repo.or.cz
/
linguofeng.github.com.git
/
blob
commit
grep
author
committer
pickaxe
?
search:
re
summary
|
log
|
graphiclog1
|
graphiclog2
|
commit
|
commitdiff
|
tree
|
refs
|
edit
|
fork
blame
|
history
|
raw
|
HEAD
update
[linguofeng.github.com.git]
/
_posts
/
2013-05-14-Linear-Algebra.textile
blob
48e2a815e57d25a2bd2b7e0700c3a0cdc862ab15
1
---
2
layout: post
3
title: Linear Algebra
4
description: 线性代码笔记
5
categories: [archive]
6
tags: [math]
7
---
8
9
<section>
10
<p>最近开始学习线性代数,在看http://v.163.com/special/opencourse/daishu.html麻省理工的线性代码公开课。</p>
11
<p>这里做一些笔记吧。</p>
12
<h4>方程组的几何解释</h4>
13
<pre>
14
x + 2y = 13;
15
3x - y = 4;
16
</pre>
17
<p>使用矩形表示</p>
18
<pre>
19
- - - - - -
20
| 1 | | 2 | | 13 |
21
x | | + y | | = | |
22
| 3 | | -1 | | 5 |
23
- - - - - -
24
</pre>
25
<p>使用线性代数表示</p>
26
<pre>
27
- - - - - -
28
| 1 2 | | x | | 13 |
29
| | * | | = | |
30
| 3 -1 | | y | | 5 |
31
- - - - - -
32
</pre>
33
34
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
35
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
36
37
<math>
38
\begin{bmatrix}
39
3 & 5\\
40
1 & 2
41
\end{bmatrix} \cdot
42
\begin{bmatrix}
43
x_1 \\
44
x_2
45
\end{bmatrix} =
46
\begin{bmatrix}
47
4 \\
48
1
49
\end{bmatrix}
50
</math>
51
52
</section>