v2.6.22.24-op1
[linux-2.6.22.y-op.git] / mm / slub.c
blob648f2c77fee7e4380a8fdfff57e0c2284e1cf06d
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
79 * Overloading of page flags that are otherwise used for LRU management.
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
93 * lockless_freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
99 * the fast path and disables lockless freelists.
102 #define FROZEN (1 << PG_active)
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
106 #else
107 #define SLABDEBUG 0
108 #endif
110 static inline int SlabFrozen(struct page *page)
112 return page->flags & FROZEN;
115 static inline void SetSlabFrozen(struct page *page)
117 page->flags |= FROZEN;
120 static inline void ClearSlabFrozen(struct page *page)
122 page->flags &= ~FROZEN;
125 static inline int SlabDebug(struct page *page)
127 return page->flags & SLABDEBUG;
130 static inline void SetSlabDebug(struct page *page)
132 page->flags |= SLABDEBUG;
135 static inline void ClearSlabDebug(struct page *page)
137 page->flags &= ~SLABDEBUG;
141 * Issues still to be resolved:
143 * - The per cpu array is updated for each new slab and and is a remote
144 * cacheline for most nodes. This could become a bouncing cacheline given
145 * enough frequent updates. There are 16 pointers in a cacheline, so at
146 * max 16 cpus could compete for the cacheline which may be okay.
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 * - Variable sizing of the per node arrays
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
156 #if PAGE_SHIFT <= 12
159 * Small page size. Make sure that we do not fragment memory
161 #define DEFAULT_MAX_ORDER 1
162 #define DEFAULT_MIN_OBJECTS 4
164 #else
167 * Large page machines are customarily able to handle larger
168 * page orders.
170 #define DEFAULT_MAX_ORDER 2
171 #define DEFAULT_MIN_OBJECTS 8
173 #endif
176 * Mininum number of partial slabs. These will be left on the partial
177 * lists even if they are empty. kmem_cache_shrink may reclaim them.
179 #define MIN_PARTIAL 2
182 * Maximum number of desirable partial slabs.
183 * The existence of more partial slabs makes kmem_cache_shrink
184 * sort the partial list by the number of objects in the.
186 #define MAX_PARTIAL 10
188 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 SLAB_POISON | SLAB_STORE_USER)
192 * Set of flags that will prevent slab merging
194 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
197 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 SLAB_CACHE_DMA)
200 #ifndef ARCH_KMALLOC_MINALIGN
201 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
202 #endif
204 #ifndef ARCH_SLAB_MINALIGN
205 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
206 #endif
208 /* Internal SLUB flags */
209 #define __OBJECT_POISON 0x80000000 /* Poison object */
211 /* Not all arches define cache_line_size */
212 #ifndef cache_line_size
213 #define cache_line_size() L1_CACHE_BYTES
214 #endif
216 static int kmem_size = sizeof(struct kmem_cache);
218 #ifdef CONFIG_SMP
219 static struct notifier_block slab_notifier;
220 #endif
222 static enum {
223 DOWN, /* No slab functionality available */
224 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
225 UP, /* Everything works but does not show up in sysfs */
226 SYSFS /* Sysfs up */
227 } slab_state = DOWN;
229 /* A list of all slab caches on the system */
230 static DECLARE_RWSEM(slub_lock);
231 LIST_HEAD(slab_caches);
234 * Tracking user of a slab.
236 struct track {
237 void *addr; /* Called from address */
238 int cpu; /* Was running on cpu */
239 int pid; /* Pid context */
240 unsigned long when; /* When did the operation occur */
243 enum track_item { TRACK_ALLOC, TRACK_FREE };
245 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
246 static int sysfs_slab_add(struct kmem_cache *);
247 static int sysfs_slab_alias(struct kmem_cache *, const char *);
248 static void sysfs_slab_remove(struct kmem_cache *);
249 #else
250 static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251 static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
252 static void sysfs_slab_remove(struct kmem_cache *s) {}
253 #endif
255 /********************************************************************
256 * Core slab cache functions
257 *******************************************************************/
259 int slab_is_available(void)
261 return slab_state >= UP;
264 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
266 #ifdef CONFIG_NUMA
267 return s->node[node];
268 #else
269 return &s->local_node;
270 #endif
273 static inline int check_valid_pointer(struct kmem_cache *s,
274 struct page *page, const void *object)
276 void *base;
278 if (!object)
279 return 1;
281 base = page_address(page);
282 if (object < base || object >= base + s->objects * s->size ||
283 (object - base) % s->size) {
284 return 0;
287 return 1;
291 * Slow version of get and set free pointer.
293 * This version requires touching the cache lines of kmem_cache which
294 * we avoid to do in the fast alloc free paths. There we obtain the offset
295 * from the page struct.
297 static inline void *get_freepointer(struct kmem_cache *s, void *object)
299 return *(void **)(object + s->offset);
302 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
304 *(void **)(object + s->offset) = fp;
307 /* Loop over all objects in a slab */
308 #define for_each_object(__p, __s, __addr) \
309 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
310 __p += (__s)->size)
312 /* Scan freelist */
313 #define for_each_free_object(__p, __s, __free) \
314 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
316 /* Determine object index from a given position */
317 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
319 return (p - addr) / s->size;
322 #ifdef CONFIG_SLUB_DEBUG
324 * Debug settings:
326 static int slub_debug;
328 static char *slub_debug_slabs;
331 * Object debugging
333 static void print_section(char *text, u8 *addr, unsigned int length)
335 int i, offset;
336 int newline = 1;
337 char ascii[17];
339 ascii[16] = 0;
341 for (i = 0; i < length; i++) {
342 if (newline) {
343 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
344 newline = 0;
346 printk(" %02x", addr[i]);
347 offset = i % 16;
348 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
349 if (offset == 15) {
350 printk(" %s\n",ascii);
351 newline = 1;
354 if (!newline) {
355 i %= 16;
356 while (i < 16) {
357 printk(" ");
358 ascii[i] = ' ';
359 i++;
361 printk(" %s\n", ascii);
365 static struct track *get_track(struct kmem_cache *s, void *object,
366 enum track_item alloc)
368 struct track *p;
370 if (s->offset)
371 p = object + s->offset + sizeof(void *);
372 else
373 p = object + s->inuse;
375 return p + alloc;
378 static void set_track(struct kmem_cache *s, void *object,
379 enum track_item alloc, void *addr)
381 struct track *p;
383 if (s->offset)
384 p = object + s->offset + sizeof(void *);
385 else
386 p = object + s->inuse;
388 p += alloc;
389 if (addr) {
390 p->addr = addr;
391 p->cpu = smp_processor_id();
392 p->pid = current ? current->pid : -1;
393 p->when = jiffies;
394 } else
395 memset(p, 0, sizeof(struct track));
398 static void init_tracking(struct kmem_cache *s, void *object)
400 if (s->flags & SLAB_STORE_USER) {
401 set_track(s, object, TRACK_FREE, NULL);
402 set_track(s, object, TRACK_ALLOC, NULL);
406 static void print_track(const char *s, struct track *t)
408 if (!t->addr)
409 return;
411 printk(KERN_ERR "%s: ", s);
412 __print_symbol("%s", (unsigned long)t->addr);
413 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
416 static void print_trailer(struct kmem_cache *s, u8 *p)
418 unsigned int off; /* Offset of last byte */
420 if (s->flags & SLAB_RED_ZONE)
421 print_section("Redzone", p + s->objsize,
422 s->inuse - s->objsize);
424 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
425 p + s->offset,
426 get_freepointer(s, p));
428 if (s->offset)
429 off = s->offset + sizeof(void *);
430 else
431 off = s->inuse;
433 if (s->flags & SLAB_STORE_USER) {
434 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
435 print_track("Last free ", get_track(s, p, TRACK_FREE));
436 off += 2 * sizeof(struct track);
439 if (off != s->size)
440 /* Beginning of the filler is the free pointer */
441 print_section("Filler", p + off, s->size - off);
444 static void object_err(struct kmem_cache *s, struct page *page,
445 u8 *object, char *reason)
447 u8 *addr = page_address(page);
449 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
450 s->name, reason, object, page);
451 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
452 object - addr, page->flags, page->inuse, page->freelist);
453 if (object > addr + 16)
454 print_section("Bytes b4", object - 16, 16);
455 print_section("Object", object, min(s->objsize, 128));
456 print_trailer(s, object);
457 dump_stack();
460 static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
462 va_list args;
463 char buf[100];
465 va_start(args, reason);
466 vsnprintf(buf, sizeof(buf), reason, args);
467 va_end(args);
468 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
469 page);
470 dump_stack();
473 static void init_object(struct kmem_cache *s, void *object, int active)
475 u8 *p = object;
477 if (s->flags & __OBJECT_POISON) {
478 memset(p, POISON_FREE, s->objsize - 1);
479 p[s->objsize -1] = POISON_END;
482 if (s->flags & SLAB_RED_ZONE)
483 memset(p + s->objsize,
484 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
485 s->inuse - s->objsize);
488 static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
490 while (bytes) {
491 if (*start != (u8)value)
492 return 0;
493 start++;
494 bytes--;
496 return 1;
500 * Object layout:
502 * object address
503 * Bytes of the object to be managed.
504 * If the freepointer may overlay the object then the free
505 * pointer is the first word of the object.
507 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
508 * 0xa5 (POISON_END)
510 * object + s->objsize
511 * Padding to reach word boundary. This is also used for Redzoning.
512 * Padding is extended by another word if Redzoning is enabled and
513 * objsize == inuse.
515 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
516 * 0xcc (RED_ACTIVE) for objects in use.
518 * object + s->inuse
519 * Meta data starts here.
521 * A. Free pointer (if we cannot overwrite object on free)
522 * B. Tracking data for SLAB_STORE_USER
523 * C. Padding to reach required alignment boundary or at mininum
524 * one word if debuggin is on to be able to detect writes
525 * before the word boundary.
527 * Padding is done using 0x5a (POISON_INUSE)
529 * object + s->size
530 * Nothing is used beyond s->size.
532 * If slabcaches are merged then the objsize and inuse boundaries are mostly
533 * ignored. And therefore no slab options that rely on these boundaries
534 * may be used with merged slabcaches.
537 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
538 void *from, void *to)
540 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
541 s->name, message, data, from, to - 1);
542 memset(from, data, to - from);
545 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
547 unsigned long off = s->inuse; /* The end of info */
549 if (s->offset)
550 /* Freepointer is placed after the object. */
551 off += sizeof(void *);
553 if (s->flags & SLAB_STORE_USER)
554 /* We also have user information there */
555 off += 2 * sizeof(struct track);
557 if (s->size == off)
558 return 1;
560 if (check_bytes(p + off, POISON_INUSE, s->size - off))
561 return 1;
563 object_err(s, page, p, "Object padding check fails");
566 * Restore padding
568 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
569 return 0;
572 static int slab_pad_check(struct kmem_cache *s, struct page *page)
574 u8 *p;
575 int length, remainder;
577 if (!(s->flags & SLAB_POISON))
578 return 1;
580 p = page_address(page);
581 length = s->objects * s->size;
582 remainder = (PAGE_SIZE << s->order) - length;
583 if (!remainder)
584 return 1;
586 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
587 slab_err(s, page, "Padding check failed");
588 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
589 p + length + remainder);
590 return 0;
592 return 1;
595 static int check_object(struct kmem_cache *s, struct page *page,
596 void *object, int active)
598 u8 *p = object;
599 u8 *endobject = object + s->objsize;
601 if (s->flags & SLAB_RED_ZONE) {
602 unsigned int red =
603 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
605 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
606 object_err(s, page, object,
607 active ? "Redzone Active" : "Redzone Inactive");
608 restore_bytes(s, "redzone", red,
609 endobject, object + s->inuse);
610 return 0;
612 } else {
613 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
614 !check_bytes(endobject, POISON_INUSE,
615 s->inuse - s->objsize)) {
616 object_err(s, page, p, "Alignment padding check fails");
618 * Fix it so that there will not be another report.
620 * Hmmm... We may be corrupting an object that now expects
621 * to be longer than allowed.
623 restore_bytes(s, "alignment padding", POISON_INUSE,
624 endobject, object + s->inuse);
628 if (s->flags & SLAB_POISON) {
629 if (!active && (s->flags & __OBJECT_POISON) &&
630 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
631 p[s->objsize - 1] != POISON_END)) {
633 object_err(s, page, p, "Poison check failed");
634 restore_bytes(s, "Poison", POISON_FREE,
635 p, p + s->objsize -1);
636 restore_bytes(s, "Poison", POISON_END,
637 p + s->objsize - 1, p + s->objsize);
638 return 0;
641 * check_pad_bytes cleans up on its own.
643 check_pad_bytes(s, page, p);
646 if (!s->offset && active)
648 * Object and freepointer overlap. Cannot check
649 * freepointer while object is allocated.
651 return 1;
653 /* Check free pointer validity */
654 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
655 object_err(s, page, p, "Freepointer corrupt");
657 * No choice but to zap it and thus loose the remainder
658 * of the free objects in this slab. May cause
659 * another error because the object count is now wrong.
661 set_freepointer(s, p, NULL);
662 return 0;
664 return 1;
667 static int check_slab(struct kmem_cache *s, struct page *page)
669 VM_BUG_ON(!irqs_disabled());
671 if (!PageSlab(page)) {
672 slab_err(s, page, "Not a valid slab page flags=%lx "
673 "mapping=0x%p count=%d", page->flags, page->mapping,
674 page_count(page));
675 return 0;
677 if (page->offset * sizeof(void *) != s->offset) {
678 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
679 "mapping=0x%p count=%d",
680 (unsigned long)(page->offset * sizeof(void *)),
681 page->flags,
682 page->mapping,
683 page_count(page));
684 return 0;
686 if (page->inuse > s->objects) {
687 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
688 "mapping=0x%p count=%d",
689 s->name, page->inuse, s->objects, page->flags,
690 page->mapping, page_count(page));
691 return 0;
693 /* Slab_pad_check fixes things up after itself */
694 slab_pad_check(s, page);
695 return 1;
699 * Determine if a certain object on a page is on the freelist. Must hold the
700 * slab lock to guarantee that the chains are in a consistent state.
702 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
704 int nr = 0;
705 void *fp = page->freelist;
706 void *object = NULL;
708 while (fp && nr <= s->objects) {
709 if (fp == search)
710 return 1;
711 if (!check_valid_pointer(s, page, fp)) {
712 if (object) {
713 object_err(s, page, object,
714 "Freechain corrupt");
715 set_freepointer(s, object, NULL);
716 break;
717 } else {
718 slab_err(s, page, "Freepointer 0x%p corrupt",
719 fp);
720 page->freelist = NULL;
721 page->inuse = s->objects;
722 printk(KERN_ERR "@@@ SLUB %s: Freelist "
723 "cleared. Slab 0x%p\n",
724 s->name, page);
725 return 0;
727 break;
729 object = fp;
730 fp = get_freepointer(s, object);
731 nr++;
734 if (page->inuse != s->objects - nr) {
735 slab_err(s, page, "Wrong object count. Counter is %d but "
736 "counted were %d", s, page, page->inuse,
737 s->objects - nr);
738 page->inuse = s->objects - nr;
739 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
740 "Slab @0x%p\n", s->name, page);
742 return search == NULL;
745 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
747 if (s->flags & SLAB_TRACE) {
748 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
749 s->name,
750 alloc ? "alloc" : "free",
751 object, page->inuse,
752 page->freelist);
754 if (!alloc)
755 print_section("Object", (void *)object, s->objsize);
757 dump_stack();
762 * Tracking of fully allocated slabs for debugging purposes.
764 static void add_full(struct kmem_cache_node *n, struct page *page)
766 spin_lock(&n->list_lock);
767 list_add(&page->lru, &n->full);
768 spin_unlock(&n->list_lock);
771 static void remove_full(struct kmem_cache *s, struct page *page)
773 struct kmem_cache_node *n;
775 if (!(s->flags & SLAB_STORE_USER))
776 return;
778 n = get_node(s, page_to_nid(page));
780 spin_lock(&n->list_lock);
781 list_del(&page->lru);
782 spin_unlock(&n->list_lock);
785 static void setup_object_debug(struct kmem_cache *s, struct page *page,
786 void *object)
788 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
789 return;
791 init_object(s, object, 0);
792 init_tracking(s, object);
795 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
796 void *object, void *addr)
798 if (!check_slab(s, page))
799 goto bad;
801 if (object && !on_freelist(s, page, object)) {
802 slab_err(s, page, "Object 0x%p already allocated", object);
803 goto bad;
806 if (!check_valid_pointer(s, page, object)) {
807 object_err(s, page, object, "Freelist Pointer check fails");
808 goto bad;
811 if (object && !check_object(s, page, object, 0))
812 goto bad;
814 /* Success perform special debug activities for allocs */
815 if (s->flags & SLAB_STORE_USER)
816 set_track(s, object, TRACK_ALLOC, addr);
817 trace(s, page, object, 1);
818 init_object(s, object, 1);
819 return 1;
821 bad:
822 if (PageSlab(page)) {
824 * If this is a slab page then lets do the best we can
825 * to avoid issues in the future. Marking all objects
826 * as used avoids touching the remaining objects.
828 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
829 s->name, page);
830 page->inuse = s->objects;
831 page->freelist = NULL;
832 /* Fix up fields that may be corrupted */
833 page->offset = s->offset / sizeof(void *);
835 return 0;
838 static int free_debug_processing(struct kmem_cache *s, struct page *page,
839 void *object, void *addr)
841 if (!check_slab(s, page))
842 goto fail;
844 if (!check_valid_pointer(s, page, object)) {
845 slab_err(s, page, "Invalid object pointer 0x%p", object);
846 goto fail;
849 if (on_freelist(s, page, object)) {
850 slab_err(s, page, "Object 0x%p already free", object);
851 goto fail;
854 if (!check_object(s, page, object, 1))
855 return 0;
857 if (unlikely(s != page->slab)) {
858 if (!PageSlab(page))
859 slab_err(s, page, "Attempt to free object(0x%p) "
860 "outside of slab", object);
861 else
862 if (!page->slab) {
863 printk(KERN_ERR
864 "SLUB <none>: no slab for object 0x%p.\n",
865 object);
866 dump_stack();
868 else
869 slab_err(s, page, "object at 0x%p belongs "
870 "to slab %s", object, page->slab->name);
871 goto fail;
874 /* Special debug activities for freeing objects */
875 if (!SlabFrozen(page) && !page->freelist)
876 remove_full(s, page);
877 if (s->flags & SLAB_STORE_USER)
878 set_track(s, object, TRACK_FREE, addr);
879 trace(s, page, object, 0);
880 init_object(s, object, 0);
881 return 1;
883 fail:
884 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
885 s->name, page, object);
886 return 0;
889 static int __init setup_slub_debug(char *str)
891 if (!str || *str != '=')
892 slub_debug = DEBUG_DEFAULT_FLAGS;
893 else {
894 str++;
895 if (*str == 0 || *str == ',')
896 slub_debug = DEBUG_DEFAULT_FLAGS;
897 else
898 for( ;*str && *str != ','; str++)
899 switch (*str) {
900 case 'f' : case 'F' :
901 slub_debug |= SLAB_DEBUG_FREE;
902 break;
903 case 'z' : case 'Z' :
904 slub_debug |= SLAB_RED_ZONE;
905 break;
906 case 'p' : case 'P' :
907 slub_debug |= SLAB_POISON;
908 break;
909 case 'u' : case 'U' :
910 slub_debug |= SLAB_STORE_USER;
911 break;
912 case 't' : case 'T' :
913 slub_debug |= SLAB_TRACE;
914 break;
915 default:
916 printk(KERN_ERR "slub_debug option '%c' "
917 "unknown. skipped\n",*str);
921 if (*str == ',')
922 slub_debug_slabs = str + 1;
923 return 1;
926 __setup("slub_debug", setup_slub_debug);
928 static void kmem_cache_open_debug_check(struct kmem_cache *s)
931 * The page->offset field is only 16 bit wide. This is an offset
932 * in units of words from the beginning of an object. If the slab
933 * size is bigger then we cannot move the free pointer behind the
934 * object anymore.
936 * On 32 bit platforms the limit is 256k. On 64bit platforms
937 * the limit is 512k.
939 * Debugging or ctor may create a need to move the free
940 * pointer. Fail if this happens.
942 if (s->objsize >= 65535 * sizeof(void *)) {
943 BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
944 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
945 BUG_ON(s->ctor);
947 else
949 * Enable debugging if selected on the kernel commandline.
951 if (slub_debug && (!slub_debug_slabs ||
952 strncmp(slub_debug_slabs, s->name,
953 strlen(slub_debug_slabs)) == 0))
954 s->flags |= slub_debug;
956 #else
957 static inline void setup_object_debug(struct kmem_cache *s,
958 struct page *page, void *object) {}
960 static inline int alloc_debug_processing(struct kmem_cache *s,
961 struct page *page, void *object, void *addr) { return 0; }
963 static inline int free_debug_processing(struct kmem_cache *s,
964 struct page *page, void *object, void *addr) { return 0; }
966 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
967 { return 1; }
968 static inline int check_object(struct kmem_cache *s, struct page *page,
969 void *object, int active) { return 1; }
970 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
971 static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
972 #define slub_debug 0
973 #endif
975 * Slab allocation and freeing
977 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
979 struct page * page;
980 int pages = 1 << s->order;
982 if (s->order)
983 flags |= __GFP_COMP;
985 if (s->flags & SLAB_CACHE_DMA)
986 flags |= SLUB_DMA;
988 if (node == -1)
989 page = alloc_pages(flags, s->order);
990 else
991 page = alloc_pages_node(node, flags, s->order);
993 if (!page)
994 return NULL;
996 mod_zone_page_state(page_zone(page),
997 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
998 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
999 pages);
1001 return page;
1004 static void setup_object(struct kmem_cache *s, struct page *page,
1005 void *object)
1007 setup_object_debug(s, page, object);
1008 if (unlikely(s->ctor))
1009 s->ctor(object, s, 0);
1012 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1014 struct page *page;
1015 struct kmem_cache_node *n;
1016 void *start;
1017 void *end;
1018 void *last;
1019 void *p;
1021 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1023 if (flags & __GFP_WAIT)
1024 local_irq_enable();
1026 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
1027 if (!page)
1028 goto out;
1030 n = get_node(s, page_to_nid(page));
1031 if (n)
1032 atomic_long_inc(&n->nr_slabs);
1033 page->offset = s->offset / sizeof(void *);
1034 page->slab = s;
1035 page->flags |= 1 << PG_slab;
1036 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1037 SLAB_STORE_USER | SLAB_TRACE))
1038 SetSlabDebug(page);
1040 start = page_address(page);
1041 end = start + s->objects * s->size;
1043 if (unlikely(s->flags & SLAB_POISON))
1044 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1046 last = start;
1047 for_each_object(p, s, start) {
1048 setup_object(s, page, last);
1049 set_freepointer(s, last, p);
1050 last = p;
1052 setup_object(s, page, last);
1053 set_freepointer(s, last, NULL);
1055 page->freelist = start;
1056 page->lockless_freelist = NULL;
1057 page->inuse = 0;
1058 out:
1059 if (flags & __GFP_WAIT)
1060 local_irq_disable();
1061 return page;
1064 static void __free_slab(struct kmem_cache *s, struct page *page)
1066 int pages = 1 << s->order;
1068 if (unlikely(SlabDebug(page))) {
1069 void *p;
1071 slab_pad_check(s, page);
1072 for_each_object(p, s, page_address(page))
1073 check_object(s, page, p, 0);
1076 mod_zone_page_state(page_zone(page),
1077 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1078 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1079 - pages);
1081 page->mapping = NULL;
1082 __free_pages(page, s->order);
1085 static void rcu_free_slab(struct rcu_head *h)
1087 struct page *page;
1089 page = container_of((struct list_head *)h, struct page, lru);
1090 __free_slab(page->slab, page);
1093 static void free_slab(struct kmem_cache *s, struct page *page)
1095 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1097 * RCU free overloads the RCU head over the LRU
1099 struct rcu_head *head = (void *)&page->lru;
1101 call_rcu(head, rcu_free_slab);
1102 } else
1103 __free_slab(s, page);
1106 static void discard_slab(struct kmem_cache *s, struct page *page)
1108 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1110 atomic_long_dec(&n->nr_slabs);
1111 reset_page_mapcount(page);
1112 ClearSlabDebug(page);
1113 __ClearPageSlab(page);
1114 free_slab(s, page);
1118 * Per slab locking using the pagelock
1120 static __always_inline void slab_lock(struct page *page)
1122 bit_spin_lock(PG_locked, &page->flags);
1125 static __always_inline void slab_unlock(struct page *page)
1127 bit_spin_unlock(PG_locked, &page->flags);
1130 static __always_inline int slab_trylock(struct page *page)
1132 int rc = 1;
1134 rc = bit_spin_trylock(PG_locked, &page->flags);
1135 return rc;
1139 * Management of partially allocated slabs
1141 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1143 spin_lock(&n->list_lock);
1144 n->nr_partial++;
1145 list_add_tail(&page->lru, &n->partial);
1146 spin_unlock(&n->list_lock);
1149 static void add_partial(struct kmem_cache_node *n, struct page *page)
1151 spin_lock(&n->list_lock);
1152 n->nr_partial++;
1153 list_add(&page->lru, &n->partial);
1154 spin_unlock(&n->list_lock);
1157 static void remove_partial(struct kmem_cache *s,
1158 struct page *page)
1160 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1162 spin_lock(&n->list_lock);
1163 list_del(&page->lru);
1164 n->nr_partial--;
1165 spin_unlock(&n->list_lock);
1169 * Lock slab and remove from the partial list.
1171 * Must hold list_lock.
1173 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1175 if (slab_trylock(page)) {
1176 list_del(&page->lru);
1177 n->nr_partial--;
1178 SetSlabFrozen(page);
1179 return 1;
1181 return 0;
1185 * Try to allocate a partial slab from a specific node.
1187 static struct page *get_partial_node(struct kmem_cache_node *n)
1189 struct page *page;
1192 * Racy check. If we mistakenly see no partial slabs then we
1193 * just allocate an empty slab. If we mistakenly try to get a
1194 * partial slab and there is none available then get_partials()
1195 * will return NULL.
1197 if (!n || !n->nr_partial)
1198 return NULL;
1200 spin_lock(&n->list_lock);
1201 list_for_each_entry(page, &n->partial, lru)
1202 if (lock_and_freeze_slab(n, page))
1203 goto out;
1204 page = NULL;
1205 out:
1206 spin_unlock(&n->list_lock);
1207 return page;
1211 * Get a page from somewhere. Search in increasing NUMA distances.
1213 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1215 #ifdef CONFIG_NUMA
1216 struct zonelist *zonelist;
1217 struct zone **z;
1218 struct page *page;
1221 * The defrag ratio allows a configuration of the tradeoffs between
1222 * inter node defragmentation and node local allocations. A lower
1223 * defrag_ratio increases the tendency to do local allocations
1224 * instead of attempting to obtain partial slabs from other nodes.
1226 * If the defrag_ratio is set to 0 then kmalloc() always
1227 * returns node local objects. If the ratio is higher then kmalloc()
1228 * may return off node objects because partial slabs are obtained
1229 * from other nodes and filled up.
1231 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1232 * defrag_ratio = 1000) then every (well almost) allocation will
1233 * first attempt to defrag slab caches on other nodes. This means
1234 * scanning over all nodes to look for partial slabs which may be
1235 * expensive if we do it every time we are trying to find a slab
1236 * with available objects.
1238 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1239 return NULL;
1241 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1242 ->node_zonelists[gfp_zone(flags)];
1243 for (z = zonelist->zones; *z; z++) {
1244 struct kmem_cache_node *n;
1246 n = get_node(s, zone_to_nid(*z));
1248 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1249 n->nr_partial > MIN_PARTIAL) {
1250 page = get_partial_node(n);
1251 if (page)
1252 return page;
1255 #endif
1256 return NULL;
1260 * Get a partial page, lock it and return it.
1262 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1264 struct page *page;
1265 int searchnode = (node == -1) ? numa_node_id() : node;
1267 page = get_partial_node(get_node(s, searchnode));
1268 if (page || (flags & __GFP_THISNODE))
1269 return page;
1271 return get_any_partial(s, flags);
1275 * Move a page back to the lists.
1277 * Must be called with the slab lock held.
1279 * On exit the slab lock will have been dropped.
1281 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1283 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1285 ClearSlabFrozen(page);
1286 if (page->inuse) {
1288 if (page->freelist)
1289 add_partial(n, page);
1290 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1291 add_full(n, page);
1292 slab_unlock(page);
1294 } else {
1295 if (n->nr_partial < MIN_PARTIAL) {
1297 * Adding an empty slab to the partial slabs in order
1298 * to avoid page allocator overhead. This slab needs
1299 * to come after the other slabs with objects in
1300 * order to fill them up. That way the size of the
1301 * partial list stays small. kmem_cache_shrink can
1302 * reclaim empty slabs from the partial list.
1304 add_partial_tail(n, page);
1305 slab_unlock(page);
1306 } else {
1307 slab_unlock(page);
1308 discard_slab(s, page);
1314 * Remove the cpu slab
1316 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1319 * Merge cpu freelist into freelist. Typically we get here
1320 * because both freelists are empty. So this is unlikely
1321 * to occur.
1323 while (unlikely(page->lockless_freelist)) {
1324 void **object;
1326 /* Retrieve object from cpu_freelist */
1327 object = page->lockless_freelist;
1328 page->lockless_freelist = page->lockless_freelist[page->offset];
1330 /* And put onto the regular freelist */
1331 object[page->offset] = page->freelist;
1332 page->freelist = object;
1333 page->inuse--;
1335 s->cpu_slab[cpu] = NULL;
1336 unfreeze_slab(s, page);
1339 static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1341 slab_lock(page);
1342 deactivate_slab(s, page, cpu);
1346 * Flush cpu slab.
1347 * Called from IPI handler with interrupts disabled.
1349 static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1351 struct page *page = s->cpu_slab[cpu];
1353 if (likely(page))
1354 flush_slab(s, page, cpu);
1357 static void flush_cpu_slab(void *d)
1359 struct kmem_cache *s = d;
1360 int cpu = smp_processor_id();
1362 __flush_cpu_slab(s, cpu);
1365 static void flush_all(struct kmem_cache *s)
1367 #ifdef CONFIG_SMP
1368 on_each_cpu(flush_cpu_slab, s, 1, 1);
1369 #else
1370 unsigned long flags;
1372 local_irq_save(flags);
1373 flush_cpu_slab(s);
1374 local_irq_restore(flags);
1375 #endif
1379 * Slow path. The lockless freelist is empty or we need to perform
1380 * debugging duties.
1382 * Interrupts are disabled.
1384 * Processing is still very fast if new objects have been freed to the
1385 * regular freelist. In that case we simply take over the regular freelist
1386 * as the lockless freelist and zap the regular freelist.
1388 * If that is not working then we fall back to the partial lists. We take the
1389 * first element of the freelist as the object to allocate now and move the
1390 * rest of the freelist to the lockless freelist.
1392 * And if we were unable to get a new slab from the partial slab lists then
1393 * we need to allocate a new slab. This is slowest path since we may sleep.
1395 static void *__slab_alloc(struct kmem_cache *s,
1396 gfp_t gfpflags, int node, void *addr, struct page *page)
1398 void **object;
1399 int cpu = smp_processor_id();
1401 if (!page)
1402 goto new_slab;
1404 slab_lock(page);
1405 if (unlikely(node != -1 && page_to_nid(page) != node))
1406 goto another_slab;
1407 load_freelist:
1408 object = page->freelist;
1409 if (unlikely(!object))
1410 goto another_slab;
1411 if (unlikely(SlabDebug(page)))
1412 goto debug;
1414 object = page->freelist;
1415 page->lockless_freelist = object[page->offset];
1416 page->inuse = s->objects;
1417 page->freelist = NULL;
1418 slab_unlock(page);
1419 return object;
1421 another_slab:
1422 deactivate_slab(s, page, cpu);
1424 new_slab:
1425 page = get_partial(s, gfpflags, node);
1426 if (page) {
1427 s->cpu_slab[cpu] = page;
1428 goto load_freelist;
1431 page = new_slab(s, gfpflags, node);
1432 if (page) {
1433 cpu = smp_processor_id();
1434 if (s->cpu_slab[cpu])
1435 flush_slab(s, s->cpu_slab[cpu], cpu);
1436 slab_lock(page);
1437 SetSlabFrozen(page);
1438 s->cpu_slab[cpu] = page;
1439 goto load_freelist;
1441 return NULL;
1442 debug:
1443 object = page->freelist;
1444 if (!alloc_debug_processing(s, page, object, addr))
1445 goto another_slab;
1447 page->inuse++;
1448 page->freelist = object[page->offset];
1449 slab_unlock(page);
1450 return object;
1454 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1455 * have the fastpath folded into their functions. So no function call
1456 * overhead for requests that can be satisfied on the fastpath.
1458 * The fastpath works by first checking if the lockless freelist can be used.
1459 * If not then __slab_alloc is called for slow processing.
1461 * Otherwise we can simply pick the next object from the lockless free list.
1463 static void __always_inline *slab_alloc(struct kmem_cache *s,
1464 gfp_t gfpflags, int node, void *addr)
1466 struct page *page;
1467 void **object;
1468 unsigned long flags;
1470 local_irq_save(flags);
1471 page = s->cpu_slab[smp_processor_id()];
1472 if (unlikely(!page || !page->lockless_freelist ||
1473 (node != -1 && page_to_nid(page) != node)))
1475 object = __slab_alloc(s, gfpflags, node, addr, page);
1477 else {
1478 object = page->lockless_freelist;
1479 page->lockless_freelist = object[page->offset];
1481 local_irq_restore(flags);
1482 return object;
1485 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1487 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1489 EXPORT_SYMBOL(kmem_cache_alloc);
1491 #ifdef CONFIG_NUMA
1492 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1494 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1496 EXPORT_SYMBOL(kmem_cache_alloc_node);
1497 #endif
1500 * Slow patch handling. This may still be called frequently since objects
1501 * have a longer lifetime than the cpu slabs in most processing loads.
1503 * So we still attempt to reduce cache line usage. Just take the slab
1504 * lock and free the item. If there is no additional partial page
1505 * handling required then we can return immediately.
1507 static void __slab_free(struct kmem_cache *s, struct page *page,
1508 void *x, void *addr)
1510 void *prior;
1511 void **object = (void *)x;
1513 slab_lock(page);
1515 if (unlikely(SlabDebug(page)))
1516 goto debug;
1517 checks_ok:
1518 prior = object[page->offset] = page->freelist;
1519 page->freelist = object;
1520 page->inuse--;
1522 if (unlikely(SlabFrozen(page)))
1523 goto out_unlock;
1525 if (unlikely(!page->inuse))
1526 goto slab_empty;
1529 * Objects left in the slab. If it
1530 * was not on the partial list before
1531 * then add it.
1533 if (unlikely(!prior))
1534 add_partial(get_node(s, page_to_nid(page)), page);
1536 out_unlock:
1537 slab_unlock(page);
1538 return;
1540 slab_empty:
1541 if (prior)
1543 * Slab still on the partial list.
1545 remove_partial(s, page);
1547 slab_unlock(page);
1548 discard_slab(s, page);
1549 return;
1551 debug:
1552 if (!free_debug_processing(s, page, x, addr))
1553 goto out_unlock;
1554 goto checks_ok;
1558 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1559 * can perform fastpath freeing without additional function calls.
1561 * The fastpath is only possible if we are freeing to the current cpu slab
1562 * of this processor. This typically the case if we have just allocated
1563 * the item before.
1565 * If fastpath is not possible then fall back to __slab_free where we deal
1566 * with all sorts of special processing.
1568 static void __always_inline slab_free(struct kmem_cache *s,
1569 struct page *page, void *x, void *addr)
1571 void **object = (void *)x;
1572 unsigned long flags;
1574 local_irq_save(flags);
1575 if (likely(page == s->cpu_slab[smp_processor_id()] &&
1576 !SlabDebug(page))) {
1577 object[page->offset] = page->lockless_freelist;
1578 page->lockless_freelist = object;
1579 } else
1580 __slab_free(s, page, x, addr);
1582 local_irq_restore(flags);
1585 void kmem_cache_free(struct kmem_cache *s, void *x)
1587 struct page *page;
1589 page = virt_to_head_page(x);
1591 slab_free(s, page, x, __builtin_return_address(0));
1593 EXPORT_SYMBOL(kmem_cache_free);
1595 /* Figure out on which slab object the object resides */
1596 static struct page *get_object_page(const void *x)
1598 struct page *page = virt_to_head_page(x);
1600 if (!PageSlab(page))
1601 return NULL;
1603 return page;
1607 * Object placement in a slab is made very easy because we always start at
1608 * offset 0. If we tune the size of the object to the alignment then we can
1609 * get the required alignment by putting one properly sized object after
1610 * another.
1612 * Notice that the allocation order determines the sizes of the per cpu
1613 * caches. Each processor has always one slab available for allocations.
1614 * Increasing the allocation order reduces the number of times that slabs
1615 * must be moved on and off the partial lists and is therefore a factor in
1616 * locking overhead.
1620 * Mininum / Maximum order of slab pages. This influences locking overhead
1621 * and slab fragmentation. A higher order reduces the number of partial slabs
1622 * and increases the number of allocations possible without having to
1623 * take the list_lock.
1625 static int slub_min_order;
1626 static int slub_max_order = DEFAULT_MAX_ORDER;
1627 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1630 * Merge control. If this is set then no merging of slab caches will occur.
1631 * (Could be removed. This was introduced to pacify the merge skeptics.)
1633 static int slub_nomerge;
1636 * Calculate the order of allocation given an slab object size.
1638 * The order of allocation has significant impact on performance and other
1639 * system components. Generally order 0 allocations should be preferred since
1640 * order 0 does not cause fragmentation in the page allocator. Larger objects
1641 * be problematic to put into order 0 slabs because there may be too much
1642 * unused space left. We go to a higher order if more than 1/8th of the slab
1643 * would be wasted.
1645 * In order to reach satisfactory performance we must ensure that a minimum
1646 * number of objects is in one slab. Otherwise we may generate too much
1647 * activity on the partial lists which requires taking the list_lock. This is
1648 * less a concern for large slabs though which are rarely used.
1650 * slub_max_order specifies the order where we begin to stop considering the
1651 * number of objects in a slab as critical. If we reach slub_max_order then
1652 * we try to keep the page order as low as possible. So we accept more waste
1653 * of space in favor of a small page order.
1655 * Higher order allocations also allow the placement of more objects in a
1656 * slab and thereby reduce object handling overhead. If the user has
1657 * requested a higher mininum order then we start with that one instead of
1658 * the smallest order which will fit the object.
1660 static inline int slab_order(int size, int min_objects,
1661 int max_order, int fract_leftover)
1663 int order;
1664 int rem;
1666 for (order = max(slub_min_order,
1667 fls(min_objects * size - 1) - PAGE_SHIFT);
1668 order <= max_order; order++) {
1670 unsigned long slab_size = PAGE_SIZE << order;
1672 if (slab_size < min_objects * size)
1673 continue;
1675 rem = slab_size % size;
1677 if (rem <= slab_size / fract_leftover)
1678 break;
1682 return order;
1685 static inline int calculate_order(int size)
1687 int order;
1688 int min_objects;
1689 int fraction;
1692 * Attempt to find best configuration for a slab. This
1693 * works by first attempting to generate a layout with
1694 * the best configuration and backing off gradually.
1696 * First we reduce the acceptable waste in a slab. Then
1697 * we reduce the minimum objects required in a slab.
1699 min_objects = slub_min_objects;
1700 while (min_objects > 1) {
1701 fraction = 8;
1702 while (fraction >= 4) {
1703 order = slab_order(size, min_objects,
1704 slub_max_order, fraction);
1705 if (order <= slub_max_order)
1706 return order;
1707 fraction /= 2;
1709 min_objects /= 2;
1713 * We were unable to place multiple objects in a slab. Now
1714 * lets see if we can place a single object there.
1716 order = slab_order(size, 1, slub_max_order, 1);
1717 if (order <= slub_max_order)
1718 return order;
1721 * Doh this slab cannot be placed using slub_max_order.
1723 order = slab_order(size, 1, MAX_ORDER, 1);
1724 if (order <= MAX_ORDER)
1725 return order;
1726 return -ENOSYS;
1730 * Figure out what the alignment of the objects will be.
1732 static unsigned long calculate_alignment(unsigned long flags,
1733 unsigned long align, unsigned long size)
1736 * If the user wants hardware cache aligned objects then
1737 * follow that suggestion if the object is sufficiently
1738 * large.
1740 * The hardware cache alignment cannot override the
1741 * specified alignment though. If that is greater
1742 * then use it.
1744 if ((flags & SLAB_HWCACHE_ALIGN) &&
1745 size > cache_line_size() / 2)
1746 return max_t(unsigned long, align, cache_line_size());
1748 if (align < ARCH_SLAB_MINALIGN)
1749 return ARCH_SLAB_MINALIGN;
1751 return ALIGN(align, sizeof(void *));
1754 static void init_kmem_cache_node(struct kmem_cache_node *n)
1756 n->nr_partial = 0;
1757 atomic_long_set(&n->nr_slabs, 0);
1758 spin_lock_init(&n->list_lock);
1759 INIT_LIST_HEAD(&n->partial);
1760 INIT_LIST_HEAD(&n->full);
1763 #ifdef CONFIG_NUMA
1765 * No kmalloc_node yet so do it by hand. We know that this is the first
1766 * slab on the node for this slabcache. There are no concurrent accesses
1767 * possible.
1769 * Note that this function only works on the kmalloc_node_cache
1770 * when allocating for the kmalloc_node_cache.
1772 static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1773 int node)
1775 struct page *page;
1776 struct kmem_cache_node *n;
1778 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1780 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1782 BUG_ON(!page);
1783 n = page->freelist;
1784 BUG_ON(!n);
1785 page->freelist = get_freepointer(kmalloc_caches, n);
1786 page->inuse++;
1787 kmalloc_caches->node[node] = n;
1788 setup_object_debug(kmalloc_caches, page, n);
1789 init_kmem_cache_node(n);
1790 atomic_long_inc(&n->nr_slabs);
1791 add_partial(n, page);
1794 * new_slab() disables interupts. If we do not reenable interrupts here
1795 * then bootup would continue with interrupts disabled.
1797 local_irq_enable();
1798 return n;
1801 static void free_kmem_cache_nodes(struct kmem_cache *s)
1803 int node;
1805 for_each_online_node(node) {
1806 struct kmem_cache_node *n = s->node[node];
1807 if (n && n != &s->local_node)
1808 kmem_cache_free(kmalloc_caches, n);
1809 s->node[node] = NULL;
1813 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1815 int node;
1816 int local_node;
1818 if (slab_state >= UP)
1819 local_node = page_to_nid(virt_to_page(s));
1820 else
1821 local_node = 0;
1823 for_each_online_node(node) {
1824 struct kmem_cache_node *n;
1826 if (local_node == node)
1827 n = &s->local_node;
1828 else {
1829 if (slab_state == DOWN) {
1830 n = early_kmem_cache_node_alloc(gfpflags,
1831 node);
1832 continue;
1834 n = kmem_cache_alloc_node(kmalloc_caches,
1835 gfpflags, node);
1837 if (!n) {
1838 free_kmem_cache_nodes(s);
1839 return 0;
1843 s->node[node] = n;
1844 init_kmem_cache_node(n);
1846 return 1;
1848 #else
1849 static void free_kmem_cache_nodes(struct kmem_cache *s)
1853 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1855 init_kmem_cache_node(&s->local_node);
1856 return 1;
1858 #endif
1861 * calculate_sizes() determines the order and the distribution of data within
1862 * a slab object.
1864 static int calculate_sizes(struct kmem_cache *s)
1866 unsigned long flags = s->flags;
1867 unsigned long size = s->objsize;
1868 unsigned long align = s->align;
1871 * Determine if we can poison the object itself. If the user of
1872 * the slab may touch the object after free or before allocation
1873 * then we should never poison the object itself.
1875 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1876 !s->ctor)
1877 s->flags |= __OBJECT_POISON;
1878 else
1879 s->flags &= ~__OBJECT_POISON;
1882 * Round up object size to the next word boundary. We can only
1883 * place the free pointer at word boundaries and this determines
1884 * the possible location of the free pointer.
1886 size = ALIGN(size, sizeof(void *));
1888 #ifdef CONFIG_SLUB_DEBUG
1890 * If we are Redzoning then check if there is some space between the
1891 * end of the object and the free pointer. If not then add an
1892 * additional word to have some bytes to store Redzone information.
1894 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1895 size += sizeof(void *);
1896 #endif
1899 * With that we have determined the number of bytes in actual use
1900 * by the object. This is the potential offset to the free pointer.
1902 s->inuse = size;
1904 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1905 s->ctor)) {
1907 * Relocate free pointer after the object if it is not
1908 * permitted to overwrite the first word of the object on
1909 * kmem_cache_free.
1911 * This is the case if we do RCU, have a constructor or
1912 * destructor or are poisoning the objects.
1914 s->offset = size;
1915 size += sizeof(void *);
1918 #ifdef CONFIG_SLUB_DEBUG
1919 if (flags & SLAB_STORE_USER)
1921 * Need to store information about allocs and frees after
1922 * the object.
1924 size += 2 * sizeof(struct track);
1926 if (flags & SLAB_RED_ZONE)
1928 * Add some empty padding so that we can catch
1929 * overwrites from earlier objects rather than let
1930 * tracking information or the free pointer be
1931 * corrupted if an user writes before the start
1932 * of the object.
1934 size += sizeof(void *);
1935 #endif
1938 * Determine the alignment based on various parameters that the
1939 * user specified and the dynamic determination of cache line size
1940 * on bootup.
1942 align = calculate_alignment(flags, align, s->objsize);
1945 * SLUB stores one object immediately after another beginning from
1946 * offset 0. In order to align the objects we have to simply size
1947 * each object to conform to the alignment.
1949 size = ALIGN(size, align);
1950 s->size = size;
1952 s->order = calculate_order(size);
1953 if (s->order < 0)
1954 return 0;
1957 * Determine the number of objects per slab
1959 s->objects = (PAGE_SIZE << s->order) / size;
1962 * Verify that the number of objects is within permitted limits.
1963 * The page->inuse field is only 16 bit wide! So we cannot have
1964 * more than 64k objects per slab.
1966 if (!s->objects || s->objects > 65535)
1967 return 0;
1968 return 1;
1972 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1973 const char *name, size_t size,
1974 size_t align, unsigned long flags,
1975 void (*ctor)(void *, struct kmem_cache *, unsigned long))
1977 memset(s, 0, kmem_size);
1978 s->name = name;
1979 s->ctor = ctor;
1980 s->objsize = size;
1981 s->flags = flags;
1982 s->align = align;
1983 kmem_cache_open_debug_check(s);
1985 if (!calculate_sizes(s))
1986 goto error;
1988 s->refcount = 1;
1989 #ifdef CONFIG_NUMA
1990 s->defrag_ratio = 100;
1991 #endif
1993 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1994 return 1;
1995 error:
1996 if (flags & SLAB_PANIC)
1997 panic("Cannot create slab %s size=%lu realsize=%u "
1998 "order=%u offset=%u flags=%lx\n",
1999 s->name, (unsigned long)size, s->size, s->order,
2000 s->offset, flags);
2001 return 0;
2005 * Check if a given pointer is valid
2007 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2009 struct page * page;
2011 page = get_object_page(object);
2013 if (!page || s != page->slab)
2014 /* No slab or wrong slab */
2015 return 0;
2017 if (!check_valid_pointer(s, page, object))
2018 return 0;
2021 * We could also check if the object is on the slabs freelist.
2022 * But this would be too expensive and it seems that the main
2023 * purpose of kmem_ptr_valid is to check if the object belongs
2024 * to a certain slab.
2026 return 1;
2028 EXPORT_SYMBOL(kmem_ptr_validate);
2031 * Determine the size of a slab object
2033 unsigned int kmem_cache_size(struct kmem_cache *s)
2035 return s->objsize;
2037 EXPORT_SYMBOL(kmem_cache_size);
2039 const char *kmem_cache_name(struct kmem_cache *s)
2041 return s->name;
2043 EXPORT_SYMBOL(kmem_cache_name);
2046 * Attempt to free all slabs on a node. Return the number of slabs we
2047 * were unable to free.
2049 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2050 struct list_head *list)
2052 int slabs_inuse = 0;
2053 unsigned long flags;
2054 struct page *page, *h;
2056 spin_lock_irqsave(&n->list_lock, flags);
2057 list_for_each_entry_safe(page, h, list, lru)
2058 if (!page->inuse) {
2059 list_del(&page->lru);
2060 discard_slab(s, page);
2061 } else
2062 slabs_inuse++;
2063 spin_unlock_irqrestore(&n->list_lock, flags);
2064 return slabs_inuse;
2068 * Release all resources used by a slab cache.
2070 static int kmem_cache_close(struct kmem_cache *s)
2072 int node;
2074 flush_all(s);
2076 /* Attempt to free all objects */
2077 for_each_online_node(node) {
2078 struct kmem_cache_node *n = get_node(s, node);
2080 n->nr_partial -= free_list(s, n, &n->partial);
2081 if (atomic_long_read(&n->nr_slabs))
2082 return 1;
2084 free_kmem_cache_nodes(s);
2085 return 0;
2089 * Close a cache and release the kmem_cache structure
2090 * (must be used for caches created using kmem_cache_create)
2092 void kmem_cache_destroy(struct kmem_cache *s)
2094 down_write(&slub_lock);
2095 s->refcount--;
2096 if (!s->refcount) {
2097 list_del(&s->list);
2098 if (kmem_cache_close(s))
2099 WARN_ON(1);
2100 sysfs_slab_remove(s);
2101 kfree(s);
2103 up_write(&slub_lock);
2105 EXPORT_SYMBOL(kmem_cache_destroy);
2107 /********************************************************************
2108 * Kmalloc subsystem
2109 *******************************************************************/
2111 struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2112 EXPORT_SYMBOL(kmalloc_caches);
2114 #ifdef CONFIG_ZONE_DMA
2115 static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2116 #endif
2118 static int __init setup_slub_min_order(char *str)
2120 get_option (&str, &slub_min_order);
2122 return 1;
2125 __setup("slub_min_order=", setup_slub_min_order);
2127 static int __init setup_slub_max_order(char *str)
2129 get_option (&str, &slub_max_order);
2131 return 1;
2134 __setup("slub_max_order=", setup_slub_max_order);
2136 static int __init setup_slub_min_objects(char *str)
2138 get_option (&str, &slub_min_objects);
2140 return 1;
2143 __setup("slub_min_objects=", setup_slub_min_objects);
2145 static int __init setup_slub_nomerge(char *str)
2147 slub_nomerge = 1;
2148 return 1;
2151 __setup("slub_nomerge", setup_slub_nomerge);
2153 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2154 const char *name, int size, gfp_t gfp_flags)
2156 unsigned int flags = 0;
2158 if (gfp_flags & SLUB_DMA)
2159 flags = SLAB_CACHE_DMA;
2161 down_write(&slub_lock);
2162 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2163 flags, NULL))
2164 goto panic;
2166 list_add(&s->list, &slab_caches);
2167 up_write(&slub_lock);
2168 if (sysfs_slab_add(s))
2169 goto panic;
2170 return s;
2172 panic:
2173 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2176 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2178 int index = kmalloc_index(size);
2180 if (!index)
2181 return NULL;
2183 /* Allocation too large? */
2184 BUG_ON(index < 0);
2186 #ifdef CONFIG_ZONE_DMA
2187 if ((flags & SLUB_DMA)) {
2188 struct kmem_cache *s;
2189 struct kmem_cache *x;
2190 char *text;
2191 size_t realsize;
2193 s = kmalloc_caches_dma[index];
2194 if (s)
2195 return s;
2197 /* Dynamically create dma cache */
2198 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2199 if (!x)
2200 panic("Unable to allocate memory for dma cache\n");
2202 if (index <= KMALLOC_SHIFT_HIGH)
2203 realsize = 1 << index;
2204 else {
2205 if (index == 1)
2206 realsize = 96;
2207 else
2208 realsize = 192;
2211 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2212 (unsigned int)realsize);
2213 s = create_kmalloc_cache(x, text, realsize, flags);
2214 kmalloc_caches_dma[index] = s;
2215 return s;
2217 #endif
2218 return &kmalloc_caches[index];
2221 void *__kmalloc(size_t size, gfp_t flags)
2223 struct kmem_cache *s = get_slab(size, flags);
2225 if (s)
2226 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2227 return ZERO_SIZE_PTR;
2229 EXPORT_SYMBOL(__kmalloc);
2231 #ifdef CONFIG_NUMA
2232 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2234 struct kmem_cache *s = get_slab(size, flags);
2236 if (s)
2237 return slab_alloc(s, flags, node, __builtin_return_address(0));
2238 return ZERO_SIZE_PTR;
2240 EXPORT_SYMBOL(__kmalloc_node);
2241 #endif
2243 size_t ksize(const void *object)
2245 struct page *page;
2246 struct kmem_cache *s;
2248 if (object == ZERO_SIZE_PTR)
2249 return 0;
2251 page = get_object_page(object);
2252 BUG_ON(!page);
2253 s = page->slab;
2254 BUG_ON(!s);
2257 * Debugging requires use of the padding between object
2258 * and whatever may come after it.
2260 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2261 return s->objsize;
2264 * If we have the need to store the freelist pointer
2265 * back there or track user information then we can
2266 * only use the space before that information.
2268 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2269 return s->inuse;
2272 * Else we can use all the padding etc for the allocation
2274 return s->size;
2276 EXPORT_SYMBOL(ksize);
2278 void kfree(const void *x)
2280 struct kmem_cache *s;
2281 struct page *page;
2284 * This has to be an unsigned comparison. According to Linus
2285 * some gcc version treat a pointer as a signed entity. Then
2286 * this comparison would be true for all "negative" pointers
2287 * (which would cover the whole upper half of the address space).
2289 if ((unsigned long)x <= (unsigned long)ZERO_SIZE_PTR)
2290 return;
2292 page = virt_to_head_page(x);
2293 s = page->slab;
2295 slab_free(s, page, (void *)x, __builtin_return_address(0));
2297 EXPORT_SYMBOL(kfree);
2300 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2301 * the remaining slabs by the number of items in use. The slabs with the
2302 * most items in use come first. New allocations will then fill those up
2303 * and thus they can be removed from the partial lists.
2305 * The slabs with the least items are placed last. This results in them
2306 * being allocated from last increasing the chance that the last objects
2307 * are freed in them.
2309 int kmem_cache_shrink(struct kmem_cache *s)
2311 int node;
2312 int i;
2313 struct kmem_cache_node *n;
2314 struct page *page;
2315 struct page *t;
2316 struct list_head *slabs_by_inuse =
2317 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2318 unsigned long flags;
2320 if (!slabs_by_inuse)
2321 return -ENOMEM;
2323 flush_all(s);
2324 for_each_online_node(node) {
2325 n = get_node(s, node);
2327 if (!n->nr_partial)
2328 continue;
2330 for (i = 0; i < s->objects; i++)
2331 INIT_LIST_HEAD(slabs_by_inuse + i);
2333 spin_lock_irqsave(&n->list_lock, flags);
2336 * Build lists indexed by the items in use in each slab.
2338 * Note that concurrent frees may occur while we hold the
2339 * list_lock. page->inuse here is the upper limit.
2341 list_for_each_entry_safe(page, t, &n->partial, lru) {
2342 if (!page->inuse && slab_trylock(page)) {
2344 * Must hold slab lock here because slab_free
2345 * may have freed the last object and be
2346 * waiting to release the slab.
2348 list_del(&page->lru);
2349 n->nr_partial--;
2350 slab_unlock(page);
2351 discard_slab(s, page);
2352 } else {
2353 if (n->nr_partial > MAX_PARTIAL)
2354 list_move(&page->lru,
2355 slabs_by_inuse + page->inuse);
2359 if (n->nr_partial <= MAX_PARTIAL)
2360 goto out;
2363 * Rebuild the partial list with the slabs filled up most
2364 * first and the least used slabs at the end.
2366 for (i = s->objects - 1; i >= 0; i--)
2367 list_splice(slabs_by_inuse + i, n->partial.prev);
2369 out:
2370 spin_unlock_irqrestore(&n->list_lock, flags);
2373 kfree(slabs_by_inuse);
2374 return 0;
2376 EXPORT_SYMBOL(kmem_cache_shrink);
2379 * krealloc - reallocate memory. The contents will remain unchanged.
2380 * @p: object to reallocate memory for.
2381 * @new_size: how many bytes of memory are required.
2382 * @flags: the type of memory to allocate.
2384 * The contents of the object pointed to are preserved up to the
2385 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2386 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2387 * %NULL pointer, the object pointed to is freed.
2389 void *krealloc(const void *p, size_t new_size, gfp_t flags)
2391 void *ret;
2392 size_t ks;
2394 if (unlikely(!p || p == ZERO_SIZE_PTR))
2395 return kmalloc(new_size, flags);
2397 if (unlikely(!new_size)) {
2398 kfree(p);
2399 return ZERO_SIZE_PTR;
2402 ks = ksize(p);
2403 if (ks >= new_size)
2404 return (void *)p;
2406 ret = kmalloc(new_size, flags);
2407 if (ret) {
2408 memcpy(ret, p, min(new_size, ks));
2409 kfree(p);
2411 return ret;
2413 EXPORT_SYMBOL(krealloc);
2415 /********************************************************************
2416 * Basic setup of slabs
2417 *******************************************************************/
2419 void __init kmem_cache_init(void)
2421 int i;
2422 int caches = 0;
2424 #ifdef CONFIG_NUMA
2426 * Must first have the slab cache available for the allocations of the
2427 * struct kmem_cache_node's. There is special bootstrap code in
2428 * kmem_cache_open for slab_state == DOWN.
2430 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2431 sizeof(struct kmem_cache_node), GFP_KERNEL);
2432 kmalloc_caches[0].refcount = -1;
2433 caches++;
2434 #endif
2436 /* Able to allocate the per node structures */
2437 slab_state = PARTIAL;
2439 /* Caches that are not of the two-to-the-power-of size */
2440 if (KMALLOC_MIN_SIZE <= 64) {
2441 create_kmalloc_cache(&kmalloc_caches[1],
2442 "kmalloc-96", 96, GFP_KERNEL);
2443 caches++;
2445 if (KMALLOC_MIN_SIZE <= 128) {
2446 create_kmalloc_cache(&kmalloc_caches[2],
2447 "kmalloc-192", 192, GFP_KERNEL);
2448 caches++;
2451 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
2452 create_kmalloc_cache(&kmalloc_caches[i],
2453 "kmalloc", 1 << i, GFP_KERNEL);
2454 caches++;
2457 slab_state = UP;
2459 /* Provide the correct kmalloc names now that the caches are up */
2460 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2461 kmalloc_caches[i]. name =
2462 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2464 #ifdef CONFIG_SMP
2465 register_cpu_notifier(&slab_notifier);
2466 #endif
2468 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2469 nr_cpu_ids * sizeof(struct page *);
2471 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2472 " CPUs=%d, Nodes=%d\n",
2473 caches, cache_line_size(),
2474 slub_min_order, slub_max_order, slub_min_objects,
2475 nr_cpu_ids, nr_node_ids);
2479 * Find a mergeable slab cache
2481 static int slab_unmergeable(struct kmem_cache *s)
2483 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2484 return 1;
2486 if (s->ctor)
2487 return 1;
2490 * We may have set a slab to be unmergeable during bootstrap.
2492 if (s->refcount < 0)
2493 return 1;
2495 return 0;
2498 static struct kmem_cache *find_mergeable(size_t size,
2499 size_t align, unsigned long flags,
2500 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2502 struct list_head *h;
2504 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2505 return NULL;
2507 if (ctor)
2508 return NULL;
2510 size = ALIGN(size, sizeof(void *));
2511 align = calculate_alignment(flags, align, size);
2512 size = ALIGN(size, align);
2514 list_for_each(h, &slab_caches) {
2515 struct kmem_cache *s =
2516 container_of(h, struct kmem_cache, list);
2518 if (slab_unmergeable(s))
2519 continue;
2521 if (size > s->size)
2522 continue;
2524 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2525 (s->flags & SLUB_MERGE_SAME))
2526 continue;
2528 * Check if alignment is compatible.
2529 * Courtesy of Adrian Drzewiecki
2531 if ((s->size & ~(align -1)) != s->size)
2532 continue;
2534 if (s->size - size >= sizeof(void *))
2535 continue;
2537 return s;
2539 return NULL;
2542 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2543 size_t align, unsigned long flags,
2544 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2545 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2547 struct kmem_cache *s;
2549 BUG_ON(dtor);
2550 down_write(&slub_lock);
2551 s = find_mergeable(size, align, flags, ctor);
2552 if (s) {
2553 s->refcount++;
2555 * Adjust the object sizes so that we clear
2556 * the complete object on kzalloc.
2558 s->objsize = max(s->objsize, (int)size);
2559 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2560 if (sysfs_slab_alias(s, name))
2561 goto err;
2562 } else {
2563 s = kmalloc(kmem_size, GFP_KERNEL);
2564 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2565 size, align, flags, ctor)) {
2566 if (sysfs_slab_add(s)) {
2567 kfree(s);
2568 goto err;
2570 list_add(&s->list, &slab_caches);
2571 } else
2572 kfree(s);
2574 up_write(&slub_lock);
2575 return s;
2577 err:
2578 up_write(&slub_lock);
2579 if (flags & SLAB_PANIC)
2580 panic("Cannot create slabcache %s\n", name);
2581 else
2582 s = NULL;
2583 return s;
2585 EXPORT_SYMBOL(kmem_cache_create);
2587 void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2589 void *x;
2591 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
2592 if (x)
2593 memset(x, 0, s->objsize);
2594 return x;
2596 EXPORT_SYMBOL(kmem_cache_zalloc);
2598 #ifdef CONFIG_SMP
2599 static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2601 struct list_head *h;
2603 down_read(&slub_lock);
2604 list_for_each(h, &slab_caches) {
2605 struct kmem_cache *s =
2606 container_of(h, struct kmem_cache, list);
2608 func(s, cpu);
2610 up_read(&slub_lock);
2614 * Version of __flush_cpu_slab for the case that interrupts
2615 * are enabled.
2617 static void cpu_slab_flush(struct kmem_cache *s, int cpu)
2619 unsigned long flags;
2621 local_irq_save(flags);
2622 __flush_cpu_slab(s, cpu);
2623 local_irq_restore(flags);
2627 * Use the cpu notifier to insure that the cpu slabs are flushed when
2628 * necessary.
2630 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2631 unsigned long action, void *hcpu)
2633 long cpu = (long)hcpu;
2635 switch (action) {
2636 case CPU_UP_CANCELED:
2637 case CPU_UP_CANCELED_FROZEN:
2638 case CPU_DEAD:
2639 case CPU_DEAD_FROZEN:
2640 for_all_slabs(cpu_slab_flush, cpu);
2641 break;
2642 default:
2643 break;
2645 return NOTIFY_OK;
2648 static struct notifier_block __cpuinitdata slab_notifier =
2649 { &slab_cpuup_callback, NULL, 0 };
2651 #endif
2653 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2655 struct kmem_cache *s = get_slab(size, gfpflags);
2657 if (!s)
2658 return ZERO_SIZE_PTR;
2660 return slab_alloc(s, gfpflags, -1, caller);
2663 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2664 int node, void *caller)
2666 struct kmem_cache *s = get_slab(size, gfpflags);
2668 if (!s)
2669 return ZERO_SIZE_PTR;
2671 return slab_alloc(s, gfpflags, node, caller);
2674 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2675 static int validate_slab(struct kmem_cache *s, struct page *page)
2677 void *p;
2678 void *addr = page_address(page);
2679 DECLARE_BITMAP(map, s->objects);
2681 if (!check_slab(s, page) ||
2682 !on_freelist(s, page, NULL))
2683 return 0;
2685 /* Now we know that a valid freelist exists */
2686 bitmap_zero(map, s->objects);
2688 for_each_free_object(p, s, page->freelist) {
2689 set_bit(slab_index(p, s, addr), map);
2690 if (!check_object(s, page, p, 0))
2691 return 0;
2694 for_each_object(p, s, addr)
2695 if (!test_bit(slab_index(p, s, addr), map))
2696 if (!check_object(s, page, p, 1))
2697 return 0;
2698 return 1;
2701 static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2703 if (slab_trylock(page)) {
2704 validate_slab(s, page);
2705 slab_unlock(page);
2706 } else
2707 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2708 s->name, page);
2710 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2711 if (!SlabDebug(page))
2712 printk(KERN_ERR "SLUB %s: SlabDebug not set "
2713 "on slab 0x%p\n", s->name, page);
2714 } else {
2715 if (SlabDebug(page))
2716 printk(KERN_ERR "SLUB %s: SlabDebug set on "
2717 "slab 0x%p\n", s->name, page);
2721 static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2723 unsigned long count = 0;
2724 struct page *page;
2725 unsigned long flags;
2727 spin_lock_irqsave(&n->list_lock, flags);
2729 list_for_each_entry(page, &n->partial, lru) {
2730 validate_slab_slab(s, page);
2731 count++;
2733 if (count != n->nr_partial)
2734 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2735 "counter=%ld\n", s->name, count, n->nr_partial);
2737 if (!(s->flags & SLAB_STORE_USER))
2738 goto out;
2740 list_for_each_entry(page, &n->full, lru) {
2741 validate_slab_slab(s, page);
2742 count++;
2744 if (count != atomic_long_read(&n->nr_slabs))
2745 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2746 "counter=%ld\n", s->name, count,
2747 atomic_long_read(&n->nr_slabs));
2749 out:
2750 spin_unlock_irqrestore(&n->list_lock, flags);
2751 return count;
2754 static unsigned long validate_slab_cache(struct kmem_cache *s)
2756 int node;
2757 unsigned long count = 0;
2759 flush_all(s);
2760 for_each_online_node(node) {
2761 struct kmem_cache_node *n = get_node(s, node);
2763 count += validate_slab_node(s, n);
2765 return count;
2768 #ifdef SLUB_RESILIENCY_TEST
2769 static void resiliency_test(void)
2771 u8 *p;
2773 printk(KERN_ERR "SLUB resiliency testing\n");
2774 printk(KERN_ERR "-----------------------\n");
2775 printk(KERN_ERR "A. Corruption after allocation\n");
2777 p = kzalloc(16, GFP_KERNEL);
2778 p[16] = 0x12;
2779 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2780 " 0x12->0x%p\n\n", p + 16);
2782 validate_slab_cache(kmalloc_caches + 4);
2784 /* Hmmm... The next two are dangerous */
2785 p = kzalloc(32, GFP_KERNEL);
2786 p[32 + sizeof(void *)] = 0x34;
2787 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2788 " 0x34 -> -0x%p\n", p);
2789 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2791 validate_slab_cache(kmalloc_caches + 5);
2792 p = kzalloc(64, GFP_KERNEL);
2793 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2794 *p = 0x56;
2795 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2797 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2798 validate_slab_cache(kmalloc_caches + 6);
2800 printk(KERN_ERR "\nB. Corruption after free\n");
2801 p = kzalloc(128, GFP_KERNEL);
2802 kfree(p);
2803 *p = 0x78;
2804 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2805 validate_slab_cache(kmalloc_caches + 7);
2807 p = kzalloc(256, GFP_KERNEL);
2808 kfree(p);
2809 p[50] = 0x9a;
2810 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2811 validate_slab_cache(kmalloc_caches + 8);
2813 p = kzalloc(512, GFP_KERNEL);
2814 kfree(p);
2815 p[512] = 0xab;
2816 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2817 validate_slab_cache(kmalloc_caches + 9);
2819 #else
2820 static void resiliency_test(void) {};
2821 #endif
2824 * Generate lists of code addresses where slabcache objects are allocated
2825 * and freed.
2828 struct location {
2829 unsigned long count;
2830 void *addr;
2831 long long sum_time;
2832 long min_time;
2833 long max_time;
2834 long min_pid;
2835 long max_pid;
2836 cpumask_t cpus;
2837 nodemask_t nodes;
2840 struct loc_track {
2841 unsigned long max;
2842 unsigned long count;
2843 struct location *loc;
2846 static void free_loc_track(struct loc_track *t)
2848 if (t->max)
2849 free_pages((unsigned long)t->loc,
2850 get_order(sizeof(struct location) * t->max));
2853 static int alloc_loc_track(struct loc_track *t, unsigned long max)
2855 struct location *l;
2856 int order;
2858 if (!max)
2859 max = PAGE_SIZE / sizeof(struct location);
2861 order = get_order(sizeof(struct location) * max);
2863 l = (void *)__get_free_pages(GFP_ATOMIC, order);
2865 if (!l)
2866 return 0;
2868 if (t->count) {
2869 memcpy(l, t->loc, sizeof(struct location) * t->count);
2870 free_loc_track(t);
2872 t->max = max;
2873 t->loc = l;
2874 return 1;
2877 static int add_location(struct loc_track *t, struct kmem_cache *s,
2878 const struct track *track)
2880 long start, end, pos;
2881 struct location *l;
2882 void *caddr;
2883 unsigned long age = jiffies - track->when;
2885 start = -1;
2886 end = t->count;
2888 for ( ; ; ) {
2889 pos = start + (end - start + 1) / 2;
2892 * There is nothing at "end". If we end up there
2893 * we need to add something to before end.
2895 if (pos == end)
2896 break;
2898 caddr = t->loc[pos].addr;
2899 if (track->addr == caddr) {
2901 l = &t->loc[pos];
2902 l->count++;
2903 if (track->when) {
2904 l->sum_time += age;
2905 if (age < l->min_time)
2906 l->min_time = age;
2907 if (age > l->max_time)
2908 l->max_time = age;
2910 if (track->pid < l->min_pid)
2911 l->min_pid = track->pid;
2912 if (track->pid > l->max_pid)
2913 l->max_pid = track->pid;
2915 cpu_set(track->cpu, l->cpus);
2917 node_set(page_to_nid(virt_to_page(track)), l->nodes);
2918 return 1;
2921 if (track->addr < caddr)
2922 end = pos;
2923 else
2924 start = pos;
2928 * Not found. Insert new tracking element.
2930 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2931 return 0;
2933 l = t->loc + pos;
2934 if (pos < t->count)
2935 memmove(l + 1, l,
2936 (t->count - pos) * sizeof(struct location));
2937 t->count++;
2938 l->count = 1;
2939 l->addr = track->addr;
2940 l->sum_time = age;
2941 l->min_time = age;
2942 l->max_time = age;
2943 l->min_pid = track->pid;
2944 l->max_pid = track->pid;
2945 cpus_clear(l->cpus);
2946 cpu_set(track->cpu, l->cpus);
2947 nodes_clear(l->nodes);
2948 node_set(page_to_nid(virt_to_page(track)), l->nodes);
2949 return 1;
2952 static void process_slab(struct loc_track *t, struct kmem_cache *s,
2953 struct page *page, enum track_item alloc)
2955 void *addr = page_address(page);
2956 DECLARE_BITMAP(map, s->objects);
2957 void *p;
2959 bitmap_zero(map, s->objects);
2960 for_each_free_object(p, s, page->freelist)
2961 set_bit(slab_index(p, s, addr), map);
2963 for_each_object(p, s, addr)
2964 if (!test_bit(slab_index(p, s, addr), map))
2965 add_location(t, s, get_track(s, p, alloc));
2968 static int list_locations(struct kmem_cache *s, char *buf,
2969 enum track_item alloc)
2971 int n = 0;
2972 unsigned long i;
2973 struct loc_track t;
2974 int node;
2976 t.count = 0;
2977 t.max = 0;
2979 /* Push back cpu slabs */
2980 flush_all(s);
2982 for_each_online_node(node) {
2983 struct kmem_cache_node *n = get_node(s, node);
2984 unsigned long flags;
2985 struct page *page;
2987 if (!atomic_read(&n->nr_slabs))
2988 continue;
2990 spin_lock_irqsave(&n->list_lock, flags);
2991 list_for_each_entry(page, &n->partial, lru)
2992 process_slab(&t, s, page, alloc);
2993 list_for_each_entry(page, &n->full, lru)
2994 process_slab(&t, s, page, alloc);
2995 spin_unlock_irqrestore(&n->list_lock, flags);
2998 for (i = 0; i < t.count; i++) {
2999 struct location *l = &t.loc[i];
3001 if (n > PAGE_SIZE - 100)
3002 break;
3003 n += sprintf(buf + n, "%7ld ", l->count);
3005 if (l->addr)
3006 n += sprint_symbol(buf + n, (unsigned long)l->addr);
3007 else
3008 n += sprintf(buf + n, "<not-available>");
3010 if (l->sum_time != l->min_time) {
3011 unsigned long remainder;
3013 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3014 l->min_time,
3015 div_long_long_rem(l->sum_time, l->count, &remainder),
3016 l->max_time);
3017 } else
3018 n += sprintf(buf + n, " age=%ld",
3019 l->min_time);
3021 if (l->min_pid != l->max_pid)
3022 n += sprintf(buf + n, " pid=%ld-%ld",
3023 l->min_pid, l->max_pid);
3024 else
3025 n += sprintf(buf + n, " pid=%ld",
3026 l->min_pid);
3028 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3029 n < PAGE_SIZE - 60) {
3030 n += sprintf(buf + n, " cpus=");
3031 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3032 l->cpus);
3035 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3036 n < PAGE_SIZE - 60) {
3037 n += sprintf(buf + n, " nodes=");
3038 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3039 l->nodes);
3042 n += sprintf(buf + n, "\n");
3045 free_loc_track(&t);
3046 if (!t.count)
3047 n += sprintf(buf, "No data\n");
3048 return n;
3051 static unsigned long count_partial(struct kmem_cache_node *n)
3053 unsigned long flags;
3054 unsigned long x = 0;
3055 struct page *page;
3057 spin_lock_irqsave(&n->list_lock, flags);
3058 list_for_each_entry(page, &n->partial, lru)
3059 x += page->inuse;
3060 spin_unlock_irqrestore(&n->list_lock, flags);
3061 return x;
3064 enum slab_stat_type {
3065 SL_FULL,
3066 SL_PARTIAL,
3067 SL_CPU,
3068 SL_OBJECTS
3071 #define SO_FULL (1 << SL_FULL)
3072 #define SO_PARTIAL (1 << SL_PARTIAL)
3073 #define SO_CPU (1 << SL_CPU)
3074 #define SO_OBJECTS (1 << SL_OBJECTS)
3076 static unsigned long slab_objects(struct kmem_cache *s,
3077 char *buf, unsigned long flags)
3079 unsigned long total = 0;
3080 int cpu;
3081 int node;
3082 int x;
3083 unsigned long *nodes;
3084 unsigned long *per_cpu;
3086 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3087 per_cpu = nodes + nr_node_ids;
3089 for_each_possible_cpu(cpu) {
3090 struct page *page = s->cpu_slab[cpu];
3091 int node;
3093 if (page) {
3094 node = page_to_nid(page);
3095 if (flags & SO_CPU) {
3096 int x = 0;
3098 if (flags & SO_OBJECTS)
3099 x = page->inuse;
3100 else
3101 x = 1;
3102 total += x;
3103 nodes[node] += x;
3105 per_cpu[node]++;
3109 for_each_online_node(node) {
3110 struct kmem_cache_node *n = get_node(s, node);
3112 if (flags & SO_PARTIAL) {
3113 if (flags & SO_OBJECTS)
3114 x = count_partial(n);
3115 else
3116 x = n->nr_partial;
3117 total += x;
3118 nodes[node] += x;
3121 if (flags & SO_FULL) {
3122 int full_slabs = atomic_read(&n->nr_slabs)
3123 - per_cpu[node]
3124 - n->nr_partial;
3126 if (flags & SO_OBJECTS)
3127 x = full_slabs * s->objects;
3128 else
3129 x = full_slabs;
3130 total += x;
3131 nodes[node] += x;
3135 x = sprintf(buf, "%lu", total);
3136 #ifdef CONFIG_NUMA
3137 for_each_online_node(node)
3138 if (nodes[node])
3139 x += sprintf(buf + x, " N%d=%lu",
3140 node, nodes[node]);
3141 #endif
3142 kfree(nodes);
3143 return x + sprintf(buf + x, "\n");
3146 static int any_slab_objects(struct kmem_cache *s)
3148 int node;
3149 int cpu;
3151 for_each_possible_cpu(cpu)
3152 if (s->cpu_slab[cpu])
3153 return 1;
3155 for_each_node(node) {
3156 struct kmem_cache_node *n = get_node(s, node);
3158 if (n->nr_partial || atomic_read(&n->nr_slabs))
3159 return 1;
3161 return 0;
3164 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3165 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3167 struct slab_attribute {
3168 struct attribute attr;
3169 ssize_t (*show)(struct kmem_cache *s, char *buf);
3170 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3173 #define SLAB_ATTR_RO(_name) \
3174 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3176 #define SLAB_ATTR(_name) \
3177 static struct slab_attribute _name##_attr = \
3178 __ATTR(_name, 0644, _name##_show, _name##_store)
3180 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3182 return sprintf(buf, "%d\n", s->size);
3184 SLAB_ATTR_RO(slab_size);
3186 static ssize_t align_show(struct kmem_cache *s, char *buf)
3188 return sprintf(buf, "%d\n", s->align);
3190 SLAB_ATTR_RO(align);
3192 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3194 return sprintf(buf, "%d\n", s->objsize);
3196 SLAB_ATTR_RO(object_size);
3198 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3200 return sprintf(buf, "%d\n", s->objects);
3202 SLAB_ATTR_RO(objs_per_slab);
3204 static ssize_t order_show(struct kmem_cache *s, char *buf)
3206 return sprintf(buf, "%d\n", s->order);
3208 SLAB_ATTR_RO(order);
3210 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3212 if (s->ctor) {
3213 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3215 return n + sprintf(buf + n, "\n");
3217 return 0;
3219 SLAB_ATTR_RO(ctor);
3221 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3223 return sprintf(buf, "%d\n", s->refcount - 1);
3225 SLAB_ATTR_RO(aliases);
3227 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3229 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3231 SLAB_ATTR_RO(slabs);
3233 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3235 return slab_objects(s, buf, SO_PARTIAL);
3237 SLAB_ATTR_RO(partial);
3239 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3241 return slab_objects(s, buf, SO_CPU);
3243 SLAB_ATTR_RO(cpu_slabs);
3245 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3247 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3249 SLAB_ATTR_RO(objects);
3251 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3253 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3256 static ssize_t sanity_checks_store(struct kmem_cache *s,
3257 const char *buf, size_t length)
3259 s->flags &= ~SLAB_DEBUG_FREE;
3260 if (buf[0] == '1')
3261 s->flags |= SLAB_DEBUG_FREE;
3262 return length;
3264 SLAB_ATTR(sanity_checks);
3266 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3268 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3271 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3272 size_t length)
3274 s->flags &= ~SLAB_TRACE;
3275 if (buf[0] == '1')
3276 s->flags |= SLAB_TRACE;
3277 return length;
3279 SLAB_ATTR(trace);
3281 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3283 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3286 static ssize_t reclaim_account_store(struct kmem_cache *s,
3287 const char *buf, size_t length)
3289 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3290 if (buf[0] == '1')
3291 s->flags |= SLAB_RECLAIM_ACCOUNT;
3292 return length;
3294 SLAB_ATTR(reclaim_account);
3296 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3298 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3300 SLAB_ATTR_RO(hwcache_align);
3302 #ifdef CONFIG_ZONE_DMA
3303 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3305 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3307 SLAB_ATTR_RO(cache_dma);
3308 #endif
3310 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3312 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3314 SLAB_ATTR_RO(destroy_by_rcu);
3316 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3318 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3321 static ssize_t red_zone_store(struct kmem_cache *s,
3322 const char *buf, size_t length)
3324 if (any_slab_objects(s))
3325 return -EBUSY;
3327 s->flags &= ~SLAB_RED_ZONE;
3328 if (buf[0] == '1')
3329 s->flags |= SLAB_RED_ZONE;
3330 calculate_sizes(s);
3331 return length;
3333 SLAB_ATTR(red_zone);
3335 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3337 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3340 static ssize_t poison_store(struct kmem_cache *s,
3341 const char *buf, size_t length)
3343 if (any_slab_objects(s))
3344 return -EBUSY;
3346 s->flags &= ~SLAB_POISON;
3347 if (buf[0] == '1')
3348 s->flags |= SLAB_POISON;
3349 calculate_sizes(s);
3350 return length;
3352 SLAB_ATTR(poison);
3354 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3356 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3359 static ssize_t store_user_store(struct kmem_cache *s,
3360 const char *buf, size_t length)
3362 if (any_slab_objects(s))
3363 return -EBUSY;
3365 s->flags &= ~SLAB_STORE_USER;
3366 if (buf[0] == '1')
3367 s->flags |= SLAB_STORE_USER;
3368 calculate_sizes(s);
3369 return length;
3371 SLAB_ATTR(store_user);
3373 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3375 return 0;
3378 static ssize_t validate_store(struct kmem_cache *s,
3379 const char *buf, size_t length)
3381 if (buf[0] == '1')
3382 validate_slab_cache(s);
3383 else
3384 return -EINVAL;
3385 return length;
3387 SLAB_ATTR(validate);
3389 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3391 return 0;
3394 static ssize_t shrink_store(struct kmem_cache *s,
3395 const char *buf, size_t length)
3397 if (buf[0] == '1') {
3398 int rc = kmem_cache_shrink(s);
3400 if (rc)
3401 return rc;
3402 } else
3403 return -EINVAL;
3404 return length;
3406 SLAB_ATTR(shrink);
3408 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3410 if (!(s->flags & SLAB_STORE_USER))
3411 return -ENOSYS;
3412 return list_locations(s, buf, TRACK_ALLOC);
3414 SLAB_ATTR_RO(alloc_calls);
3416 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3418 if (!(s->flags & SLAB_STORE_USER))
3419 return -ENOSYS;
3420 return list_locations(s, buf, TRACK_FREE);
3422 SLAB_ATTR_RO(free_calls);
3424 #ifdef CONFIG_NUMA
3425 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3427 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3430 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3431 const char *buf, size_t length)
3433 int n = simple_strtoul(buf, NULL, 10);
3435 if (n < 100)
3436 s->defrag_ratio = n * 10;
3437 return length;
3439 SLAB_ATTR(defrag_ratio);
3440 #endif
3442 static struct attribute * slab_attrs[] = {
3443 &slab_size_attr.attr,
3444 &object_size_attr.attr,
3445 &objs_per_slab_attr.attr,
3446 &order_attr.attr,
3447 &objects_attr.attr,
3448 &slabs_attr.attr,
3449 &partial_attr.attr,
3450 &cpu_slabs_attr.attr,
3451 &ctor_attr.attr,
3452 &aliases_attr.attr,
3453 &align_attr.attr,
3454 &sanity_checks_attr.attr,
3455 &trace_attr.attr,
3456 &hwcache_align_attr.attr,
3457 &reclaim_account_attr.attr,
3458 &destroy_by_rcu_attr.attr,
3459 &red_zone_attr.attr,
3460 &poison_attr.attr,
3461 &store_user_attr.attr,
3462 &validate_attr.attr,
3463 &shrink_attr.attr,
3464 &alloc_calls_attr.attr,
3465 &free_calls_attr.attr,
3466 #ifdef CONFIG_ZONE_DMA
3467 &cache_dma_attr.attr,
3468 #endif
3469 #ifdef CONFIG_NUMA
3470 &defrag_ratio_attr.attr,
3471 #endif
3472 NULL
3475 static struct attribute_group slab_attr_group = {
3476 .attrs = slab_attrs,
3479 static ssize_t slab_attr_show(struct kobject *kobj,
3480 struct attribute *attr,
3481 char *buf)
3483 struct slab_attribute *attribute;
3484 struct kmem_cache *s;
3485 int err;
3487 attribute = to_slab_attr(attr);
3488 s = to_slab(kobj);
3490 if (!attribute->show)
3491 return -EIO;
3493 err = attribute->show(s, buf);
3495 return err;
3498 static ssize_t slab_attr_store(struct kobject *kobj,
3499 struct attribute *attr,
3500 const char *buf, size_t len)
3502 struct slab_attribute *attribute;
3503 struct kmem_cache *s;
3504 int err;
3506 attribute = to_slab_attr(attr);
3507 s = to_slab(kobj);
3509 if (!attribute->store)
3510 return -EIO;
3512 err = attribute->store(s, buf, len);
3514 return err;
3517 static struct sysfs_ops slab_sysfs_ops = {
3518 .show = slab_attr_show,
3519 .store = slab_attr_store,
3522 static struct kobj_type slab_ktype = {
3523 .sysfs_ops = &slab_sysfs_ops,
3526 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3528 struct kobj_type *ktype = get_ktype(kobj);
3530 if (ktype == &slab_ktype)
3531 return 1;
3532 return 0;
3535 static struct kset_uevent_ops slab_uevent_ops = {
3536 .filter = uevent_filter,
3539 decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3541 #define ID_STR_LENGTH 64
3543 /* Create a unique string id for a slab cache:
3544 * format
3545 * :[flags-]size:[memory address of kmemcache]
3547 static char *create_unique_id(struct kmem_cache *s)
3549 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3550 char *p = name;
3552 BUG_ON(!name);
3554 *p++ = ':';
3556 * First flags affecting slabcache operations. We will only
3557 * get here for aliasable slabs so we do not need to support
3558 * too many flags. The flags here must cover all flags that
3559 * are matched during merging to guarantee that the id is
3560 * unique.
3562 if (s->flags & SLAB_CACHE_DMA)
3563 *p++ = 'd';
3564 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3565 *p++ = 'a';
3566 if (s->flags & SLAB_DEBUG_FREE)
3567 *p++ = 'F';
3568 if (p != name + 1)
3569 *p++ = '-';
3570 p += sprintf(p, "%07d", s->size);
3571 BUG_ON(p > name + ID_STR_LENGTH - 1);
3572 return name;
3575 static int sysfs_slab_add(struct kmem_cache *s)
3577 int err;
3578 const char *name;
3579 int unmergeable;
3581 if (slab_state < SYSFS)
3582 /* Defer until later */
3583 return 0;
3585 unmergeable = slab_unmergeable(s);
3586 if (unmergeable) {
3588 * Slabcache can never be merged so we can use the name proper.
3589 * This is typically the case for debug situations. In that
3590 * case we can catch duplicate names easily.
3592 sysfs_remove_link(&slab_subsys.kobj, s->name);
3593 name = s->name;
3594 } else {
3596 * Create a unique name for the slab as a target
3597 * for the symlinks.
3599 name = create_unique_id(s);
3602 kobj_set_kset_s(s, slab_subsys);
3603 kobject_set_name(&s->kobj, name);
3604 kobject_init(&s->kobj);
3605 err = kobject_add(&s->kobj);
3606 if (err)
3607 return err;
3609 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3610 if (err)
3611 return err;
3612 kobject_uevent(&s->kobj, KOBJ_ADD);
3613 if (!unmergeable) {
3614 /* Setup first alias */
3615 sysfs_slab_alias(s, s->name);
3616 kfree(name);
3618 return 0;
3621 static void sysfs_slab_remove(struct kmem_cache *s)
3623 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3624 kobject_del(&s->kobj);
3628 * Need to buffer aliases during bootup until sysfs becomes
3629 * available lest we loose that information.
3631 struct saved_alias {
3632 struct kmem_cache *s;
3633 const char *name;
3634 struct saved_alias *next;
3637 struct saved_alias *alias_list;
3639 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3641 struct saved_alias *al;
3643 if (slab_state == SYSFS) {
3645 * If we have a leftover link then remove it.
3647 sysfs_remove_link(&slab_subsys.kobj, name);
3648 return sysfs_create_link(&slab_subsys.kobj,
3649 &s->kobj, name);
3652 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3653 if (!al)
3654 return -ENOMEM;
3656 al->s = s;
3657 al->name = name;
3658 al->next = alias_list;
3659 alias_list = al;
3660 return 0;
3663 static int __init slab_sysfs_init(void)
3665 struct list_head *h;
3666 int err;
3668 err = subsystem_register(&slab_subsys);
3669 if (err) {
3670 printk(KERN_ERR "Cannot register slab subsystem.\n");
3671 return -ENOSYS;
3674 slab_state = SYSFS;
3676 list_for_each(h, &slab_caches) {
3677 struct kmem_cache *s =
3678 container_of(h, struct kmem_cache, list);
3680 err = sysfs_slab_add(s);
3681 BUG_ON(err);
3684 while (alias_list) {
3685 struct saved_alias *al = alias_list;
3687 alias_list = alias_list->next;
3688 err = sysfs_slab_alias(al->s, al->name);
3689 BUG_ON(err);
3690 kfree(al);
3693 resiliency_test();
3694 return 0;
3697 __initcall(slab_sysfs_init);
3698 #endif