code style scripts/checkpatch.pl (linux-3.9-rc1) formatting
[linux-2.6.32.60-moxart.git] / kernel / auditsc.c
blob267e484f019817b87187c74bfa7aa12275411b0c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
71 #include "audit.h"
73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75 #define AUDIT_NAMES 20
77 /* Indicates that audit should log the full pathname. */
78 #define AUDIT_NAME_FULL -1
80 /* no execve audit message should be longer than this (userspace limits) */
81 #define MAX_EXECVE_AUDIT_LEN 7500
83 /* number of audit rules */
84 int audit_n_rules;
86 /* determines whether we collect data for signals sent */
87 int audit_signals;
89 struct audit_cap_data {
90 kernel_cap_t permitted;
91 kernel_cap_t inheritable;
92 union {
93 unsigned int fE; /* effective bit of a file capability */
94 kernel_cap_t effective; /* effective set of a process */
98 /* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103 struct audit_names {
104 const char *name;
105 int name_len; /* number of name's characters to log */
106 unsigned name_put; /* call __putname() for this name */
107 unsigned long ino;
108 dev_t dev;
109 umode_t mode;
110 uid_t uid;
111 gid_t gid;
112 dev_t rdev;
113 u32 osid;
114 struct audit_cap_data fcap;
115 unsigned int fcap_ver;
118 struct audit_aux_data {
119 struct audit_aux_data *next;
120 int type;
123 #define AUDIT_AUX_IPCPERM 0
125 /* Number of target pids per aux struct. */
126 #define AUDIT_AUX_PIDS 16
128 struct audit_aux_data_execve {
129 struct audit_aux_data d;
130 int argc;
131 int envc;
132 struct mm_struct *mm;
135 struct audit_aux_data_pids {
136 struct audit_aux_data d;
137 pid_t target_pid[AUDIT_AUX_PIDS];
138 uid_t target_auid[AUDIT_AUX_PIDS];
139 uid_t target_uid[AUDIT_AUX_PIDS];
140 unsigned int target_sessionid[AUDIT_AUX_PIDS];
141 u32 target_sid[AUDIT_AUX_PIDS];
142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
143 int pid_count;
146 struct audit_aux_data_bprm_fcaps {
147 struct audit_aux_data d;
148 struct audit_cap_data fcap;
149 unsigned int fcap_ver;
150 struct audit_cap_data old_pcap;
151 struct audit_cap_data new_pcap;
154 struct audit_aux_data_capset {
155 struct audit_aux_data d;
156 pid_t pid;
157 struct audit_cap_data cap;
160 struct audit_tree_refs {
161 struct audit_tree_refs *next;
162 struct audit_chunk *c[31];
165 /* The per-task audit context. */
166 struct audit_context {
167 int dummy; /* must be the first element */
168 int in_syscall; /* 1 if task is in a syscall */
169 enum audit_state state, current_state;
170 unsigned int serial; /* serial number for record */
171 int major; /* syscall number */
172 struct timespec ctime; /* time of syscall entry */
173 unsigned long argv[4]; /* syscall arguments */
174 long return_code;/* syscall return code */
175 u64 prio;
176 int return_valid; /* return code is valid */
177 int name_count;
178 struct audit_names names[AUDIT_NAMES];
179 char * filterkey; /* key for rule that triggered record */
180 struct path pwd;
181 struct audit_context *previous; /* For nested syscalls */
182 struct audit_aux_data *aux;
183 struct audit_aux_data *aux_pids;
184 struct sockaddr_storage *sockaddr;
185 size_t sockaddr_len;
186 /* Save things to print about task_struct */
187 pid_t pid, ppid;
188 uid_t uid, euid, suid, fsuid;
189 gid_t gid, egid, sgid, fsgid;
190 unsigned long personality;
191 int arch;
193 pid_t target_pid;
194 uid_t target_auid;
195 uid_t target_uid;
196 unsigned int target_sessionid;
197 u32 target_sid;
198 char target_comm[TASK_COMM_LEN];
200 struct audit_tree_refs *trees, *first_trees;
201 struct list_head killed_trees;
202 int tree_count;
204 int type;
205 union {
206 struct {
207 int nargs;
208 long args[6];
209 } socketcall;
210 struct {
211 uid_t uid;
212 gid_t gid;
213 mode_t mode;
214 u32 osid;
215 int has_perm;
216 uid_t perm_uid;
217 gid_t perm_gid;
218 mode_t perm_mode;
219 unsigned long qbytes;
220 } ipc;
221 struct {
222 mqd_t mqdes;
223 struct mq_attr mqstat;
224 } mq_getsetattr;
225 struct {
226 mqd_t mqdes;
227 int sigev_signo;
228 } mq_notify;
229 struct {
230 mqd_t mqdes;
231 size_t msg_len;
232 unsigned int msg_prio;
233 struct timespec abs_timeout;
234 } mq_sendrecv;
235 struct {
236 int oflag;
237 mode_t mode;
238 struct mq_attr attr;
239 } mq_open;
240 struct {
241 pid_t pid;
242 struct audit_cap_data cap;
243 } capset;
245 int fds[2];
247 #if AUDIT_DEBUG
248 int put_count;
249 int ino_count;
250 #endif
253 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
254 static inline int open_arg(int flags, int mask)
256 int n = ACC_MODE(flags);
257 if (flags & (O_TRUNC | O_CREAT))
258 n |= AUDIT_PERM_WRITE;
259 return n & mask;
262 static int audit_match_perm(struct audit_context *ctx, int mask)
264 unsigned n;
265 if (unlikely(!ctx))
266 return 0;
267 n = ctx->major;
269 switch (audit_classify_syscall(ctx->arch, n)) {
270 case 0: /* native */
271 if ((mask & AUDIT_PERM_WRITE) &&
272 audit_match_class(AUDIT_CLASS_WRITE, n))
273 return 1;
274 if ((mask & AUDIT_PERM_READ) &&
275 audit_match_class(AUDIT_CLASS_READ, n))
276 return 1;
277 if ((mask & AUDIT_PERM_ATTR) &&
278 audit_match_class(AUDIT_CLASS_CHATTR, n))
279 return 1;
280 return 0;
281 case 1: /* 32bit on biarch */
282 if ((mask & AUDIT_PERM_WRITE) &&
283 audit_match_class(AUDIT_CLASS_WRITE_32, n))
284 return 1;
285 if ((mask & AUDIT_PERM_READ) &&
286 audit_match_class(AUDIT_CLASS_READ_32, n))
287 return 1;
288 if ((mask & AUDIT_PERM_ATTR) &&
289 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
290 return 1;
291 return 0;
292 case 2: /* open */
293 return mask & ACC_MODE(ctx->argv[1]);
294 case 3: /* openat */
295 return mask & ACC_MODE(ctx->argv[2]);
296 case 4: /* socketcall */
297 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
298 case 5: /* execve */
299 return mask & AUDIT_PERM_EXEC;
300 default:
301 return 0;
305 static int audit_match_filetype(struct audit_context *ctx, int which)
307 unsigned index = which & ~S_IFMT;
308 mode_t mode = which & S_IFMT;
310 if (unlikely(!ctx))
311 return 0;
313 if (index >= ctx->name_count)
314 return 0;
315 if (ctx->names[index].ino == -1)
316 return 0;
317 if ((ctx->names[index].mode ^ mode) & S_IFMT)
318 return 0;
319 return 1;
323 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
324 * ->first_trees points to its beginning, ->trees - to the current end of data.
325 * ->tree_count is the number of free entries in array pointed to by ->trees.
326 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
327 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
328 * it's going to remain 1-element for almost any setup) until we free context itself.
329 * References in it _are_ dropped - at the same time we free/drop aux stuff.
332 #ifdef CONFIG_AUDIT_TREE
333 static void audit_set_auditable(struct audit_context *ctx)
335 if (!ctx->prio) {
336 ctx->prio = 1;
337 ctx->current_state = AUDIT_RECORD_CONTEXT;
341 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
343 struct audit_tree_refs *p = ctx->trees;
344 int left = ctx->tree_count;
345 if (likely(left)) {
346 p->c[--left] = chunk;
347 ctx->tree_count = left;
348 return 1;
350 if (!p)
351 return 0;
352 p = p->next;
353 if (p) {
354 p->c[30] = chunk;
355 ctx->trees = p;
356 ctx->tree_count = 30;
357 return 1;
359 return 0;
362 static int grow_tree_refs(struct audit_context *ctx)
364 struct audit_tree_refs *p = ctx->trees;
365 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
366 if (!ctx->trees) {
367 ctx->trees = p;
368 return 0;
370 if (p)
371 p->next = ctx->trees;
372 else
373 ctx->first_trees = ctx->trees;
374 ctx->tree_count = 31;
375 return 1;
377 #endif
379 static void unroll_tree_refs(struct audit_context *ctx,
380 struct audit_tree_refs *p, int count)
382 #ifdef CONFIG_AUDIT_TREE
383 struct audit_tree_refs *q;
384 int n;
385 if (!p) {
386 /* we started with empty chain */
387 p = ctx->first_trees;
388 count = 31;
389 /* if the very first allocation has failed, nothing to do */
390 if (!p)
391 return;
393 n = count;
394 for (q = p; q != ctx->trees; q = q->next, n = 31) {
395 while (n--) {
396 audit_put_chunk(q->c[n]);
397 q->c[n] = NULL;
400 while (n-- > ctx->tree_count) {
401 audit_put_chunk(q->c[n]);
402 q->c[n] = NULL;
404 ctx->trees = p;
405 ctx->tree_count = count;
406 #endif
409 static void free_tree_refs(struct audit_context *ctx)
411 struct audit_tree_refs *p, *q;
412 for (p = ctx->first_trees; p; p = q) {
413 q = p->next;
414 kfree(p);
418 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
420 #ifdef CONFIG_AUDIT_TREE
421 struct audit_tree_refs *p;
422 int n;
423 if (!tree)
424 return 0;
425 /* full ones */
426 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
427 for (n = 0; n < 31; n++)
428 if (audit_tree_match(p->c[n], tree))
429 return 1;
431 /* partial */
432 if (p) {
433 for (n = ctx->tree_count; n < 31; n++)
434 if (audit_tree_match(p->c[n], tree))
435 return 1;
437 #endif
438 return 0;
441 /* Determine if any context name data matches a rule's watch data */
442 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
443 * otherwise. */
444 static int audit_filter_rules(struct task_struct *tsk,
445 struct audit_krule *rule,
446 struct audit_context *ctx,
447 struct audit_names *name,
448 enum audit_state *state)
450 const struct cred *cred = get_task_cred(tsk);
451 int i, j, need_sid = 1;
452 u32 sid;
454 for (i = 0; i < rule->field_count; i++) {
455 struct audit_field *f = &rule->fields[i];
456 int result = 0;
458 switch (f->type) {
459 case AUDIT_PID:
460 result = audit_comparator(tsk->pid, f->op, f->val);
461 break;
462 case AUDIT_PPID:
463 if (ctx) {
464 if (!ctx->ppid)
465 ctx->ppid = sys_getppid();
466 result = audit_comparator(ctx->ppid, f->op, f->val);
468 break;
469 case AUDIT_UID:
470 result = audit_comparator(cred->uid, f->op, f->val);
471 break;
472 case AUDIT_EUID:
473 result = audit_comparator(cred->euid, f->op, f->val);
474 break;
475 case AUDIT_SUID:
476 result = audit_comparator(cred->suid, f->op, f->val);
477 break;
478 case AUDIT_FSUID:
479 result = audit_comparator(cred->fsuid, f->op, f->val);
480 break;
481 case AUDIT_GID:
482 result = audit_comparator(cred->gid, f->op, f->val);
483 break;
484 case AUDIT_EGID:
485 result = audit_comparator(cred->egid, f->op, f->val);
486 break;
487 case AUDIT_SGID:
488 result = audit_comparator(cred->sgid, f->op, f->val);
489 break;
490 case AUDIT_FSGID:
491 result = audit_comparator(cred->fsgid, f->op, f->val);
492 break;
493 case AUDIT_PERS:
494 result = audit_comparator(tsk->personality, f->op, f->val);
495 break;
496 case AUDIT_ARCH:
497 if (ctx)
498 result = audit_comparator(ctx->arch, f->op, f->val);
499 break;
501 case AUDIT_EXIT:
502 if (ctx && ctx->return_valid)
503 result = audit_comparator(ctx->return_code, f->op, f->val);
504 break;
505 case AUDIT_SUCCESS:
506 if (ctx && ctx->return_valid) {
507 if (f->val)
508 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
509 else
510 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
512 break;
513 case AUDIT_DEVMAJOR:
514 if (name)
515 result = audit_comparator(MAJOR(name->dev),
516 f->op, f->val);
517 else if (ctx) {
518 for (j = 0; j < ctx->name_count; j++) {
519 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
520 ++result;
521 break;
525 break;
526 case AUDIT_DEVMINOR:
527 if (name)
528 result = audit_comparator(MINOR(name->dev),
529 f->op, f->val);
530 else if (ctx) {
531 for (j = 0; j < ctx->name_count; j++) {
532 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
533 ++result;
534 break;
538 break;
539 case AUDIT_INODE:
540 if (name)
541 result = (name->ino == f->val);
542 else if (ctx) {
543 for (j = 0; j < ctx->name_count; j++) {
544 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
545 ++result;
546 break;
550 break;
551 case AUDIT_WATCH:
552 if (name && audit_watch_inode(rule->watch) != (unsigned long)-1)
553 result = (name->dev == audit_watch_dev(rule->watch) &&
554 name->ino == audit_watch_inode(rule->watch));
555 break;
556 case AUDIT_DIR:
557 if (ctx)
558 result = match_tree_refs(ctx, rule->tree);
559 break;
560 case AUDIT_LOGINUID:
561 result = 0;
562 if (ctx)
563 result = audit_comparator(tsk->loginuid, f->op, f->val);
564 break;
565 case AUDIT_SUBJ_USER:
566 case AUDIT_SUBJ_ROLE:
567 case AUDIT_SUBJ_TYPE:
568 case AUDIT_SUBJ_SEN:
569 case AUDIT_SUBJ_CLR:
570 /* NOTE: this may return negative values indicating
571 a temporary error. We simply treat this as a
572 match for now to avoid losing information that
573 may be wanted. An error message will also be
574 logged upon error */
575 if (f->lsm_rule) {
576 if (need_sid) {
577 security_task_getsecid(tsk, &sid);
578 need_sid = 0;
580 result = security_audit_rule_match(sid, f->type,
581 f->op,
582 f->lsm_rule,
583 ctx);
585 break;
586 case AUDIT_OBJ_USER:
587 case AUDIT_OBJ_ROLE:
588 case AUDIT_OBJ_TYPE:
589 case AUDIT_OBJ_LEV_LOW:
590 case AUDIT_OBJ_LEV_HIGH:
591 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
592 also applies here */
593 if (f->lsm_rule) {
594 /* Find files that match */
595 if (name) {
596 result = security_audit_rule_match(
597 name->osid, f->type, f->op,
598 f->lsm_rule, ctx);
599 } else if (ctx) {
600 for (j = 0; j < ctx->name_count; j++) {
601 if (security_audit_rule_match(
602 ctx->names[j].osid,
603 f->type, f->op,
604 f->lsm_rule, ctx)) {
605 ++result;
606 break;
610 /* Find ipc objects that match */
611 if (!ctx || ctx->type != AUDIT_IPC)
612 break;
613 if (security_audit_rule_match(ctx->ipc.osid,
614 f->type, f->op,
615 f->lsm_rule, ctx))
616 ++result;
618 break;
619 case AUDIT_ARG0:
620 case AUDIT_ARG1:
621 case AUDIT_ARG2:
622 case AUDIT_ARG3:
623 if (ctx)
624 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
625 break;
626 case AUDIT_FILTERKEY:
627 /* ignore this field for filtering */
628 result = 1;
629 break;
630 case AUDIT_PERM:
631 result = audit_match_perm(ctx, f->val);
632 break;
633 case AUDIT_FILETYPE:
634 result = audit_match_filetype(ctx, f->val);
635 break;
638 if (!result) {
639 put_cred(cred);
640 return 0;
644 if (ctx) {
645 if (rule->prio <= ctx->prio)
646 return 0;
647 if (rule->filterkey) {
648 kfree(ctx->filterkey);
649 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
651 ctx->prio = rule->prio;
653 switch (rule->action) {
654 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
655 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
657 put_cred(cred);
658 return 1;
661 /* At process creation time, we can determine if system-call auditing is
662 * completely disabled for this task. Since we only have the task
663 * structure at this point, we can only check uid and gid.
665 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
667 struct audit_entry *e;
668 enum audit_state state;
670 rcu_read_lock();
671 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
672 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
673 if (state == AUDIT_RECORD_CONTEXT)
674 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
675 rcu_read_unlock();
676 return state;
679 rcu_read_unlock();
680 return AUDIT_BUILD_CONTEXT;
683 /* At syscall entry and exit time, this filter is called if the
684 * audit_state is not low enough that auditing cannot take place, but is
685 * also not high enough that we already know we have to write an audit
686 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
688 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
689 struct audit_context *ctx,
690 struct list_head *list)
692 struct audit_entry *e;
693 enum audit_state state;
695 if (audit_pid && tsk->tgid == audit_pid)
696 return AUDIT_DISABLED;
698 rcu_read_lock();
699 if (!list_empty(list)) {
700 int word = AUDIT_WORD(ctx->major);
701 int bit = AUDIT_BIT(ctx->major);
703 list_for_each_entry_rcu(e, list, list) {
704 if ((e->rule.mask[word] & bit) == bit &&
705 audit_filter_rules(tsk, &e->rule, ctx, NULL,
706 &state)) {
707 rcu_read_unlock();
708 ctx->current_state = state;
709 return state;
713 rcu_read_unlock();
714 return AUDIT_BUILD_CONTEXT;
717 /* At syscall exit time, this filter is called if any audit_names[] have been
718 * collected during syscall processing. We only check rules in sublists at hash
719 * buckets applicable to the inode numbers in audit_names[].
720 * Regarding audit_state, same rules apply as for audit_filter_syscall().
722 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
724 int i;
725 struct audit_entry *e;
726 enum audit_state state;
728 if (audit_pid && tsk->tgid == audit_pid)
729 return;
731 rcu_read_lock();
732 for (i = 0; i < ctx->name_count; i++) {
733 int word = AUDIT_WORD(ctx->major);
734 int bit = AUDIT_BIT(ctx->major);
735 struct audit_names *n = &ctx->names[i];
736 int h = audit_hash_ino((u32)n->ino);
737 struct list_head *list = &audit_inode_hash[h];
739 if (list_empty(list))
740 continue;
742 list_for_each_entry_rcu(e, list, list) {
743 if ((e->rule.mask[word] & bit) == bit &&
744 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
745 rcu_read_unlock();
746 ctx->current_state = state;
747 return;
751 rcu_read_unlock();
754 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
755 int return_valid,
756 long return_code)
758 struct audit_context *context = tsk->audit_context;
760 if (likely(!context))
761 return NULL;
762 context->return_valid = return_valid;
765 * we need to fix up the return code in the audit logs if the actual
766 * return codes are later going to be fixed up by the arch specific
767 * signal handlers
769 * This is actually a test for:
770 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
771 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
773 * but is faster than a bunch of ||
775 if (unlikely(return_code <= -ERESTARTSYS) &&
776 (return_code >= -ERESTART_RESTARTBLOCK) &&
777 (return_code != -ENOIOCTLCMD))
778 context->return_code = -EINTR;
779 else
780 context->return_code = return_code;
782 if (context->in_syscall && !context->dummy) {
783 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
784 audit_filter_inodes(tsk, context);
787 tsk->audit_context = NULL;
788 return context;
791 static inline void audit_free_names(struct audit_context *context)
793 int i;
795 #if AUDIT_DEBUG == 2
796 if (context->put_count + context->ino_count != context->name_count) {
797 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
798 " name_count=%d put_count=%d"
799 " ino_count=%d [NOT freeing]\n",
800 __FILE__, __LINE__,
801 context->serial, context->major, context->in_syscall,
802 context->name_count, context->put_count,
803 context->ino_count);
804 for (i = 0; i < context->name_count; i++) {
805 printk(KERN_ERR "names[%d] = %p = %s\n", i,
806 context->names[i].name,
807 context->names[i].name ?: "(null)");
809 dump_stack();
810 return;
812 #endif
813 #if AUDIT_DEBUG
814 context->put_count = 0;
815 context->ino_count = 0;
816 #endif
818 for (i = 0; i < context->name_count; i++) {
819 if (context->names[i].name && context->names[i].name_put)
820 __putname(context->names[i].name);
822 context->name_count = 0;
823 path_put(&context->pwd);
824 context->pwd.dentry = NULL;
825 context->pwd.mnt = NULL;
828 static inline void audit_free_aux(struct audit_context *context)
830 struct audit_aux_data *aux;
832 while ((aux = context->aux)) {
833 context->aux = aux->next;
834 kfree(aux);
836 while ((aux = context->aux_pids)) {
837 context->aux_pids = aux->next;
838 kfree(aux);
842 static inline void audit_zero_context(struct audit_context *context,
843 enum audit_state state)
845 memset(context, 0, sizeof(*context));
846 context->state = state;
847 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
850 static inline struct audit_context *audit_alloc_context(enum audit_state state)
852 struct audit_context *context;
854 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
855 return NULL;
856 audit_zero_context(context, state);
857 INIT_LIST_HEAD(&context->killed_trees);
858 return context;
862 * audit_alloc - allocate an audit context block for a task
863 * @tsk: task
865 * Filter on the task information and allocate a per-task audit context
866 * if necessary. Doing so turns on system call auditing for the
867 * specified task. This is called from copy_process, so no lock is
868 * needed.
870 int audit_alloc(struct task_struct *tsk)
872 struct audit_context *context;
873 enum audit_state state;
874 char *key = NULL;
876 if (likely(!audit_ever_enabled))
877 return 0; /* Return if not auditing. */
879 state = audit_filter_task(tsk, &key);
880 if (likely(state == AUDIT_DISABLED))
881 return 0;
883 if (!(context = audit_alloc_context(state))) {
884 kfree(key);
885 audit_log_lost("out of memory in audit_alloc");
886 return -ENOMEM;
888 context->filterkey = key;
890 tsk->audit_context = context;
891 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
892 return 0;
895 static inline void audit_free_context(struct audit_context *context)
897 struct audit_context *previous;
898 int count = 0;
900 do {
901 previous = context->previous;
902 if (previous || (count && count < 10)) {
903 ++count;
904 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
905 " freeing multiple contexts (%d)\n",
906 context->serial, context->major,
907 context->name_count, count);
909 audit_free_names(context);
910 unroll_tree_refs(context, NULL, 0);
911 free_tree_refs(context);
912 audit_free_aux(context);
913 kfree(context->filterkey);
914 kfree(context->sockaddr);
915 kfree(context);
916 context = previous;
917 } while (context);
918 if (count >= 10)
919 printk(KERN_ERR "audit: freed %d contexts\n", count);
922 void audit_log_task_context(struct audit_buffer *ab)
924 char *ctx = NULL;
925 unsigned len;
926 int error;
927 u32 sid;
929 security_task_getsecid(current, &sid);
930 if (!sid)
931 return;
933 error = security_secid_to_secctx(sid, &ctx, &len);
934 if (error) {
935 if (error != -EINVAL)
936 goto error_path;
937 return;
940 audit_log_format(ab, " subj=%s", ctx);
941 security_release_secctx(ctx, len);
942 return;
944 error_path:
945 audit_panic("error in audit_log_task_context");
946 return;
949 EXPORT_SYMBOL(audit_log_task_context);
951 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
953 char name[sizeof(tsk->comm)];
954 struct mm_struct *mm = tsk->mm;
955 struct vm_area_struct *vma;
957 /* tsk == current */
959 get_task_comm(name, tsk);
960 audit_log_format(ab, " comm=");
961 audit_log_untrustedstring(ab, name);
963 if (mm) {
964 down_read(&mm->mmap_sem);
965 vma = mm->mmap;
966 while (vma) {
967 if ((vma->vm_flags & VM_EXECUTABLE) &&
968 vma->vm_file) {
969 audit_log_d_path(ab, "exe=",
970 &vma->vm_file->f_path);
971 break;
973 vma = vma->vm_next;
975 up_read(&mm->mmap_sem);
977 audit_log_task_context(ab);
980 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
981 uid_t auid, uid_t uid, unsigned int sessionid,
982 u32 sid, char *comm)
984 struct audit_buffer *ab;
985 char *ctx = NULL;
986 u32 len;
987 int rc = 0;
989 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
990 if (!ab)
991 return rc;
993 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
994 uid, sessionid);
995 if (security_secid_to_secctx(sid, &ctx, &len)) {
996 audit_log_format(ab, " obj=(none)");
997 rc = 1;
998 } else {
999 audit_log_format(ab, " obj=%s", ctx);
1000 security_release_secctx(ctx, len);
1002 audit_log_format(ab, " ocomm=");
1003 audit_log_untrustedstring(ab, comm);
1004 audit_log_end(ab);
1006 return rc;
1010 * to_send and len_sent accounting are very loose estimates. We aren't
1011 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1012 * within about 500 bytes (next page boundry)
1014 * why snprintf? an int is up to 12 digits long. if we just assumed when
1015 * logging that a[%d]= was going to be 16 characters long we would be wasting
1016 * space in every audit message. In one 7500 byte message we can log up to
1017 * about 1000 min size arguments. That comes down to about 50% waste of space
1018 * if we didn't do the snprintf to find out how long arg_num_len was.
1020 static int audit_log_single_execve_arg(struct audit_context *context,
1021 struct audit_buffer **ab,
1022 int arg_num,
1023 size_t *len_sent,
1024 const char __user *p,
1025 char *buf)
1027 char arg_num_len_buf[12];
1028 const char __user *tmp_p = p;
1029 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1030 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1031 size_t len, len_left, to_send;
1032 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1033 unsigned int i, has_cntl = 0, too_long = 0;
1034 int ret;
1036 /* strnlen_user includes the null we don't want to send */
1037 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1040 * We just created this mm, if we can't find the strings
1041 * we just copied into it something is _very_ wrong. Similar
1042 * for strings that are too long, we should not have created
1043 * any.
1045 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1046 WARN_ON(1);
1047 send_sig(SIGKILL, current, 0);
1048 return -1;
1051 /* walk the whole argument looking for non-ascii chars */
1052 do {
1053 if (len_left > MAX_EXECVE_AUDIT_LEN)
1054 to_send = MAX_EXECVE_AUDIT_LEN;
1055 else
1056 to_send = len_left;
1057 ret = copy_from_user(buf, tmp_p, to_send);
1059 * There is no reason for this copy to be short. We just
1060 * copied them here, and the mm hasn't been exposed to user-
1061 * space yet.
1063 if (ret) {
1064 WARN_ON(1);
1065 send_sig(SIGKILL, current, 0);
1066 return -1;
1068 buf[to_send] = '\0';
1069 has_cntl = audit_string_contains_control(buf, to_send);
1070 if (has_cntl) {
1072 * hex messages get logged as 2 bytes, so we can only
1073 * send half as much in each message
1075 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1076 break;
1078 len_left -= to_send;
1079 tmp_p += to_send;
1080 } while (len_left > 0);
1082 len_left = len;
1084 if (len > max_execve_audit_len)
1085 too_long = 1;
1087 /* rewalk the argument actually logging the message */
1088 for (i = 0; len_left > 0; i++) {
1089 int room_left;
1091 if (len_left > max_execve_audit_len)
1092 to_send = max_execve_audit_len;
1093 else
1094 to_send = len_left;
1096 /* do we have space left to send this argument in this ab? */
1097 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1098 if (has_cntl)
1099 room_left -= (to_send * 2);
1100 else
1101 room_left -= to_send;
1102 if (room_left < 0) {
1103 *len_sent = 0;
1104 audit_log_end(*ab);
1105 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1106 if (!*ab)
1107 return 0;
1111 * first record needs to say how long the original string was
1112 * so we can be sure nothing was lost.
1114 if ((i == 0) && (too_long))
1115 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1116 has_cntl ? 2*len : len);
1119 * normally arguments are small enough to fit and we already
1120 * filled buf above when we checked for control characters
1121 * so don't bother with another copy_from_user
1123 if (len >= max_execve_audit_len)
1124 ret = copy_from_user(buf, p, to_send);
1125 else
1126 ret = 0;
1127 if (ret) {
1128 WARN_ON(1);
1129 send_sig(SIGKILL, current, 0);
1130 return -1;
1132 buf[to_send] = '\0';
1134 /* actually log it */
1135 audit_log_format(*ab, " a%d", arg_num);
1136 if (too_long)
1137 audit_log_format(*ab, "[%d]", i);
1138 audit_log_format(*ab, "=");
1139 if (has_cntl)
1140 audit_log_n_hex(*ab, buf, to_send);
1141 else
1142 audit_log_string(*ab, buf);
1144 p += to_send;
1145 len_left -= to_send;
1146 *len_sent += arg_num_len;
1147 if (has_cntl)
1148 *len_sent += to_send * 2;
1149 else
1150 *len_sent += to_send;
1152 /* include the null we didn't log */
1153 return len + 1;
1156 static void audit_log_execve_info(struct audit_context *context,
1157 struct audit_buffer **ab,
1158 struct audit_aux_data_execve *axi)
1160 int i;
1161 size_t len, len_sent = 0;
1162 const char __user *p;
1163 char *buf;
1165 if (axi->mm != current->mm)
1166 return; /* execve failed, no additional info */
1168 p = (const char __user *)axi->mm->arg_start;
1170 audit_log_format(*ab, "argc=%d", axi->argc);
1173 * we need some kernel buffer to hold the userspace args. Just
1174 * allocate one big one rather than allocating one of the right size
1175 * for every single argument inside audit_log_single_execve_arg()
1176 * should be <8k allocation so should be pretty safe.
1178 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1179 if (!buf) {
1180 audit_panic("out of memory for argv string\n");
1181 return;
1184 for (i = 0; i < axi->argc; i++) {
1185 len = audit_log_single_execve_arg(context, ab, i,
1186 &len_sent, p, buf);
1187 if (len <= 0)
1188 break;
1189 p += len;
1191 kfree(buf);
1194 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1196 int i;
1198 audit_log_format(ab, " %s=", prefix);
1199 CAP_FOR_EACH_U32(i) {
1200 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1204 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1206 kernel_cap_t *perm = &name->fcap.permitted;
1207 kernel_cap_t *inh = &name->fcap.inheritable;
1208 int log = 0;
1210 if (!cap_isclear(*perm)) {
1211 audit_log_cap(ab, "cap_fp", perm);
1212 log = 1;
1214 if (!cap_isclear(*inh)) {
1215 audit_log_cap(ab, "cap_fi", inh);
1216 log = 1;
1219 if (log)
1220 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1223 static void show_special(struct audit_context *context, int *call_panic)
1225 struct audit_buffer *ab;
1226 int i;
1228 ab = audit_log_start(context, GFP_KERNEL, context->type);
1229 if (!ab)
1230 return;
1232 switch (context->type) {
1233 case AUDIT_SOCKETCALL: {
1234 int nargs = context->socketcall.nargs;
1235 audit_log_format(ab, "nargs=%d", nargs);
1236 for (i = 0; i < nargs; i++)
1237 audit_log_format(ab, " a%d=%lx", i,
1238 context->socketcall.args[i]);
1239 break; }
1240 case AUDIT_IPC: {
1241 u32 osid = context->ipc.osid;
1243 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1244 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1245 if (osid) {
1246 char *ctx = NULL;
1247 u32 len;
1248 if (security_secid_to_secctx(osid, &ctx, &len)) {
1249 audit_log_format(ab, " osid=%u", osid);
1250 *call_panic = 1;
1251 } else {
1252 audit_log_format(ab, " obj=%s", ctx);
1253 security_release_secctx(ctx, len);
1256 if (context->ipc.has_perm) {
1257 audit_log_end(ab);
1258 ab = audit_log_start(context, GFP_KERNEL,
1259 AUDIT_IPC_SET_PERM);
1260 audit_log_format(ab,
1261 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1262 context->ipc.qbytes,
1263 context->ipc.perm_uid,
1264 context->ipc.perm_gid,
1265 context->ipc.perm_mode);
1266 if (!ab)
1267 return;
1269 break; }
1270 case AUDIT_MQ_OPEN: {
1271 audit_log_format(ab,
1272 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1273 "mq_msgsize=%ld mq_curmsgs=%ld",
1274 context->mq_open.oflag, context->mq_open.mode,
1275 context->mq_open.attr.mq_flags,
1276 context->mq_open.attr.mq_maxmsg,
1277 context->mq_open.attr.mq_msgsize,
1278 context->mq_open.attr.mq_curmsgs);
1279 break; }
1280 case AUDIT_MQ_SENDRECV: {
1281 audit_log_format(ab,
1282 "mqdes=%d msg_len=%zd msg_prio=%u "
1283 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1284 context->mq_sendrecv.mqdes,
1285 context->mq_sendrecv.msg_len,
1286 context->mq_sendrecv.msg_prio,
1287 context->mq_sendrecv.abs_timeout.tv_sec,
1288 context->mq_sendrecv.abs_timeout.tv_nsec);
1289 break; }
1290 case AUDIT_MQ_NOTIFY: {
1291 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1292 context->mq_notify.mqdes,
1293 context->mq_notify.sigev_signo);
1294 break; }
1295 case AUDIT_MQ_GETSETATTR: {
1296 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1297 audit_log_format(ab,
1298 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1299 "mq_curmsgs=%ld ",
1300 context->mq_getsetattr.mqdes,
1301 attr->mq_flags, attr->mq_maxmsg,
1302 attr->mq_msgsize, attr->mq_curmsgs);
1303 break; }
1304 case AUDIT_CAPSET: {
1305 audit_log_format(ab, "pid=%d", context->capset.pid);
1306 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1307 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1308 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1309 break; }
1311 audit_log_end(ab);
1314 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1316 const struct cred *cred;
1317 int i, call_panic = 0;
1318 struct audit_buffer *ab;
1319 struct audit_aux_data *aux;
1320 const char *tty;
1322 /* tsk == current */
1323 context->pid = tsk->pid;
1324 if (!context->ppid)
1325 context->ppid = sys_getppid();
1326 cred = current_cred();
1327 context->uid = cred->uid;
1328 context->gid = cred->gid;
1329 context->euid = cred->euid;
1330 context->suid = cred->suid;
1331 context->fsuid = cred->fsuid;
1332 context->egid = cred->egid;
1333 context->sgid = cred->sgid;
1334 context->fsgid = cred->fsgid;
1335 context->personality = tsk->personality;
1337 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1338 if (!ab)
1339 return; /* audit_panic has been called */
1340 audit_log_format(ab, "arch=%x syscall=%d",
1341 context->arch, context->major);
1342 if (context->personality != PER_LINUX)
1343 audit_log_format(ab, " per=%lx", context->personality);
1344 if (context->return_valid)
1345 audit_log_format(ab, " success=%s exit=%ld",
1346 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1347 context->return_code);
1349 spin_lock_irq(&tsk->sighand->siglock);
1350 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1351 tty = tsk->signal->tty->name;
1352 else
1353 tty = "(none)";
1354 spin_unlock_irq(&tsk->sighand->siglock);
1356 audit_log_format(ab,
1357 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1358 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1359 " euid=%u suid=%u fsuid=%u"
1360 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1361 context->argv[0],
1362 context->argv[1],
1363 context->argv[2],
1364 context->argv[3],
1365 context->name_count,
1366 context->ppid,
1367 context->pid,
1368 tsk->loginuid,
1369 context->uid,
1370 context->gid,
1371 context->euid, context->suid, context->fsuid,
1372 context->egid, context->sgid, context->fsgid, tty,
1373 tsk->sessionid);
1376 audit_log_task_info(ab, tsk);
1377 audit_log_key(ab, context->filterkey);
1378 audit_log_end(ab);
1380 for (aux = context->aux; aux; aux = aux->next) {
1382 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1383 if (!ab)
1384 continue; /* audit_panic has been called */
1386 switch (aux->type) {
1388 case AUDIT_EXECVE: {
1389 struct audit_aux_data_execve *axi = (void *)aux;
1390 audit_log_execve_info(context, &ab, axi);
1391 break; }
1393 case AUDIT_BPRM_FCAPS: {
1394 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1395 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1396 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1397 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1398 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1399 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1400 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1401 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1402 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1403 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1404 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1405 break; }
1408 audit_log_end(ab);
1411 if (context->type)
1412 show_special(context, &call_panic);
1414 if (context->fds[0] >= 0) {
1415 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1416 if (ab) {
1417 audit_log_format(ab, "fd0=%d fd1=%d",
1418 context->fds[0], context->fds[1]);
1419 audit_log_end(ab);
1423 if (context->sockaddr_len) {
1424 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1425 if (ab) {
1426 audit_log_format(ab, "saddr=");
1427 audit_log_n_hex(ab, (void *)context->sockaddr,
1428 context->sockaddr_len);
1429 audit_log_end(ab);
1433 for (aux = context->aux_pids; aux; aux = aux->next) {
1434 struct audit_aux_data_pids *axs = (void *)aux;
1436 for (i = 0; i < axs->pid_count; i++)
1437 if (audit_log_pid_context(context, axs->target_pid[i],
1438 axs->target_auid[i],
1439 axs->target_uid[i],
1440 axs->target_sessionid[i],
1441 axs->target_sid[i],
1442 axs->target_comm[i]))
1443 call_panic = 1;
1446 if (context->target_pid &&
1447 audit_log_pid_context(context, context->target_pid,
1448 context->target_auid, context->target_uid,
1449 context->target_sessionid,
1450 context->target_sid, context->target_comm))
1451 call_panic = 1;
1453 if (context->pwd.dentry && context->pwd.mnt) {
1454 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1455 if (ab) {
1456 audit_log_d_path(ab, "cwd=", &context->pwd);
1457 audit_log_end(ab);
1460 for (i = 0; i < context->name_count; i++) {
1461 struct audit_names *n = &context->names[i];
1463 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1464 if (!ab)
1465 continue; /* audit_panic has been called */
1467 audit_log_format(ab, "item=%d", i);
1469 if (n->name) {
1470 switch(n->name_len) {
1471 case AUDIT_NAME_FULL:
1472 /* log the full path */
1473 audit_log_format(ab, " name=");
1474 audit_log_untrustedstring(ab, n->name);
1475 break;
1476 case 0:
1477 /* name was specified as a relative path and the
1478 * directory component is the cwd */
1479 audit_log_d_path(ab, "name=", &context->pwd);
1480 break;
1481 default:
1482 /* log the name's directory component */
1483 audit_log_format(ab, " name=");
1484 audit_log_n_untrustedstring(ab, n->name,
1485 n->name_len);
1487 } else
1488 audit_log_format(ab, " name=(null)");
1490 if (n->ino != (unsigned long)-1) {
1491 audit_log_format(ab, " inode=%lu"
1492 " dev=%02x:%02x mode=%#o"
1493 " ouid=%u ogid=%u rdev=%02x:%02x",
1494 n->ino,
1495 MAJOR(n->dev),
1496 MINOR(n->dev),
1497 n->mode,
1498 n->uid,
1499 n->gid,
1500 MAJOR(n->rdev),
1501 MINOR(n->rdev));
1503 if (n->osid != 0) {
1504 char *ctx = NULL;
1505 u32 len;
1506 if (security_secid_to_secctx(
1507 n->osid, &ctx, &len)) {
1508 audit_log_format(ab, " osid=%u", n->osid);
1509 call_panic = 2;
1510 } else {
1511 audit_log_format(ab, " obj=%s", ctx);
1512 security_release_secctx(ctx, len);
1516 audit_log_fcaps(ab, n);
1518 audit_log_end(ab);
1521 /* Send end of event record to help user space know we are finished */
1522 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1523 if (ab)
1524 audit_log_end(ab);
1525 if (call_panic)
1526 audit_panic("error converting sid to string");
1530 * audit_free - free a per-task audit context
1531 * @tsk: task whose audit context block to free
1533 * Called from copy_process and do_exit
1535 void audit_free(struct task_struct *tsk)
1537 struct audit_context *context;
1539 context = audit_get_context(tsk, 0, 0);
1540 if (likely(!context))
1541 return;
1543 /* Check for system calls that do not go through the exit
1544 * function (e.g., exit_group), then free context block.
1545 * We use GFP_ATOMIC here because we might be doing this
1546 * in the context of the idle thread */
1547 /* that can happen only if we are called from do_exit() */
1548 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1549 audit_log_exit(context, tsk);
1550 if (!list_empty(&context->killed_trees))
1551 audit_kill_trees(&context->killed_trees);
1553 audit_free_context(context);
1557 * audit_syscall_entry - fill in an audit record at syscall entry
1558 * @arch: architecture type
1559 * @major: major syscall type (function)
1560 * @a1: additional syscall register 1
1561 * @a2: additional syscall register 2
1562 * @a3: additional syscall register 3
1563 * @a4: additional syscall register 4
1565 * Fill in audit context at syscall entry. This only happens if the
1566 * audit context was created when the task was created and the state or
1567 * filters demand the audit context be built. If the state from the
1568 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1569 * then the record will be written at syscall exit time (otherwise, it
1570 * will only be written if another part of the kernel requests that it
1571 * be written).
1573 void audit_syscall_entry(int arch, int major,
1574 unsigned long a1, unsigned long a2,
1575 unsigned long a3, unsigned long a4)
1577 struct task_struct *tsk = current;
1578 struct audit_context *context = tsk->audit_context;
1579 enum audit_state state;
1581 if (unlikely(!context))
1582 return;
1585 * This happens only on certain architectures that make system
1586 * calls in kernel_thread via the entry.S interface, instead of
1587 * with direct calls. (If you are porting to a new
1588 * architecture, hitting this condition can indicate that you
1589 * got the _exit/_leave calls backward in entry.S.)
1591 * i386 no
1592 * x86_64 no
1593 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1595 * This also happens with vm86 emulation in a non-nested manner
1596 * (entries without exits), so this case must be caught.
1598 if (context->in_syscall) {
1599 struct audit_context *newctx;
1601 #if AUDIT_DEBUG
1602 printk(KERN_ERR
1603 "audit(:%d) pid=%d in syscall=%d;"
1604 " entering syscall=%d\n",
1605 context->serial, tsk->pid, context->major, major);
1606 #endif
1607 newctx = audit_alloc_context(context->state);
1608 if (newctx) {
1609 newctx->previous = context;
1610 context = newctx;
1611 tsk->audit_context = newctx;
1612 } else {
1613 /* If we can't alloc a new context, the best we
1614 * can do is to leak memory (any pending putname
1615 * will be lost). The only other alternative is
1616 * to abandon auditing. */
1617 audit_zero_context(context, context->state);
1620 BUG_ON(context->in_syscall || context->name_count);
1622 if (!audit_enabled)
1623 return;
1625 context->arch = arch;
1626 context->major = major;
1627 context->argv[0] = a1;
1628 context->argv[1] = a2;
1629 context->argv[2] = a3;
1630 context->argv[3] = a4;
1632 state = context->state;
1633 context->dummy = !audit_n_rules;
1634 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1635 context->prio = 0;
1636 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1638 if (likely(state == AUDIT_DISABLED))
1639 return;
1641 context->serial = 0;
1642 context->ctime = CURRENT_TIME;
1643 context->in_syscall = 1;
1644 context->current_state = state;
1645 context->ppid = 0;
1648 void audit_finish_fork(struct task_struct *child)
1650 struct audit_context *ctx = current->audit_context;
1651 struct audit_context *p = child->audit_context;
1652 if (!p || !ctx)
1653 return;
1654 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1655 return;
1656 p->arch = ctx->arch;
1657 p->major = ctx->major;
1658 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1659 p->ctime = ctx->ctime;
1660 p->dummy = ctx->dummy;
1661 p->in_syscall = ctx->in_syscall;
1662 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1663 p->ppid = current->pid;
1664 p->prio = ctx->prio;
1665 p->current_state = ctx->current_state;
1669 * audit_syscall_exit - deallocate audit context after a system call
1670 * @valid: success/failure flag
1671 * @return_code: syscall return value
1673 * Tear down after system call. If the audit context has been marked as
1674 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1675 * filtering, or because some other part of the kernel write an audit
1676 * message), then write out the syscall information. In call cases,
1677 * free the names stored from getname().
1679 void audit_syscall_exit(int valid, long return_code)
1681 struct task_struct *tsk = current;
1682 struct audit_context *context;
1684 context = audit_get_context(tsk, valid, return_code);
1686 if (likely(!context))
1687 return;
1689 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1690 audit_log_exit(context, tsk);
1692 context->in_syscall = 0;
1693 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1695 if (!list_empty(&context->killed_trees))
1696 audit_kill_trees(&context->killed_trees);
1698 if (context->previous) {
1699 struct audit_context *new_context = context->previous;
1700 context->previous = NULL;
1701 audit_free_context(context);
1702 tsk->audit_context = new_context;
1703 } else {
1704 audit_free_names(context);
1705 unroll_tree_refs(context, NULL, 0);
1706 audit_free_aux(context);
1707 context->aux = NULL;
1708 context->aux_pids = NULL;
1709 context->target_pid = 0;
1710 context->target_sid = 0;
1711 context->sockaddr_len = 0;
1712 context->type = 0;
1713 context->fds[0] = -1;
1714 if (context->state != AUDIT_RECORD_CONTEXT) {
1715 kfree(context->filterkey);
1716 context->filterkey = NULL;
1718 tsk->audit_context = context;
1722 static inline void handle_one(const struct inode *inode)
1724 #ifdef CONFIG_AUDIT_TREE
1725 struct audit_context *context;
1726 struct audit_tree_refs *p;
1727 struct audit_chunk *chunk;
1728 int count;
1729 if (likely(list_empty(&inode->inotify_watches)))
1730 return;
1731 context = current->audit_context;
1732 p = context->trees;
1733 count = context->tree_count;
1734 rcu_read_lock();
1735 chunk = audit_tree_lookup(inode);
1736 rcu_read_unlock();
1737 if (!chunk)
1738 return;
1739 if (likely(put_tree_ref(context, chunk)))
1740 return;
1741 if (unlikely(!grow_tree_refs(context))) {
1742 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1743 audit_set_auditable(context);
1744 audit_put_chunk(chunk);
1745 unroll_tree_refs(context, p, count);
1746 return;
1748 put_tree_ref(context, chunk);
1749 #endif
1752 static void handle_path(const struct dentry *dentry)
1754 #ifdef CONFIG_AUDIT_TREE
1755 struct audit_context *context;
1756 struct audit_tree_refs *p;
1757 const struct dentry *d, *parent;
1758 struct audit_chunk *drop;
1759 unsigned long seq;
1760 int count;
1762 context = current->audit_context;
1763 p = context->trees;
1764 count = context->tree_count;
1765 retry:
1766 drop = NULL;
1767 d = dentry;
1768 rcu_read_lock();
1769 seq = read_seqbegin(&rename_lock);
1770 for(;;) {
1771 struct inode *inode = d->d_inode;
1772 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1773 struct audit_chunk *chunk;
1774 chunk = audit_tree_lookup(inode);
1775 if (chunk) {
1776 if (unlikely(!put_tree_ref(context, chunk))) {
1777 drop = chunk;
1778 break;
1782 parent = d->d_parent;
1783 if (parent == d)
1784 break;
1785 d = parent;
1787 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1788 rcu_read_unlock();
1789 if (!drop) {
1790 /* just a race with rename */
1791 unroll_tree_refs(context, p, count);
1792 goto retry;
1794 audit_put_chunk(drop);
1795 if (grow_tree_refs(context)) {
1796 /* OK, got more space */
1797 unroll_tree_refs(context, p, count);
1798 goto retry;
1800 /* too bad */
1801 printk(KERN_WARNING
1802 "out of memory, audit has lost a tree reference\n");
1803 unroll_tree_refs(context, p, count);
1804 audit_set_auditable(context);
1805 return;
1807 rcu_read_unlock();
1808 #endif
1812 * audit_getname - add a name to the list
1813 * @name: name to add
1815 * Add a name to the list of audit names for this context.
1816 * Called from fs/namei.c:getname().
1818 void __audit_getname(const char *name)
1820 struct audit_context *context = current->audit_context;
1822 if (IS_ERR(name) || !name)
1823 return;
1825 if (!context->in_syscall) {
1826 #if AUDIT_DEBUG == 2
1827 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1828 __FILE__, __LINE__, context->serial, name);
1829 dump_stack();
1830 #endif
1831 return;
1833 BUG_ON(context->name_count >= AUDIT_NAMES);
1834 context->names[context->name_count].name = name;
1835 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1836 context->names[context->name_count].name_put = 1;
1837 context->names[context->name_count].ino = (unsigned long)-1;
1838 context->names[context->name_count].osid = 0;
1839 ++context->name_count;
1840 if (!context->pwd.dentry) {
1841 read_lock(&current->fs->lock);
1842 context->pwd = current->fs->pwd;
1843 path_get(&current->fs->pwd);
1844 read_unlock(&current->fs->lock);
1849 /* audit_putname - intercept a putname request
1850 * @name: name to intercept and delay for putname
1852 * If we have stored the name from getname in the audit context,
1853 * then we delay the putname until syscall exit.
1854 * Called from include/linux/fs.h:putname().
1856 void audit_putname(const char *name)
1858 struct audit_context *context = current->audit_context;
1860 BUG_ON(!context);
1861 if (!context->in_syscall) {
1862 #if AUDIT_DEBUG == 2
1863 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1864 __FILE__, __LINE__, context->serial, name);
1865 if (context->name_count) {
1866 int i;
1867 for (i = 0; i < context->name_count; i++)
1868 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1869 context->names[i].name,
1870 context->names[i].name ?: "(null)");
1872 #endif
1873 __putname(name);
1875 #if AUDIT_DEBUG
1876 else {
1877 ++context->put_count;
1878 if (context->put_count > context->name_count) {
1879 printk(KERN_ERR "%s:%d(:%d): major=%d"
1880 " in_syscall=%d putname(%p) name_count=%d"
1881 " put_count=%d\n",
1882 __FILE__, __LINE__,
1883 context->serial, context->major,
1884 context->in_syscall, name, context->name_count,
1885 context->put_count);
1886 dump_stack();
1889 #endif
1892 static int audit_inc_name_count(struct audit_context *context,
1893 const struct inode *inode)
1895 if (context->name_count >= AUDIT_NAMES) {
1896 if (inode)
1897 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1898 "dev=%02x:%02x, inode=%lu\n",
1899 MAJOR(inode->i_sb->s_dev),
1900 MINOR(inode->i_sb->s_dev),
1901 inode->i_ino);
1903 else
1904 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1905 return 1;
1907 context->name_count++;
1908 #if AUDIT_DEBUG
1909 context->ino_count++;
1910 #endif
1911 return 0;
1915 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1917 struct cpu_vfs_cap_data caps;
1918 int rc;
1920 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1921 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1922 name->fcap.fE = 0;
1923 name->fcap_ver = 0;
1925 if (!dentry)
1926 return 0;
1928 rc = get_vfs_caps_from_disk(dentry, &caps);
1929 if (rc)
1930 return rc;
1932 name->fcap.permitted = caps.permitted;
1933 name->fcap.inheritable = caps.inheritable;
1934 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1935 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1937 return 0;
1941 /* Copy inode data into an audit_names. */
1942 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1943 const struct inode *inode)
1945 name->ino = inode->i_ino;
1946 name->dev = inode->i_sb->s_dev;
1947 name->mode = inode->i_mode;
1948 name->uid = inode->i_uid;
1949 name->gid = inode->i_gid;
1950 name->rdev = inode->i_rdev;
1951 security_inode_getsecid(inode, &name->osid);
1952 audit_copy_fcaps(name, dentry);
1956 * audit_inode - store the inode and device from a lookup
1957 * @name: name being audited
1958 * @dentry: dentry being audited
1960 * Called from fs/namei.c:path_lookup().
1962 void __audit_inode(const char *name, const struct dentry *dentry)
1964 int idx;
1965 struct audit_context *context = current->audit_context;
1966 const struct inode *inode = dentry->d_inode;
1968 if (!context->in_syscall)
1969 return;
1970 if (context->name_count
1971 && context->names[context->name_count-1].name
1972 && context->names[context->name_count-1].name == name)
1973 idx = context->name_count - 1;
1974 else if (context->name_count > 1
1975 && context->names[context->name_count-2].name
1976 && context->names[context->name_count-2].name == name)
1977 idx = context->name_count - 2;
1978 else {
1979 /* FIXME: how much do we care about inodes that have no
1980 * associated name? */
1981 if (audit_inc_name_count(context, inode))
1982 return;
1983 idx = context->name_count - 1;
1984 context->names[idx].name = NULL;
1986 handle_path(dentry);
1987 audit_copy_inode(&context->names[idx], dentry, inode);
1991 * audit_inode_child - collect inode info for created/removed objects
1992 * @dname: inode's dentry name
1993 * @dentry: dentry being audited
1994 * @parent: inode of dentry parent
1996 * For syscalls that create or remove filesystem objects, audit_inode
1997 * can only collect information for the filesystem object's parent.
1998 * This call updates the audit context with the child's information.
1999 * Syscalls that create a new filesystem object must be hooked after
2000 * the object is created. Syscalls that remove a filesystem object
2001 * must be hooked prior, in order to capture the target inode during
2002 * unsuccessful attempts.
2004 void __audit_inode_child(const char *dname, const struct dentry *dentry,
2005 const struct inode *parent)
2007 int idx;
2008 struct audit_context *context = current->audit_context;
2009 const char *found_parent = NULL, *found_child = NULL;
2010 const struct inode *inode = dentry->d_inode;
2011 int dirlen = 0;
2013 if (!context->in_syscall)
2014 return;
2016 if (inode)
2017 handle_one(inode);
2018 /* determine matching parent */
2019 if (!dname)
2020 goto add_names;
2022 /* parent is more likely, look for it first */
2023 for (idx = 0; idx < context->name_count; idx++) {
2024 struct audit_names *n = &context->names[idx];
2026 if (!n->name)
2027 continue;
2029 if (n->ino == parent->i_ino &&
2030 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2031 n->name_len = dirlen; /* update parent data in place */
2032 found_parent = n->name;
2033 goto add_names;
2037 /* no matching parent, look for matching child */
2038 for (idx = 0; idx < context->name_count; idx++) {
2039 struct audit_names *n = &context->names[idx];
2041 if (!n->name)
2042 continue;
2044 /* strcmp() is the more likely scenario */
2045 if (!strcmp(dname, n->name) ||
2046 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2047 if (inode)
2048 audit_copy_inode(n, NULL, inode);
2049 else
2050 n->ino = (unsigned long)-1;
2051 found_child = n->name;
2052 goto add_names;
2056 add_names:
2057 if (!found_parent) {
2058 if (audit_inc_name_count(context, parent))
2059 return;
2060 idx = context->name_count - 1;
2061 context->names[idx].name = NULL;
2062 audit_copy_inode(&context->names[idx], NULL, parent);
2065 if (!found_child) {
2066 if (audit_inc_name_count(context, inode))
2067 return;
2068 idx = context->name_count - 1;
2070 /* Re-use the name belonging to the slot for a matching parent
2071 * directory. All names for this context are relinquished in
2072 * audit_free_names() */
2073 if (found_parent) {
2074 context->names[idx].name = found_parent;
2075 context->names[idx].name_len = AUDIT_NAME_FULL;
2076 /* don't call __putname() */
2077 context->names[idx].name_put = 0;
2078 } else {
2079 context->names[idx].name = NULL;
2082 if (inode)
2083 audit_copy_inode(&context->names[idx], NULL, inode);
2084 else
2085 context->names[idx].ino = (unsigned long)-1;
2088 EXPORT_SYMBOL_GPL(__audit_inode_child);
2091 * auditsc_get_stamp - get local copies of audit_context values
2092 * @ctx: audit_context for the task
2093 * @t: timespec to store time recorded in the audit_context
2094 * @serial: serial value that is recorded in the audit_context
2096 * Also sets the context as auditable.
2098 int auditsc_get_stamp(struct audit_context *ctx,
2099 struct timespec *t, unsigned int *serial)
2101 if (!ctx->in_syscall)
2102 return 0;
2103 if (!ctx->serial)
2104 ctx->serial = audit_serial();
2105 t->tv_sec = ctx->ctime.tv_sec;
2106 t->tv_nsec = ctx->ctime.tv_nsec;
2107 *serial = ctx->serial;
2108 if (!ctx->prio) {
2109 ctx->prio = 1;
2110 ctx->current_state = AUDIT_RECORD_CONTEXT;
2112 return 1;
2115 /* global counter which is incremented every time something logs in */
2116 static atomic_t session_id = ATOMIC_INIT(0);
2119 * audit_set_loginuid - set a task's audit_context loginuid
2120 * @task: task whose audit context is being modified
2121 * @loginuid: loginuid value
2123 * Returns 0.
2125 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2127 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2129 unsigned int sessionid = atomic_inc_return(&session_id);
2130 struct audit_context *context = task->audit_context;
2132 if (context && context->in_syscall) {
2133 struct audit_buffer *ab;
2135 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2136 if (ab) {
2137 audit_log_format(ab, "login pid=%d uid=%u "
2138 "old auid=%u new auid=%u"
2139 " old ses=%u new ses=%u",
2140 task->pid, task_uid(task),
2141 task->loginuid, loginuid,
2142 task->sessionid, sessionid);
2143 audit_log_end(ab);
2146 task->sessionid = sessionid;
2147 task->loginuid = loginuid;
2148 return 0;
2152 * __audit_mq_open - record audit data for a POSIX MQ open
2153 * @oflag: open flag
2154 * @mode: mode bits
2155 * @attr: queue attributes
2158 void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2160 struct audit_context *context = current->audit_context;
2162 if (attr)
2163 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2164 else
2165 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2167 context->mq_open.oflag = oflag;
2168 context->mq_open.mode = mode;
2170 context->type = AUDIT_MQ_OPEN;
2174 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2175 * @mqdes: MQ descriptor
2176 * @msg_len: Message length
2177 * @msg_prio: Message priority
2178 * @abs_timeout: Message timeout in absolute time
2181 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2182 const struct timespec *abs_timeout)
2184 struct audit_context *context = current->audit_context;
2185 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2187 if (abs_timeout)
2188 memcpy(p, abs_timeout, sizeof(struct timespec));
2189 else
2190 memset(p, 0, sizeof(struct timespec));
2192 context->mq_sendrecv.mqdes = mqdes;
2193 context->mq_sendrecv.msg_len = msg_len;
2194 context->mq_sendrecv.msg_prio = msg_prio;
2196 context->type = AUDIT_MQ_SENDRECV;
2200 * __audit_mq_notify - record audit data for a POSIX MQ notify
2201 * @mqdes: MQ descriptor
2202 * @notification: Notification event
2206 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2208 struct audit_context *context = current->audit_context;
2210 if (notification)
2211 context->mq_notify.sigev_signo = notification->sigev_signo;
2212 else
2213 context->mq_notify.sigev_signo = 0;
2215 context->mq_notify.mqdes = mqdes;
2216 context->type = AUDIT_MQ_NOTIFY;
2220 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2221 * @mqdes: MQ descriptor
2222 * @mqstat: MQ flags
2225 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2227 struct audit_context *context = current->audit_context;
2228 context->mq_getsetattr.mqdes = mqdes;
2229 context->mq_getsetattr.mqstat = *mqstat;
2230 context->type = AUDIT_MQ_GETSETATTR;
2234 * audit_ipc_obj - record audit data for ipc object
2235 * @ipcp: ipc permissions
2238 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2240 struct audit_context *context = current->audit_context;
2241 context->ipc.uid = ipcp->uid;
2242 context->ipc.gid = ipcp->gid;
2243 context->ipc.mode = ipcp->mode;
2244 context->ipc.has_perm = 0;
2245 security_ipc_getsecid(ipcp, &context->ipc.osid);
2246 context->type = AUDIT_IPC;
2250 * audit_ipc_set_perm - record audit data for new ipc permissions
2251 * @qbytes: msgq bytes
2252 * @uid: msgq user id
2253 * @gid: msgq group id
2254 * @mode: msgq mode (permissions)
2256 * Called only after audit_ipc_obj().
2258 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2260 struct audit_context *context = current->audit_context;
2262 context->ipc.qbytes = qbytes;
2263 context->ipc.perm_uid = uid;
2264 context->ipc.perm_gid = gid;
2265 context->ipc.perm_mode = mode;
2266 context->ipc.has_perm = 1;
2269 int audit_bprm(struct linux_binprm *bprm)
2271 struct audit_aux_data_execve *ax;
2272 struct audit_context *context = current->audit_context;
2274 if (likely(!audit_enabled || !context || context->dummy))
2275 return 0;
2277 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2278 if (!ax)
2279 return -ENOMEM;
2281 ax->argc = bprm->argc;
2282 ax->envc = bprm->envc;
2283 ax->mm = bprm->mm;
2284 ax->d.type = AUDIT_EXECVE;
2285 ax->d.next = context->aux;
2286 context->aux = (void *)ax;
2287 return 0;
2292 * audit_socketcall - record audit data for sys_socketcall
2293 * @nargs: number of args
2294 * @args: args array
2297 void audit_socketcall(int nargs, unsigned long *args)
2299 struct audit_context *context = current->audit_context;
2301 if (likely(!context || context->dummy))
2302 return;
2304 context->type = AUDIT_SOCKETCALL;
2305 context->socketcall.nargs = nargs;
2306 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2310 * __audit_fd_pair - record audit data for pipe and socketpair
2311 * @fd1: the first file descriptor
2312 * @fd2: the second file descriptor
2315 void __audit_fd_pair(int fd1, int fd2)
2317 struct audit_context *context = current->audit_context;
2318 context->fds[0] = fd1;
2319 context->fds[1] = fd2;
2323 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2324 * @len: data length in user space
2325 * @a: data address in kernel space
2327 * Returns 0 for success or NULL context or < 0 on error.
2329 int audit_sockaddr(int len, void *a)
2331 struct audit_context *context = current->audit_context;
2333 if (likely(!context || context->dummy))
2334 return 0;
2336 if (!context->sockaddr) {
2337 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2338 if (!p)
2339 return -ENOMEM;
2340 context->sockaddr = p;
2343 context->sockaddr_len = len;
2344 memcpy(context->sockaddr, a, len);
2345 return 0;
2348 void __audit_ptrace(struct task_struct *t)
2350 struct audit_context *context = current->audit_context;
2352 context->target_pid = t->pid;
2353 context->target_auid = audit_get_loginuid(t);
2354 context->target_uid = task_uid(t);
2355 context->target_sessionid = audit_get_sessionid(t);
2356 security_task_getsecid(t, &context->target_sid);
2357 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2361 * audit_signal_info - record signal info for shutting down audit subsystem
2362 * @sig: signal value
2363 * @t: task being signaled
2365 * If the audit subsystem is being terminated, record the task (pid)
2366 * and uid that is doing that.
2368 int __audit_signal_info(int sig, struct task_struct *t)
2370 struct audit_aux_data_pids *axp;
2371 struct task_struct *tsk = current;
2372 struct audit_context *ctx = tsk->audit_context;
2373 uid_t uid = current_uid(), t_uid = task_uid(t);
2375 if (audit_pid && t->tgid == audit_pid) {
2376 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2377 audit_sig_pid = tsk->pid;
2378 if (tsk->loginuid != -1)
2379 audit_sig_uid = tsk->loginuid;
2380 else
2381 audit_sig_uid = uid;
2382 security_task_getsecid(tsk, &audit_sig_sid);
2384 if (!audit_signals || audit_dummy_context())
2385 return 0;
2388 /* optimize the common case by putting first signal recipient directly
2389 * in audit_context */
2390 if (!ctx->target_pid) {
2391 ctx->target_pid = t->tgid;
2392 ctx->target_auid = audit_get_loginuid(t);
2393 ctx->target_uid = t_uid;
2394 ctx->target_sessionid = audit_get_sessionid(t);
2395 security_task_getsecid(t, &ctx->target_sid);
2396 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2397 return 0;
2400 axp = (void *)ctx->aux_pids;
2401 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2402 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2403 if (!axp)
2404 return -ENOMEM;
2406 axp->d.type = AUDIT_OBJ_PID;
2407 axp->d.next = ctx->aux_pids;
2408 ctx->aux_pids = (void *)axp;
2410 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2412 axp->target_pid[axp->pid_count] = t->tgid;
2413 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2414 axp->target_uid[axp->pid_count] = t_uid;
2415 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2416 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2417 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2418 axp->pid_count++;
2420 return 0;
2424 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2425 * @bprm: pointer to the bprm being processed
2426 * @new: the proposed new credentials
2427 * @old: the old credentials
2429 * Simply check if the proc already has the caps given by the file and if not
2430 * store the priv escalation info for later auditing at the end of the syscall
2432 * -Eric
2434 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2435 const struct cred *new, const struct cred *old)
2437 struct audit_aux_data_bprm_fcaps *ax;
2438 struct audit_context *context = current->audit_context;
2439 struct cpu_vfs_cap_data vcaps;
2440 struct dentry *dentry;
2442 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2443 if (!ax)
2444 return -ENOMEM;
2446 ax->d.type = AUDIT_BPRM_FCAPS;
2447 ax->d.next = context->aux;
2448 context->aux = (void *)ax;
2450 dentry = dget(bprm->file->f_dentry);
2451 get_vfs_caps_from_disk(dentry, &vcaps);
2452 dput(dentry);
2454 ax->fcap.permitted = vcaps.permitted;
2455 ax->fcap.inheritable = vcaps.inheritable;
2456 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2457 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2459 ax->old_pcap.permitted = old->cap_permitted;
2460 ax->old_pcap.inheritable = old->cap_inheritable;
2461 ax->old_pcap.effective = old->cap_effective;
2463 ax->new_pcap.permitted = new->cap_permitted;
2464 ax->new_pcap.inheritable = new->cap_inheritable;
2465 ax->new_pcap.effective = new->cap_effective;
2466 return 0;
2470 * __audit_log_capset - store information about the arguments to the capset syscall
2471 * @pid: target pid of the capset call
2472 * @new: the new credentials
2473 * @old: the old (current) credentials
2475 * Record the aguments userspace sent to sys_capset for later printing by the
2476 * audit system if applicable
2478 void __audit_log_capset(pid_t pid,
2479 const struct cred *new, const struct cred *old)
2481 struct audit_context *context = current->audit_context;
2482 context->capset.pid = pid;
2483 context->capset.cap.effective = new->cap_effective;
2484 context->capset.cap.inheritable = new->cap_effective;
2485 context->capset.cap.permitted = new->cap_permitted;
2486 context->type = AUDIT_CAPSET;
2490 * audit_core_dumps - record information about processes that end abnormally
2491 * @signr: signal value
2493 * If a process ends with a core dump, something fishy is going on and we
2494 * should record the event for investigation.
2496 void audit_core_dumps(long signr)
2498 struct audit_buffer *ab;
2499 u32 sid;
2500 uid_t auid = audit_get_loginuid(current), uid;
2501 gid_t gid;
2502 unsigned int sessionid = audit_get_sessionid(current);
2504 if (!audit_enabled)
2505 return;
2507 if (signr == SIGQUIT) /* don't care for those */
2508 return;
2510 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2511 current_uid_gid(&uid, &gid);
2512 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2513 auid, uid, gid, sessionid);
2514 security_task_getsecid(current, &sid);
2515 if (sid) {
2516 char *ctx = NULL;
2517 u32 len;
2519 if (security_secid_to_secctx(sid, &ctx, &len))
2520 audit_log_format(ab, " ssid=%u", sid);
2521 else {
2522 audit_log_format(ab, " subj=%s", ctx);
2523 security_release_secctx(ctx, len);
2526 audit_log_format(ab, " pid=%d comm=", current->pid);
2527 audit_log_untrustedstring(ab, current->comm);
2528 audit_log_format(ab, " sig=%ld", signr);
2529 audit_log_end(ab);
2532 struct list_head *audit_killed_trees(void)
2534 struct audit_context *ctx = current->audit_context;
2535 if (likely(!ctx || !ctx->in_syscall))
2536 return NULL;
2537 return &ctx->killed_trees;