initial commit with v2.6.32.60
[linux-2.6.32.60-moxart.git] / arch / x86 / kernel / amd_iommu.c
blob3a44b75670307a8fcf08d8de65de9859eb036fd4
1 /*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/pci.h>
21 #include <linux/gfp.h>
22 #include <linux/bitops.h>
23 #include <linux/debugfs.h>
24 #include <linux/scatterlist.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/iommu-helper.h>
27 #include <linux/iommu.h>
28 #include <asm/proto.h>
29 #include <asm/iommu.h>
30 #include <asm/gart.h>
31 #include <asm/amd_iommu_types.h>
32 #include <asm/amd_iommu.h>
34 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36 #define EXIT_LOOP_COUNT 10000000
38 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40 /* A list of preallocated protection domains */
41 static LIST_HEAD(iommu_pd_list);
42 static DEFINE_SPINLOCK(iommu_pd_list_lock);
45 * Domain for untranslated devices - only allocated
46 * if iommu=pt passed on kernel cmd line.
48 static struct protection_domain *pt_domain;
50 static struct iommu_ops amd_iommu_ops;
53 * general struct to manage commands send to an IOMMU
55 struct iommu_cmd {
56 u32 data[4];
59 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
60 struct unity_map_entry *e);
61 static struct dma_ops_domain *find_protection_domain(u16 devid);
62 static u64 *alloc_pte(struct protection_domain *domain,
63 unsigned long address, int end_lvl,
64 u64 **pte_page, gfp_t gfp);
65 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
66 unsigned long start_page,
67 unsigned int pages);
68 static void reset_iommu_command_buffer(struct amd_iommu *iommu);
69 static u64 *fetch_pte(struct protection_domain *domain,
70 unsigned long address, int map_size);
71 static void update_domain(struct protection_domain *domain);
73 #ifdef CONFIG_AMD_IOMMU_STATS
76 * Initialization code for statistics collection
79 DECLARE_STATS_COUNTER(compl_wait);
80 DECLARE_STATS_COUNTER(cnt_map_single);
81 DECLARE_STATS_COUNTER(cnt_unmap_single);
82 DECLARE_STATS_COUNTER(cnt_map_sg);
83 DECLARE_STATS_COUNTER(cnt_unmap_sg);
84 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
85 DECLARE_STATS_COUNTER(cnt_free_coherent);
86 DECLARE_STATS_COUNTER(cross_page);
87 DECLARE_STATS_COUNTER(domain_flush_single);
88 DECLARE_STATS_COUNTER(domain_flush_all);
89 DECLARE_STATS_COUNTER(alloced_io_mem);
90 DECLARE_STATS_COUNTER(total_map_requests);
92 static struct dentry *stats_dir;
93 static struct dentry *de_isolate;
94 static struct dentry *de_fflush;
96 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
98 if (stats_dir == NULL)
99 return;
101 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
102 &cnt->value);
105 static void amd_iommu_stats_init(void)
107 stats_dir = debugfs_create_dir("amd-iommu", NULL);
108 if (stats_dir == NULL)
109 return;
111 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
112 (u32 *)&amd_iommu_isolate);
114 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
115 (u32 *)&amd_iommu_unmap_flush);
117 amd_iommu_stats_add(&compl_wait);
118 amd_iommu_stats_add(&cnt_map_single);
119 amd_iommu_stats_add(&cnt_unmap_single);
120 amd_iommu_stats_add(&cnt_map_sg);
121 amd_iommu_stats_add(&cnt_unmap_sg);
122 amd_iommu_stats_add(&cnt_alloc_coherent);
123 amd_iommu_stats_add(&cnt_free_coherent);
124 amd_iommu_stats_add(&cross_page);
125 amd_iommu_stats_add(&domain_flush_single);
126 amd_iommu_stats_add(&domain_flush_all);
127 amd_iommu_stats_add(&alloced_io_mem);
128 amd_iommu_stats_add(&total_map_requests);
131 #endif
133 /* returns !0 if the IOMMU is caching non-present entries in its TLB */
134 static int iommu_has_npcache(struct amd_iommu *iommu)
136 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
139 /****************************************************************************
141 * Interrupt handling functions
143 ****************************************************************************/
145 static void dump_dte_entry(u16 devid)
147 int i;
149 for (i = 0; i < 8; ++i)
150 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
151 amd_iommu_dev_table[devid].data[i]);
154 static void dump_command(unsigned long phys_addr)
156 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
157 int i;
159 for (i = 0; i < 4; ++i)
160 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
163 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
165 u32 *event = __evt;
166 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
167 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
168 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
169 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
170 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
172 printk(KERN_ERR "AMD-Vi: Event logged [");
174 switch (type) {
175 case EVENT_TYPE_ILL_DEV:
176 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
177 "address=0x%016llx flags=0x%04x]\n",
178 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
179 address, flags);
180 dump_dte_entry(devid);
181 break;
182 case EVENT_TYPE_IO_FAULT:
183 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
184 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
185 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
186 domid, address, flags);
187 break;
188 case EVENT_TYPE_DEV_TAB_ERR:
189 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
190 "address=0x%016llx flags=0x%04x]\n",
191 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
192 address, flags);
193 break;
194 case EVENT_TYPE_PAGE_TAB_ERR:
195 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
196 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
197 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
198 domid, address, flags);
199 break;
200 case EVENT_TYPE_ILL_CMD:
201 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
202 reset_iommu_command_buffer(iommu);
203 dump_command(address);
204 break;
205 case EVENT_TYPE_CMD_HARD_ERR:
206 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
207 "flags=0x%04x]\n", address, flags);
208 break;
209 case EVENT_TYPE_IOTLB_INV_TO:
210 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
211 "address=0x%016llx]\n",
212 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
213 address);
214 break;
215 case EVENT_TYPE_INV_DEV_REQ:
216 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
217 "address=0x%016llx flags=0x%04x]\n",
218 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
219 address, flags);
220 break;
221 default:
222 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
226 static void iommu_poll_events(struct amd_iommu *iommu)
228 u32 head, tail;
229 unsigned long flags;
231 spin_lock_irqsave(&iommu->lock, flags);
233 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
234 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
236 while (head != tail) {
237 iommu_print_event(iommu, iommu->evt_buf + head);
238 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
241 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
243 spin_unlock_irqrestore(&iommu->lock, flags);
246 irqreturn_t amd_iommu_int_handler(int irq, void *data)
248 struct amd_iommu *iommu;
250 for_each_iommu(iommu)
251 iommu_poll_events(iommu);
253 return IRQ_HANDLED;
256 /****************************************************************************
258 * IOMMU command queuing functions
260 ****************************************************************************/
263 * Writes the command to the IOMMUs command buffer and informs the
264 * hardware about the new command. Must be called with iommu->lock held.
266 static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
268 u32 tail, head;
269 u8 *target;
271 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
272 target = iommu->cmd_buf + tail;
273 memcpy_toio(target, cmd, sizeof(*cmd));
274 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
275 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
276 if (tail == head)
277 return -ENOMEM;
278 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
280 return 0;
284 * General queuing function for commands. Takes iommu->lock and calls
285 * __iommu_queue_command().
287 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
289 unsigned long flags;
290 int ret;
292 spin_lock_irqsave(&iommu->lock, flags);
293 ret = __iommu_queue_command(iommu, cmd);
294 if (!ret)
295 iommu->need_sync = true;
296 spin_unlock_irqrestore(&iommu->lock, flags);
298 return ret;
302 * This function waits until an IOMMU has completed a completion
303 * wait command
305 static void __iommu_wait_for_completion(struct amd_iommu *iommu)
307 int ready = 0;
308 unsigned status = 0;
309 unsigned long i = 0;
311 INC_STATS_COUNTER(compl_wait);
313 while (!ready && (i < EXIT_LOOP_COUNT)) {
314 ++i;
315 /* wait for the bit to become one */
316 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
317 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
320 /* set bit back to zero */
321 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
322 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
324 if (unlikely(i == EXIT_LOOP_COUNT)) {
325 spin_unlock(&iommu->lock);
326 reset_iommu_command_buffer(iommu);
327 spin_lock(&iommu->lock);
332 * This function queues a completion wait command into the command
333 * buffer of an IOMMU
335 static int __iommu_completion_wait(struct amd_iommu *iommu)
337 struct iommu_cmd cmd;
339 memset(&cmd, 0, sizeof(cmd));
340 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
341 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
343 return __iommu_queue_command(iommu, &cmd);
347 * This function is called whenever we need to ensure that the IOMMU has
348 * completed execution of all commands we sent. It sends a
349 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
350 * us about that by writing a value to a physical address we pass with
351 * the command.
353 static int iommu_completion_wait(struct amd_iommu *iommu)
355 int ret = 0;
356 unsigned long flags;
358 spin_lock_irqsave(&iommu->lock, flags);
360 if (!iommu->need_sync)
361 goto out;
363 ret = __iommu_completion_wait(iommu);
365 iommu->need_sync = false;
367 if (ret)
368 goto out;
370 __iommu_wait_for_completion(iommu);
372 out:
373 spin_unlock_irqrestore(&iommu->lock, flags);
375 return 0;
379 * Command send function for invalidating a device table entry
381 static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
383 struct iommu_cmd cmd;
384 int ret;
386 BUG_ON(iommu == NULL);
388 memset(&cmd, 0, sizeof(cmd));
389 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
390 cmd.data[0] = devid;
392 ret = iommu_queue_command(iommu, &cmd);
394 return ret;
397 static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
398 u16 domid, int pde, int s)
400 memset(cmd, 0, sizeof(*cmd));
401 address &= PAGE_MASK;
402 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
403 cmd->data[1] |= domid;
404 cmd->data[2] = lower_32_bits(address);
405 cmd->data[3] = upper_32_bits(address);
406 if (s) /* size bit - we flush more than one 4kb page */
407 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
408 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
409 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
413 * Generic command send function for invalidaing TLB entries
415 static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
416 u64 address, u16 domid, int pde, int s)
418 struct iommu_cmd cmd;
419 int ret;
421 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
423 ret = iommu_queue_command(iommu, &cmd);
425 return ret;
429 * TLB invalidation function which is called from the mapping functions.
430 * It invalidates a single PTE if the range to flush is within a single
431 * page. Otherwise it flushes the whole TLB of the IOMMU.
433 static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
434 u64 address, size_t size)
436 int s = 0;
437 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
439 address &= PAGE_MASK;
441 if (pages > 1) {
443 * If we have to flush more than one page, flush all
444 * TLB entries for this domain
446 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
447 s = 1;
450 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
452 return 0;
455 /* Flush the whole IO/TLB for a given protection domain */
456 static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
458 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
460 INC_STATS_COUNTER(domain_flush_single);
462 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
465 /* Flush the whole IO/TLB for a given protection domain - including PDE */
466 static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
468 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
470 INC_STATS_COUNTER(domain_flush_single);
472 iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
476 * This function flushes one domain on one IOMMU
478 static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
480 struct iommu_cmd cmd;
481 unsigned long flags;
483 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
484 domid, 1, 1);
486 spin_lock_irqsave(&iommu->lock, flags);
487 __iommu_queue_command(iommu, &cmd);
488 __iommu_completion_wait(iommu);
489 __iommu_wait_for_completion(iommu);
490 spin_unlock_irqrestore(&iommu->lock, flags);
493 static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
495 int i;
497 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
498 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
499 continue;
500 flush_domain_on_iommu(iommu, i);
506 * This function is used to flush the IO/TLB for a given protection domain
507 * on every IOMMU in the system
509 static void iommu_flush_domain(u16 domid)
511 struct amd_iommu *iommu;
513 INC_STATS_COUNTER(domain_flush_all);
515 for_each_iommu(iommu)
516 flush_domain_on_iommu(iommu, domid);
519 void amd_iommu_flush_all_domains(void)
521 struct amd_iommu *iommu;
523 for_each_iommu(iommu)
524 flush_all_domains_on_iommu(iommu);
527 static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
529 int i;
531 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
532 if (iommu != amd_iommu_rlookup_table[i])
533 continue;
535 iommu_queue_inv_dev_entry(iommu, i);
536 iommu_completion_wait(iommu);
540 static void flush_devices_by_domain(struct protection_domain *domain)
542 struct amd_iommu *iommu;
543 unsigned long i;
545 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
546 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
547 (domain != NULL && amd_iommu_pd_table[i] != domain))
548 continue;
550 iommu = amd_iommu_rlookup_table[i];
551 if (!iommu)
552 continue;
554 iommu_queue_inv_dev_entry(iommu, i);
555 iommu_completion_wait(iommu);
559 static void reset_iommu_command_buffer(struct amd_iommu *iommu)
561 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
563 if (iommu->reset_in_progress)
564 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
566 iommu->reset_in_progress = true;
568 amd_iommu_reset_cmd_buffer(iommu);
569 flush_all_devices_for_iommu(iommu);
570 flush_all_domains_on_iommu(iommu);
572 iommu->reset_in_progress = false;
575 void amd_iommu_flush_all_devices(void)
577 flush_devices_by_domain(NULL);
580 /****************************************************************************
582 * The functions below are used the create the page table mappings for
583 * unity mapped regions.
585 ****************************************************************************/
588 * Generic mapping functions. It maps a physical address into a DMA
589 * address space. It allocates the page table pages if necessary.
590 * In the future it can be extended to a generic mapping function
591 * supporting all features of AMD IOMMU page tables like level skipping
592 * and full 64 bit address spaces.
594 static int iommu_map_page(struct protection_domain *dom,
595 unsigned long bus_addr,
596 unsigned long phys_addr,
597 int prot,
598 int map_size)
600 u64 __pte, *pte;
602 bus_addr = PAGE_ALIGN(bus_addr);
603 phys_addr = PAGE_ALIGN(phys_addr);
605 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
606 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
608 if (!(prot & IOMMU_PROT_MASK))
609 return -EINVAL;
611 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
613 if (IOMMU_PTE_PRESENT(*pte))
614 return -EBUSY;
616 __pte = phys_addr | IOMMU_PTE_P;
617 if (prot & IOMMU_PROT_IR)
618 __pte |= IOMMU_PTE_IR;
619 if (prot & IOMMU_PROT_IW)
620 __pte |= IOMMU_PTE_IW;
622 *pte = __pte;
624 update_domain(dom);
626 return 0;
629 static void iommu_unmap_page(struct protection_domain *dom,
630 unsigned long bus_addr, int map_size)
632 u64 *pte = fetch_pte(dom, bus_addr, map_size);
634 if (pte)
635 *pte = 0;
639 * This function checks if a specific unity mapping entry is needed for
640 * this specific IOMMU.
642 static int iommu_for_unity_map(struct amd_iommu *iommu,
643 struct unity_map_entry *entry)
645 u16 bdf, i;
647 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
648 bdf = amd_iommu_alias_table[i];
649 if (amd_iommu_rlookup_table[bdf] == iommu)
650 return 1;
653 return 0;
657 * Init the unity mappings for a specific IOMMU in the system
659 * Basically iterates over all unity mapping entries and applies them to
660 * the default domain DMA of that IOMMU if necessary.
662 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
664 struct unity_map_entry *entry;
665 int ret;
667 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
668 if (!iommu_for_unity_map(iommu, entry))
669 continue;
670 ret = dma_ops_unity_map(iommu->default_dom, entry);
671 if (ret)
672 return ret;
675 return 0;
679 * This function actually applies the mapping to the page table of the
680 * dma_ops domain.
682 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
683 struct unity_map_entry *e)
685 u64 addr;
686 int ret;
688 for (addr = e->address_start; addr < e->address_end;
689 addr += PAGE_SIZE) {
690 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
691 PM_MAP_4k);
692 if (ret)
693 return ret;
695 * if unity mapping is in aperture range mark the page
696 * as allocated in the aperture
698 if (addr < dma_dom->aperture_size)
699 __set_bit(addr >> PAGE_SHIFT,
700 dma_dom->aperture[0]->bitmap);
703 return 0;
707 * Inits the unity mappings required for a specific device
709 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
710 u16 devid)
712 struct unity_map_entry *e;
713 int ret;
715 list_for_each_entry(e, &amd_iommu_unity_map, list) {
716 if (!(devid >= e->devid_start && devid <= e->devid_end))
717 continue;
718 ret = dma_ops_unity_map(dma_dom, e);
719 if (ret)
720 return ret;
723 return 0;
726 /****************************************************************************
728 * The next functions belong to the address allocator for the dma_ops
729 * interface functions. They work like the allocators in the other IOMMU
730 * drivers. Its basically a bitmap which marks the allocated pages in
731 * the aperture. Maybe it could be enhanced in the future to a more
732 * efficient allocator.
734 ****************************************************************************/
737 * The address allocator core functions.
739 * called with domain->lock held
743 * This function checks if there is a PTE for a given dma address. If
744 * there is one, it returns the pointer to it.
746 static u64 *fetch_pte(struct protection_domain *domain,
747 unsigned long address, int map_size)
749 int level;
750 u64 *pte;
752 level = domain->mode - 1;
753 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
755 while (level > map_size) {
756 if (!IOMMU_PTE_PRESENT(*pte))
757 return NULL;
759 level -= 1;
761 pte = IOMMU_PTE_PAGE(*pte);
762 pte = &pte[PM_LEVEL_INDEX(level, address)];
764 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
765 pte = NULL;
766 break;
770 return pte;
774 * This function is used to add a new aperture range to an existing
775 * aperture in case of dma_ops domain allocation or address allocation
776 * failure.
778 static int alloc_new_range(struct amd_iommu *iommu,
779 struct dma_ops_domain *dma_dom,
780 bool populate, gfp_t gfp)
782 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
783 int i;
785 #ifdef CONFIG_IOMMU_STRESS
786 populate = false;
787 #endif
789 if (index >= APERTURE_MAX_RANGES)
790 return -ENOMEM;
792 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
793 if (!dma_dom->aperture[index])
794 return -ENOMEM;
796 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
797 if (!dma_dom->aperture[index]->bitmap)
798 goto out_free;
800 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
802 if (populate) {
803 unsigned long address = dma_dom->aperture_size;
804 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
805 u64 *pte, *pte_page;
807 for (i = 0; i < num_ptes; ++i) {
808 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
809 &pte_page, gfp);
810 if (!pte)
811 goto out_free;
813 dma_dom->aperture[index]->pte_pages[i] = pte_page;
815 address += APERTURE_RANGE_SIZE / 64;
819 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
821 /* Intialize the exclusion range if necessary */
822 if (iommu->exclusion_start &&
823 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
824 iommu->exclusion_start < dma_dom->aperture_size) {
825 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
826 int pages = iommu_num_pages(iommu->exclusion_start,
827 iommu->exclusion_length,
828 PAGE_SIZE);
829 dma_ops_reserve_addresses(dma_dom, startpage, pages);
833 * Check for areas already mapped as present in the new aperture
834 * range and mark those pages as reserved in the allocator. Such
835 * mappings may already exist as a result of requested unity
836 * mappings for devices.
838 for (i = dma_dom->aperture[index]->offset;
839 i < dma_dom->aperture_size;
840 i += PAGE_SIZE) {
841 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
842 if (!pte || !IOMMU_PTE_PRESENT(*pte))
843 continue;
845 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
848 update_domain(&dma_dom->domain);
850 return 0;
852 out_free:
853 update_domain(&dma_dom->domain);
855 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
857 kfree(dma_dom->aperture[index]);
858 dma_dom->aperture[index] = NULL;
860 return -ENOMEM;
863 static unsigned long dma_ops_area_alloc(struct device *dev,
864 struct dma_ops_domain *dom,
865 unsigned int pages,
866 unsigned long align_mask,
867 u64 dma_mask,
868 unsigned long start)
870 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
871 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
872 int i = start >> APERTURE_RANGE_SHIFT;
873 unsigned long boundary_size;
874 unsigned long address = -1;
875 unsigned long limit;
877 next_bit >>= PAGE_SHIFT;
879 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
880 PAGE_SIZE) >> PAGE_SHIFT;
882 for (;i < max_index; ++i) {
883 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
885 if (dom->aperture[i]->offset >= dma_mask)
886 break;
888 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
889 dma_mask >> PAGE_SHIFT);
891 address = iommu_area_alloc(dom->aperture[i]->bitmap,
892 limit, next_bit, pages, 0,
893 boundary_size, align_mask);
894 if (address != -1) {
895 address = dom->aperture[i]->offset +
896 (address << PAGE_SHIFT);
897 dom->next_address = address + (pages << PAGE_SHIFT);
898 break;
901 next_bit = 0;
904 return address;
907 static unsigned long dma_ops_alloc_addresses(struct device *dev,
908 struct dma_ops_domain *dom,
909 unsigned int pages,
910 unsigned long align_mask,
911 u64 dma_mask)
913 unsigned long address;
915 #ifdef CONFIG_IOMMU_STRESS
916 dom->next_address = 0;
917 dom->need_flush = true;
918 #endif
920 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
921 dma_mask, dom->next_address);
923 if (address == -1) {
924 dom->next_address = 0;
925 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
926 dma_mask, 0);
927 dom->need_flush = true;
930 if (unlikely(address == -1))
931 address = bad_dma_address;
933 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
935 return address;
939 * The address free function.
941 * called with domain->lock held
943 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
944 unsigned long address,
945 unsigned int pages)
947 unsigned i = address >> APERTURE_RANGE_SHIFT;
948 struct aperture_range *range = dom->aperture[i];
950 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
952 #ifdef CONFIG_IOMMU_STRESS
953 if (i < 4)
954 return;
955 #endif
957 if (address >= dom->next_address)
958 dom->need_flush = true;
960 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
962 iommu_area_free(range->bitmap, address, pages);
966 /****************************************************************************
968 * The next functions belong to the domain allocation. A domain is
969 * allocated for every IOMMU as the default domain. If device isolation
970 * is enabled, every device get its own domain. The most important thing
971 * about domains is the page table mapping the DMA address space they
972 * contain.
974 ****************************************************************************/
976 static u16 domain_id_alloc(void)
978 unsigned long flags;
979 int id;
981 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
982 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
983 BUG_ON(id == 0);
984 if (id > 0 && id < MAX_DOMAIN_ID)
985 __set_bit(id, amd_iommu_pd_alloc_bitmap);
986 else
987 id = 0;
988 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
990 return id;
993 static void domain_id_free(int id)
995 unsigned long flags;
997 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
998 if (id > 0 && id < MAX_DOMAIN_ID)
999 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1000 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1004 * Used to reserve address ranges in the aperture (e.g. for exclusion
1005 * ranges.
1007 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1008 unsigned long start_page,
1009 unsigned int pages)
1011 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1013 if (start_page + pages > last_page)
1014 pages = last_page - start_page;
1016 for (i = start_page; i < start_page + pages; ++i) {
1017 int index = i / APERTURE_RANGE_PAGES;
1018 int page = i % APERTURE_RANGE_PAGES;
1019 __set_bit(page, dom->aperture[index]->bitmap);
1023 static void free_pagetable(struct protection_domain *domain)
1025 int i, j;
1026 u64 *p1, *p2, *p3;
1028 p1 = domain->pt_root;
1030 if (!p1)
1031 return;
1033 for (i = 0; i < 512; ++i) {
1034 if (!IOMMU_PTE_PRESENT(p1[i]))
1035 continue;
1037 p2 = IOMMU_PTE_PAGE(p1[i]);
1038 for (j = 0; j < 512; ++j) {
1039 if (!IOMMU_PTE_PRESENT(p2[j]))
1040 continue;
1041 p3 = IOMMU_PTE_PAGE(p2[j]);
1042 free_page((unsigned long)p3);
1045 free_page((unsigned long)p2);
1048 free_page((unsigned long)p1);
1050 domain->pt_root = NULL;
1054 * Free a domain, only used if something went wrong in the
1055 * allocation path and we need to free an already allocated page table
1057 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1059 int i;
1061 if (!dom)
1062 return;
1064 free_pagetable(&dom->domain);
1066 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1067 if (!dom->aperture[i])
1068 continue;
1069 free_page((unsigned long)dom->aperture[i]->bitmap);
1070 kfree(dom->aperture[i]);
1073 kfree(dom);
1077 * Allocates a new protection domain usable for the dma_ops functions.
1078 * It also intializes the page table and the address allocator data
1079 * structures required for the dma_ops interface
1081 static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
1083 struct dma_ops_domain *dma_dom;
1085 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1086 if (!dma_dom)
1087 return NULL;
1089 spin_lock_init(&dma_dom->domain.lock);
1091 dma_dom->domain.id = domain_id_alloc();
1092 if (dma_dom->domain.id == 0)
1093 goto free_dma_dom;
1094 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1095 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1096 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1097 dma_dom->domain.priv = dma_dom;
1098 if (!dma_dom->domain.pt_root)
1099 goto free_dma_dom;
1101 dma_dom->need_flush = false;
1102 dma_dom->target_dev = 0xffff;
1104 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1105 goto free_dma_dom;
1108 * mark the first page as allocated so we never return 0 as
1109 * a valid dma-address. So we can use 0 as error value
1111 dma_dom->aperture[0]->bitmap[0] = 1;
1112 dma_dom->next_address = 0;
1115 return dma_dom;
1117 free_dma_dom:
1118 dma_ops_domain_free(dma_dom);
1120 return NULL;
1124 * little helper function to check whether a given protection domain is a
1125 * dma_ops domain
1127 static bool dma_ops_domain(struct protection_domain *domain)
1129 return domain->flags & PD_DMA_OPS_MASK;
1133 * Find out the protection domain structure for a given PCI device. This
1134 * will give us the pointer to the page table root for example.
1136 static struct protection_domain *domain_for_device(u16 devid)
1138 struct protection_domain *dom;
1139 unsigned long flags;
1141 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1142 dom = amd_iommu_pd_table[devid];
1143 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1145 return dom;
1148 static void set_dte_entry(u16 devid, struct protection_domain *domain)
1150 u64 pte_root = virt_to_phys(domain->pt_root);
1152 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1153 << DEV_ENTRY_MODE_SHIFT;
1154 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1156 amd_iommu_dev_table[devid].data[2] = domain->id;
1157 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1158 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1160 amd_iommu_pd_table[devid] = domain;
1164 * If a device is not yet associated with a domain, this function does
1165 * assigns it visible for the hardware
1167 static void __attach_device(struct amd_iommu *iommu,
1168 struct protection_domain *domain,
1169 u16 devid)
1171 /* lock domain */
1172 spin_lock(&domain->lock);
1174 /* update DTE entry */
1175 set_dte_entry(devid, domain);
1177 domain->dev_cnt += 1;
1179 /* ready */
1180 spin_unlock(&domain->lock);
1184 * If a device is not yet associated with a domain, this function does
1185 * assigns it visible for the hardware
1187 static void attach_device(struct amd_iommu *iommu,
1188 struct protection_domain *domain,
1189 u16 devid)
1191 unsigned long flags;
1193 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1194 __attach_device(iommu, domain, devid);
1195 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1198 * We might boot into a crash-kernel here. The crashed kernel
1199 * left the caches in the IOMMU dirty. So we have to flush
1200 * here to evict all dirty stuff.
1202 iommu_queue_inv_dev_entry(iommu, devid);
1203 iommu_flush_tlb_pde(iommu, domain->id);
1207 * Removes a device from a protection domain (unlocked)
1209 static void __detach_device(struct protection_domain *domain, u16 devid)
1212 /* lock domain */
1213 spin_lock(&domain->lock);
1215 /* remove domain from the lookup table */
1216 amd_iommu_pd_table[devid] = NULL;
1218 /* remove entry from the device table seen by the hardware */
1219 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1220 amd_iommu_dev_table[devid].data[1] = 0;
1221 amd_iommu_dev_table[devid].data[2] = 0;
1223 amd_iommu_apply_erratum_63(devid);
1225 /* decrease reference counter */
1226 domain->dev_cnt -= 1;
1228 /* ready */
1229 spin_unlock(&domain->lock);
1232 * If we run in passthrough mode the device must be assigned to the
1233 * passthrough domain if it is detached from any other domain.
1234 * Make sure we can deassign from the pt_domain itself.
1236 if (iommu_pass_through && domain != pt_domain) {
1237 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1238 __attach_device(iommu, pt_domain, devid);
1243 * Removes a device from a protection domain (with devtable_lock held)
1245 static void detach_device(struct protection_domain *domain, u16 devid)
1247 unsigned long flags;
1249 /* lock device table */
1250 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1251 __detach_device(domain, devid);
1252 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1255 static int device_change_notifier(struct notifier_block *nb,
1256 unsigned long action, void *data)
1258 struct device *dev = data;
1259 struct pci_dev *pdev = to_pci_dev(dev);
1260 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1261 struct protection_domain *domain;
1262 struct dma_ops_domain *dma_domain;
1263 struct amd_iommu *iommu;
1264 unsigned long flags;
1266 if (devid > amd_iommu_last_bdf)
1267 goto out;
1269 devid = amd_iommu_alias_table[devid];
1271 iommu = amd_iommu_rlookup_table[devid];
1272 if (iommu == NULL)
1273 goto out;
1275 domain = domain_for_device(devid);
1277 if (domain && !dma_ops_domain(domain))
1278 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1279 "to a non-dma-ops domain\n", dev_name(dev));
1281 switch (action) {
1282 case BUS_NOTIFY_UNBOUND_DRIVER:
1283 if (!domain)
1284 goto out;
1285 if (iommu_pass_through)
1286 break;
1287 detach_device(domain, devid);
1288 break;
1289 case BUS_NOTIFY_ADD_DEVICE:
1290 /* allocate a protection domain if a device is added */
1291 dma_domain = find_protection_domain(devid);
1292 if (dma_domain)
1293 goto out;
1294 dma_domain = dma_ops_domain_alloc(iommu);
1295 if (!dma_domain)
1296 goto out;
1297 dma_domain->target_dev = devid;
1299 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1300 list_add_tail(&dma_domain->list, &iommu_pd_list);
1301 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1303 break;
1304 default:
1305 goto out;
1308 iommu_queue_inv_dev_entry(iommu, devid);
1309 iommu_completion_wait(iommu);
1311 out:
1312 return 0;
1315 static struct notifier_block device_nb = {
1316 .notifier_call = device_change_notifier,
1319 /*****************************************************************************
1321 * The next functions belong to the dma_ops mapping/unmapping code.
1323 *****************************************************************************/
1326 * This function checks if the driver got a valid device from the caller to
1327 * avoid dereferencing invalid pointers.
1329 static bool check_device(struct device *dev)
1331 if (!dev || !dev->dma_mask)
1332 return false;
1334 return true;
1338 * In this function the list of preallocated protection domains is traversed to
1339 * find the domain for a specific device
1341 static struct dma_ops_domain *find_protection_domain(u16 devid)
1343 struct dma_ops_domain *entry, *ret = NULL;
1344 unsigned long flags;
1346 if (list_empty(&iommu_pd_list))
1347 return NULL;
1349 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1351 list_for_each_entry(entry, &iommu_pd_list, list) {
1352 if (entry->target_dev == devid) {
1353 ret = entry;
1354 break;
1358 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1360 return ret;
1364 * In the dma_ops path we only have the struct device. This function
1365 * finds the corresponding IOMMU, the protection domain and the
1366 * requestor id for a given device.
1367 * If the device is not yet associated with a domain this is also done
1368 * in this function.
1370 static int get_device_resources(struct device *dev,
1371 struct amd_iommu **iommu,
1372 struct protection_domain **domain,
1373 u16 *bdf)
1375 struct dma_ops_domain *dma_dom;
1376 struct pci_dev *pcidev;
1377 u16 _bdf;
1379 *iommu = NULL;
1380 *domain = NULL;
1381 *bdf = 0xffff;
1383 if (dev->bus != &pci_bus_type)
1384 return 0;
1386 pcidev = to_pci_dev(dev);
1387 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1389 /* device not translated by any IOMMU in the system? */
1390 if (_bdf > amd_iommu_last_bdf)
1391 return 0;
1393 *bdf = amd_iommu_alias_table[_bdf];
1395 *iommu = amd_iommu_rlookup_table[*bdf];
1396 if (*iommu == NULL)
1397 return 0;
1398 *domain = domain_for_device(*bdf);
1399 if (*domain == NULL) {
1400 dma_dom = find_protection_domain(*bdf);
1401 if (!dma_dom)
1402 dma_dom = (*iommu)->default_dom;
1403 *domain = &dma_dom->domain;
1404 attach_device(*iommu, *domain, *bdf);
1405 DUMP_printk("Using protection domain %d for device %s\n",
1406 (*domain)->id, dev_name(dev));
1409 if (domain_for_device(_bdf) == NULL)
1410 attach_device(*iommu, *domain, _bdf);
1412 return 1;
1415 static void update_device_table(struct protection_domain *domain)
1417 unsigned long flags;
1418 int i;
1420 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1421 if (amd_iommu_pd_table[i] != domain)
1422 continue;
1423 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1424 set_dte_entry(i, domain);
1425 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1429 static void update_domain(struct protection_domain *domain)
1431 if (!domain->updated)
1432 return;
1434 update_device_table(domain);
1435 flush_devices_by_domain(domain);
1436 iommu_flush_domain(domain->id);
1438 domain->updated = false;
1442 * This function is used to add another level to an IO page table. Adding
1443 * another level increases the size of the address space by 9 bits to a size up
1444 * to 64 bits.
1446 static bool increase_address_space(struct protection_domain *domain,
1447 gfp_t gfp)
1449 u64 *pte;
1451 if (domain->mode == PAGE_MODE_6_LEVEL)
1452 /* address space already 64 bit large */
1453 return false;
1455 pte = (void *)get_zeroed_page(gfp);
1456 if (!pte)
1457 return false;
1459 *pte = PM_LEVEL_PDE(domain->mode,
1460 virt_to_phys(domain->pt_root));
1461 domain->pt_root = pte;
1462 domain->mode += 1;
1463 domain->updated = true;
1465 return true;
1468 static u64 *alloc_pte(struct protection_domain *domain,
1469 unsigned long address,
1470 int end_lvl,
1471 u64 **pte_page,
1472 gfp_t gfp)
1474 u64 *pte, *page;
1475 int level;
1477 while (address > PM_LEVEL_SIZE(domain->mode))
1478 increase_address_space(domain, gfp);
1480 level = domain->mode - 1;
1481 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1483 while (level > end_lvl) {
1484 if (!IOMMU_PTE_PRESENT(*pte)) {
1485 page = (u64 *)get_zeroed_page(gfp);
1486 if (!page)
1487 return NULL;
1488 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1491 level -= 1;
1493 pte = IOMMU_PTE_PAGE(*pte);
1495 if (pte_page && level == end_lvl)
1496 *pte_page = pte;
1498 pte = &pte[PM_LEVEL_INDEX(level, address)];
1501 return pte;
1505 * This function fetches the PTE for a given address in the aperture
1507 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1508 unsigned long address)
1510 struct aperture_range *aperture;
1511 u64 *pte, *pte_page;
1513 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1514 if (!aperture)
1515 return NULL;
1517 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1518 if (!pte) {
1519 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1520 GFP_ATOMIC);
1521 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1522 } else
1523 pte += PM_LEVEL_INDEX(0, address);
1525 update_domain(&dom->domain);
1527 return pte;
1531 * This is the generic map function. It maps one 4kb page at paddr to
1532 * the given address in the DMA address space for the domain.
1534 static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1535 struct dma_ops_domain *dom,
1536 unsigned long address,
1537 phys_addr_t paddr,
1538 int direction)
1540 u64 *pte, __pte;
1542 WARN_ON(address > dom->aperture_size);
1544 paddr &= PAGE_MASK;
1546 pte = dma_ops_get_pte(dom, address);
1547 if (!pte)
1548 return bad_dma_address;
1550 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1552 if (direction == DMA_TO_DEVICE)
1553 __pte |= IOMMU_PTE_IR;
1554 else if (direction == DMA_FROM_DEVICE)
1555 __pte |= IOMMU_PTE_IW;
1556 else if (direction == DMA_BIDIRECTIONAL)
1557 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1559 WARN_ON(*pte);
1561 *pte = __pte;
1563 return (dma_addr_t)address;
1567 * The generic unmapping function for on page in the DMA address space.
1569 static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1570 struct dma_ops_domain *dom,
1571 unsigned long address)
1573 struct aperture_range *aperture;
1574 u64 *pte;
1576 if (address >= dom->aperture_size)
1577 return;
1579 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1580 if (!aperture)
1581 return;
1583 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1584 if (!pte)
1585 return;
1587 pte += PM_LEVEL_INDEX(0, address);
1589 WARN_ON(!*pte);
1591 *pte = 0ULL;
1595 * This function contains common code for mapping of a physically
1596 * contiguous memory region into DMA address space. It is used by all
1597 * mapping functions provided with this IOMMU driver.
1598 * Must be called with the domain lock held.
1600 static dma_addr_t __map_single(struct device *dev,
1601 struct amd_iommu *iommu,
1602 struct dma_ops_domain *dma_dom,
1603 phys_addr_t paddr,
1604 size_t size,
1605 int dir,
1606 bool align,
1607 u64 dma_mask)
1609 dma_addr_t offset = paddr & ~PAGE_MASK;
1610 dma_addr_t address, start, ret;
1611 unsigned int pages;
1612 unsigned long align_mask = 0;
1613 int i;
1615 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1616 paddr &= PAGE_MASK;
1618 INC_STATS_COUNTER(total_map_requests);
1620 if (pages > 1)
1621 INC_STATS_COUNTER(cross_page);
1623 if (align)
1624 align_mask = (1UL << get_order(size)) - 1;
1626 retry:
1627 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1628 dma_mask);
1629 if (unlikely(address == bad_dma_address)) {
1631 * setting next_address here will let the address
1632 * allocator only scan the new allocated range in the
1633 * first run. This is a small optimization.
1635 dma_dom->next_address = dma_dom->aperture_size;
1637 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1638 goto out;
1641 * aperture was sucessfully enlarged by 128 MB, try
1642 * allocation again
1644 goto retry;
1647 start = address;
1648 for (i = 0; i < pages; ++i) {
1649 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1650 if (ret == bad_dma_address)
1651 goto out_unmap;
1653 paddr += PAGE_SIZE;
1654 start += PAGE_SIZE;
1656 address += offset;
1658 ADD_STATS_COUNTER(alloced_io_mem, size);
1660 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1661 iommu_flush_tlb(iommu, dma_dom->domain.id);
1662 dma_dom->need_flush = false;
1663 } else if (unlikely(iommu_has_npcache(iommu)))
1664 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1666 out:
1667 return address;
1669 out_unmap:
1671 for (--i; i >= 0; --i) {
1672 start -= PAGE_SIZE;
1673 dma_ops_domain_unmap(iommu, dma_dom, start);
1676 dma_ops_free_addresses(dma_dom, address, pages);
1678 return bad_dma_address;
1682 * Does the reverse of the __map_single function. Must be called with
1683 * the domain lock held too
1685 static void __unmap_single(struct amd_iommu *iommu,
1686 struct dma_ops_domain *dma_dom,
1687 dma_addr_t dma_addr,
1688 size_t size,
1689 int dir)
1691 dma_addr_t flush_addr;
1692 dma_addr_t i, start;
1693 unsigned int pages;
1695 if ((dma_addr == bad_dma_address) ||
1696 (dma_addr + size > dma_dom->aperture_size))
1697 return;
1699 flush_addr = dma_addr;
1700 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1701 dma_addr &= PAGE_MASK;
1702 start = dma_addr;
1704 for (i = 0; i < pages; ++i) {
1705 dma_ops_domain_unmap(iommu, dma_dom, start);
1706 start += PAGE_SIZE;
1709 SUB_STATS_COUNTER(alloced_io_mem, size);
1711 dma_ops_free_addresses(dma_dom, dma_addr, pages);
1713 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1714 iommu_flush_pages(iommu, dma_dom->domain.id, flush_addr, size);
1715 dma_dom->need_flush = false;
1720 * The exported map_single function for dma_ops.
1722 static dma_addr_t map_page(struct device *dev, struct page *page,
1723 unsigned long offset, size_t size,
1724 enum dma_data_direction dir,
1725 struct dma_attrs *attrs)
1727 unsigned long flags;
1728 struct amd_iommu *iommu;
1729 struct protection_domain *domain;
1730 u16 devid;
1731 dma_addr_t addr;
1732 u64 dma_mask;
1733 phys_addr_t paddr = page_to_phys(page) + offset;
1735 INC_STATS_COUNTER(cnt_map_single);
1737 if (!check_device(dev))
1738 return bad_dma_address;
1740 dma_mask = *dev->dma_mask;
1742 get_device_resources(dev, &iommu, &domain, &devid);
1744 if (iommu == NULL || domain == NULL)
1745 /* device not handled by any AMD IOMMU */
1746 return (dma_addr_t)paddr;
1748 if (!dma_ops_domain(domain))
1749 return bad_dma_address;
1751 spin_lock_irqsave(&domain->lock, flags);
1752 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1753 dma_mask);
1754 if (addr == bad_dma_address)
1755 goto out;
1757 iommu_completion_wait(iommu);
1759 out:
1760 spin_unlock_irqrestore(&domain->lock, flags);
1762 return addr;
1766 * The exported unmap_single function for dma_ops.
1768 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1769 enum dma_data_direction dir, struct dma_attrs *attrs)
1771 unsigned long flags;
1772 struct amd_iommu *iommu;
1773 struct protection_domain *domain;
1774 u16 devid;
1776 INC_STATS_COUNTER(cnt_unmap_single);
1778 if (!check_device(dev) ||
1779 !get_device_resources(dev, &iommu, &domain, &devid))
1780 /* device not handled by any AMD IOMMU */
1781 return;
1783 if (!dma_ops_domain(domain))
1784 return;
1786 spin_lock_irqsave(&domain->lock, flags);
1788 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1790 iommu_completion_wait(iommu);
1792 spin_unlock_irqrestore(&domain->lock, flags);
1796 * This is a special map_sg function which is used if we should map a
1797 * device which is not handled by an AMD IOMMU in the system.
1799 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1800 int nelems, int dir)
1802 struct scatterlist *s;
1803 int i;
1805 for_each_sg(sglist, s, nelems, i) {
1806 s->dma_address = (dma_addr_t)sg_phys(s);
1807 s->dma_length = s->length;
1810 return nelems;
1814 * The exported map_sg function for dma_ops (handles scatter-gather
1815 * lists).
1817 static int map_sg(struct device *dev, struct scatterlist *sglist,
1818 int nelems, enum dma_data_direction dir,
1819 struct dma_attrs *attrs)
1821 unsigned long flags;
1822 struct amd_iommu *iommu;
1823 struct protection_domain *domain;
1824 u16 devid;
1825 int i;
1826 struct scatterlist *s;
1827 phys_addr_t paddr;
1828 int mapped_elems = 0;
1829 u64 dma_mask;
1831 INC_STATS_COUNTER(cnt_map_sg);
1833 if (!check_device(dev))
1834 return 0;
1836 dma_mask = *dev->dma_mask;
1838 get_device_resources(dev, &iommu, &domain, &devid);
1840 if (!iommu || !domain)
1841 return map_sg_no_iommu(dev, sglist, nelems, dir);
1843 if (!dma_ops_domain(domain))
1844 return 0;
1846 spin_lock_irqsave(&domain->lock, flags);
1848 for_each_sg(sglist, s, nelems, i) {
1849 paddr = sg_phys(s);
1851 s->dma_address = __map_single(dev, iommu, domain->priv,
1852 paddr, s->length, dir, false,
1853 dma_mask);
1855 if (s->dma_address) {
1856 s->dma_length = s->length;
1857 mapped_elems++;
1858 } else
1859 goto unmap;
1862 iommu_completion_wait(iommu);
1864 out:
1865 spin_unlock_irqrestore(&domain->lock, flags);
1867 return mapped_elems;
1868 unmap:
1869 for_each_sg(sglist, s, mapped_elems, i) {
1870 if (s->dma_address)
1871 __unmap_single(iommu, domain->priv, s->dma_address,
1872 s->dma_length, dir);
1873 s->dma_address = s->dma_length = 0;
1876 mapped_elems = 0;
1878 goto out;
1882 * The exported map_sg function for dma_ops (handles scatter-gather
1883 * lists).
1885 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1886 int nelems, enum dma_data_direction dir,
1887 struct dma_attrs *attrs)
1889 unsigned long flags;
1890 struct amd_iommu *iommu;
1891 struct protection_domain *domain;
1892 struct scatterlist *s;
1893 u16 devid;
1894 int i;
1896 INC_STATS_COUNTER(cnt_unmap_sg);
1898 if (!check_device(dev) ||
1899 !get_device_resources(dev, &iommu, &domain, &devid))
1900 return;
1902 if (!dma_ops_domain(domain))
1903 return;
1905 spin_lock_irqsave(&domain->lock, flags);
1907 for_each_sg(sglist, s, nelems, i) {
1908 __unmap_single(iommu, domain->priv, s->dma_address,
1909 s->dma_length, dir);
1910 s->dma_address = s->dma_length = 0;
1913 iommu_completion_wait(iommu);
1915 spin_unlock_irqrestore(&domain->lock, flags);
1919 * The exported alloc_coherent function for dma_ops.
1921 static void *alloc_coherent(struct device *dev, size_t size,
1922 dma_addr_t *dma_addr, gfp_t flag)
1924 unsigned long flags;
1925 void *virt_addr;
1926 struct amd_iommu *iommu;
1927 struct protection_domain *domain;
1928 u16 devid;
1929 phys_addr_t paddr;
1930 u64 dma_mask = dev->coherent_dma_mask;
1932 INC_STATS_COUNTER(cnt_alloc_coherent);
1934 if (!check_device(dev))
1935 return NULL;
1937 if (!get_device_resources(dev, &iommu, &domain, &devid))
1938 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1940 flag |= __GFP_ZERO;
1941 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1942 if (!virt_addr)
1943 return NULL;
1945 paddr = virt_to_phys(virt_addr);
1947 if (!iommu || !domain) {
1948 *dma_addr = (dma_addr_t)paddr;
1949 return virt_addr;
1952 if (!dma_ops_domain(domain))
1953 goto out_free;
1955 if (!dma_mask)
1956 dma_mask = *dev->dma_mask;
1958 spin_lock_irqsave(&domain->lock, flags);
1960 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1961 size, DMA_BIDIRECTIONAL, true, dma_mask);
1963 if (*dma_addr == bad_dma_address) {
1964 spin_unlock_irqrestore(&domain->lock, flags);
1965 goto out_free;
1968 iommu_completion_wait(iommu);
1970 spin_unlock_irqrestore(&domain->lock, flags);
1972 return virt_addr;
1974 out_free:
1976 free_pages((unsigned long)virt_addr, get_order(size));
1978 return NULL;
1982 * The exported free_coherent function for dma_ops.
1984 static void free_coherent(struct device *dev, size_t size,
1985 void *virt_addr, dma_addr_t dma_addr)
1987 unsigned long flags;
1988 struct amd_iommu *iommu;
1989 struct protection_domain *domain;
1990 u16 devid;
1992 INC_STATS_COUNTER(cnt_free_coherent);
1994 if (!check_device(dev))
1995 return;
1997 get_device_resources(dev, &iommu, &domain, &devid);
1999 if (!iommu || !domain)
2000 goto free_mem;
2002 if (!dma_ops_domain(domain))
2003 goto free_mem;
2005 spin_lock_irqsave(&domain->lock, flags);
2007 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2009 iommu_completion_wait(iommu);
2011 spin_unlock_irqrestore(&domain->lock, flags);
2013 free_mem:
2014 free_pages((unsigned long)virt_addr, get_order(size));
2018 * This function is called by the DMA layer to find out if we can handle a
2019 * particular device. It is part of the dma_ops.
2021 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2023 u16 bdf;
2024 struct pci_dev *pcidev;
2026 /* No device or no PCI device */
2027 if (!dev || dev->bus != &pci_bus_type)
2028 return 0;
2030 pcidev = to_pci_dev(dev);
2032 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
2034 /* Out of our scope? */
2035 if (bdf > amd_iommu_last_bdf)
2036 return 0;
2038 return 1;
2042 * The function for pre-allocating protection domains.
2044 * If the driver core informs the DMA layer if a driver grabs a device
2045 * we don't need to preallocate the protection domains anymore.
2046 * For now we have to.
2048 static void prealloc_protection_domains(void)
2050 struct pci_dev *dev = NULL;
2051 struct dma_ops_domain *dma_dom;
2052 struct amd_iommu *iommu;
2053 u16 devid, __devid;
2055 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2056 __devid = devid = calc_devid(dev->bus->number, dev->devfn);
2057 if (devid > amd_iommu_last_bdf)
2058 continue;
2059 devid = amd_iommu_alias_table[devid];
2060 if (domain_for_device(devid))
2061 continue;
2062 iommu = amd_iommu_rlookup_table[devid];
2063 if (!iommu)
2064 continue;
2065 dma_dom = dma_ops_domain_alloc(iommu);
2066 if (!dma_dom)
2067 continue;
2068 init_unity_mappings_for_device(dma_dom, devid);
2069 dma_dom->target_dev = devid;
2071 attach_device(iommu, &dma_dom->domain, devid);
2072 if (__devid != devid)
2073 attach_device(iommu, &dma_dom->domain, __devid);
2075 list_add_tail(&dma_dom->list, &iommu_pd_list);
2079 static struct dma_map_ops amd_iommu_dma_ops = {
2080 .alloc_coherent = alloc_coherent,
2081 .free_coherent = free_coherent,
2082 .map_page = map_page,
2083 .unmap_page = unmap_page,
2084 .map_sg = map_sg,
2085 .unmap_sg = unmap_sg,
2086 .dma_supported = amd_iommu_dma_supported,
2089 void __init amd_iommu_init_api(void)
2091 register_iommu(&amd_iommu_ops);
2095 * The function which clues the AMD IOMMU driver into dma_ops.
2097 int __init amd_iommu_init_dma_ops(void)
2099 struct amd_iommu *iommu;
2100 int ret;
2103 * first allocate a default protection domain for every IOMMU we
2104 * found in the system. Devices not assigned to any other
2105 * protection domain will be assigned to the default one.
2107 for_each_iommu(iommu) {
2108 iommu->default_dom = dma_ops_domain_alloc(iommu);
2109 if (iommu->default_dom == NULL)
2110 return -ENOMEM;
2111 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2112 ret = iommu_init_unity_mappings(iommu);
2113 if (ret)
2114 goto free_domains;
2118 * If device isolation is enabled, pre-allocate the protection
2119 * domains for each device.
2121 if (amd_iommu_isolate)
2122 prealloc_protection_domains();
2124 iommu_detected = 1;
2125 force_iommu = 1;
2126 bad_dma_address = 0;
2127 #ifdef CONFIG_GART_IOMMU
2128 gart_iommu_aperture_disabled = 1;
2129 gart_iommu_aperture = 0;
2130 #endif
2132 /* Make the driver finally visible to the drivers */
2133 dma_ops = &amd_iommu_dma_ops;
2135 bus_register_notifier(&pci_bus_type, &device_nb);
2137 amd_iommu_stats_init();
2139 return 0;
2141 free_domains:
2143 for_each_iommu(iommu) {
2144 if (iommu->default_dom)
2145 dma_ops_domain_free(iommu->default_dom);
2148 return ret;
2151 /*****************************************************************************
2153 * The following functions belong to the exported interface of AMD IOMMU
2155 * This interface allows access to lower level functions of the IOMMU
2156 * like protection domain handling and assignement of devices to domains
2157 * which is not possible with the dma_ops interface.
2159 *****************************************************************************/
2161 static void cleanup_domain(struct protection_domain *domain)
2163 unsigned long flags;
2164 u16 devid;
2166 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2168 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2169 if (amd_iommu_pd_table[devid] == domain)
2170 __detach_device(domain, devid);
2172 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2175 static void protection_domain_free(struct protection_domain *domain)
2177 if (!domain)
2178 return;
2180 if (domain->id)
2181 domain_id_free(domain->id);
2183 kfree(domain);
2186 static struct protection_domain *protection_domain_alloc(void)
2188 struct protection_domain *domain;
2190 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2191 if (!domain)
2192 return NULL;
2194 spin_lock_init(&domain->lock);
2195 domain->id = domain_id_alloc();
2196 if (!domain->id)
2197 goto out_err;
2199 return domain;
2201 out_err:
2202 kfree(domain);
2204 return NULL;
2207 static int amd_iommu_domain_init(struct iommu_domain *dom)
2209 struct protection_domain *domain;
2211 domain = protection_domain_alloc();
2212 if (!domain)
2213 goto out_free;
2215 domain->mode = PAGE_MODE_3_LEVEL;
2216 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2217 if (!domain->pt_root)
2218 goto out_free;
2220 dom->priv = domain;
2222 return 0;
2224 out_free:
2225 protection_domain_free(domain);
2227 return -ENOMEM;
2230 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2232 struct protection_domain *domain = dom->priv;
2234 if (!domain)
2235 return;
2237 if (domain->dev_cnt > 0)
2238 cleanup_domain(domain);
2240 BUG_ON(domain->dev_cnt != 0);
2242 free_pagetable(domain);
2244 protection_domain_free(domain);
2246 dom->priv = NULL;
2249 static void amd_iommu_detach_device(struct iommu_domain *dom,
2250 struct device *dev)
2252 struct protection_domain *domain = dom->priv;
2253 struct amd_iommu *iommu;
2254 struct pci_dev *pdev;
2255 u16 devid;
2257 if (dev->bus != &pci_bus_type)
2258 return;
2260 pdev = to_pci_dev(dev);
2262 devid = calc_devid(pdev->bus->number, pdev->devfn);
2264 if (devid > 0)
2265 detach_device(domain, devid);
2267 iommu = amd_iommu_rlookup_table[devid];
2268 if (!iommu)
2269 return;
2271 iommu_queue_inv_dev_entry(iommu, devid);
2272 iommu_completion_wait(iommu);
2275 static int amd_iommu_attach_device(struct iommu_domain *dom,
2276 struct device *dev)
2278 struct protection_domain *domain = dom->priv;
2279 struct protection_domain *old_domain;
2280 struct amd_iommu *iommu;
2281 struct pci_dev *pdev;
2282 u16 devid;
2284 if (dev->bus != &pci_bus_type)
2285 return -EINVAL;
2287 pdev = to_pci_dev(dev);
2289 devid = calc_devid(pdev->bus->number, pdev->devfn);
2291 if (devid >= amd_iommu_last_bdf ||
2292 devid != amd_iommu_alias_table[devid])
2293 return -EINVAL;
2295 iommu = amd_iommu_rlookup_table[devid];
2296 if (!iommu)
2297 return -EINVAL;
2299 old_domain = domain_for_device(devid);
2300 if (old_domain)
2301 detach_device(old_domain, devid);
2303 attach_device(iommu, domain, devid);
2305 iommu_completion_wait(iommu);
2307 return 0;
2310 static int amd_iommu_map_range(struct iommu_domain *dom,
2311 unsigned long iova, phys_addr_t paddr,
2312 size_t size, int iommu_prot)
2314 struct protection_domain *domain = dom->priv;
2315 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2316 int prot = 0;
2317 int ret;
2319 if (iommu_prot & IOMMU_READ)
2320 prot |= IOMMU_PROT_IR;
2321 if (iommu_prot & IOMMU_WRITE)
2322 prot |= IOMMU_PROT_IW;
2324 iova &= PAGE_MASK;
2325 paddr &= PAGE_MASK;
2327 for (i = 0; i < npages; ++i) {
2328 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
2329 if (ret)
2330 return ret;
2332 iova += PAGE_SIZE;
2333 paddr += PAGE_SIZE;
2336 return 0;
2339 static void amd_iommu_unmap_range(struct iommu_domain *dom,
2340 unsigned long iova, size_t size)
2343 struct protection_domain *domain = dom->priv;
2344 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2346 iova &= PAGE_MASK;
2348 for (i = 0; i < npages; ++i) {
2349 iommu_unmap_page(domain, iova, PM_MAP_4k);
2350 iova += PAGE_SIZE;
2353 iommu_flush_domain(domain->id);
2356 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2357 unsigned long iova)
2359 struct protection_domain *domain = dom->priv;
2360 unsigned long offset = iova & ~PAGE_MASK;
2361 phys_addr_t paddr;
2362 u64 *pte;
2364 pte = fetch_pte(domain, iova, PM_MAP_4k);
2366 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2367 return 0;
2369 paddr = *pte & IOMMU_PAGE_MASK;
2370 paddr |= offset;
2372 return paddr;
2375 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2376 unsigned long cap)
2378 return 0;
2381 static struct iommu_ops amd_iommu_ops = {
2382 .domain_init = amd_iommu_domain_init,
2383 .domain_destroy = amd_iommu_domain_destroy,
2384 .attach_dev = amd_iommu_attach_device,
2385 .detach_dev = amd_iommu_detach_device,
2386 .map = amd_iommu_map_range,
2387 .unmap = amd_iommu_unmap_range,
2388 .iova_to_phys = amd_iommu_iova_to_phys,
2389 .domain_has_cap = amd_iommu_domain_has_cap,
2392 /*****************************************************************************
2394 * The next functions do a basic initialization of IOMMU for pass through
2395 * mode
2397 * In passthrough mode the IOMMU is initialized and enabled but not used for
2398 * DMA-API translation.
2400 *****************************************************************************/
2402 int __init amd_iommu_init_passthrough(void)
2404 struct pci_dev *dev = NULL;
2405 u16 devid, devid2;
2407 /* allocate passthroug domain */
2408 pt_domain = protection_domain_alloc();
2409 if (!pt_domain)
2410 return -ENOMEM;
2412 pt_domain->mode |= PAGE_MODE_NONE;
2414 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2415 struct amd_iommu *iommu;
2417 devid = calc_devid(dev->bus->number, dev->devfn);
2418 if (devid > amd_iommu_last_bdf)
2419 continue;
2421 devid2 = amd_iommu_alias_table[devid];
2423 iommu = amd_iommu_rlookup_table[devid2];
2424 if (!iommu)
2425 continue;
2427 __attach_device(iommu, pt_domain, devid);
2428 __attach_device(iommu, pt_domain, devid2);
2431 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2433 return 0;