2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
19 * $Id: diskonchip.c,v 1.55 2005/11/07 11:14:30 gleixner Exp $
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/rslib.h>
27 #include <linux/moduleparam.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/doc2000.h>
33 #include <linux/mtd/compatmac.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/mtd/inftl.h>
37 /* Where to look for the devices? */
38 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
42 static unsigned long __initdata doc_locations
[] = {
43 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
44 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50 #else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #elif defined(__PPC__)
59 #elif defined(CONFIG_MOMENCO_OCELOT)
62 #elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
65 #warning Unknown architecture for DiskOnChip. No default probe locations defined
69 static struct mtd_info
*doclist
= NULL
;
72 void __iomem
*virtadr
;
73 unsigned long physadr
;
76 int chips_per_floor
; /* The number of chips detected on each floor */
84 struct mtd_info
*nextdoc
;
87 /* This is the syndrome computed by the HW ecc generator upon reading an empty
88 page, one with all 0xff for data and stored ecc code. */
89 static u_char empty_read_syndrome
[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
91 /* This is the ecc value computed by the HW ecc generator upon writing an empty
92 page, one with all 0xff for data. */
93 static u_char empty_write_ecc
[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
95 #define INFTL_BBT_RESERVED_BLOCKS 4
97 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
98 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
99 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
101 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
102 unsigned int bitmask
);
103 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
);
105 static int debug
= 0;
106 module_param(debug
, int, 0);
108 static int try_dword
= 1;
109 module_param(try_dword
, int, 0);
111 static int no_ecc_failures
= 0;
112 module_param(no_ecc_failures
, int, 0);
114 static int no_autopart
= 0;
115 module_param(no_autopart
, int, 0);
117 static int show_firmware_partition
= 0;
118 module_param(show_firmware_partition
, int, 0);
120 #ifdef MTD_NAND_DISKONCHIP_BBTWRITE
121 static int inftl_bbt_write
= 1;
123 static int inftl_bbt_write
= 0;
125 module_param(inftl_bbt_write
, int, 0);
127 static unsigned long doc_config_location
= CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
;
128 module_param(doc_config_location
, ulong
, 0);
129 MODULE_PARM_DESC(doc_config_location
, "Physical memory address at which to probe for DiskOnChip");
131 /* Sector size for HW ECC */
132 #define SECTOR_SIZE 512
133 /* The sector bytes are packed into NB_DATA 10 bit words */
134 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
135 /* Number of roots */
137 /* First consective root */
139 /* Number of symbols */
142 /* the Reed Solomon control structure */
143 static struct rs_control
*rs_decoder
;
146 * The HW decoder in the DoC ASIC's provides us a error syndrome,
147 * which we must convert to a standard syndrom usable by the generic
148 * Reed-Solomon library code.
150 * Fabrice Bellard figured this out in the old docecc code. I added
151 * some comments, improved a minor bit and converted it to make use
152 * of the generic Reed-Solomon libary. tglx
154 static int doc_ecc_decode(struct rs_control
*rs
, uint8_t *data
, uint8_t *ecc
)
156 int i
, j
, nerr
, errpos
[8];
158 uint16_t ds
[4], s
[5], tmp
, errval
[8], syn
[4];
160 /* Convert the ecc bytes into words */
161 ds
[0] = ((ecc
[4] & 0xff) >> 0) | ((ecc
[5] & 0x03) << 8);
162 ds
[1] = ((ecc
[5] & 0xfc) >> 2) | ((ecc
[2] & 0x0f) << 6);
163 ds
[2] = ((ecc
[2] & 0xf0) >> 4) | ((ecc
[3] & 0x3f) << 4);
164 ds
[3] = ((ecc
[3] & 0xc0) >> 6) | ((ecc
[0] & 0xff) << 2);
167 /* Initialize the syndrom buffer */
168 for (i
= 0; i
< NROOTS
; i
++)
172 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
173 * where x = alpha^(FCR + i)
175 for (j
= 1; j
< NROOTS
; j
++) {
178 tmp
= rs
->index_of
[ds
[j
]];
179 for (i
= 0; i
< NROOTS
; i
++)
180 s
[i
] ^= rs
->alpha_to
[rs_modnn(rs
, tmp
+ (FCR
+ i
) * j
)];
183 /* Calc s[i] = s[i] / alpha^(v + i) */
184 for (i
= 0; i
< NROOTS
; i
++) {
186 syn
[i
] = rs_modnn(rs
, rs
->index_of
[s
[i
]] + (NN
- FCR
- i
));
188 /* Call the decoder library */
189 nerr
= decode_rs16(rs
, NULL
, NULL
, 1019, syn
, 0, errpos
, 0, errval
);
191 /* Incorrectable errors ? */
196 * Correct the errors. The bitpositions are a bit of magic,
197 * but they are given by the design of the de/encoder circuit
200 for (i
= 0; i
< nerr
; i
++) {
201 int index
, bitpos
, pos
= 1015 - errpos
[i
];
203 if (pos
>= NB_DATA
&& pos
< 1019)
206 /* extract bit position (MSB first) */
207 pos
= 10 * (NB_DATA
- 1 - pos
) - 6;
208 /* now correct the following 10 bits. At most two bytes
209 can be modified since pos is even */
210 index
= (pos
>> 3) ^ 1;
212 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
213 val
= (uint8_t) (errval
[i
] >> (2 + bitpos
));
215 if (index
< SECTOR_SIZE
)
218 index
= ((pos
>> 3) + 1) ^ 1;
219 bitpos
= (bitpos
+ 10) & 7;
222 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
223 val
= (uint8_t) (errval
[i
] << (8 - bitpos
));
225 if (index
< SECTOR_SIZE
)
230 /* If the parity is wrong, no rescue possible */
231 return parity
? -1 : nerr
;
234 static void DoC_Delay(struct doc_priv
*doc
, unsigned short cycles
)
239 for (i
= 0; i
< cycles
; i
++) {
240 if (DoC_is_Millennium(doc
))
241 dummy
= ReadDOC(doc
->virtadr
, NOP
);
242 else if (DoC_is_MillenniumPlus(doc
))
243 dummy
= ReadDOC(doc
->virtadr
, Mplus_NOP
);
245 dummy
= ReadDOC(doc
->virtadr
, DOCStatus
);
250 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
252 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
253 static int _DoC_WaitReady(struct doc_priv
*doc
)
255 void __iomem
*docptr
= doc
->virtadr
;
256 unsigned long timeo
= jiffies
+ (HZ
* 10);
259 printk("_DoC_WaitReady...\n");
260 /* Out-of-line routine to wait for chip response */
261 if (DoC_is_MillenniumPlus(doc
)) {
262 while ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
263 if (time_after(jiffies
, timeo
)) {
264 printk("_DoC_WaitReady timed out.\n");
271 while (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
272 if (time_after(jiffies
, timeo
)) {
273 printk("_DoC_WaitReady timed out.\n");
284 static inline int DoC_WaitReady(struct doc_priv
*doc
)
286 void __iomem
*docptr
= doc
->virtadr
;
289 if (DoC_is_MillenniumPlus(doc
)) {
292 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
)
293 /* Call the out-of-line routine to wait */
294 ret
= _DoC_WaitReady(doc
);
298 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
))
299 /* Call the out-of-line routine to wait */
300 ret
= _DoC_WaitReady(doc
);
305 printk("DoC_WaitReady OK\n");
309 static void doc2000_write_byte(struct mtd_info
*mtd
, u_char datum
)
311 struct nand_chip
*this = mtd
->priv
;
312 struct doc_priv
*doc
= this->priv
;
313 void __iomem
*docptr
= doc
->virtadr
;
316 printk("write_byte %02x\n", datum
);
317 WriteDOC(datum
, docptr
, CDSNSlowIO
);
318 WriteDOC(datum
, docptr
, 2k_CDSN_IO
);
321 static u_char
doc2000_read_byte(struct mtd_info
*mtd
)
323 struct nand_chip
*this = mtd
->priv
;
324 struct doc_priv
*doc
= this->priv
;
325 void __iomem
*docptr
= doc
->virtadr
;
328 ReadDOC(docptr
, CDSNSlowIO
);
330 ret
= ReadDOC(docptr
, 2k_CDSN_IO
);
332 printk("read_byte returns %02x\n", ret
);
336 static void doc2000_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
338 struct nand_chip
*this = mtd
->priv
;
339 struct doc_priv
*doc
= this->priv
;
340 void __iomem
*docptr
= doc
->virtadr
;
343 printk("writebuf of %d bytes: ", len
);
344 for (i
= 0; i
< len
; i
++) {
345 WriteDOC_(buf
[i
], docptr
, DoC_2k_CDSN_IO
+ i
);
347 printk("%02x ", buf
[i
]);
353 static void doc2000_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
355 struct nand_chip
*this = mtd
->priv
;
356 struct doc_priv
*doc
= this->priv
;
357 void __iomem
*docptr
= doc
->virtadr
;
361 printk("readbuf of %d bytes: ", len
);
363 for (i
= 0; i
< len
; i
++) {
364 buf
[i
] = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
368 static void doc2000_readbuf_dword(struct mtd_info
*mtd
, u_char
*buf
, int len
)
370 struct nand_chip
*this = mtd
->priv
;
371 struct doc_priv
*doc
= this->priv
;
372 void __iomem
*docptr
= doc
->virtadr
;
376 printk("readbuf_dword of %d bytes: ", len
);
378 if (unlikely((((unsigned long)buf
) | len
) & 3)) {
379 for (i
= 0; i
< len
; i
++) {
380 *(uint8_t *) (&buf
[i
]) = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
383 for (i
= 0; i
< len
; i
+= 4) {
384 *(uint32_t *) (&buf
[i
]) = readl(docptr
+ DoC_2k_CDSN_IO
+ i
);
389 static int doc2000_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
391 struct nand_chip
*this = mtd
->priv
;
392 struct doc_priv
*doc
= this->priv
;
393 void __iomem
*docptr
= doc
->virtadr
;
396 for (i
= 0; i
< len
; i
++)
397 if (buf
[i
] != ReadDOC(docptr
, 2k_CDSN_IO
))
402 static uint16_t __init
doc200x_ident_chip(struct mtd_info
*mtd
, int nr
)
404 struct nand_chip
*this = mtd
->priv
;
405 struct doc_priv
*doc
= this->priv
;
408 doc200x_select_chip(mtd
, nr
);
409 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
410 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
411 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
412 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
414 /* We cant' use dev_ready here, but at least we wait for the
415 * command to complete
419 ret
= this->read_byte(mtd
) << 8;
420 ret
|= this->read_byte(mtd
);
422 if (doc
->ChipID
== DOC_ChipID_Doc2k
&& try_dword
&& !nr
) {
423 /* First chip probe. See if we get same results by 32-bit access */
428 void __iomem
*docptr
= doc
->virtadr
;
430 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
431 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
432 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
433 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
,
434 NAND_NCE
| NAND_CTRL_CHANGE
);
438 ident
.dword
= readl(docptr
+ DoC_2k_CDSN_IO
);
439 if (((ident
.byte
[0] << 8) | ident
.byte
[1]) == ret
) {
440 printk(KERN_INFO
"DiskOnChip 2000 responds to DWORD access\n");
441 this->read_buf
= &doc2000_readbuf_dword
;
448 static void __init
doc2000_count_chips(struct mtd_info
*mtd
)
450 struct nand_chip
*this = mtd
->priv
;
451 struct doc_priv
*doc
= this->priv
;
455 /* Max 4 chips per floor on DiskOnChip 2000 */
456 doc
->chips_per_floor
= 4;
458 /* Find out what the first chip is */
459 mfrid
= doc200x_ident_chip(mtd
, 0);
461 /* Find how many chips in each floor. */
462 for (i
= 1; i
< 4; i
++) {
463 if (doc200x_ident_chip(mtd
, i
) != mfrid
)
466 doc
->chips_per_floor
= i
;
467 printk(KERN_DEBUG
"Detected %d chips per floor.\n", i
);
470 static int doc200x_wait(struct mtd_info
*mtd
, struct nand_chip
*this)
472 struct doc_priv
*doc
= this->priv
;
477 this->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
479 status
= (int)this->read_byte(mtd
);
484 static void doc2001_write_byte(struct mtd_info
*mtd
, u_char datum
)
486 struct nand_chip
*this = mtd
->priv
;
487 struct doc_priv
*doc
= this->priv
;
488 void __iomem
*docptr
= doc
->virtadr
;
490 WriteDOC(datum
, docptr
, CDSNSlowIO
);
491 WriteDOC(datum
, docptr
, Mil_CDSN_IO
);
492 WriteDOC(datum
, docptr
, WritePipeTerm
);
495 static u_char
doc2001_read_byte(struct mtd_info
*mtd
)
497 struct nand_chip
*this = mtd
->priv
;
498 struct doc_priv
*doc
= this->priv
;
499 void __iomem
*docptr
= doc
->virtadr
;
501 //ReadDOC(docptr, CDSNSlowIO);
502 /* 11.4.5 -- delay twice to allow extended length cycle */
504 ReadDOC(docptr
, ReadPipeInit
);
505 //return ReadDOC(docptr, Mil_CDSN_IO);
506 return ReadDOC(docptr
, LastDataRead
);
509 static void doc2001_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
511 struct nand_chip
*this = mtd
->priv
;
512 struct doc_priv
*doc
= this->priv
;
513 void __iomem
*docptr
= doc
->virtadr
;
516 for (i
= 0; i
< len
; i
++)
517 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
518 /* Terminate write pipeline */
519 WriteDOC(0x00, docptr
, WritePipeTerm
);
522 static void doc2001_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
524 struct nand_chip
*this = mtd
->priv
;
525 struct doc_priv
*doc
= this->priv
;
526 void __iomem
*docptr
= doc
->virtadr
;
529 /* Start read pipeline */
530 ReadDOC(docptr
, ReadPipeInit
);
532 for (i
= 0; i
< len
- 1; i
++)
533 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
+ (i
& 0xff));
535 /* Terminate read pipeline */
536 buf
[i
] = ReadDOC(docptr
, LastDataRead
);
539 static int doc2001_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
541 struct nand_chip
*this = mtd
->priv
;
542 struct doc_priv
*doc
= this->priv
;
543 void __iomem
*docptr
= doc
->virtadr
;
546 /* Start read pipeline */
547 ReadDOC(docptr
, ReadPipeInit
);
549 for (i
= 0; i
< len
- 1; i
++)
550 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
551 ReadDOC(docptr
, LastDataRead
);
554 if (buf
[i
] != ReadDOC(docptr
, LastDataRead
))
559 static int doc2001plus_addroffset(struct mtd_info
*mtd
, int *columnp
)
561 if (*columnp
>= 512) {
564 return NAND_CMD_READOOB
;
566 if (*columnp
< 256) {
567 /* First 256 bytes --> READ0 */
568 return NAND_CMD_READ0
;
571 return NAND_CMD_READ1
;
575 * Translate the given offset into the appropriate command and offset.
576 * This does the mapping using the 16bit interleave layout defined by
577 * M-Systems, and looks like this for a sector pair:
578 * +-----------+-------+-------+-------+--------------+---------+-----------+
579 * | 0 --- 511 |512-517|518-519|520-521| 522 --- 1033 |1034-1039|1040 - 1055|
580 * +-----------+-------+-------+-------+--------------+---------+-----+-----+
581 * | Data 0 | ECC 0 |Flags0 |Flags1 | Data 1 |ECC 1 | OOB0| OOB1|
582 * +-----------+-------+-------+-------+--------------+---------+-----+-----+
583 * Thing to remember is that 2 physical pages are interleaved together, and
584 * then mapped in the above odd looking way.
586 static int doc2001plus_addroffset32(struct mtd_info
*mtd
, int command
, int *columnp
, int page_addr
)
588 struct nand_chip
*this = mtd
->priv
;
589 struct doc_priv
*doc
= this->priv
;
592 if (command
== NAND_CMD_READ1
)
594 if (command
== NAND_CMD_READOOB
)
597 doc
->activecol
= col
;
598 doc
->page_addr
= page_addr
;
600 /* Even numbered pages first. */
601 if ((page_addr
& 0x1) == 0) {
603 *columnp
= (col
>> 1);
604 return NAND_CMD_READ0
;
607 *columnp
= (col
- 512) >> 1;
608 return NAND_CMD_READ1
;
610 *columnp
= ((col
- 520) + 16) >> 1;
611 return NAND_CMD_READOOB
;
614 /* Odd number pages next */
616 *columnp
= (col
+ 10) >> 1;
617 return NAND_CMD_READ1
;
620 *columnp
= (col
- 502) >> 1;
621 return NAND_CMD_READOOB
;
624 *columnp
= ((col
- 518) + 8) >> 1;
625 return NAND_CMD_READ1
;
627 *columnp
= ((col
- 520) + 24) >> 1;
628 return NAND_CMD_READOOB
;
631 static void doc2001plus_command (struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
633 struct nand_chip
*this = mtd
->priv
;
634 struct doc_priv
*doc
= this->priv
;
635 void __iomem
*docptr
= doc
->virtadr
;
636 int readcmd
= NAND_CMD_READ0
;
639 * Must terminate write pipeline before sending any commands
642 if (command
== NAND_CMD_PAGEPROG
) {
643 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
644 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
648 * Write out the command to the device. If using the interleaved
649 * device then we may need to map the command and address parts.
654 if (doc
->ChipID
== DOC_ChipID_DocMilPlus32
) {
655 readcmd
= doc2001plus_addroffset32(mtd
, command
, &column
, page_addr
);
658 readcmd
= doc2001plus_addroffset(mtd
, &column
);
660 WriteDOC(readcmd
, docptr
, Mplus_FlashCmd
);
664 case NAND_CMD_READOOB
:
665 if (doc
->ChipID
== DOC_ChipID_DocMilPlus32
) {
666 command
= doc2001plus_addroffset32(mtd
, command
, &column
, page_addr
);
674 WriteDOC(command
, docptr
, Mplus_FlashCmd
);
675 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
676 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
678 if (column
!= -1 || page_addr
!= -1) {
679 /* Serially input address */
681 /* Adjust columns for 16 bit buswidth */
682 if (this->options
& NAND_BUSWIDTH_16
)
684 WriteDOC(column
, docptr
, Mplus_FlashAddress
);
686 if (page_addr
!= -1) {
687 WriteDOC((unsigned char) (page_addr
& 0xff), docptr
, Mplus_FlashAddress
);
688 WriteDOC((unsigned char) ((page_addr
>> 8) & 0xff), docptr
, Mplus_FlashAddress
);
689 /* One more address cycle for higher density devices */
690 if (this->chipsize
& 0x0c000000) {
691 WriteDOC((unsigned char) ((page_addr
>> 16) & 0x0f), docptr
, Mplus_FlashAddress
);
692 printk("high density\n");
695 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
696 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
698 if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
|| command
== NAND_CMD_READOOB
|| command
== NAND_CMD_READID
)
699 WriteDOC(0, docptr
, Mplus_FlashControl
);
703 * program and erase have their own busy handlers
704 * status and sequential in needs no delay
708 case NAND_CMD_PAGEPROG
:
709 case NAND_CMD_ERASE1
:
710 case NAND_CMD_ERASE2
:
712 case NAND_CMD_STATUS
:
718 udelay(this->chip_delay
);
719 WriteDOC(NAND_CMD_STATUS
, docptr
, Mplus_FlashCmd
);
720 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
721 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
722 while ( !(this->read_byte(mtd
) & 0x40));
725 /* This applies to read commands */
728 * If we don't have access to the busy pin, we apply the given
731 if (!this->dev_ready
) {
732 udelay (this->chip_delay
);
737 /* Apply this short delay always to ensure that we do wait tWB in
738 * any case on any machine. */
740 /* wait until command is processed */
741 while (!this->dev_ready(mtd
));
744 static u_char
doc2001plus_read_byte(struct mtd_info
*mtd
)
746 struct nand_chip
*this = mtd
->priv
;
747 struct doc_priv
*doc
= this->priv
;
748 void __iomem
*docptr
= doc
->virtadr
;
751 ReadDOC(docptr
, Mplus_ReadPipeInit
);
752 ReadDOC(docptr
, Mplus_ReadPipeInit
);
753 ret
= ReadDOC(docptr
, Mplus_LastDataRead
);
755 printk("read_byte returns %02x\n", ret
);
759 static int doc2001plus_maxlinesiz(struct doc_priv
*doc
)
761 if (doc
->ChipID
== DOC_ChipID_DocMilPlus32
) {
762 if (doc
->activecol
< (512+6))
763 return (512+6 - doc
->activecol
);
764 if (doc
->activecol
< (512+8))
765 return (512+8 - doc
->activecol
);
767 return (512+16 - doc
->activecol
);
770 static void doc2001plus_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
772 struct nand_chip
*this = mtd
->priv
;
773 struct doc_priv
*doc
= this->priv
;
774 void __iomem
*docptr
= doc
->virtadr
;
775 int i
, want
, siz
, loop
;
777 for (loop
= 0, want
= len
; ((loop
< 3) && (want
> 0)); loop
++) {
778 if (debug
)printk("writebuf of %d bytes: ", len
);
780 /* Figure out maximum strait line read size */
781 siz
= doc2001plus_maxlinesiz(doc
);
785 if (doc
->setcol
!= doc
->activecol
) {
786 /* Finish existing write, and restart at new pos */
787 doc2001plus_command(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
788 doc200x_wait(mtd
, this);
789 /* FIXME: handle failure cases */
791 doc2001plus_command(mtd
, NAND_CMD_RESET
, -1, -1);
792 doc2001plus_command(mtd
, NAND_CMD_SEQIN
, doc
->activecol
, doc
->page_addr
);
795 for (i
=0; i
< len
; i
++) {
796 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
798 printk("%02x ", buf
[i
]);
800 if (debug
) printk("\n");
803 doc
->activecol
+= siz
;
809 static void doc2001plus_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
811 struct nand_chip
*this = mtd
->priv
;
812 struct doc_priv
*doc
= this->priv
;
813 void __iomem
*docptr
= doc
->virtadr
;
815 int i
, want
, siz
, loop
;
817 for (loop
= 0, want
= len
; ((loop
< 3) && (want
> 0)); loop
++) {
818 if (debug
)printk("readbuf of %d bytes: ", len
);
820 /* Figure out maximum strait line read size */
821 siz
= doc2001plus_maxlinesiz(doc
);
825 if (doc
->setcol
!= doc
->activecol
)
826 doc2001plus_command(mtd
, NAND_CMD_READ0
, doc
->activecol
, doc
->page_addr
);
828 /* Start read pipeline */
829 ReadDOC(docptr
, Mplus_ReadPipeInit
);
830 ReadDOC(docptr
, Mplus_ReadPipeInit
);
832 for (i
=0; i
< siz
-2; i
++, nbuf
++) {
833 *nbuf
= ReadDOC(docptr
, Mil_CDSN_IO
);
835 printk("%02x ", *nbuf
);
838 /* Terminate read pipeline */
839 *nbuf
= ReadDOC(docptr
, Mplus_LastDataRead
);
841 printk("%02x ", *nbuf
);
843 *nbuf
= ReadDOC(docptr
, Mplus_LastDataRead
);
845 printk("%02x ", *nbuf
);
847 if (debug
) printk("\n");
850 doc
->activecol
+= siz
;
854 static int doc2001plus_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
856 struct nand_chip
*this = mtd
->priv
;
857 struct doc_priv
*doc
= this->priv
;
858 void __iomem
*docptr
= doc
->virtadr
;
862 printk("verifybuf of %d bytes: ", len
);
864 /* Start read pipeline */
865 ReadDOC(docptr
, Mplus_ReadPipeInit
);
866 ReadDOC(docptr
, Mplus_ReadPipeInit
);
868 for (i
= 0; i
< len
- 2; i
++)
869 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
870 ReadDOC(docptr
, Mplus_LastDataRead
);
871 ReadDOC(docptr
, Mplus_LastDataRead
);
874 if (buf
[len
- 2] != ReadDOC(docptr
, Mplus_LastDataRead
))
876 if (buf
[len
- 1] != ReadDOC(docptr
, Mplus_LastDataRead
))
881 static void doc2001plus_select_chip(struct mtd_info
*mtd
, int chip
)
883 struct nand_chip
*this = mtd
->priv
;
884 struct doc_priv
*doc
= this->priv
;
885 void __iomem
*docptr
= doc
->virtadr
;
889 printk("select chip (%d)\n", chip
);
892 /* Disable flash internally */
893 WriteDOC(0, docptr
, Mplus_FlashSelect
);
897 floor
= chip
/ doc
->chips_per_floor
;
898 chip
-= (floor
* doc
->chips_per_floor
);
900 /* Assert ChipEnable and deassert WriteProtect */
901 WriteDOC((DOC_FLASH_CE
), docptr
, Mplus_FlashSelect
);
902 this->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
905 doc
->curfloor
= floor
;
908 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
)
910 struct nand_chip
*this = mtd
->priv
;
911 struct doc_priv
*doc
= this->priv
;
912 void __iomem
*docptr
= doc
->virtadr
;
916 printk("select chip (%d)\n", chip
);
921 floor
= chip
/ doc
->chips_per_floor
;
922 chip
-= (floor
* doc
->chips_per_floor
);
924 /* 11.4.4 -- deassert CE before changing chip */
925 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
927 WriteDOC(floor
, docptr
, FloorSelect
);
928 WriteDOC(chip
, docptr
, CDSNDeviceSelect
);
930 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
933 doc
->curfloor
= floor
;
936 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
938 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
941 struct nand_chip
*this = mtd
->priv
;
942 struct doc_priv
*doc
= this->priv
;
943 void __iomem
*docptr
= doc
->virtadr
;
945 if (ctrl
& NAND_CTRL_CHANGE
) {
946 doc
->CDSNControl
&= ~CDSN_CTRL_MSK
;
947 doc
->CDSNControl
|= ctrl
& CDSN_CTRL_MSK
;
949 printk("hwcontrol(%d): %02x\n", cmd
, doc
->CDSNControl
);
950 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
951 /* 11.4.3 -- 4 NOPs after CSDNControl write */
954 if (cmd
!= NAND_CMD_NONE
) {
955 if (DoC_is_2000(doc
))
956 doc2000_write_byte(mtd
, cmd
);
958 doc2001_write_byte(mtd
, cmd
);
962 static int doc200x_dev_ready(struct mtd_info
*mtd
)
964 struct nand_chip
*this = mtd
->priv
;
965 struct doc_priv
*doc
= this->priv
;
966 void __iomem
*docptr
= doc
->virtadr
;
968 if (DoC_is_MillenniumPlus(doc
)) {
969 /* 11.4.2 -- must NOP four times before checking FR/B# */
971 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
973 printk("not ready\n");
977 printk("was ready\n");
980 /* 11.4.2 -- must NOP four times before checking FR/B# */
982 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
984 printk("not ready\n");
987 /* 11.4.2 -- Must NOP twice if it's ready */
990 printk("was ready\n");
995 static int doc200x_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
997 /* This is our last resort if we couldn't find or create a BBT. Just
998 pretend all blocks are good. */
1002 static void doc200x_enable_hwecc(struct mtd_info
*mtd
, int mode
)
1004 struct nand_chip
*this = mtd
->priv
;
1005 struct doc_priv
*doc
= this->priv
;
1006 void __iomem
*docptr
= doc
->virtadr
;
1008 /* Prime the ECC engine */
1011 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
1012 WriteDOC(DOC_ECC_EN
, docptr
, ECCConf
);
1014 case NAND_ECC_WRITE
:
1015 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
1016 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, ECCConf
);
1021 static void doc2001plus_enable_hwecc(struct mtd_info
*mtd
, int mode
)
1023 struct nand_chip
*this = mtd
->priv
;
1024 struct doc_priv
*doc
= this->priv
;
1025 void __iomem
*docptr
= doc
->virtadr
;
1027 /* Prime the ECC engine */
1030 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
1031 WriteDOC(DOC_ECC_EN
, docptr
, Mplus_ECCConf
);
1033 case NAND_ECC_WRITE
:
1034 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
1035 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, Mplus_ECCConf
);
1040 /* This code is only called on write */
1041 static int doc200x_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, unsigned char *ecc_code
)
1043 struct nand_chip
*this = mtd
->priv
;
1044 struct doc_priv
*doc
= this->priv
;
1045 void __iomem
*docptr
= doc
->virtadr
;
1049 /* flush the pipeline */
1050 if (DoC_is_2000(doc
)) {
1051 WriteDOC(doc
->CDSNControl
& ~CDSN_CTRL_FLASH_IO
, docptr
, CDSNControl
);
1052 WriteDOC(0, docptr
, 2k_CDSN_IO
);
1053 WriteDOC(0, docptr
, 2k_CDSN_IO
);
1054 WriteDOC(0, docptr
, 2k_CDSN_IO
);
1055 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
1056 } else if (DoC_is_MillenniumPlus(doc
)) {
1057 WriteDOC(0, docptr
, Mplus_NOP
);
1058 WriteDOC(0, docptr
, Mplus_NOP
);
1059 WriteDOC(0, docptr
, Mplus_NOP
);
1061 WriteDOC(0, docptr
, NOP
);
1062 WriteDOC(0, docptr
, NOP
);
1063 WriteDOC(0, docptr
, NOP
);
1066 for (i
= 0; i
< 6; i
++) {
1067 if (DoC_is_MillenniumPlus(doc
))
1068 ecc_code
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
1070 ecc_code
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
1071 if (ecc_code
[i
] != empty_write_ecc
[i
])
1074 if (DoC_is_MillenniumPlus(doc
))
1075 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
1077 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
1079 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
1081 /* Note: this somewhat expensive test should not be triggered
1082 often. It could be optimized away by examining the data in
1083 the writebuf routine, and remembering the result. */
1084 for (i
= 0; i
< 512; i
++) {
1091 /* If emptymatch still =1, we do have an all-0xff data buffer.
1092 Return all-0xff ecc value instead of the computed one, so
1093 it'll look just like a freshly-erased page. */
1095 memset(ecc_code
, 0xff, 6);
1100 static int doc200x_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
1101 u_char
*read_ecc
, u_char
*isnull
)
1104 struct nand_chip
*this = mtd
->priv
;
1105 struct doc_priv
*doc
= this->priv
;
1106 void __iomem
*docptr
= doc
->virtadr
;
1107 uint8_t calc_ecc
[6];
1108 volatile u_char dummy
;
1111 /* flush the pipeline */
1112 if (DoC_is_2000(doc
)) {
1113 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
1114 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
1115 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
1116 } else if (DoC_is_MillenniumPlus(doc
)) {
1117 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
1118 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
1119 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
1121 dummy
= ReadDOC(docptr
, ECCConf
);
1122 dummy
= ReadDOC(docptr
, ECCConf
);
1123 dummy
= ReadDOC(docptr
, ECCConf
);
1126 /* Error occured ? */
1128 for (i
= 0; i
< 6; i
++) {
1129 if (DoC_is_MillenniumPlus(doc
))
1130 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
1132 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
1133 if (calc_ecc
[i
] != empty_read_syndrome
[i
])
1136 /* If emptymatch=1, the read syndrome is consistent with an
1137 all-0xff data and stored ecc block. Check the stored ecc. */
1139 for (i
= 0; i
< 6; i
++) {
1140 if (read_ecc
[i
] == 0xff)
1146 /* If emptymatch still =1, check the data block. */
1148 /* Note: this somewhat expensive test should not be triggered
1149 often. It could be optimized away by examining the data in
1150 the readbuf routine, and remembering the result. */
1151 for (i
= 0; i
< 512; i
++) {
1158 /* If emptymatch still =1, this is almost certainly a freshly-
1159 erased block, in which case the ECC will not come out right.
1160 We'll suppress the error and tell the caller everything's
1161 OK. Because it is. */
1163 ret
= doc_ecc_decode(rs_decoder
, dat
, calc_ecc
);
1165 printk(KERN_ERR
"doc200x_correct_data corrected %d errors\n", ret
);
1167 if (DoC_is_MillenniumPlus(doc
))
1168 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
1170 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
1171 if (no_ecc_failures
&& (ret
== -1)) {
1172 printk(KERN_ERR
"suppressing ECC failure\n");
1178 //u_char mydatabuf[528];
1180 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1181 * attempt to retain compatibility. It used to read:
1182 * .oobfree = { {8, 8} }
1183 * Since that leaves two bytes unusable, it was changed. But the following
1184 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1185 * .oobfree = { {6, 10} }
1186 * jffs2 seems to handle the above gracefully, but the current scheme seems
1187 * safer. The only problem with it is that any code that parses oobfree must
1188 * be able to handle out-of-order segments.
1190 static struct nand_ecclayout doc200x_oobinfo
= {
1192 .eccpos
= {0, 1, 2, 3, 4, 5},
1193 .oobfree
= {{8, 8}, {6, 2}}
1196 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1197 On sucessful return, buf will contain a copy of the media header for
1198 further processing. id is the string to scan for, and will presumably be
1199 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1200 header. The page #s of the found media headers are placed in mh0_page and
1201 mh1_page in the DOC private structure. */
1202 static int __init
find_media_headers(struct mtd_info
*mtd
, u_char
*buf
, const char *id
, int findmirror
)
1204 struct nand_chip
*this = mtd
->priv
;
1205 struct doc_priv
*doc
= this->priv
;
1210 for (offs
= 0; offs
< mtd
->size
; offs
+= mtd
->erasesize
) {
1211 ret
= mtd
->read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1212 if (retlen
!= mtd
->writesize
)
1215 printk(KERN_WARNING
"ECC error scanning DOC at 0x%x\n", offs
);
1217 if (memcmp(buf
, id
, 6))
1219 printk(KERN_INFO
"Found DiskOnChip %s Media Header at 0x%x\n", id
, offs
);
1220 if (doc
->mh0_page
== -1) {
1221 doc
->mh0_page
= offs
>> this->page_shift
;
1226 doc
->mh1_page
= offs
>> this->page_shift
;
1229 if (doc
->mh0_page
== -1) {
1230 printk(KERN_WARNING
"DiskOnChip %s Media Header not found.\n", id
);
1233 /* Only one mediaheader was found. We want buf to contain a
1234 mediaheader on return, so we'll have to re-read the one we found. */
1235 offs
= doc
->mh0_page
<< this->page_shift
;
1236 ret
= mtd
->read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1237 if (retlen
!= mtd
->writesize
) {
1238 /* Insanity. Give up. */
1239 printk(KERN_ERR
"Read DiskOnChip Media Header once, but can't reread it???\n");
1245 static inline int __init
nftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1247 struct nand_chip
*this = mtd
->priv
;
1248 struct doc_priv
*doc
= this->priv
;
1251 struct NFTLMediaHeader
*mh
;
1252 const unsigned psize
= 1 << this->page_shift
;
1254 unsigned blocks
, maxblocks
;
1255 int offs
, numheaders
;
1257 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1259 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1262 if (!(numheaders
= find_media_headers(mtd
, buf
, "ANAND", 1)))
1264 mh
= (struct NFTLMediaHeader
*)buf
;
1266 mh
->NumEraseUnits
= le16_to_cpu(mh
->NumEraseUnits
);
1267 mh
->FirstPhysicalEUN
= le16_to_cpu(mh
->FirstPhysicalEUN
);
1268 mh
->FormattedSize
= le32_to_cpu(mh
->FormattedSize
);
1270 printk(KERN_INFO
" DataOrgID = %s\n"
1271 " NumEraseUnits = %d\n"
1272 " FirstPhysicalEUN = %d\n"
1273 " FormattedSize = %d\n"
1274 " UnitSizeFactor = %d\n",
1275 mh
->DataOrgID
, mh
->NumEraseUnits
,
1276 mh
->FirstPhysicalEUN
, mh
->FormattedSize
,
1277 mh
->UnitSizeFactor
);
1279 blocks
= mtd
->size
>> this->phys_erase_shift
;
1280 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1282 if (mh
->UnitSizeFactor
== 0x00) {
1283 /* Auto-determine UnitSizeFactor. The constraints are:
1284 - There can be at most 32768 virtual blocks.
1285 - There can be at most (virtual block size - page size)
1286 virtual blocks (because MediaHeader+BBT must fit in 1).
1288 mh
->UnitSizeFactor
= 0xff;
1289 while (blocks
> maxblocks
) {
1291 maxblocks
= min(32768U, (maxblocks
<< 1) + psize
);
1292 mh
->UnitSizeFactor
--;
1294 printk(KERN_WARNING
"UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh
->UnitSizeFactor
);
1297 /* NOTE: The lines below modify internal variables of the NAND and MTD
1298 layers; variables with have already been configured by nand_scan.
1299 Unfortunately, we didn't know before this point what these values
1300 should be. Thus, this code is somewhat dependant on the exact
1301 implementation of the NAND layer. */
1302 if (mh
->UnitSizeFactor
!= 0xff) {
1303 this->bbt_erase_shift
+= (0xff - mh
->UnitSizeFactor
);
1304 mtd
->erasesize
<<= (0xff - mh
->UnitSizeFactor
);
1305 printk(KERN_INFO
"Setting virtual erase size to %d\n", mtd
->erasesize
);
1306 blocks
= mtd
->size
>> this->bbt_erase_shift
;
1307 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1310 if (blocks
> maxblocks
) {
1311 printk(KERN_ERR
"UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh
->UnitSizeFactor
);
1315 /* Skip past the media headers. */
1316 offs
= max(doc
->mh0_page
, doc
->mh1_page
);
1317 offs
<<= this->page_shift
;
1318 offs
+= mtd
->erasesize
;
1320 if (show_firmware_partition
== 1) {
1321 parts
[0].name
= " DiskOnChip Firmware / Media Header partition";
1322 parts
[0].offset
= 0;
1323 parts
[0].size
= offs
;
1327 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1328 parts
[numparts
].offset
= offs
;
1329 parts
[numparts
].size
= (mh
->NumEraseUnits
- numheaders
) << this->bbt_erase_shift
;
1331 offs
+= parts
[numparts
].size
;
1334 if (offs
< mtd
->size
) {
1335 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1336 parts
[numparts
].offset
= offs
;
1337 parts
[numparts
].size
= mtd
->size
- offs
;
1347 /* This is a stripped-down copy of the code in inftlmount.c */
1348 static inline int __init
inftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1350 struct nand_chip
*this = mtd
->priv
;
1351 struct doc_priv
*doc
= this->priv
;
1354 struct INFTLMediaHeader
*mh
;
1355 struct INFTLPartition
*ip
;
1358 int vshift
, lastvunit
= 0;
1360 int end
= mtd
->size
;
1362 if (inftl_bbt_write
)
1363 end
-= (INFTL_BBT_RESERVED_BLOCKS
<< this->phys_erase_shift
);
1365 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1367 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1371 if (!find_media_headers(mtd
, buf
, "BNAND", 0))
1373 doc
->mh1_page
= doc
->mh0_page
+ (4096 >> this->page_shift
);
1374 mh
= (struct INFTLMediaHeader
*)buf
;
1376 mh
->NoOfBootImageBlocks
= le32_to_cpu(mh
->NoOfBootImageBlocks
);
1377 mh
->NoOfBinaryPartitions
= le32_to_cpu(mh
->NoOfBinaryPartitions
);
1378 mh
->NoOfBDTLPartitions
= le32_to_cpu(mh
->NoOfBDTLPartitions
);
1379 mh
->BlockMultiplierBits
= le32_to_cpu(mh
->BlockMultiplierBits
);
1380 mh
->FormatFlags
= le32_to_cpu(mh
->FormatFlags
);
1381 mh
->PercentUsed
= le32_to_cpu(mh
->PercentUsed
);
1383 printk(KERN_INFO
" bootRecordID = %s\n"
1384 " NoOfBootImageBlocks = %d\n"
1385 " NoOfBinaryPartitions = %d\n"
1386 " NoOfBDTLPartitions = %d\n"
1387 " BlockMultiplerBits = %d\n"
1388 " FormatFlgs = %d\n"
1389 " OsakVersion = %d.%d.%d.%d\n"
1390 " PercentUsed = %d\n",
1391 mh
->bootRecordID
, mh
->NoOfBootImageBlocks
,
1392 mh
->NoOfBinaryPartitions
,
1393 mh
->NoOfBDTLPartitions
,
1394 mh
->BlockMultiplierBits
, mh
->FormatFlags
,
1395 ((unsigned char *) &mh
->OsakVersion
)[0] & 0xf,
1396 ((unsigned char *) &mh
->OsakVersion
)[1] & 0xf,
1397 ((unsigned char *) &mh
->OsakVersion
)[2] & 0xf,
1398 ((unsigned char *) &mh
->OsakVersion
)[3] & 0xf,
1401 vshift
= this->phys_erase_shift
+ mh
->BlockMultiplierBits
;
1403 blocks
= mtd
->size
>> vshift
;
1404 if (blocks
> 32768) {
1405 printk(KERN_ERR
"BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh
->BlockMultiplierBits
);
1409 blocks
= doc
->chips_per_floor
<< (this->chip_shift
- this->phys_erase_shift
);
1410 if (inftl_bbt_write
&& (blocks
> mtd
->erasesize
)) {
1411 printk(KERN_ERR
"Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1415 /* Scan the partitions */
1416 for (i
= 0; (i
< 4); i
++) {
1417 ip
= &(mh
->Partitions
[i
]);
1418 ip
->virtualUnits
= le32_to_cpu(ip
->virtualUnits
);
1419 ip
->firstUnit
= le32_to_cpu(ip
->firstUnit
);
1420 ip
->lastUnit
= le32_to_cpu(ip
->lastUnit
);
1421 ip
->flags
= le32_to_cpu(ip
->flags
);
1422 ip
->spareUnits
= le32_to_cpu(ip
->spareUnits
);
1423 ip
->Reserved0
= le32_to_cpu(ip
->Reserved0
);
1425 printk(KERN_INFO
" PARTITION[%d] ->\n"
1426 " virtualUnits = %d\n"
1430 " spareUnits = %d\n",
1431 i
, ip
->virtualUnits
, ip
->firstUnit
,
1432 ip
->lastUnit
, ip
->flags
,
1435 if ((show_firmware_partition
== 1) &&
1436 (i
== 0) && (ip
->firstUnit
> 0)) {
1437 parts
[0].name
= " DiskOnChip IPL / Media Header partition";
1438 parts
[0].offset
= 0;
1439 parts
[0].size
= mtd
->erasesize
* ip
->firstUnit
;
1443 if (ip
->flags
& INFTL_BINARY
)
1444 parts
[numparts
].name
= " DiskOnChip BDK partition";
1446 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1447 parts
[numparts
].offset
= ip
->firstUnit
<< vshift
;
1448 parts
[numparts
].size
= (1 + ip
->lastUnit
- ip
->firstUnit
) << vshift
;
1450 if (ip
->lastUnit
> lastvunit
)
1451 lastvunit
= ip
->lastUnit
;
1452 if (ip
->flags
& INFTL_LAST
)
1456 if ((lastvunit
<< vshift
) < end
) {
1457 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1458 parts
[numparts
].offset
= lastvunit
<< vshift
;
1459 parts
[numparts
].size
= end
- parts
[numparts
].offset
;
1468 static int __init
nftl_scan_bbt(struct mtd_info
*mtd
)
1471 struct nand_chip
*this = mtd
->priv
;
1472 struct doc_priv
*doc
= this->priv
;
1473 struct mtd_partition parts
[2];
1475 memset((char *)parts
, 0, sizeof(parts
));
1476 /* On NFTL, we have to find the media headers before we can read the
1477 BBTs, since they're stored in the media header eraseblocks. */
1478 numparts
= nftl_partscan(mtd
, parts
);
1481 this->bbt_td
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1482 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1484 this->bbt_td
->veroffs
= 7;
1485 this->bbt_td
->pages
[0] = doc
->mh0_page
+ 1;
1486 if (doc
->mh1_page
!= -1) {
1487 this->bbt_md
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1488 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1490 this->bbt_md
->veroffs
= 7;
1491 this->bbt_md
->pages
[0] = doc
->mh1_page
+ 1;
1493 this->bbt_md
= NULL
;
1496 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1497 At least as nand_bbt.c is currently written. */
1498 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1500 add_mtd_device(mtd
);
1501 #ifdef CONFIG_MTD_PARTITIONS
1503 add_mtd_partitions(mtd
, parts
, numparts
);
1508 static int __init
inftl_scan_bbt(struct mtd_info
*mtd
)
1511 struct nand_chip
*this = mtd
->priv
;
1512 struct doc_priv
*doc
= this->priv
;
1513 struct mtd_partition parts
[5];
1515 if (this->numchips
> doc
->chips_per_floor
) {
1516 printk(KERN_ERR
"Multi-floor INFTL devices not yet supported.\n");
1520 if (DoC_is_MillenniumPlus(doc
)) {
1521 this->bbt_td
->options
= NAND_BBT_2BIT
| NAND_BBT_ABSPAGE
;
1522 if (inftl_bbt_write
)
1523 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1524 if (doc
->ChipID
== DOC_ChipID_DocMilPlus32
) {
1525 mtd
->erasesize
<<= 1;
1526 this->bbt_td
->pages
[0] = 4;
1528 this->bbt_td
->pages
[0] = 2;
1529 this->bbt_md
= NULL
;
1531 this->bbt_td
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1532 if (inftl_bbt_write
)
1533 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1534 this->bbt_td
->offs
= 8;
1535 this->bbt_td
->len
= 8;
1536 this->bbt_td
->veroffs
= 7;
1537 this->bbt_td
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1538 this->bbt_td
->reserved_block_code
= 0x01;
1539 this->bbt_td
->pattern
= "MSYS_BBT";
1541 this->bbt_md
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1542 if (inftl_bbt_write
)
1543 this->bbt_md
->options
|= NAND_BBT_WRITE
;
1544 this->bbt_md
->offs
= 8;
1545 this->bbt_md
->len
= 8;
1546 this->bbt_md
->veroffs
= 7;
1547 this->bbt_md
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1548 this->bbt_md
->reserved_block_code
= 0x01;
1549 this->bbt_md
->pattern
= "TBB_SYSM";
1552 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1553 At least as nand_bbt.c is currently written. */
1554 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1556 memset((char *)parts
, 0, sizeof(parts
));
1557 numparts
= inftl_partscan(mtd
, parts
);
1558 /* At least for now, require the INFTL Media Header. We could probably
1559 do without it for non-INFTL use, since all it gives us is
1560 autopartitioning, but I want to give it more thought. */
1562 numparts
= nftl_partscan(mtd
, parts
);
1563 if (!numparts
) return -EIO
;
1564 add_mtd_device(mtd
);
1565 #ifdef CONFIG_MTD_PARTITIONS
1567 add_mtd_partitions(mtd
, parts
, numparts
);
1572 static inline int __init
doc2000_init(struct mtd_info
*mtd
)
1574 struct nand_chip
*this = mtd
->priv
;
1575 struct doc_priv
*doc
= this->priv
;
1577 this->read_byte
= doc2000_read_byte
;
1578 this->write_buf
= doc2000_writebuf
;
1579 this->read_buf
= doc2000_readbuf
;
1580 this->verify_buf
= doc2000_verifybuf
;
1581 this->scan_bbt
= nftl_scan_bbt
;
1583 doc
->CDSNControl
= CDSN_CTRL_FLASH_IO
| CDSN_CTRL_ECC_IO
;
1584 doc2000_count_chips(mtd
);
1585 mtd
->name
= "DiskOnChip 2000 (NFTL Model)";
1586 return (4 * doc
->chips_per_floor
);
1589 static inline int __init
doc2001_init(struct mtd_info
*mtd
)
1591 struct nand_chip
*this = mtd
->priv
;
1592 struct doc_priv
*doc
= this->priv
;
1594 this->read_byte
= doc2001_read_byte
;
1595 this->write_buf
= doc2001_writebuf
;
1596 this->read_buf
= doc2001_readbuf
;
1597 this->verify_buf
= doc2001_verifybuf
;
1599 ReadDOC(doc
->virtadr
, ChipID
);
1600 ReadDOC(doc
->virtadr
, ChipID
);
1601 ReadDOC(doc
->virtadr
, ChipID
);
1602 if (ReadDOC(doc
->virtadr
, ChipID
) != DOC_ChipID_DocMil
) {
1603 /* It's not a Millennium; it's one of the newer
1604 DiskOnChip 2000 units with a similar ASIC.
1605 Treat it like a Millennium, except that it
1606 can have multiple chips. */
1607 doc2000_count_chips(mtd
);
1608 mtd
->name
= "DiskOnChip 2000 (INFTL Model)";
1609 this->scan_bbt
= inftl_scan_bbt
;
1610 return (4 * doc
->chips_per_floor
);
1612 /* Bog-standard Millennium */
1613 doc
->chips_per_floor
= 1;
1614 mtd
->name
= "DiskOnChip Millennium";
1615 this->scan_bbt
= nftl_scan_bbt
;
1620 static inline int __init
doc2001plus_init(struct mtd_info
*mtd
)
1622 struct nand_chip
*this = mtd
->priv
;
1623 struct doc_priv
*doc
= this->priv
;
1625 this->read_byte
= doc2001plus_read_byte
;
1626 this->write_buf
= doc2001plus_writebuf
;
1627 this->read_buf
= doc2001plus_readbuf
;
1628 this->verify_buf
= doc2001plus_verifybuf
;
1629 this->scan_bbt
= inftl_scan_bbt
;
1630 this->cmd_ctrl
= NULL
;
1631 this->select_chip
= doc2001plus_select_chip
;
1632 this->cmdfunc
= doc2001plus_command
;
1633 this->ecc
.hwctl
= doc2001plus_enable_hwecc
;
1635 doc
->chips_per_floor
= 1;
1636 mtd
->name
= "DiskOnChip Millennium Plus";
1641 static int __init
doc_probe(unsigned long physadr
)
1643 unsigned char ChipID
;
1644 struct mtd_info
*mtd
;
1645 struct nand_chip
*nand
;
1646 struct doc_priv
*doc
;
1647 void __iomem
*virtadr
;
1648 unsigned char save_control
;
1649 unsigned char tmp
, tmpb
, tmpc
;
1650 int reg
, len
, numchips
;
1653 virtadr
= ioremap(physadr
, DOC_IOREMAP_LEN
);
1655 printk(KERN_ERR
"Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN
, physadr
);
1659 /* It's not possible to cleanly detect the DiskOnChip - the
1660 * bootup procedure will put the device into reset mode, and
1661 * it's not possible to talk to it without actually writing
1662 * to the DOCControl register. So we store the current contents
1663 * of the DOCControl register's location, in case we later decide
1664 * that it's not a DiskOnChip, and want to put it back how we
1667 save_control
= ReadDOC(virtadr
, DOCControl
);
1669 /* Reset the DiskOnChip ASIC */
1670 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1671 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1673 /* Enable the DiskOnChip ASIC */
1674 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1675 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1677 ChipID
= ReadDOC(virtadr
, ChipID
);
1680 case DOC_ChipID_Doc2k
:
1681 reg
= DoC_2k_ECCStatus
;
1683 case DOC_ChipID_DocMil
:
1686 case DOC_ChipID_DocMilPlus16
:
1687 case DOC_ChipID_DocMilPlus32
:
1689 /* Possible Millennium Plus, need to do more checks */
1690 /* Possibly release from power down mode */
1691 for (tmp
= 0; (tmp
< 4); tmp
++)
1692 ReadDOC(virtadr
, Mplus_Power
);
1694 /* Reset the Millennium Plus ASIC */
1695 tmp
= DOC_MODE_RESET
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1696 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1697 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1700 /* Enable the Millennium Plus ASIC */
1701 tmp
= DOC_MODE_NORMAL
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1702 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1703 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1706 ChipID
= ReadDOC(virtadr
, ChipID
);
1709 case DOC_ChipID_DocMilPlus16
:
1710 reg
= DoC_Mplus_Toggle
;
1712 case DOC_ChipID_DocMilPlus32
:
1713 reg
= DoC_Mplus_Toggle
;
1725 /* Check the TOGGLE bit in the ECC register */
1726 tmp
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1727 tmpb
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1728 tmpc
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1729 if ((tmp
== tmpb
) || (tmp
!= tmpc
)) {
1730 printk(KERN_WARNING
"Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr
);
1735 for (mtd
= doclist
; mtd
; mtd
= doc
->nextdoc
) {
1736 unsigned char oldval
;
1737 unsigned char newval
;
1740 /* Use the alias resolution register to determine if this is
1741 in fact the same DOC aliased to a new address. If writes
1742 to one chip's alias resolution register change the value on
1743 the other chip, they're the same chip. */
1744 if ((ChipID
== DOC_ChipID_DocMilPlus16
) ||
1745 (ChipID
== DOC_ChipID_DocMilPlus32
)) {
1746 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1747 newval
= ReadDOC(virtadr
, Mplus_AliasResolution
);
1749 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1750 newval
= ReadDOC(virtadr
, AliasResolution
);
1752 if (oldval
!= newval
)
1754 if ((ChipID
== DOC_ChipID_DocMilPlus16
) ||
1755 (ChipID
== DOC_ChipID_DocMilPlus32
)) {
1756 WriteDOC(~newval
, virtadr
, Mplus_AliasResolution
);
1757 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1758 WriteDOC(newval
, virtadr
, Mplus_AliasResolution
); // restore it
1760 WriteDOC(~newval
, virtadr
, AliasResolution
);
1761 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1762 WriteDOC(newval
, virtadr
, AliasResolution
); // restore it
1765 if (oldval
== newval
) {
1766 printk(KERN_DEBUG
"Found alias of DOC at 0x%lx to 0x%lx\n", doc
->physadr
, physadr
);
1771 printk(KERN_NOTICE
"DiskOnChip found at 0x%lx\n", physadr
);
1773 len
= sizeof(struct mtd_info
) +
1774 sizeof(struct nand_chip
) + sizeof(struct doc_priv
) + (2 * sizeof(struct nand_bbt_descr
));
1775 mtd
= kmalloc(len
, GFP_KERNEL
);
1777 printk(KERN_ERR
"DiskOnChip kmalloc (%d bytes) failed!\n", len
);
1781 memset(mtd
, 0, len
);
1783 nand
= (struct nand_chip
*) (mtd
+ 1);
1784 doc
= (struct doc_priv
*) (nand
+ 1);
1785 nand
->bbt_td
= (struct nand_bbt_descr
*) (doc
+ 1);
1786 nand
->bbt_md
= nand
->bbt_td
+ 1;
1789 mtd
->owner
= THIS_MODULE
;
1792 nand
->select_chip
= doc200x_select_chip
;
1793 nand
->cmd_ctrl
= doc200x_hwcontrol
;
1794 nand
->dev_ready
= doc200x_dev_ready
;
1795 nand
->waitfunc
= doc200x_wait
;
1796 nand
->block_bad
= doc200x_block_bad
;
1797 nand
->ecc
.hwctl
= doc200x_enable_hwecc
;
1798 nand
->ecc
.calculate
= doc200x_calculate_ecc
;
1799 nand
->ecc
.correct
= doc200x_correct_data
;
1801 nand
->ecc
.layout
= &doc200x_oobinfo
;
1802 nand
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1803 nand
->ecc
.size
= 512;
1804 nand
->ecc
.bytes
= 6;
1805 nand
->options
= NAND_USE_FLASH_BBT
;
1807 doc
->physadr
= physadr
;
1808 doc
->virtadr
= virtadr
;
1809 doc
->ChipID
= ChipID
;
1814 doc
->nextdoc
= doclist
;
1816 if (ChipID
== DOC_ChipID_Doc2k
)
1817 numchips
= doc2000_init(mtd
);
1818 else if ((ChipID
== DOC_ChipID_DocMilPlus16
) ||
1819 (ChipID
== DOC_ChipID_DocMilPlus32
))
1820 numchips
= doc2001plus_init(mtd
);
1822 numchips
= doc2001_init(mtd
);
1824 if ((ret
= nand_scan(mtd
, numchips
))) {
1825 /* DBB note: i believe nand_release is necessary here, as
1826 buffers may have been allocated in nand_base. Check with
1828 /* nand_release will call del_mtd_device, but we haven't yet
1829 added it. This is handled without incident by
1830 del_mtd_device, as far as I can tell. */
1841 /* Put back the contents of the DOCControl register, in case it's not
1842 actually a DiskOnChip. */
1843 WriteDOC(save_control
, virtadr
, DOCControl
);
1849 static void release_nanddoc(void)
1851 struct mtd_info
*mtd
, *nextmtd
;
1852 struct nand_chip
*nand
;
1853 struct doc_priv
*doc
;
1855 for (mtd
= doclist
; mtd
; mtd
= nextmtd
) {
1859 nextmtd
= doc
->nextdoc
;
1861 iounmap(doc
->virtadr
);
1866 static int __init
init_nanddoc(void)
1870 /* We could create the decoder on demand, if memory is a concern.
1871 * This way we have it handy, if an error happens
1873 * Symbolsize is 10 (bits)
1874 * Primitve polynomial is x^10+x^3+1
1875 * first consecutive root is 510
1876 * primitve element to generate roots = 1
1877 * generator polinomial degree = 4
1879 rs_decoder
= init_rs(10, 0x409, FCR
, 1, NROOTS
);
1881 printk(KERN_ERR
"DiskOnChip: Could not create a RS decoder\n");
1885 if (doc_config_location
) {
1886 printk(KERN_INFO
"Using configured DiskOnChip probe address 0x%lx\n", doc_config_location
);
1887 ret
= doc_probe(doc_config_location
);
1891 for (i
= 0; (doc_locations
[i
] != 0xffffffff); i
++) {
1892 doc_probe(doc_locations
[i
]);
1895 /* No banner message any more. Print a message if no DiskOnChip
1896 found, so the user knows we at least tried. */
1898 printk(KERN_INFO
"No valid DiskOnChip devices found\n");
1904 free_rs(rs_decoder
);
1908 static void __exit
cleanup_nanddoc(void)
1910 /* Cleanup the nand/DoC resources */
1913 /* Free the reed solomon resources */
1915 free_rs(rs_decoder
);
1919 module_init(init_nanddoc
);
1920 module_exit(cleanup_nanddoc
);
1922 MODULE_LICENSE("GPL");
1923 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1924 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");