initial commit with v2.6.32.60
[linux-2.6.32.60-moxart.git] / arch / powerpc / kernel / process.c
blob7b816daf3ebaf595726991c671d6698b91e5cbec
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/syscalls.h>
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #endif
54 #include <linux/kprobes.h>
55 #include <linux/kdebug.h>
57 extern unsigned long _get_SP(void);
59 #ifndef CONFIG_SMP
60 struct task_struct *last_task_used_math = NULL;
61 struct task_struct *last_task_used_altivec = NULL;
62 struct task_struct *last_task_used_vsx = NULL;
63 struct task_struct *last_task_used_spe = NULL;
64 #endif
67 * Make sure the floating-point register state in the
68 * the thread_struct is up to date for task tsk.
70 void flush_fp_to_thread(struct task_struct *tsk)
72 if (tsk->thread.regs) {
74 * We need to disable preemption here because if we didn't,
75 * another process could get scheduled after the regs->msr
76 * test but before we have finished saving the FP registers
77 * to the thread_struct. That process could take over the
78 * FPU, and then when we get scheduled again we would store
79 * bogus values for the remaining FP registers.
81 preempt_disable();
82 if (tsk->thread.regs->msr & MSR_FP) {
83 #ifdef CONFIG_SMP
85 * This should only ever be called for current or
86 * for a stopped child process. Since we save away
87 * the FP register state on context switch on SMP,
88 * there is something wrong if a stopped child appears
89 * to still have its FP state in the CPU registers.
91 BUG_ON(tsk != current);
92 #endif
93 giveup_fpu(tsk);
95 preempt_enable();
99 void enable_kernel_fp(void)
101 WARN_ON(preemptible());
103 #ifdef CONFIG_SMP
104 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
105 giveup_fpu(current);
106 else
107 giveup_fpu(NULL); /* just enables FP for kernel */
108 #else
109 giveup_fpu(last_task_used_math);
110 #endif /* CONFIG_SMP */
112 EXPORT_SYMBOL(enable_kernel_fp);
114 #ifdef CONFIG_ALTIVEC
115 void enable_kernel_altivec(void)
117 WARN_ON(preemptible());
119 #ifdef CONFIG_SMP
120 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
121 giveup_altivec(current);
122 else
123 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
124 #else
125 giveup_altivec(last_task_used_altivec);
126 #endif /* CONFIG_SMP */
128 EXPORT_SYMBOL(enable_kernel_altivec);
131 * Make sure the VMX/Altivec register state in the
132 * the thread_struct is up to date for task tsk.
134 void flush_altivec_to_thread(struct task_struct *tsk)
136 if (tsk->thread.regs) {
137 preempt_disable();
138 if (tsk->thread.regs->msr & MSR_VEC) {
139 #ifdef CONFIG_SMP
140 BUG_ON(tsk != current);
141 #endif
142 giveup_altivec(tsk);
144 preempt_enable();
147 #endif /* CONFIG_ALTIVEC */
149 #ifdef CONFIG_VSX
150 #if 0
151 /* not currently used, but some crazy RAID module might want to later */
152 void enable_kernel_vsx(void)
154 WARN_ON(preemptible());
156 #ifdef CONFIG_SMP
157 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
158 giveup_vsx(current);
159 else
160 giveup_vsx(NULL); /* just enable vsx for kernel - force */
161 #else
162 giveup_vsx(last_task_used_vsx);
163 #endif /* CONFIG_SMP */
165 EXPORT_SYMBOL(enable_kernel_vsx);
166 #endif
168 void giveup_vsx(struct task_struct *tsk)
170 giveup_fpu(tsk);
171 giveup_altivec(tsk);
172 __giveup_vsx(tsk);
175 void flush_vsx_to_thread(struct task_struct *tsk)
177 if (tsk->thread.regs) {
178 preempt_disable();
179 if (tsk->thread.regs->msr & MSR_VSX) {
180 #ifdef CONFIG_SMP
181 BUG_ON(tsk != current);
182 #endif
183 giveup_vsx(tsk);
185 preempt_enable();
188 #endif /* CONFIG_VSX */
190 #ifdef CONFIG_SPE
192 void enable_kernel_spe(void)
194 WARN_ON(preemptible());
196 #ifdef CONFIG_SMP
197 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
198 giveup_spe(current);
199 else
200 giveup_spe(NULL); /* just enable SPE for kernel - force */
201 #else
202 giveup_spe(last_task_used_spe);
203 #endif /* __SMP __ */
205 EXPORT_SYMBOL(enable_kernel_spe);
207 void flush_spe_to_thread(struct task_struct *tsk)
209 if (tsk->thread.regs) {
210 preempt_disable();
211 if (tsk->thread.regs->msr & MSR_SPE) {
212 #ifdef CONFIG_SMP
213 BUG_ON(tsk != current);
214 #endif
215 giveup_spe(tsk);
217 preempt_enable();
220 #endif /* CONFIG_SPE */
222 #ifndef CONFIG_SMP
224 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225 * and the current task has some state, discard it.
227 void discard_lazy_cpu_state(void)
229 preempt_disable();
230 if (last_task_used_math == current)
231 last_task_used_math = NULL;
232 #ifdef CONFIG_ALTIVEC
233 if (last_task_used_altivec == current)
234 last_task_used_altivec = NULL;
235 #endif /* CONFIG_ALTIVEC */
236 #ifdef CONFIG_VSX
237 if (last_task_used_vsx == current)
238 last_task_used_vsx = NULL;
239 #endif /* CONFIG_VSX */
240 #ifdef CONFIG_SPE
241 if (last_task_used_spe == current)
242 last_task_used_spe = NULL;
243 #endif
244 preempt_enable();
246 #endif /* CONFIG_SMP */
248 void do_dabr(struct pt_regs *regs, unsigned long address,
249 unsigned long error_code)
251 siginfo_t info;
253 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
254 11, SIGSEGV) == NOTIFY_STOP)
255 return;
257 if (debugger_dabr_match(regs))
258 return;
260 /* Clear the DAC and struct entries. One shot trigger */
261 #if defined(CONFIG_BOOKE)
262 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~(DBSR_DAC1R | DBSR_DAC1W
263 | DBCR0_IDM));
264 #endif
266 /* Clear the DABR */
267 set_dabr(0);
269 /* Deliver the signal to userspace */
270 info.si_signo = SIGTRAP;
271 info.si_errno = 0;
272 info.si_code = TRAP_HWBKPT;
273 info.si_addr = (void __user *)address;
274 force_sig_info(SIGTRAP, &info, current);
277 static DEFINE_PER_CPU(unsigned long, current_dabr);
279 int set_dabr(unsigned long dabr)
281 __get_cpu_var(current_dabr) = dabr;
283 if (ppc_md.set_dabr)
284 return ppc_md.set_dabr(dabr);
286 /* XXX should we have a CPU_FTR_HAS_DABR ? */
287 #if defined(CONFIG_BOOKE)
288 mtspr(SPRN_DAC1, dabr);
289 #elif defined(CONFIG_PPC_BOOK3S)
290 mtspr(SPRN_DABR, dabr);
291 #endif
294 return 0;
297 #ifdef CONFIG_PPC64
298 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
299 #endif
301 struct task_struct *__switch_to(struct task_struct *prev,
302 struct task_struct *new)
304 struct thread_struct *new_thread, *old_thread;
305 unsigned long flags;
306 struct task_struct *last;
308 #ifdef CONFIG_SMP
309 /* avoid complexity of lazy save/restore of fpu
310 * by just saving it every time we switch out if
311 * this task used the fpu during the last quantum.
313 * If it tries to use the fpu again, it'll trap and
314 * reload its fp regs. So we don't have to do a restore
315 * every switch, just a save.
316 * -- Cort
318 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
319 giveup_fpu(prev);
320 #ifdef CONFIG_ALTIVEC
322 * If the previous thread used altivec in the last quantum
323 * (thus changing altivec regs) then save them.
324 * We used to check the VRSAVE register but not all apps
325 * set it, so we don't rely on it now (and in fact we need
326 * to save & restore VSCR even if VRSAVE == 0). -- paulus
328 * On SMP we always save/restore altivec regs just to avoid the
329 * complexity of changing processors.
330 * -- Cort
332 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
333 giveup_altivec(prev);
334 #endif /* CONFIG_ALTIVEC */
335 #ifdef CONFIG_VSX
336 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
337 /* VMX and FPU registers are already save here */
338 __giveup_vsx(prev);
339 #endif /* CONFIG_VSX */
340 #ifdef CONFIG_SPE
342 * If the previous thread used spe in the last quantum
343 * (thus changing spe regs) then save them.
345 * On SMP we always save/restore spe regs just to avoid the
346 * complexity of changing processors.
348 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
349 giveup_spe(prev);
350 #endif /* CONFIG_SPE */
352 #else /* CONFIG_SMP */
353 #ifdef CONFIG_ALTIVEC
354 /* Avoid the trap. On smp this this never happens since
355 * we don't set last_task_used_altivec -- Cort
357 if (new->thread.regs && last_task_used_altivec == new)
358 new->thread.regs->msr |= MSR_VEC;
359 #endif /* CONFIG_ALTIVEC */
360 #ifdef CONFIG_VSX
361 if (new->thread.regs && last_task_used_vsx == new)
362 new->thread.regs->msr |= MSR_VSX;
363 #endif /* CONFIG_VSX */
364 #ifdef CONFIG_SPE
365 /* Avoid the trap. On smp this this never happens since
366 * we don't set last_task_used_spe
368 if (new->thread.regs && last_task_used_spe == new)
369 new->thread.regs->msr |= MSR_SPE;
370 #endif /* CONFIG_SPE */
372 #endif /* CONFIG_SMP */
374 #if defined(CONFIG_BOOKE)
375 /* If new thread DAC (HW breakpoint) is the same then leave it */
376 if (new->thread.dabr)
377 set_dabr(new->thread.dabr);
378 #else
379 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
380 set_dabr(new->thread.dabr);
381 #endif
384 new_thread = &new->thread;
385 old_thread = &current->thread;
387 #ifdef CONFIG_PPC64
389 * Collect processor utilization data per process
391 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
392 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
393 long unsigned start_tb, current_tb;
394 start_tb = old_thread->start_tb;
395 cu->current_tb = current_tb = mfspr(SPRN_PURR);
396 old_thread->accum_tb += (current_tb - start_tb);
397 new_thread->start_tb = current_tb;
399 #endif
401 local_irq_save(flags);
403 account_system_vtime(current);
404 account_process_vtime(current);
405 calculate_steal_time();
408 * We can't take a PMU exception inside _switch() since there is a
409 * window where the kernel stack SLB and the kernel stack are out
410 * of sync. Hard disable here.
412 hard_irq_disable();
413 last = _switch(old_thread, new_thread);
415 local_irq_restore(flags);
417 return last;
420 static int instructions_to_print = 16;
422 static void show_instructions(struct pt_regs *regs)
424 int i;
425 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
426 sizeof(int));
428 printk("Instruction dump:");
430 for (i = 0; i < instructions_to_print; i++) {
431 int instr;
433 if (!(i % 8))
434 printk("\n");
436 #if !defined(CONFIG_BOOKE)
437 /* If executing with the IMMU off, adjust pc rather
438 * than print XXXXXXXX.
440 if (!(regs->msr & MSR_IR))
441 pc = (unsigned long)phys_to_virt(pc);
442 #endif
444 /* We use __get_user here *only* to avoid an OOPS on a
445 * bad address because the pc *should* only be a
446 * kernel address.
448 if (!__kernel_text_address(pc) ||
449 __get_user(instr, (unsigned int __user *)pc)) {
450 printk("XXXXXXXX ");
451 } else {
452 if (regs->nip == pc)
453 printk("<%08x> ", instr);
454 else
455 printk("%08x ", instr);
458 pc += sizeof(int);
461 printk("\n");
464 static struct regbit {
465 unsigned long bit;
466 const char *name;
467 } msr_bits[] = {
468 {MSR_EE, "EE"},
469 {MSR_PR, "PR"},
470 {MSR_FP, "FP"},
471 {MSR_VEC, "VEC"},
472 {MSR_VSX, "VSX"},
473 {MSR_ME, "ME"},
474 {MSR_CE, "CE"},
475 {MSR_DE, "DE"},
476 {MSR_IR, "IR"},
477 {MSR_DR, "DR"},
478 {0, NULL}
481 static void printbits(unsigned long val, struct regbit *bits)
483 const char *sep = "";
485 printk("<");
486 for (; bits->bit; ++bits)
487 if (val & bits->bit) {
488 printk("%s%s", sep, bits->name);
489 sep = ",";
491 printk(">");
494 #ifdef CONFIG_PPC64
495 #define REG "%016lx"
496 #define REGS_PER_LINE 4
497 #define LAST_VOLATILE 13
498 #else
499 #define REG "%08lx"
500 #define REGS_PER_LINE 8
501 #define LAST_VOLATILE 12
502 #endif
504 void show_regs(struct pt_regs * regs)
506 int i, trap;
508 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
509 regs->nip, regs->link, regs->ctr);
510 printk("REGS: %p TRAP: %04lx %s (%s)\n",
511 regs, regs->trap, print_tainted(), init_utsname()->release);
512 printk("MSR: "REG" ", regs->msr);
513 printbits(regs->msr, msr_bits);
514 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
515 trap = TRAP(regs);
516 if (trap == 0x300 || trap == 0x600)
517 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
518 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
519 #else
520 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
521 #endif
522 printk("TASK = %p[%d] '%s' THREAD: %p",
523 current, task_pid_nr(current), current->comm, task_thread_info(current));
525 #ifdef CONFIG_SMP
526 printk(" CPU: %d", raw_smp_processor_id());
527 #endif /* CONFIG_SMP */
529 for (i = 0; i < 32; i++) {
530 if ((i % REGS_PER_LINE) == 0)
531 printk("\nGPR%02d: ", i);
532 printk(REG " ", regs->gpr[i]);
533 if (i == LAST_VOLATILE && !FULL_REGS(regs))
534 break;
536 printk("\n");
537 #ifdef CONFIG_KALLSYMS
539 * Lookup NIP late so we have the best change of getting the
540 * above info out without failing
542 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
543 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
544 #endif
545 show_stack(current, (unsigned long *) regs->gpr[1]);
546 if (!user_mode(regs))
547 show_instructions(regs);
550 void exit_thread(void)
552 discard_lazy_cpu_state();
555 void flush_thread(void)
557 discard_lazy_cpu_state();
559 if (current->thread.dabr) {
560 current->thread.dabr = 0;
561 set_dabr(0);
563 #if defined(CONFIG_BOOKE)
564 current->thread.dbcr0 &= ~(DBSR_DAC1R | DBSR_DAC1W);
565 #endif
569 void
570 release_thread(struct task_struct *t)
575 * This gets called before we allocate a new thread and copy
576 * the current task into it.
578 void prepare_to_copy(struct task_struct *tsk)
580 flush_fp_to_thread(current);
581 flush_altivec_to_thread(current);
582 flush_vsx_to_thread(current);
583 flush_spe_to_thread(current);
587 * Copy a thread..
589 int copy_thread(unsigned long clone_flags, unsigned long usp,
590 unsigned long unused, struct task_struct *p,
591 struct pt_regs *regs)
593 struct pt_regs *childregs, *kregs;
594 extern void ret_from_fork(void);
595 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
597 CHECK_FULL_REGS(regs);
598 /* Copy registers */
599 sp -= sizeof(struct pt_regs);
600 childregs = (struct pt_regs *) sp;
601 *childregs = *regs;
602 if ((childregs->msr & MSR_PR) == 0) {
603 /* for kernel thread, set `current' and stackptr in new task */
604 childregs->gpr[1] = sp + sizeof(struct pt_regs);
605 #ifdef CONFIG_PPC32
606 childregs->gpr[2] = (unsigned long) p;
607 #else
608 clear_tsk_thread_flag(p, TIF_32BIT);
609 #endif
610 p->thread.regs = NULL; /* no user register state */
611 } else {
612 childregs->gpr[1] = usp;
613 p->thread.regs = childregs;
614 if (clone_flags & CLONE_SETTLS) {
615 #ifdef CONFIG_PPC64
616 if (!test_thread_flag(TIF_32BIT))
617 childregs->gpr[13] = childregs->gpr[6];
618 else
619 #endif
620 childregs->gpr[2] = childregs->gpr[6];
623 childregs->gpr[3] = 0; /* Result from fork() */
624 sp -= STACK_FRAME_OVERHEAD;
627 * The way this works is that at some point in the future
628 * some task will call _switch to switch to the new task.
629 * That will pop off the stack frame created below and start
630 * the new task running at ret_from_fork. The new task will
631 * do some house keeping and then return from the fork or clone
632 * system call, using the stack frame created above.
634 sp -= sizeof(struct pt_regs);
635 kregs = (struct pt_regs *) sp;
636 sp -= STACK_FRAME_OVERHEAD;
637 p->thread.ksp = sp;
638 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
639 _ALIGN_UP(sizeof(struct thread_info), 16);
641 #ifdef CONFIG_PPC_STD_MMU_64
642 if (cpu_has_feature(CPU_FTR_SLB)) {
643 unsigned long sp_vsid;
644 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
646 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
647 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
648 << SLB_VSID_SHIFT_1T;
649 else
650 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
651 << SLB_VSID_SHIFT;
652 sp_vsid |= SLB_VSID_KERNEL | llp;
653 p->thread.ksp_vsid = sp_vsid;
655 #endif /* CONFIG_PPC_STD_MMU_64 */
658 * The PPC64 ABI makes use of a TOC to contain function
659 * pointers. The function (ret_from_except) is actually a pointer
660 * to the TOC entry. The first entry is a pointer to the actual
661 * function.
663 #ifdef CONFIG_PPC64
664 kregs->nip = *((unsigned long *)ret_from_fork);
665 #else
666 kregs->nip = (unsigned long)ret_from_fork;
667 #endif
669 return 0;
673 * Set up a thread for executing a new program
675 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
677 #ifdef CONFIG_PPC64
678 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
679 #endif
681 set_fs(USER_DS);
684 * If we exec out of a kernel thread then thread.regs will not be
685 * set. Do it now.
687 if (!current->thread.regs) {
688 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
689 current->thread.regs = regs - 1;
692 memset(regs->gpr, 0, sizeof(regs->gpr));
693 regs->ctr = 0;
694 regs->link = 0;
695 regs->xer = 0;
696 regs->ccr = 0;
697 regs->gpr[1] = sp;
700 * We have just cleared all the nonvolatile GPRs, so make
701 * FULL_REGS(regs) return true. This is necessary to allow
702 * ptrace to examine the thread immediately after exec.
704 regs->trap &= ~1UL;
706 #ifdef CONFIG_PPC32
707 regs->mq = 0;
708 regs->nip = start;
709 regs->msr = MSR_USER;
710 #else
711 if (!test_thread_flag(TIF_32BIT)) {
712 unsigned long entry, toc;
714 /* start is a relocated pointer to the function descriptor for
715 * the elf _start routine. The first entry in the function
716 * descriptor is the entry address of _start and the second
717 * entry is the TOC value we need to use.
719 __get_user(entry, (unsigned long __user *)start);
720 __get_user(toc, (unsigned long __user *)start+1);
722 /* Check whether the e_entry function descriptor entries
723 * need to be relocated before we can use them.
725 if (load_addr != 0) {
726 entry += load_addr;
727 toc += load_addr;
729 regs->nip = entry;
730 regs->gpr[2] = toc;
731 regs->msr = MSR_USER64;
732 } else {
733 regs->nip = start;
734 regs->gpr[2] = 0;
735 regs->msr = MSR_USER32;
737 #endif
739 discard_lazy_cpu_state();
740 #ifdef CONFIG_VSX
741 current->thread.used_vsr = 0;
742 #endif
743 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
744 current->thread.fpscr.val = 0;
745 #ifdef CONFIG_ALTIVEC
746 memset(current->thread.vr, 0, sizeof(current->thread.vr));
747 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
748 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
749 current->thread.vrsave = 0;
750 current->thread.used_vr = 0;
751 #endif /* CONFIG_ALTIVEC */
752 #ifdef CONFIG_SPE
753 memset(current->thread.evr, 0, sizeof(current->thread.evr));
754 current->thread.acc = 0;
755 current->thread.spefscr = 0;
756 current->thread.used_spe = 0;
757 #endif /* CONFIG_SPE */
760 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
761 | PR_FP_EXC_RES | PR_FP_EXC_INV)
763 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
765 struct pt_regs *regs = tsk->thread.regs;
767 /* This is a bit hairy. If we are an SPE enabled processor
768 * (have embedded fp) we store the IEEE exception enable flags in
769 * fpexc_mode. fpexc_mode is also used for setting FP exception
770 * mode (asyn, precise, disabled) for 'Classic' FP. */
771 if (val & PR_FP_EXC_SW_ENABLE) {
772 #ifdef CONFIG_SPE
773 if (cpu_has_feature(CPU_FTR_SPE)) {
774 tsk->thread.fpexc_mode = val &
775 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
776 return 0;
777 } else {
778 return -EINVAL;
780 #else
781 return -EINVAL;
782 #endif
785 /* on a CONFIG_SPE this does not hurt us. The bits that
786 * __pack_fe01 use do not overlap with bits used for
787 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
788 * on CONFIG_SPE implementations are reserved so writing to
789 * them does not change anything */
790 if (val > PR_FP_EXC_PRECISE)
791 return -EINVAL;
792 tsk->thread.fpexc_mode = __pack_fe01(val);
793 if (regs != NULL && (regs->msr & MSR_FP) != 0)
794 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
795 | tsk->thread.fpexc_mode;
796 return 0;
799 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
801 unsigned int val;
803 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
804 #ifdef CONFIG_SPE
805 if (cpu_has_feature(CPU_FTR_SPE))
806 val = tsk->thread.fpexc_mode;
807 else
808 return -EINVAL;
809 #else
810 return -EINVAL;
811 #endif
812 else
813 val = __unpack_fe01(tsk->thread.fpexc_mode);
814 return put_user(val, (unsigned int __user *) adr);
817 int set_endian(struct task_struct *tsk, unsigned int val)
819 struct pt_regs *regs = tsk->thread.regs;
821 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
822 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
823 return -EINVAL;
825 if (regs == NULL)
826 return -EINVAL;
828 if (val == PR_ENDIAN_BIG)
829 regs->msr &= ~MSR_LE;
830 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
831 regs->msr |= MSR_LE;
832 else
833 return -EINVAL;
835 return 0;
838 int get_endian(struct task_struct *tsk, unsigned long adr)
840 struct pt_regs *regs = tsk->thread.regs;
841 unsigned int val;
843 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
844 !cpu_has_feature(CPU_FTR_REAL_LE))
845 return -EINVAL;
847 if (regs == NULL)
848 return -EINVAL;
850 if (regs->msr & MSR_LE) {
851 if (cpu_has_feature(CPU_FTR_REAL_LE))
852 val = PR_ENDIAN_LITTLE;
853 else
854 val = PR_ENDIAN_PPC_LITTLE;
855 } else
856 val = PR_ENDIAN_BIG;
858 return put_user(val, (unsigned int __user *)adr);
861 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
863 tsk->thread.align_ctl = val;
864 return 0;
867 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
869 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
872 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
874 int sys_clone(unsigned long clone_flags, unsigned long usp,
875 int __user *parent_tidp, void __user *child_threadptr,
876 int __user *child_tidp, int p6,
877 struct pt_regs *regs)
879 CHECK_FULL_REGS(regs);
880 if (usp == 0)
881 usp = regs->gpr[1]; /* stack pointer for child */
882 #ifdef CONFIG_PPC64
883 if (test_thread_flag(TIF_32BIT)) {
884 parent_tidp = TRUNC_PTR(parent_tidp);
885 child_tidp = TRUNC_PTR(child_tidp);
887 #endif
888 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
891 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
892 unsigned long p4, unsigned long p5, unsigned long p6,
893 struct pt_regs *regs)
895 CHECK_FULL_REGS(regs);
896 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
899 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
900 unsigned long p4, unsigned long p5, unsigned long p6,
901 struct pt_regs *regs)
903 CHECK_FULL_REGS(regs);
904 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
905 regs, 0, NULL, NULL);
908 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
909 unsigned long a3, unsigned long a4, unsigned long a5,
910 struct pt_regs *regs)
912 int error;
913 char *filename;
915 filename = getname((char __user *) a0);
916 error = PTR_ERR(filename);
917 if (IS_ERR(filename))
918 goto out;
919 flush_fp_to_thread(current);
920 flush_altivec_to_thread(current);
921 flush_spe_to_thread(current);
922 error = do_execve(filename, (char __user * __user *) a1,
923 (char __user * __user *) a2, regs);
924 putname(filename);
925 out:
926 return error;
929 #ifdef CONFIG_IRQSTACKS
930 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
931 unsigned long nbytes)
933 unsigned long stack_page;
934 unsigned long cpu = task_cpu(p);
937 * Avoid crashing if the stack has overflowed and corrupted
938 * task_cpu(p), which is in the thread_info struct.
940 if (cpu < NR_CPUS && cpu_possible(cpu)) {
941 stack_page = (unsigned long) hardirq_ctx[cpu];
942 if (sp >= stack_page + sizeof(struct thread_struct)
943 && sp <= stack_page + THREAD_SIZE - nbytes)
944 return 1;
946 stack_page = (unsigned long) softirq_ctx[cpu];
947 if (sp >= stack_page + sizeof(struct thread_struct)
948 && sp <= stack_page + THREAD_SIZE - nbytes)
949 return 1;
951 return 0;
954 #else
955 #define valid_irq_stack(sp, p, nb) 0
956 #endif /* CONFIG_IRQSTACKS */
958 int validate_sp(unsigned long sp, struct task_struct *p,
959 unsigned long nbytes)
961 unsigned long stack_page = (unsigned long)task_stack_page(p);
963 if (sp >= stack_page + sizeof(struct thread_struct)
964 && sp <= stack_page + THREAD_SIZE - nbytes)
965 return 1;
967 return valid_irq_stack(sp, p, nbytes);
970 EXPORT_SYMBOL(validate_sp);
972 unsigned long get_wchan(struct task_struct *p)
974 unsigned long ip, sp;
975 int count = 0;
977 if (!p || p == current || p->state == TASK_RUNNING)
978 return 0;
980 sp = p->thread.ksp;
981 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
982 return 0;
984 do {
985 sp = *(unsigned long *)sp;
986 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
987 return 0;
988 if (count > 0) {
989 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
990 if (!in_sched_functions(ip))
991 return ip;
993 } while (count++ < 16);
994 return 0;
997 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
999 void show_stack(struct task_struct *tsk, unsigned long *stack)
1001 unsigned long sp, ip, lr, newsp;
1002 int count = 0;
1003 int firstframe = 1;
1004 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1005 int curr_frame = current->curr_ret_stack;
1006 extern void return_to_handler(void);
1007 unsigned long rth = (unsigned long)return_to_handler;
1008 unsigned long mrth = -1;
1009 #ifdef CONFIG_PPC64
1010 extern void mod_return_to_handler(void);
1011 rth = *(unsigned long *)rth;
1012 mrth = (unsigned long)mod_return_to_handler;
1013 mrth = *(unsigned long *)mrth;
1014 #endif
1015 #endif
1017 sp = (unsigned long) stack;
1018 if (tsk == NULL)
1019 tsk = current;
1020 if (sp == 0) {
1021 if (tsk == current)
1022 asm("mr %0,1" : "=r" (sp));
1023 else
1024 sp = tsk->thread.ksp;
1027 lr = 0;
1028 printk("Call Trace:\n");
1029 do {
1030 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1031 return;
1033 stack = (unsigned long *) sp;
1034 newsp = stack[0];
1035 ip = stack[STACK_FRAME_LR_SAVE];
1036 if (!firstframe || ip != lr) {
1037 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1038 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1039 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1040 printk(" (%pS)",
1041 (void *)current->ret_stack[curr_frame].ret);
1042 curr_frame--;
1044 #endif
1045 if (firstframe)
1046 printk(" (unreliable)");
1047 printk("\n");
1049 firstframe = 0;
1052 * See if this is an exception frame.
1053 * We look for the "regshere" marker in the current frame.
1055 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1056 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1057 struct pt_regs *regs = (struct pt_regs *)
1058 (sp + STACK_FRAME_OVERHEAD);
1059 lr = regs->link;
1060 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1061 regs->trap, (void *)regs->nip, (void *)lr);
1062 firstframe = 1;
1065 sp = newsp;
1066 } while (count++ < kstack_depth_to_print);
1069 void dump_stack(void)
1071 show_stack(current, NULL);
1073 EXPORT_SYMBOL(dump_stack);
1075 #ifdef CONFIG_PPC64
1076 void ppc64_runlatch_on(void)
1078 unsigned long ctrl;
1080 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1081 HMT_medium();
1083 ctrl = mfspr(SPRN_CTRLF);
1084 ctrl |= CTRL_RUNLATCH;
1085 mtspr(SPRN_CTRLT, ctrl);
1087 set_thread_flag(TIF_RUNLATCH);
1091 void ppc64_runlatch_off(void)
1093 unsigned long ctrl;
1095 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1096 HMT_medium();
1098 clear_thread_flag(TIF_RUNLATCH);
1100 ctrl = mfspr(SPRN_CTRLF);
1101 ctrl &= ~CTRL_RUNLATCH;
1102 mtspr(SPRN_CTRLT, ctrl);
1105 #endif
1107 #if THREAD_SHIFT < PAGE_SHIFT
1109 static struct kmem_cache *thread_info_cache;
1111 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1113 struct thread_info *ti;
1115 ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1116 if (unlikely(ti == NULL))
1117 return NULL;
1118 #ifdef CONFIG_DEBUG_STACK_USAGE
1119 memset(ti, 0, THREAD_SIZE);
1120 #endif
1121 return ti;
1124 void free_thread_info(struct thread_info *ti)
1126 kmem_cache_free(thread_info_cache, ti);
1129 void thread_info_cache_init(void)
1131 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1132 THREAD_SIZE, 0, NULL);
1133 BUG_ON(thread_info_cache == NULL);
1136 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1138 unsigned long arch_align_stack(unsigned long sp)
1140 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1141 sp -= get_random_int() & ~PAGE_MASK;
1142 return sp & ~0xf;
1145 static inline unsigned long brk_rnd(void)
1147 unsigned long rnd = 0;
1149 /* 8MB for 32bit, 1GB for 64bit */
1150 if (is_32bit_task())
1151 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1152 else
1153 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1155 return rnd << PAGE_SHIFT;
1158 unsigned long arch_randomize_brk(struct mm_struct *mm)
1160 unsigned long base = mm->brk;
1161 unsigned long ret;
1163 #ifdef CONFIG_PPC_STD_MMU_64
1165 * If we are using 1TB segments and we are allowed to randomise
1166 * the heap, we can put it above 1TB so it is backed by a 1TB
1167 * segment. Otherwise the heap will be in the bottom 1TB
1168 * which always uses 256MB segments and this may result in a
1169 * performance penalty.
1171 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1172 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1173 #endif
1175 ret = PAGE_ALIGN(base + brk_rnd());
1177 if (ret < mm->brk)
1178 return mm->brk;
1180 return ret;
1183 unsigned long randomize_et_dyn(unsigned long base)
1185 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1187 if (ret < base)
1188 return base;
1190 return ret;