2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
19 * NTP timekeeping variables:
22 /* USER_HZ period (usecs): */
23 unsigned long tick_usec
= TICK_USEC
;
25 /* ACTHZ period (nsecs): */
26 unsigned long tick_nsec
;
29 static u64 tick_length_base
;
31 #define MAX_TICKADJ 500LL /* usecs */
32 #define MAX_TICKADJ_SCALED \
33 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
36 * phase-lock loop variables
40 * clock synchronization status
42 * (TIME_ERROR prevents overwriting the CMOS clock)
44 static int time_state
= TIME_OK
;
46 /* clock status bits: */
47 int time_status
= STA_UNSYNC
;
49 /* TAI offset (secs): */
52 /* time adjustment (nsecs): */
53 static s64 time_offset
;
55 /* pll time constant: */
56 static long time_constant
= 2;
58 /* maximum error (usecs): */
59 long time_maxerror
= NTP_PHASE_LIMIT
;
61 /* estimated error (usecs): */
62 long time_esterror
= NTP_PHASE_LIMIT
;
64 /* frequency offset (scaled nsecs/secs): */
67 /* time at last adjustment (secs): */
68 static long time_reftime
;
72 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
73 static s64 ntp_tick_adj
;
80 * Update (tick_length, tick_length_base, tick_nsec), based
81 * on (tick_usec, ntp_tick_adj, time_freq):
83 static void ntp_update_frequency(void)
88 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
91 second_length
+= ntp_tick_adj
;
92 second_length
+= time_freq
;
94 tick_nsec
= div_u64(second_length
, HZ
) >> NTP_SCALE_SHIFT
;
95 new_base
= div_u64(second_length
, NTP_INTERVAL_FREQ
);
98 * Don't wait for the next second_overflow, apply
99 * the change to the tick length immediately:
101 tick_length
+= new_base
- tick_length_base
;
102 tick_length_base
= new_base
;
105 static inline s64
ntp_update_offset_fll(s64 offset64
, long secs
)
107 time_status
&= ~STA_MODE
;
109 if ((s32
)secs
< MINSEC
)
112 if (!(time_status
& STA_FLL
) && (secs
<= MAXSEC
))
115 time_status
|= STA_MODE
;
117 return div_s64(offset64
<< (NTP_SCALE_SHIFT
- SHIFT_FLL
), secs
);
120 static void ntp_update_offset(long offset
)
126 if (!(time_status
& STA_PLL
))
129 if (!(time_status
& STA_NANO
))
130 offset
*= NSEC_PER_USEC
;
133 * Scale the phase adjustment and
134 * clamp to the operating range.
136 offset
= min(offset
, MAXPHASE
);
137 offset
= max(offset
, -MAXPHASE
);
140 * Select how the frequency is to be controlled
141 * and in which mode (PLL or FLL).
143 secs
= xtime
.tv_sec
- time_reftime
;
144 if (unlikely(time_status
& STA_FREQHOLD
))
147 time_reftime
= xtime
.tv_sec
;
150 freq_adj
= (offset64
* secs
) <<
151 (NTP_SCALE_SHIFT
- 2 * (SHIFT_PLL
+ 2 + time_constant
));
153 freq_adj
+= ntp_update_offset_fll(offset64
, secs
);
155 freq_adj
= min(freq_adj
+ time_freq
, MAXFREQ_SCALED
);
157 time_freq
= max(freq_adj
, -MAXFREQ_SCALED
);
159 time_offset
= div_s64(offset64
<< NTP_SCALE_SHIFT
, NTP_INTERVAL_FREQ
);
163 * ntp_clear - Clears the NTP state variables
165 * Must be called while holding a write on the xtime_lock
169 time_adjust
= 0; /* stop active adjtime() */
170 time_status
|= STA_UNSYNC
;
171 time_maxerror
= NTP_PHASE_LIMIT
;
172 time_esterror
= NTP_PHASE_LIMIT
;
174 ntp_update_frequency();
176 tick_length
= tick_length_base
;
181 * this routine handles the overflow of the microsecond field
183 * The tricky bits of code to handle the accurate clock support
184 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
185 * They were originally developed for SUN and DEC kernels.
186 * All the kudos should go to Dave for this stuff.
188 * Also handles leap second processing, and returns leap offset
190 int second_overflow(unsigned long secs
)
196 * Leap second processing. If in leap-insert state at the end of the
197 * day, the system clock is set back one second; if in leap-delete
198 * state, the system clock is set ahead one second.
200 switch (time_state
) {
202 if (time_status
& STA_INS
)
203 time_state
= TIME_INS
;
204 else if (time_status
& STA_DEL
)
205 time_state
= TIME_DEL
;
208 if (!(time_status
& STA_INS
))
209 time_state
= TIME_OK
;
210 else if (secs
% 86400 == 0) {
212 time_state
= TIME_OOP
;
215 "Clock: inserting leap second 23:59:60 UTC\n");
219 if (!(time_status
& STA_DEL
))
220 time_state
= TIME_OK
;
221 else if ((secs
+ 1) % 86400 == 0) {
224 time_state
= TIME_WAIT
;
226 "Clock: deleting leap second 23:59:59 UTC\n");
230 time_state
= TIME_WAIT
;
234 if (!(time_status
& (STA_INS
| STA_DEL
)))
235 time_state
= TIME_OK
;
240 /* Bump the maxerror field */
241 time_maxerror
+= MAXFREQ
/ NSEC_PER_USEC
;
242 if (time_maxerror
> NTP_PHASE_LIMIT
) {
243 time_maxerror
= NTP_PHASE_LIMIT
;
244 time_status
|= STA_UNSYNC
;
248 * Compute the phase adjustment for the next second. The offset is
249 * reduced by a fixed factor times the time constant.
251 tick_length
= tick_length_base
;
253 delta
= shift_right(time_offset
, SHIFT_PLL
+ time_constant
);
254 time_offset
-= delta
;
255 tick_length
+= delta
;
260 if (time_adjust
> MAX_TICKADJ
) {
261 time_adjust
-= MAX_TICKADJ
;
262 tick_length
+= MAX_TICKADJ_SCALED
;
266 if (time_adjust
< -MAX_TICKADJ
) {
267 time_adjust
+= MAX_TICKADJ
;
268 tick_length
-= MAX_TICKADJ_SCALED
;
272 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/ NTP_INTERVAL_FREQ
)
279 #ifdef CONFIG_GENERIC_CMOS_UPDATE
281 /* Disable the cmos update - used by virtualization and embedded */
282 int no_sync_cmos_clock __read_mostly
;
284 static void sync_cmos_clock(struct work_struct
*work
);
286 static DECLARE_DELAYED_WORK(sync_cmos_work
, sync_cmos_clock
);
288 static void sync_cmos_clock(struct work_struct
*work
)
290 struct timespec now
, next
;
294 * If we have an externally synchronized Linux clock, then update
295 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
296 * called as close as possible to 500 ms before the new second starts.
297 * This code is run on a timer. If the clock is set, that timer
298 * may not expire at the correct time. Thus, we adjust...
302 * Not synced, exit, do not restart a timer (if one is
303 * running, let it run out).
308 getnstimeofday(&now
);
309 if (abs(now
.tv_nsec
- (NSEC_PER_SEC
/ 2)) <= tick_nsec
/ 2)
310 fail
= update_persistent_clock(now
);
312 next
.tv_nsec
= (NSEC_PER_SEC
/ 2) - now
.tv_nsec
- (TICK_NSEC
/ 2);
313 if (next
.tv_nsec
<= 0)
314 next
.tv_nsec
+= NSEC_PER_SEC
;
321 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
323 next
.tv_nsec
-= NSEC_PER_SEC
;
325 schedule_delayed_work(&sync_cmos_work
, timespec_to_jiffies(&next
));
328 static void notify_cmos_timer(void)
330 if (!no_sync_cmos_clock
)
331 schedule_delayed_work(&sync_cmos_work
, 0);
335 static inline void notify_cmos_timer(void) { }
340 * Propagate a new txc->status value into the NTP state:
342 static inline void process_adj_status(struct timex
*txc
, struct timespec
*ts
)
344 if ((time_status
& STA_PLL
) && !(txc
->status
& STA_PLL
)) {
345 time_state
= TIME_OK
;
346 time_status
= STA_UNSYNC
;
350 * If we turn on PLL adjustments then reset the
351 * reference time to current time.
353 if (!(time_status
& STA_PLL
) && (txc
->status
& STA_PLL
))
354 time_reftime
= xtime
.tv_sec
;
356 /* only set allowed bits */
357 time_status
&= STA_RONLY
;
358 time_status
|= txc
->status
& ~STA_RONLY
;
362 * Called with the xtime lock held, so we can access and modify
363 * all the global NTP state:
365 static inline void process_adjtimex_modes(struct timex
*txc
, struct timespec
*ts
)
367 if (txc
->modes
& ADJ_STATUS
)
368 process_adj_status(txc
, ts
);
370 if (txc
->modes
& ADJ_NANO
)
371 time_status
|= STA_NANO
;
373 if (txc
->modes
& ADJ_MICRO
)
374 time_status
&= ~STA_NANO
;
376 if (txc
->modes
& ADJ_FREQUENCY
) {
377 time_freq
= txc
->freq
* PPM_SCALE
;
378 time_freq
= min(time_freq
, MAXFREQ_SCALED
);
379 time_freq
= max(time_freq
, -MAXFREQ_SCALED
);
382 if (txc
->modes
& ADJ_MAXERROR
)
383 time_maxerror
= txc
->maxerror
;
385 if (txc
->modes
& ADJ_ESTERROR
)
386 time_esterror
= txc
->esterror
;
388 if (txc
->modes
& ADJ_TIMECONST
) {
389 time_constant
= txc
->constant
;
390 if (!(time_status
& STA_NANO
))
392 time_constant
= min(time_constant
, (long)MAXTC
);
393 time_constant
= max(time_constant
, 0l);
396 if (txc
->modes
& ADJ_TAI
&& txc
->constant
> 0)
397 time_tai
= txc
->constant
;
399 if (txc
->modes
& ADJ_OFFSET
)
400 ntp_update_offset(txc
->offset
);
402 if (txc
->modes
& ADJ_TICK
)
403 tick_usec
= txc
->tick
;
405 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
406 ntp_update_frequency();
410 * adjtimex mainly allows reading (and writing, if superuser) of
411 * kernel time-keeping variables. used by xntpd.
413 int do_adjtimex(struct timex
*txc
)
418 /* Validate the data before disabling interrupts */
419 if (txc
->modes
& ADJ_ADJTIME
) {
420 /* singleshot must not be used with any other mode bits */
421 if (!(txc
->modes
& ADJ_OFFSET_SINGLESHOT
))
423 if (!(txc
->modes
& ADJ_OFFSET_READONLY
) &&
424 !capable(CAP_SYS_TIME
))
427 /* In order to modify anything, you gotta be super-user! */
428 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
432 * if the quartz is off by more than 10% then
433 * something is VERY wrong!
435 if (txc
->modes
& ADJ_TICK
&&
436 (txc
->tick
< 900000/USER_HZ
||
437 txc
->tick
> 1100000/USER_HZ
))
443 write_seqlock_irq(&xtime_lock
);
445 if (txc
->modes
& ADJ_ADJTIME
) {
446 long save_adjust
= time_adjust
;
448 if (!(txc
->modes
& ADJ_OFFSET_READONLY
)) {
449 /* adjtime() is independent from ntp_adjtime() */
450 time_adjust
= txc
->offset
;
451 ntp_update_frequency();
453 txc
->offset
= save_adjust
;
456 /* If there are input parameters, then process them: */
458 process_adjtimex_modes(txc
, &ts
);
460 txc
->offset
= shift_right(time_offset
* NTP_INTERVAL_FREQ
,
462 if (!(time_status
& STA_NANO
))
463 txc
->offset
/= NSEC_PER_USEC
;
466 result
= time_state
; /* mostly `TIME_OK' */
467 if (time_status
& (STA_UNSYNC
|STA_CLOCKERR
))
470 txc
->freq
= shift_right((time_freq
>> PPM_SCALE_INV_SHIFT
) *
471 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
472 txc
->maxerror
= time_maxerror
;
473 txc
->esterror
= time_esterror
;
474 txc
->status
= time_status
;
475 txc
->constant
= time_constant
;
477 txc
->tolerance
= MAXFREQ_SCALED
/ PPM_SCALE
;
478 txc
->tick
= tick_usec
;
481 /* PPS is not implemented, so these are zero */
491 write_sequnlock_irq(&xtime_lock
);
493 txc
->time
.tv_sec
= ts
.tv_sec
;
494 txc
->time
.tv_usec
= ts
.tv_nsec
;
495 if (!(time_status
& STA_NANO
))
496 txc
->time
.tv_usec
/= NSEC_PER_USEC
;
503 static int __init
ntp_tick_adj_setup(char *str
)
505 ntp_tick_adj
= simple_strtol(str
, NULL
, 0);
506 ntp_tick_adj
<<= NTP_SCALE_SHIFT
;
511 __setup("ntp_tick_adj=", ntp_tick_adj_setup
);
513 void __init
ntp_init(void)