84 Hafele-Keating experiment shows that the amount of time distortion increases as the speed of the clock's motion
85 increases. Newton lived in an era when the fastest
86 mode of transportation was a galloping horse, and the best
87 pendulum clocks would accumulate errors of perhaps a minute over the course of several days.
88 A horse is much slower than a jet plane, so the
89 distortion of time would have had a relative size of only $\sim10^{-15}$ --- much smaller than the clocks were capable of detecting.
90 At the speed of a passenger jet, the effect is about $10^{-12}$,
91 and state-of-the-art atomic clocks in 1971 were capable of measuring that.
92 A GPS satellite travels much faster than a jet airplane, and the effect on the satellite
93 turns out to be $\sim10^{-10}$. The general idea here is that all physical laws are approximations, and
94 approximations aren't simply right or wrong in different situations. Approximations are better or worse
95 in different situations, and the question is whether a particular approximation is good enough in a given
96 situation to serve a particular purpose. The faster the motion, the worse the Newtonian approximation of
97 absolute time. Whether the approximation is good enough depends on what you're trying to accomplish.
98 The correspondence principle says that the approximation must have been good enough to explain
99 all the experiments done in the centuries before Einstein came up with relativity.
100 <% marg(80) %>
102   fig(
103     'correspondence-dramatized',
104     %q{The correspondence principle requires that the relativistic distortion of time become small for small velocities.}
105   )
107 <% end_marg %>
109 By the way, don't get an inflated idea of the importance of these atomic clock
110 experiments. Special relativity had already been confirmed by a vast and varied body of experiments decades
111 before the 1970's. The only reason I'm giving such a prominent role to these experiments, which were actually more important as tests of
112 general relativity, is that they were conceptually very direct.
113 It would be nice to have an equally simple and transparent atomic clock experiment 
114 in which only the effect of motion was singled out, with no gravitational effect.
115 Example \ref{eg:chou} on page \pageref{eg:chou} describes how something along these lines was eventually
116 carried out, forty years after the Hafele-Keating experiment.
117 <% end_sec %> % Time distortion arising from motion and gravity
119 <% begin_sec("The Lorentz transformation") %>\label{sec:lorentz}
120 Relativity says that when two observers are in different frames of reference, each observer considers
121 the other one's perception of time to be distorted. We'll also
122 see that something similar happens to their observations of distances, so both space and
123 time are distorted.
124 What exactly is this distortion? How do we even conceptualize it?
126 The idea isn't really as radical as it might seem at first. We can visualize the structure of space
127 and time using a graph with position and time on its axes. These graphs are familiar by now, but
128 we're going to look at them in a slightly different way. Before, we used them to describe the motion
129 of objects. The grid underlying the graph was merely the stage on which the actors played their parts.
130 Now the background comes to the foreground: it's time and space themselves that we're studying.
131 We don't necessarily need to have a line or a curve drawn on top of the grid to represent a particular
132 object. We may, for example, just want to talk about events, depicted as points on the graph as in
133 figure \figref{joan-of-arc}. A distortion of the Cartesian grid underlying the graph can arise for
134 perfectly ordinary reasons that Newton would have readily accepted. For example, we can simply
135 change the units used to measure time and position, as in figure \figref{change-of-units}. 
136 <% marg(50) %>
138   fig(
139     'joan-of-arc',
140     %q{Two events are given as points on a graph of position versus time. Joan of Arc helps to restore Charles VII to the throne.
141          At a later time and a different position, Joan of Arc is sentenced to death.}
142   )
144 \spacebetweenfigs
146   fig(
147     'change-of-units',
148     %q{A change of units distorts an $x$-$t$ graph. This graph depicts exactly the same events as figure \figref{joan-of-arc}.
149           The only change is that the $x$ and $t$ coordinates are measured using different units, so the grid is compressed
150           in $t$ and expanded in $x$.}
151   )
153 \spacebetweenfigs
155   fig(
156     'change-of-units-convention',
157     %q{A convention we'll use to represent a distortion of time and space.}
158   )
160 <% end_marg %>
162 \enlargethispage{-3\baselineskip}
164 We're going to
165 have quite a few examples of this type, so I'll adopt the convention shown in figure \figref{change-of-units-convention}
166 for depicting them. Figure \figref{change-of-units-convention} summarizes the relationship between figures
167 \figref{joan-of-arc} and \figref{change-of-units} in a more compact form. The gray rectangle represents the
168 original coordinate grid of figure \figref{joan-of-arc}, while the grid of black lines represents the new version
169 from figure \figref{change-of-units}. Omitting the grid from the gray rectangle makes the diagram easier
170 to decode visually.
172 Our goal of unraveling the mysteries of special relativity amounts to nothing more than finding out how to
173 draw a diagram like \figref{change-of-units-convention} in the case where the two different sets of coordinates represent
174 measurements of time and space made by two different observers, each in motion relative to the other.
175 Galileo and Newton thought they knew the answer to this question, but their answer turned out to be
176 only approximately right. To avoid repeating the same mistakes, we need to clearly spell out what we think are
177 the basic properties of time and space that will be a reliable foundation for our reasoning. I want to emphasize
178 that there is no purely logical way of deciding on this list of properties. The ones I'll list are simply a summary of the
179 patterns observed in the results
180 from a large body of experiments. Furthermore, some of them are only approximate. For example, property 1 below
181 is only a good approximation when the gravitational field is weak, so it is a property that applies to
182 special relativity, not to general relativity.
184 Experiments show that:\label{spacetime-properties}
185 \begin{enumerate}
186 \item No point in time or space has properties that make it different from any other point.
187 \item Likewise, all directions in space have the same properties.
188 \item Motion is relative, i.e., all inertial frames of reference are equally valid.
189 \item Causality holds, in the sense described on page \pageref{causality-defined}.
190 \item Time depends on the state of motion of the observer.
191 \end{enumerate}
193 Most of these are not very subversive. Properties 1 and 2 date back to the time when Galileo and Newton started
194 applying the same universal laws of motion to the solar system and to the earth; this contradicted
195 Aristotle, who believed that, for example, a rock would naturally want to move in a certain special
196 direction (down) in order to reach a certain special location (the earth's surface).
197 Property 3 is the reason that Einstein called his theory ``relativity,'' but Galileo and Newton
198 believed exactly the same thing to be true, as dramatized by Galileo's run-in with the Church over
199 the question of whether the earth could really be in motion around the sun. Example
200 \ref{eg:clock-comparison-inertia} on p.~\pageref{eg:clock-comparison-inertia} describes a modern, high-precision
201 experiment that can be interpreted as a test of this principle.
202 Property 4 would probably surprise most people only because it asserts in such a weak and specialized
203 way something that they feel deeply must be true. The only really strange item on the list is 5,
204 but the Hafele-Keating experiment forces it upon us.
206 \enlargethispage{-2\baselineskip}
208 If it were not for property 5, we could imagine that figure \figref{galilean-boost} would
209 give the correct transformation between frames of reference in motion relative to one another.
210 Let's say that observer 1, whose grid coincides with the gray rectangle, is a hitch-hiker standing
211 by the side of a road. Event A is a raindrop hitting his head, and event B is another raindrop hitting
212 his head. He says that A and B occur at the same location in space. Observer 2 is a motorist who
213 drives by without stopping; to him, the passenger compartment of his car is at rest, while the
214 asphalt slides by underneath. He says that A and B occur at different points in space, because
215 during the time between the first raindrop and the second, the hitch-hiker has moved backward.
216 On the other hand, observer 2 says that events A and C occur in the same place, while the hitch-hiker
217 disagrees. The slope of the grid-lines is simply the velocity of the relative motion of each observer
218 relative to the other.
219 <% marg(70) %>
221   fig(
222     'galilean-boost',
223     %q{A Galilean version of the relationship between two frames of reference. As in all such graphs in
224       this chapter, the original coordinates, represented by the gray rectangle, have a time axis that
225       goes to the right, and a position axis that goes straight up.}
226   )
228 <% end_marg %>
230 Figure \figref{galilean-boost} has familiar, comforting, and eminently sensible
231 behavior, but it also happens to be wrong, because it violates property 5. The distortion of
232 the coordinate grid has only moved the vertical lines up and down, so both observers agree
233 that events like B and C are simultaneous. If this was really the way things worked, then
234 all observers could synchronize all their clocks with one another for once and for all, and
235 the clocks would never get out of sync. This contradicts the results of the Hafele-Keating
236 experiment, in which all three clocks were initially synchronized in Washington, but later
237 went out of sync because of their different states of motion.
239 It might seem as though we still had a huge amount of wiggle room available for the correct
240 form of the distortion. It turns out, however, that properties 1-5 are sufficient to prove that there
241 is only one answer, which is the one found by Einstein in 1905. To see why this is, let's work by
242 a process of elimination.
244 Figure \figref{bowtie} shows a transformation that might
245 seem at first glance to be as good a candidate as any other,
246 but it violates property 3, that motion is relative, for the following
247 reason. In observer 2's frame of reference, some of the grid lines cross one another.
248 This means that observers 1 and 2 disagree on whether or not certain events are the same.
249 For instance, suppose that event A marks the arrival of an arrow at the bull's-eye of a
250 target, and event B is the location and time when the bull's-eye is punctured.
251 Events A and B occur
252 at the same location and at the same time. If one observer says that A and B coincide, but another
253 says that they don't, we have a direct contradiction. Since the two frames of reference in figure
254 \figref{bowtie} give contradictory results, one of them is right and one is wrong. This violates
255 property 3, because all inertial frames of reference are supposed to be equally valid.
256 To avoid problems like this, we clearly need to make sure that none of the grid lines ever cross
257 one another.
259 <% marg(70) %>
261   fig(
262     'bowtie',
263     %q{A transformation that leads to disagreements about whether two events occur at the same time and place.
264        This is not just a matter of opinion. Either the arrow hit the bull's-eye or it didn't.}
265   )
267 \spacebetweenfigs
269   fig(
270     'nonlinear-transformation',
271     %q{A nonlinear transformation.}
272   )
274 <% end_marg %>
276 The next type of transformation we want to kill off is shown in figure \figref{nonlinear-transformation},
277 in which the grid lines curve, but never cross one another.
278 The trouble with this one is that
279 it violates property 1, the uniformity of time and space. The transformation is unusually
280 ``twisty'' at A, whereas at B it's much more smooth. This can't be correct, because the transformation
281 is only supposed to depend on the relative state of motion of the two frames of reference, and
282 that given information doesn't single out a special role for any particular point in spacetime.
283 If, for example, we had one frame of reference \emph{rotating} relative to the other, then there
284 would be something special about the axis of rotation. But we're only talking about \emph{inertial}
285 frames of reference here, as specified in property 3, so we can't have rotation; each frame of reference
286 has to be moving in a straight line at constant speed.
287 For frames related in this way, there is nothing that could single out an event like A for special
288 treatment compared to B, so transformation \figref{nonlinear-transformation} violates property 1.
290 \enlargethispage{-3\baselineskip}
292 The examples in figures \figref{bowtie} and \figref{nonlinear-transformation} show that the transformation
293 we're looking for must be linear, meaning that it must transform lines into lines, and furthermore that
294 it has to take parallel lines to parallel lines.\index{homogeneity of spacetime}
295 Einstein wrote in his 1905 paper that ``\ldots on account of the property of homogeneity [property 1] which we ascribe to time and space,
296 the [transformation] must be linear.''\footnote{A. Einstein, ``On the Electrodynamics of Moving Bodies,''
297 \emph{Annalen der Physik 17} (1905), p. 891, tr. Saha and Bose.}
298 % Shamos, p. 323
299 Applying this to our diagrams,
300 the original gray rectangle, which is a special type of parallelogram containing right angles,
301 must be transformed into another parallelogram.
302 There are three types of transformations, figure \figref{three-cases}, that have this property.
303 Case I is the Galilean transformation of figure \figref{galilean-boost} on page \pageref{fig:galilean-boost},
304 which we've already ruled out.
306   fig(   
307     'three-cases',
308     %q{%
309       Three types of transformations that preserve parallelism. Their distinguishing feature is what they do
310       to simultaneity, as shown by what happens to the left edge of the original rectangle. In I, the left edge remains
311       vertical, so simultaneous events remain simultaneous. In II, the left edge turns counterclockwise. In III, it turns clockwise.
312     },
313     {
314       'width'=>'wide','sidecaption'=>false
315     }
316   )
319 Case II can also be discarded. Here every point on the grid rotates counterclockwise. What physical parameter would
320 determine the amount of rotation? The only thing that could be relevant would be
321 $v$, the relative velocity of the motion of the two frames of reference with respect to one
322 another. But if the angle of rotation was proportional to $v$, then for large enough velocities
323 the grid would have left and right reversed, and this would violate property 4, causality: one observer
324 would say that event A caused a later event B, but another observer would say that B came first
325 and caused A.
326 <% marg(-21) %>
328   fig(
329     'smooshing',
330     %q{In the units that are most convenient for relativity, the transformation has symmetry about a 45-degree diagonal line.}
331   )
333 <% end_marg %>
335 \enlargethispage{-3\baselineskip}
337 \vspace{15mm}
339 The only remaining possibility is case III, which I've redrawn in figure \figref{smooshing} with a couple
340 of changes. This is the one that Einstein predicted in 1905. The transformation is known as the Lorentz transformation,
341 after Hendrik Lorentz (1853-1928),\index{Lorentz, Hendrik}\index{Lorentz transformation}
342 who partially anticipated Einstein's work, without arriving at the correct interpretation.
343 The distortion is a kind of smooshing and stretching, as suggested by the hands. Also, we've already seen in figures
344 \figref{joan-of-arc}-\figref{change-of-units-convention} on page \pageref{fig:joan-of-arc} that we're free to stretch
345 or compress everything as much as we like in the horizontal and vertical directions, because this simply corresponds
346 to changing the units of measurement for time and distance. In figure \figref{smooshing} I've chosen units that
347 give the whole drawing a convenient symmetry about a 45-degree diagonal line. Ordinarily it wouldn't make sense to
348 talk about a 45-degree angle on a graph whose axes had different units. But in relativity, the symmetric appearance of
349 the transformation tells us that space and time ought to be treated on the same footing, and measured in the same units.
351 \pagebreak
353 As in our discussion of the Galilean transformation, slopes are interpreted as velocities, and
354 the slope of the near-horizontal lines in figure \figref{lorentz-slope} is interpreted as the relative velocity of the two observers.
355 The difference between the Galilean version and the relativistic one is that now there is smooshing happening from the
356 other side as well. Lines that were vertical in the original grid, representing simultaneous events, now slant over to
357 the right. This tells us that, as required by property 5, different observers do not agree on whether events that occur in different places are
358 simultaneous. The Hafele-Keating experiment tells us that this non-simultaneity effect is fairly small, even when the velocity is as
359 big as that of a passenger jet, and this is what we would have anticipated by the correspondence principle. The way that
360 this is expressed in the graph is that if we pick the time unit to be the second, then the distance unit turns out to be hundreds of thousands of miles.
361 In these units, the velocity of a passenger jet is an extremely small number, so the slope $v$ in a figure like \figref{lorentz-slope}
362 is extremely small, and the amount of distortion is tiny --- it would be much too small to see on this scale.
363 <% marg(100) %>
365   fig(
366     'lorentz-slope',
367     %q{Interpretation of the Lorentz transformation. The slope indicated in the figure gives the relative velocity of the two frames of reference.
368          Events A and B that were simultaneous in frame 1 are not simultaneous in frame 2, where event A occurs to the right of the $t=0$ line represented
369          by the left edge of the grid, but event B occurs to its left.}
370   )
372 <% end_marg %>
374 The only thing left to determine about the Lorentz transformation is the size of the transformed parallelogram relative to the
375 size of the original one. Although the drawing of the hands in figure \figref{smooshing} may suggest that the grid deforms like
376 a framework made of rigid coat-hanger wire, that is not the case. If you look carefully at the figure, you'll see that the edges
377 of the smooshed parallelogram are actually a little longer than the edges of the original rectangle. In fact what stays the same
378 is not lengths but \emph{areas}, as proved in the caption to figure \figref{area-proof}.
380 <% end_sec %> % The Lorentz transformation
383   fig('area-proof',
384     %q{Proof that Lorentz transformations don't change area: We first subject a square to a transformation with velocity $v$, and this increases its area by a factor $R(v)$, which
385        we want to prove equals 1. We chop the resulting parallelogram up into little squares and finally apply a $-v$ transformation;
386        this changes each little square's area by a factor $R(-v)$, so the whole figure's area is also scaled by $R(-v)$.
387        The final result is to restore the square to its original shape and area, so $R(v)R(-v)=1$. But $R(v)=R(-v)$ by property 2 of spacetime
388        on page \pageref{spacetime-properties}, which states that all directions in space have the same properties, so $R(v)=1$.
389      },
390     {
391       'width'=>'fullpage'
392     }
393   )
396 <% begin_sec("The $\\mygamma$ factor") %>\label{sec:gamma}
398 Figure \figref{lorentz-slope} showed us that observers in different frames disagree on whether different events are simultaneous.
399 This is an indication that time is not absolute, so we shouldn't be surprised that time's rate of flow is also different for different observers.
400 We use the symbol $\mygamma$ (Greek letter gamma)
401 defined in the figure \figref{gamma-as-projection} to measure this unequal rate of flow.
402 With a little algebra and geometry (homework problem \ref{hw:gamma-derivation}, page \pageref{hw:gamma-derivation}),
403 one can use the equal-area property to show that this ratio is given by
404 \begin{equation*}
405   \mygamma = \frac{1}{\sqrt{1-v^2}} \qquad .
406 \end{equation*}
407 If you've had good training in physics, the first thing you probably think when you look at this equation is that it must be
408 nonsense, because its units don't make sense. How can we take something with units of velocity squared, and subtract it from
409 a unitless 1? But remember that this is expressed in our new relativistic units, in which the same units are used for
410 distance and time. In this system, velocities are always unitless. This sort of thing happens frequently in physics. For
411 instance, before James Joule discovered conservation of energy, nobody knew that heat and mechanical energy were different
412 forms of the same thing, so instead of measuring them both in units of joules as we would do now, they measured heat in
413 one unit (such as calories) and mechanical energy in another (such as foot-pounds). In ordinary metric units, we just need
414 an extra conversion factor, called $c$, and the equation becomes
415 \begin{equation*}
416   \mygamma = \frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^2}} \qquad .
417 \end{equation*}
418 <% marg(200) %>
420   fig(
421     'gamma-as-projection',
422     %q{The clock is at rest in the original frame of reference, and it measures a time interval $t$.
423        In the new frame of reference, the time interval is greater by a factor that we notate as $\mygamma$.}
424   )
426 <% end_marg %>
428 When we say, ``It's five hours from LA to Vegas,'' we're using a unit of time as a unit of distance. This works because
429 there is a standard speed implied: the speed of a car on the freeway. Similarly, the conversion factor $c$ can be interpreted
430 as a speed, so that $v/c$ is the unitless ratio of two speeds. As argued on p.~\pageref{subsec:time-delays},
431 cause and effect can never be propagated instantaneously; $c$ turns out to be the specific numerical speed limit on
432 cause and effect. In particular, we'll see in section \ref{sec:universal-speed-c} that light travels at $c$, which has a numerical
433 value of $3.0\times10^8\ \munit/\sunit$.\index{speed of light}
434 <% marg(20) %>
436   fig(
437     'gamma-graph-small',
438     %q{A graph of $\gamma$ as a function of $v$.}
439   )
441 <% end_marg %>
444 \pagebreak
446 Because $\mygamma$ is always greater than 1, we have the following interpretation:
448 \begin{lessimportant}[Time dilation]
449 A clock runs fastest in the frame of reference of an observer who is at rest relative to the clock. An observer
450 in motion relative to the clock at speed $v$ perceives the clock as running more slowly by a factor of $\mygamma$.
451 \end{lessimportant}
453 <% marg(100) %>
455   fig(
456     'length-contraction',
457     %q{The ruler is moving in frame 1, represented by a square, but at rest in frame 2, shown as a parallelogram.
458        Each picture of the ruler is a snapshot taken at a certain moment as judged according to frame 2's
459        notion of simultaneity. An observer in frame 1 judges the ruler's length instead according to
460        frame 1's definition of simultaneity, i.e., using points that are lined up vertically on the graph.
461        The ruler appears shorter in the frame in which it is moving.
462        As proved in figure \figref{length-contraction-proof}, the length contracts from $L$ to $L/\gamma$.}
463   )
465 <% end_marg %>
468   fig('length-contraction-proof',
469     %q{This figure proves, as claimed in figure \figref{length-contraction}, that the length contraction is $x=1/\gamma$.
470        First we slice the parallelogram vertically like a salami and slide the slices down, making the
471        top and bottom edges horizontal. Then we do the same in the horizontal direction, forming a rectangle
472        with sides $\gamma$ and $x$. Since both the Lorentz transformation and the slicing processes leave
473        areas unchanged, the area $\gamma x$  of the rectangle must equal the area of the original square, which is 1.
474      },
475     {
476       'width'=>'wide'
477       #'sidecaption'=>true
478     }
479   )
482 \noindent As proved in figures \figref{length-contraction} and \figref{length-contraction-proof}, lengths are also distorted:
484 \begin{lessimportant}[Length contraction]
485 A meter-stick appears longest to an observer who is at rest relative to it. An observer moving relative to the
486 meter-stick at $v$ observes the stick to be shortened by a factor of $\mygamma$.
487 \end{lessimportant}
489 \vfill
491 <% self_check('gammaatvzero',<<-'SELF_CHECK'
492 What is $\mygamma$ when $v=0$? What does this mean?
493   SELF_CHECK
494   ) %>
496 \vfill
498 \pagebreak
501   fig('interstellar-road-trip',
502     'Example \ref{eg:interstellar-road-trip}.',
503     {
504       'width'=>'wide',
505       'sidecaption'=>true
506     }
507   )
510 \begin{eg}{An interstellar road trip}\label{eg:interstellar-road-trip}
511 Alice stays on earth while her twin Betty
512 heads off in a spaceship for Tau Ceti, a nearby star. Tau Ceti is 12 light-years
513 away, so even though Betty travels at 87\% of the speed of light, it will take
514 her a long time to get there: 14 years, according to Alice.
516 Betty
517 experiences time dilation. At this speed, her $\gamma$ is 2.0, so that the voyage will
518 only seem to her to last 7 years. But there is perfect symmetry between Alice's
519 and Betty's frames of reference, so Betty agrees with Alice on their relative speed;
520 Betty sees herself as being at rest, while the sun and Tau Ceti both move backward
521 at 87\% of the speed of light. How, then, can she observe Tau Ceti to get to her
522 in only 7 years, when it should take 14 years to travel 12 light-years at this speed?
524 We need to take into account length contraction.
525 Betty sees the distance between the sun and Tau Ceti
526 to be shrunk by a factor of 2. The same thing occurs for Alice, who observes
527 Betty and her spaceship to be foreshortened.
528 \end{eg}
531 \pagebreak
533 \begin{eg}{The correspondence principle}\label{eg:gamma-for-low-v}
534 The correspondence principle requires that $\mygamma$ be close to 1 for the velocities much less than $c$ encountered
535 in everyday life. Let's explicitly find the amount $\epsilon$ by which $\mygamma$ differs from 1, when $v$ is small. Let $\mygamma=1+\epsilon$.
536 The definition of $\mygamma$ gives $1=\mygamma^2(1-v^2/c^2)$, so $1=(1+2\epsilon+\epsilon^2)(1-v^2/c^2)\approx 1+2\epsilon-v^2/c^2$, where
537 the approximation comes from discarding very small terms such as $\epsilon^2$ and $\epsilon v^2/c^2$. We find $\epsilon=v^2/2c^2$.
538 As expected, this will be small when $v$ is small compared to $c$.
539 \end{eg}
541 \vfill
543 Figure \figref{gamma-graph-small} shows that the approximation found
544 in example \ref{eg:gamma-for-low-v} is \emph{not} valid for large values of $v/c$. In fact, $\gamma$
545 blows up to infinity as $v$ gets closer and closer to $c$.
547 \vfill
549 <% marg(130) %>
551   fig(
552     'atomic-clock-gamma',
553     %q{Time dilation measured with an atomic clock at low speeds. The theoretical curve, shown with a dashed line,
554        is calculated from $\mygamma=1/\sqrt{1-(v/c)^2}$; at these small velocities, the approximation of example
555        \ref{eg:gamma-for-low-v} is an excellent one, so $\mygamma\approx 1+v^2/2c^2$, and the graph is indistinguishable
556        from a parabola. This graph corresponds to an extreme close-up view of the lower left corner of 
557        figure \figref{gamma-graph-small}.  The error bars on the experimental points are about the same size as the dots.}
558   )
560 <% end_marg %>
562 \begin{eg}{A moving atomic clock}\label{eg:chou}
563 Example \ref{eg:gamma-for-low-v} shows that when $v$ is small, relativistic effects are approximately proportional to $v^2$, so it is very
564 difficult to observe them at low speeds. For example, a car on the freeway travels at about 1/10 the speed of a passenger jet, so the resulting
565 time dilation is only 1/100 as much. For this reason, it was not until four decades after Hafele and Keating
566 that anyone did a conceptually simple atomic clock experiment
567 in which the only effect was motion, not gravity; it is difficult to
568 move a clock at a high enough velocity without putting it in some kind of aircraft, which then has to fly at some
569 altitude. In 2010, however, Chou \emph{et al.}\footnote{Science 329 (2010) 1630} succeeded in building an atomic
570 clock accurate enough to detect time dilation at speeds as low as 10 m/s. Figure \figref{atomic-clock-gamma} shows their results.
571 Since it was not practical to move the entire clock, the experimenters only moved the aluminum atoms inside the
572 clock that actually made it ``tick.''
573 \end{eg}
577   fig(
578     'cern-muon-storage-ring',
579     %q{Apparatus used for the test of relativistic time dilation described in example \ref{eg:cern-muons}. 
580        The prominent black and white blocks are large magnets surrounding a circular pipe
581        with a vacuum inside. \linebreak (c) 1974 by CERN.
582     },
583     {
584       'width'=>'wide',
585       'sidecaption'=>true,
586       'sidepos'=>'t'
587     }
588   )
591 \begin{eg}{Large time dilation}\label{eg:cern-muons}
592 The time dilation effect in the Hafele-Keating experiment was very small. If we want to see a large time dilation
593 effect, we can't do it with something the size of the atomic clocks they used; the kinetic energy would be
594 greater than the total megatonnage of all the world's nuclear arsenals. We can, however, accelerate subatomic particles
595 to speeds at which $\mygamma$ is large. For experimental particle physicists, relativity is something you do all day
596 before heading home and stopping off at the store for milk. An early, low-precision experiment of this kind was
597 performed by Rossi and Hall in 1941, using naturally occurring cosmic rays. Figure \figref{cern-muon-storage-ring} shows
598 a 1974 experiment\footnote{Bailey at al., Nucl. Phys. B150(1979) 1}
599 of a similar type which verified the time dilation predicted by relativity to a precision of about
600 one part per thousand.
601 <% marg(-4) %>
603   fig(
604     'cern-muon-graph',
605     %q{Example \ref{eg:cern-muons}: Muons accelerated to nearly $c$ undergo radioactive decay much more slowly than they would according to
606        an observer at rest with respect to the muons. The first two data-points (unfilled circles) were subject
607        to large systematic errors.},
608     {
609       'anaonymous'=>true
610     }
611   )
613 <% end_marg %>
615 \vspace{30mm}
617 Particles called muons (named after the Greek letter $\mu$, ``myoo'') were produced by an
618 accelerator at CERN, near Geneva. A muon is essentially a heavier version
619 of the electron. Muons undergo radioactive decay,
620 lasting an average of only 2.197 $\mu\sunit$ before they evaporate into an electron and two neutrinos.
621 The 1974 experiment was actually built in order to measure the magnetic properties of muons, but it produced a high-precision
622 test of time dilation as a byproduct. Because muons have the same electric charge as electrons, they can be trapped using
623 magnetic fields. Muons were injected into the ring shown in figure \figref{cern-muon-storage-ring}, circling around it until they underwent radioactive decay.
624 At the speed at which these muons were traveling, they had $\mygamma=29.33$, so on the average they lasted 29.33 times
625 longer than the normal lifetime. In other words, they were like tiny alarm clocks that self-destructed at a randomly
626 selected time. Figure \figref{cern-muon-graph} shows the number of radioactive decays counted, as a function of the
627 time elapsed after a given stream of muons was injected into the storage ring. The two dashed lines show the rates
628 of decay predicted with and without relativity. The relativistic line is the one that agrees with experiment.
629 \end{eg}
631 \pagebreak
634   fig(
635     'schoolbus-with-x-t',
636     %q{%
637       Example }+ref_workaround('eg:garage-paradox')+%q{: In the garage's frame of reference, the bus
638       is moving, and fits in the garage due to length contraction. In the bus's frame,
639       the garage is moving, and can't hold the bus due to \emph{its} length contraction.
640     },
641     {
642       # 'anonymous'=>true,
643       'width'=>'fullpage'
644     }
645   )
648 \begin{eg}{The garage paradox}\label{eg:garage-paradox}\index{garage paradox}
649 Suppose we
650 take a schoolbus and drive it at relativistic
651 speeds into a garage of ordinary size, in which it normally
652 would not fit. Because of the length contraction, it fits.
653 But the driver will perceive the
654 \emph{garage} as being contracted and thus even less able to
655 contain the bus. 
657 The paradox is
658 resolved when we recognize that the concept of fitting the
659 bus in the garage ``all at once'' contains a hidden
660 assumption, the assumption that it makes sense to ask
661 whether the front and back of the bus can \emph{simultaneously} be
662 in the garage. Observers in different frames of reference
663 moving at high relative speeds do not necessarily agree on
664 whether things happen simultaneously. As shown in figure \figref{schoolbus-with-x-t}, the person in the
665 garage's frame can shut the door at an instant B he perceives
666 to be simultaneous with the front bumper's arrival A at the
667 back wall of the garage, but the driver would not agree
668 about the simultaneity of these two events, and would
669 perceive the door as having shut long after she plowed
670 through the back wall.
671 \end{eg}
673 \pagebreak
675 \begin{eg}{An example of length contraction}\label{eg:rhic}
676 Figure \figref{rhic} shows an
677 artist's rendering of the length contraction for the collision of two
678 gold nuclei at relativistic speeds in the RHIC accelerator\index{RHIC accelerator}
679 in Long Island, New York, which went on line in 2000.
680 The gold nuclei would appear nearly spherical (or just
681 slightly lengthened like an American football) in frames
682 moving along with them, but in the laboratory's frame, they
683 both appear drastically foreshortened as they approach the
684 point of collision. The later pictures show the nuclei
685 merging to form a hot soup, in which experimenters hope to
686 observe a new form of matter.
689   fig(
690     'rhic',
691     %q{Example \ref{eg:rhic}: Colliding nuclei show relativistic length contraction.},
692     {
693       'width'=>'wide',
694       'sidecaption'=>true,
695       'anonymous'=>true
696     }
697   )
699 \end{eg}
701 <% end_sec %> % The $\mygamma$ factor
704 def relativity_dq_space
705   print "\\vspace{7mm}\n"
709 \vfill
711 \startdqs
712 \begin{dq}
713 A person in a spaceship moving at 99.99999999\% of the
714 speed of light relative to Earth shines a flashlight forward
715 through dusty air, so the beam is visible. What does she
716 see? What would it look like to an observer on Earth?
717 \end{dq}
718 <% marg(-30) %>
720   fig(
721     'dqillusion',
722     %q{Discussion question \ref{dq:illusion}},
723     {
724       'anonymous'=>true
725     }
726   )
728 <% end_marg %>
730 <% relativity_dq_space %>
732 \begin{dq}\label{dq:illusion}
733 A question that students often struggle with is whether
734 time and space can really be distorted, or whether it just
735 seems that way. Compare with optical illusions or magic
736 tricks. How could you verify, for instance, that the lines
737 in the figure are actually parallel? Are relativistic
738 effects the same, or not?
739 \end{dq}
741 <% relativity_dq_space %>
743 \begin{dq}
744 On a spaceship moving at relativistic speeds, would a
745 lecture seem even longer and more boring than normal?
746 \end{dq}
748 <% relativity_dq_space %>
750 \begin{dq}
751 Mechanical clocks can be affected by motion. For example,
752 it was a significant technological achievement to build a
753 clock that could sail aboard a ship and still keep accurate
754 time, allowing longitude to be determined. How is this
755 similar to or different from relativistic time dilation?
756 \end{dq}
758 \pagebreak
760 \begin{dq}\label{dq:rhic}
761 Figure \figref{rhic} from page \pageref{fig:rhic}, depicting the collision of
762 two nuclei at the RHIC accelerator, is reproduced below.
763 What would the shapes of the two nuclei
764 look like to a microscopic observer riding on the
765 left-hand nucleus? To an observer riding on the right-hand
766 one? Can they agree on what is happening? If not, why not
767 --- after all, shouldn't they see the same thing if they
768 both compare the two nuclei side-by-side at the same instant in time?
769 \end{dq}
772   fig(
773     'rhic',
774     %q{\hspace{-2mm}Discussion question \ref{dq:rhic}: colliding nuclei show relativistic length contraction.},
775     {
776       'width'=>'wide',
777       'sidecaption'=>false,
778       'suffix'=>'2',
779       'anonymous'=>true
780     }
781   )
784 <% relativity_dq_space %>
786 \begin{dq}\label{dq:foam-rubber}
787 If you stick a piece of foam rubber out the window of
788 your car while driving down the freeway, the wind may
789 compress it a little. Does it make sense to interpret the
790 relativistic length contraction as a type of strain that
791 pushes an object's atoms together like this? How does this
792 relate to discussion question \ref{dq:rhic}?
793 \end{dq}
795 <% relativity_dq_space %>
797 <% marg(-50) %>
799   fig(
800     'dq-pole-paradox',
801     %q{Discussion question \ref{dq:pole-paradox}.}
802   )   
804 <% end_marg %>
806 \begin{dq}\label{dq:pole-paradox}
807 The rod in the figure is perfectly rigid. At event A, the hammer strikes one end of the rod.
808 At event B, the other end moves. Since the rod is perfectly rigid, it can't compress, so A
809 and B are simultaneous. In frame 2, B happens before A. Did the motion at the right end \emph{cause}
810 the person on the left to decide to pick up the hammer and use it?
811 \end{dq}
813 <% end_sec %> % Distortion of Space and Time
815 \vfill
817 <% begin_sec("Magnetic Interactions",4,'magnetic-interactions') %>
818         \epigraph{Think not that I am come to destroy the law, or the prophets:
819         I am not come to destroy, but to fulfill.}{Matthew 5:17}
821 At this stage, you understand roughly as much about the classification of interactions as physicists
822 understood around the year 1800. There appear to be three fundamentally different types
823 of interactions: gravitational, electrical, and magnetic. Many types of interactions that appear superficially to be
824 distinct --- stickiness, chemical interactions, the energy an archer stores in a bow --- are
825 really the same: they're manifestations of electrical interactions between atoms.
826 Is there any way to shorten the list any further? The prospects seem dim at first. For instance,
827 we find that if we rub a piece of fur on a rubber rod, the fur does not attract or repel a magnet.
828 The fur has an electric field, and the magnet has a magnetic field. The two are completely separate,
829 and don't seem to affect one another. Likewise we can test whether magnetizing a piece of iron
830 changes its weight. The weight doesn't seem to change by any measurable amount, so magnetism and
831 gravity seem to be unrelated.
833 That was where things stood until 1820, when the Danish physicist Hans Christian\index{Oersted, Hans Christian}
834 Oersted was delivering a lecture at the University of Copenhagen, and he wanted to give his
835 students a demonstration that would illustrate the cutting edge of research. He generated
836 a current in a wire by making a short circuit across a battery, and held the wire near a
837 magnetic compass. The ideas was to give an example of how one could search for a previously undiscovered
838 link between electricity (the electric current in the wire) and magnetism. One never knows how much
839 to believe from these dramatic legends, but the story is\footnote{Oersted's paper
840 describing the phenomenon says that ``The first experiments on the subject \ldots
841 were set on foot in the classes for electricity, galvanism, and magnetism, which were
842 held by me in the winter just past,'' but that doesn't tell us whether the result was
843 really a surprise that occurred in front of his students.} that the experiment he'd expected to turn out
844 negative instead turned out positive: when he held the wire near the
845 compass, the current in the wire caused the compass to twist!
846 <% marg(60) %>
848   fig(
849     'oersted',
850     %q{1. When the circuit is incomplete, no current flows through the wire, and the magnet is
851 unaffected. It points in the direction of the Earth's magnetic field. 2. The circuit is completed, and
852 current flows through the wire. The wire has a strong effect on the magnet, which turns almost perpendicular
853 to it. If the earth's field could be removed entirely, the compass would point exactly perpendicular to the
854 wire; this is the direction of the wire's field.}
855   )
857 \spacebetweenfigs
859   fig(
860     'magnetized',
861     %q{A schematic representation of an unmagnetized material, 1, and a magnetized one, 2.}
862   )
865 <% end_marg %>
867 People had tried similar experiments before, but only with static electricity, not with
868 a moving electric current. For instance, they had hung batteries so that they were free to
869 rotate in the earth's magnetic field, and found no effect; since the battery was not connected
870 to a complete circuit, there was no current flowing. With Oersted's own setup, \figref{oersted},
871 the effect was only produced when the ``circuit was closed, but not
872 when open, as certain very celebrated physicists in vain attempted several years ago.''\footnote{All
873 quotes are from the 1876 translation by J.E. Kempe.}
875 Oersted was eventually
876 led to the conclusion that magnetism was an interaction between moving charges and
877 other moving charges, i.e., between one current and another.  \index{magnetism!caused by moving charges}
878 A permanent magnet, he inferred, contained currents on a microscopic
879 scale that simply weren't practical to measure with an ammeter. Today this seems natural
880 to us, since we're accustomed to picturing an atom as a tiny solar system, with the electrons
881 whizzing around the nucleus in circles. As shown in figure \figref{magnetized},
882 a magnetized piece of iron is different from an
883 unmagnetized piece because the atoms in the unmagnetized piece are jumbled in random
884 orientations, whereas the atoms in the magnetized piece are at least partially organized
885 to face in a certain direction.
887 <% marg(0) %>
889   fig(
890     'magdeflects',
891     %q{Magnetism is an interaction between moving charges and moving charges. The moving
892 charges in the wire attract the moving charges in the beam of charged particles in the vacuum tube.}
893   )
895 <% end_marg %>
898 Figure \figref{magdeflects} shows an example that is conceptually
899 simple, but not very practical. If you try this with a typical vacuum tube, like a TV
900 or computer monitor, the current in the wire probably won't be enough to produce a visible
901 effect. A more practical method is to hold a magnet near the screen. We still have
902 an interaction between moving charges and moving charges, but the swirling electrons
903 in the atoms in the magnet are now playing the role played by the moving charges in the wire
904 in figure \figref{magdeflects}. Warning: if you do this, make sure your monitor has a
905 demagnetizing button! If not, then your monitor may be permanently ruined.
907 <% begin_sec("Relativity requires magnetism") %>\index{magnetism!and relativity}\index{relativity!and magnetism}\label{relativity-requires-magnetism}
908 So magnetism is an interaction between moving charges and moving charges. But how
909 can that be?
910 Relativity tells us that
911 motion is a matter of opinion. Consider figure \figref{fulfill}. In this figure and in figure
912 \figref{magrelativity}, the dark and light coloring of the particles represents the fact that
913 one particle has positive charge and the other negative.
914 Observer \figref{fulfill}/2 sees the two particles as flying through space side by side, so they
915 would interact both electrically (simply because they're charged) and magnetically
916 (because they're charges in motion). But an observer moving along with them,  \figref{fulfill}/1, would
917 say they were both at rest, and would expect only an electrical interaction. This seems
918 like a paradox.
919 Magnetism, however, comes not to destroy relativity but to fulfill it. Magnetic interactions
920         \emph{must} exist according to the theory of relativity. To understand how this can be,
921         consider how time and space behave in relativity. Observers in different frames of reference
922         disagree about the lengths of measuring sticks and the speeds of clocks, but the laws
923         of physics are valid and self-consistent in either frame of reference.
924         Similarly, observers in different frames of reference disagree about what electric and magnetic
925         fields there are, but they agree about concrete physical events.
926         An observer in frame of reference \figref{fulfill}/1
927         says there are electric fields around the particles, and predicts that as time goes on, the
928         particles will begin to accelerate towards one another, eventually colliding. She explains the
929         collision as being due to the electrical attraction between the particles.
930         A different observer, \figref{fulfill}/2, says the particles are moving. This observer
931         also predicts that the particles will collide, but explains their motion in terms of both
932         an electric field and a magnetic field. As we'll see shortly, the
933         magnetic field is \emph{required} in order to maintain consistency between the predictions made
934         in the two frames of reference.
935         
936 <% marg(40) %>
938   fig(
939     'fulfill',
940     %q{One observer sees an electric field, while the other sees both an electric field and a magnetic one.}
941   )
943 \spacebetweenfigs
944 <% fig(
945     'magrelativity',
946      %q{A model of a charged particle and a current-carrying wire, seen in
947         two different frames of reference. The relativistic length contraction is highly
948         exaggerated. The force on the lone particle is purely
949         magnetic in 1, and purely electric in 2.}
950    )
952 <% end_marg %>
953         To see how this really works out, we need to find a nice simple example.
954         An example like figure \figref{fulfill} is \emph{not} easy
955         to handle, because in the second frame of reference, the moving charges
956         create fields that change over time at any given location, like when the V-shaped wake of a speedboat
957         washes over a buoy. Examples like
958         figure \figref{magdeflects} are easier, because there is a steady flow of charges, and
959         all the fields stay the same over time.
960         Figure \figref{magrelativity}/1 shows a simplified and idealized model of figure \figref{magdeflects}.
961         The charge by itself is like one of the charged particles
962         in the vacuum tube beam of figure \figref{magdeflects}, and instead of the wire, we have
963         two long lines of charges moving in opposite directions. Note that,
964         as discussed in discussion question \ref{dq:signsofcurrent} on page \pageref{dq:signsofcurrent},
965         the currents of the two lines of charges do not cancel out. The dark and light balls represent particles with
966         opposite charges. Because of this, the total current in
967         the ``wire'' is double what it would be if we took away one line.
969         As a model of figure \figref{magdeflects}, figure \figref{magrelativity}/1 is partly realistic and
970         partly unrealistic. In a real piece of copper wire, there are indeed charged particles of both types,
971         but it turns out that the particles of one type (the protons) are locked in place, while only some 
972         of the other type (the electrons) are free to move. The model also shows the particles moving in
973         a simple and orderly way, like cars on a two-lane road, whereas in reality most of the particles are
974         organized into copper atoms, and there is also a great deal of random thermal motion.
975         The model's unrealistic features aren't a
976         problem, because the point of this exercise is only to find one particular situation that shows
977         magnetic effects must exist based on relativity.
979         What electrical force does the lone particle in figure \figref{magrelativity}/1 feel? Since the
980         density of ``traffic'' on the two sides of the ``road'' is equal, there is zero overall
981         electrical force on the lone particle. Each ``car'' that attracts the lone particle is paired with a partner on the other
982         side of the road that repels it. If we didn't know about magnetism, we'd think this
983         was the whole story: the lone particle feels no force at all from the wire.
985         Figure \figref{magrelativity}/2
986         shows what we'd see if we were observing all this from a frame of reference moving
987         along with the lone charge.
988         Here's where the relativity comes in. Relativity tells us that moving objects
989         appear contracted to an observer who is not moving along with them.
990         Both lines of charge are in motion in both frames of reference, but in frame 1
991         they were moving at equal speeds, so their contractions were equal.
992         In frame 2, however, their speeds are unequal. The dark
993         charges are moving more slowly than in frame 1, so in frame 2 they are less contracted.
994         The light-colored charges are moving more quickly, so their contraction is greater now.
995         The ``cars'' on the two sides of the ``road'' are no longer paired off, so the electrical
996         forces on the lone particle no longer cancel out as they did in \figref{magrelativity}/1.
997         The lone particle is attracted to the wire, because the particles attracting it are more
998         dense than the ones repelling it. Furthermore, the attraction felt
999         by the lone charge must be purely electrical, since the lone charge is at rest in this
1000         frame of reference, and magnetic effects occur only between moving charges and other
1001         moving charges.
1003         Now observers in frames 1 and 2 disagree about many things, but they do agree on
1004         concrete events. Observer 2 is going to see the lone particle drift toward the wire
1005         due to the wire's electrical attraction, gradually speeding up, and eventually hit
1006         the wire. If 2 sees this collision, then 1 must as well. But 1 knows that the total
1007         electrical force on the lone particle is exactly zero. There must be some new type
1008         of force. She invents a name for this new type of force: magnetism. This was a particularly
1009         simple example, because the force was purely magnetic in one frame of reference, and
1010         purely electrical in another. In general, an observer in a certain frame of reference
1011         will measure a mixture of electric and magnetic fields, while an observer in another
1012         frame, in motion with respect to the first, says that the same volume of space contains a different mixture.
1014 We therefore arrive at the conclusion that electric and magnetic phenomena aren't
1015 separate. They're different sides of the same coin. We refer to electric and magnetic interactions
1016 collectively as electromagnetic interactions. Our list of the fundamental interactions
1017 of nature now has two items on it instead of three: gravity and electromagnetism.\index{magnetism!related to electricity}\index{electromagnetism}
1019 Oersted found that magnetism was an interaction between moving charges and other moving charges.
1020 We can see this in the situation described in figure \subfigref{magrelativity}{1}, in which the result of the argument depended 
1021 on the fact that both the lone charge and the charges in the wire were moving. To see this in a different way, we can
1022 apply the result of example \ref{eg:gamma-for-low-v} on p.~\pageref{eg:gamma-for-low-v}, that for small velocities
1023 the $\mygamma$ factor differs from 1 by about $v^2/2c^2$. Let the lone charge in figure \subfigref{magrelativity}{1} have
1024 velocity $u$, the ones in the wire $\pm v$. As we'll see on p.~\pageref{relativistic-combination-of-vel}, velocities in
1025 relative motion don't exactly add and subtract relativistically, but as long as we assume that $u$ and $v$ are small, the correspondence
1026 principle guarantees that they will approximately add and subtract. Then the velocities in the lone charge's rest frame,
1027 \subfigref{magrelativity}{2}, are approximately 0, $v-u$, and $-v-u$. The nonzero charge density of the wire in frame
1028 \subfigref{magrelativity}{2} is then proportional to the difference in the length contractions $\mygamma_{-v-u}-\mygamma_{v-u}\approx 2uv/c^2$.
1029 This depends on the product of the velocities $u$ and $v$, which is as expected if magnetism is an interaction of moving charges
1030 with moving charges.
1031 <% marg(30) %>
1032 <% fig(
1033    'magtwobody',
1034    %q{Magnetic interactions involving only two particles at a time. In these figures, unlike figure
1035     \figref{magrelativity}/1, there are electrical forces as well as magnetic ones. The electrical forces are
1036     not shown here. Don't memorize these rules!}
1037    )
1039 <% end_marg %>
1041 The basic rules for magnetic attractions and repulsions, shown in figure \figref{magtwobody}, aren't
1042 quite as simple as the ones for gravity and electricity. Rules \figref{magtwobody}/1 and
1043 \figref{magtwobody}/2 follow directly from our previous analysis of figure \figref{magrelativity}.
1044 Rules 3 and 4 are obtained by flipping the type of charge
1045 that the bottom particle has. For instance, rule 3 is like rule 1, except that the bottom charge
1046 is now the opposite type. This turns the attraction into a repulsion. (We know that flipping the charge
1047 reverses the interaction, because that's the way it works for electric forces, and magnetic forces
1048 are just electric forces viewed in a different frame of reference.)
1050 \begin{eg}{A magnetic weathervane placed near a current.}\label{eg:weathervane}
1051 Figure \figref{weathervane} shows a magnetic weathervane, consisting of two charges that spin
1052 in circles around the axis of the arrow. (The magnetic field doesn't cause them to spin; a motor
1053 is needed to get them to spin in the first place.) Just like the magnetic compass in figure \figref{oersted},
1054 the weathervane's arrow tends to align itself in the direction perpendicular to the wire. This
1055 is its preferred orientation because the charge close to the wire is attracted to the
1056 wire, while the charge far from the wire is repelled by it.
1057 \end{eg}
1059 \startdq
1060 \begin{dq}
1061 Resolve the following paradox concerning the argument given in this section.
1062 We would expect that at any given time,
1063 electrons in a solid would be associated with protons in a definite way.
1064 For simplicity, let's imagine that the solid is made out of hydrogen (which
1065 actually does become a metal under conditions of very high pressure).
1066 A hydrogen atom consists of a single proton and a single electron.
1067 Even if the electrons are moving and forming an electric current, we would
1068 imagine that this would be like a game of musical chairs, with the protons
1069 as chairs and the electrons as people. Each electron has a proton that is its
1070 ``friend,'' at least for the moment. This is the situation shown in figure
1071 \subfigref{magrelativity}{1}. How, then, can an observer in a different frame
1072 see the electrons and protons as not being paired up, as in \subfigref{magrelativity}{2}?
1073 \end{dq}
1075 <% marg(80) %>
1076 <% fig(
1077      'weathervane',
1078      %q{Example \ref{eg:weathervane}},
1079      {'anonymous'=>true}
1080    )
1082 <% end_marg %>
1085 <% end_sec() %> % Relativity requires magnetism
1086 <% end_sec() %> % Magnetic Interactions
1090  %%===============================================================================
1091 \begin{summary}
1093 \begin{notation}
1094 \notationitem{$\mygamma$}{an abbreviation for $1/\sqrt{1-v^2/c^2}$}
1095 \end{notation}
1097 \begin{summarytext}
1099 Experiments show that space and time do not have the properties claimed by Galileo and Newton.
1100 Time and space as seen by one
1101 observer are distorted compared to another observer's perceptions if they are moving
1102 relative to each other. This distortion is quantified by the factor
1103 \begin{equation*}
1104   \mygamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \qquad ,
1105 \end{equation*}
1106 where $v$ is the relative velocity of the two observers, and $c$ is a universal velocity
1107 that is the same in all frames of reference. Light travels at $c$. A clock appears to run fastest to an
1108 observer who is not in motion relative to it, and appears to run too slowly by a factor of
1109 $\mygamma$ to an observer who has a velocity $v$ relative to the clock. Similarly, a meter-stick
1110 appears longest to an observer who sees it at rest, and appears shorter to other observers.
1111 Time and space are relative, not absolute.
1113 As a consequence of relativity, we must have not just electrical interactions
1114 of charges with charges, but also an additional magnetic interaction of
1115 moving charges with other moving charges.
1116 \end{summarytext}
1118 \begin{exploring}
1119 \begin{reading}{Relativity Simply Explained}{Martin Gardner}
1120   A beautifully clear, nonmathematical introduction to the subject, with entertaining illustrations.
1121   A postscript, written in 1996, follows up on recent developments in some of the more speculative
1122   ideas from the 1967 edition.
1123 \end{reading}
1124 \begin{reading}{Was Einstein Right? --- Putting General Relativity to the Test}{Clifford M. Will}
1125   This book makes it clear that general relativity is neither a fantasy nor holy scripture, but
1126   a scientific theory like any other.
1127 \end{reading}
1128 \end{exploring}
1131 \end{summary}
1133  %%===============================================================================
1135 <% begin_hw_sec %>
1136 <% begin_hw('gammafornegativev') %>__incl(../../share/relativity/hw/gammafornegativev)<% end_hw() %>
1138 \vfill
1140 <% begin_hw('gamma-derivation') %>__incl(../../share/relativity/hw/gamma-derivation)<% end_hw() %>
1141 <% marg(50) %>
1143   fig(
1144     'hw-gamma-derivation',
1145     %q{Problem \ref{hw:gamma-derivation}.}
1146   )
1148 <% end_marg %>
1150 \vfill
1152 <% begin_hw('agreeontime') %>__incl(../../share/relativity/hw/agreeontime)<% end_hw() %>
1154 \vfill
1156 <% begin_hw('voyagergamma') %>__incl(../../share/relativity/hw/voyagergamma)<% end_hw() %>
1158 \vfill
1160 <% begin_hw('earth-lorentz-contraction') %>__incl(../../share/relativity/hw/earth-lorentz-contraction)<% end_hw() %>
1162 \pagebreak
1164 <% begin_hw('sr-from-length-contraction') %>__incl(../../share/relativity/hw/sr-from-length-contraction)<% end_hw() %>
1168 <% end_hw_sec %>
1172 <% end_chapter() %>
1174 %<% figure_in_toc("rhic") %>