2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
21 #include "kvm_cache_regs.h"
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
34 #include <asm/cmpxchg.h>
39 * When setting this variable to true it enables Two-Dimensional-Paging
40 * where the hardware walks 2 page tables:
41 * 1. the guest-virtual to guest-physical
42 * 2. while doing 1. it walks guest-physical to host-physical
43 * If the hardware supports that we don't need to do shadow paging.
45 bool tdp_enabled
= false;
52 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
);
54 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
) {}
59 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
60 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
64 #define pgprintk(x...) do { } while (0)
65 #define rmap_printk(x...) do { } while (0)
69 #if defined(MMU_DEBUG) || defined(AUDIT)
71 module_param(dbg
, bool, 0644);
74 static int oos_shadow
= 1;
75 module_param(oos_shadow
, bool, 0644);
78 #define ASSERT(x) do { } while (0)
82 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
83 __FILE__, __LINE__, #x); \
87 #define PT_FIRST_AVAIL_BITS_SHIFT 9
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
90 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
92 #define PT64_LEVEL_BITS 9
94 #define PT64_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
97 #define PT64_LEVEL_MASK(level) \
98 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
100 #define PT64_INDEX(address, level)\
101 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104 #define PT32_LEVEL_BITS 10
106 #define PT32_LEVEL_SHIFT(level) \
107 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109 #define PT32_LEVEL_MASK(level) \
110 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
111 #define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
115 #define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
139 #define PT_PDPE_LEVEL 3
140 #define PT_DIRECTORY_LEVEL 2
141 #define PT_PAGE_TABLE_LEVEL 1
145 #define ACC_EXEC_MASK 1
146 #define ACC_WRITE_MASK PT_WRITABLE_MASK
147 #define ACC_USER_MASK PT_USER_MASK
148 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
150 #define CREATE_TRACE_POINTS
151 #include "mmutrace.h"
153 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
155 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
157 struct kvm_rmap_desc
{
158 u64
*sptes
[RMAP_EXT
];
159 struct kvm_rmap_desc
*more
;
162 struct kvm_shadow_walk_iterator
{
170 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)); \
173 shadow_walk_next(&(_walker)))
176 struct kvm_unsync_walk
{
177 int (*entry
) (struct kvm_mmu_page
*sp
, struct kvm_unsync_walk
*walk
);
180 typedef int (*mmu_parent_walk_fn
) (struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
);
182 static struct kmem_cache
*pte_chain_cache
;
183 static struct kmem_cache
*rmap_desc_cache
;
184 static struct kmem_cache
*mmu_page_header_cache
;
186 static u64 __read_mostly shadow_trap_nonpresent_pte
;
187 static u64 __read_mostly shadow_notrap_nonpresent_pte
;
188 static u64 __read_mostly shadow_base_present_pte
;
189 static u64 __read_mostly shadow_nx_mask
;
190 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
191 static u64 __read_mostly shadow_user_mask
;
192 static u64 __read_mostly shadow_accessed_mask
;
193 static u64 __read_mostly shadow_dirty_mask
;
195 static inline u64
rsvd_bits(int s
, int e
)
197 return ((1ULL << (e
- s
+ 1)) - 1) << s
;
200 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte
, u64 notrap_pte
)
202 shadow_trap_nonpresent_pte
= trap_pte
;
203 shadow_notrap_nonpresent_pte
= notrap_pte
;
205 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes
);
207 void kvm_mmu_set_base_ptes(u64 base_pte
)
209 shadow_base_present_pte
= base_pte
;
211 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes
);
213 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
214 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
216 shadow_user_mask
= user_mask
;
217 shadow_accessed_mask
= accessed_mask
;
218 shadow_dirty_mask
= dirty_mask
;
219 shadow_nx_mask
= nx_mask
;
220 shadow_x_mask
= x_mask
;
222 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
224 static bool is_write_protection(struct kvm_vcpu
*vcpu
)
226 return vcpu
->arch
.cr0
& X86_CR0_WP
;
229 static int is_cpuid_PSE36(void)
234 static int is_nx(struct kvm_vcpu
*vcpu
)
236 return vcpu
->arch
.shadow_efer
& EFER_NX
;
239 static int is_shadow_present_pte(u64 pte
)
241 return pte
!= shadow_trap_nonpresent_pte
242 && pte
!= shadow_notrap_nonpresent_pte
;
245 static int is_large_pte(u64 pte
)
247 return pte
& PT_PAGE_SIZE_MASK
;
250 static int is_writeble_pte(unsigned long pte
)
252 return pte
& PT_WRITABLE_MASK
;
255 static int is_dirty_gpte(unsigned long pte
)
257 return pte
& PT_DIRTY_MASK
;
260 static int is_rmap_spte(u64 pte
)
262 return is_shadow_present_pte(pte
);
265 static int is_last_spte(u64 pte
, int level
)
267 if (level
== PT_PAGE_TABLE_LEVEL
)
269 if (is_large_pte(pte
))
274 static pfn_t
spte_to_pfn(u64 pte
)
276 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
279 static gfn_t
pse36_gfn_delta(u32 gpte
)
281 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
283 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
286 static void __set_spte(u64
*sptep
, u64 spte
)
289 set_64bit((unsigned long *)sptep
, spte
);
291 set_64bit((unsigned long long *)sptep
, spte
);
295 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
296 struct kmem_cache
*base_cache
, int min
)
300 if (cache
->nobjs
>= min
)
302 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
303 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
306 cache
->objects
[cache
->nobjs
++] = obj
;
311 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
314 kfree(mc
->objects
[--mc
->nobjs
]);
317 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
322 if (cache
->nobjs
>= min
)
324 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
325 page
= alloc_page(GFP_KERNEL
);
328 set_page_private(page
, 0);
329 cache
->objects
[cache
->nobjs
++] = page_address(page
);
334 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
337 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
340 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
344 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_chain_cache
,
348 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_rmap_desc_cache
,
352 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
355 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
356 mmu_page_header_cache
, 4);
361 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
363 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_chain_cache
);
364 mmu_free_memory_cache(&vcpu
->arch
.mmu_rmap_desc_cache
);
365 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
366 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
);
369 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
,
375 p
= mc
->objects
[--mc
->nobjs
];
379 static struct kvm_pte_chain
*mmu_alloc_pte_chain(struct kvm_vcpu
*vcpu
)
381 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_chain_cache
,
382 sizeof(struct kvm_pte_chain
));
385 static void mmu_free_pte_chain(struct kvm_pte_chain
*pc
)
390 static struct kvm_rmap_desc
*mmu_alloc_rmap_desc(struct kvm_vcpu
*vcpu
)
392 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_rmap_desc_cache
,
393 sizeof(struct kvm_rmap_desc
));
396 static void mmu_free_rmap_desc(struct kvm_rmap_desc
*rd
)
402 * Return the pointer to the largepage write count for a given
403 * gfn, handling slots that are not large page aligned.
405 static int *slot_largepage_idx(gfn_t gfn
,
406 struct kvm_memory_slot
*slot
,
411 idx
= (gfn
/ KVM_PAGES_PER_HPAGE(level
)) -
412 (slot
->base_gfn
/ KVM_PAGES_PER_HPAGE(level
));
413 return &slot
->lpage_info
[level
- 2][idx
].write_count
;
416 static void account_shadowed(struct kvm
*kvm
, gfn_t gfn
)
418 struct kvm_memory_slot
*slot
;
422 gfn
= unalias_gfn(kvm
, gfn
);
424 slot
= gfn_to_memslot_unaliased(kvm
, gfn
);
425 for (i
= PT_DIRECTORY_LEVEL
;
426 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
427 write_count
= slot_largepage_idx(gfn
, slot
, i
);
432 static void unaccount_shadowed(struct kvm
*kvm
, gfn_t gfn
)
434 struct kvm_memory_slot
*slot
;
438 gfn
= unalias_gfn(kvm
, gfn
);
439 for (i
= PT_DIRECTORY_LEVEL
;
440 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
441 slot
= gfn_to_memslot_unaliased(kvm
, gfn
);
442 write_count
= slot_largepage_idx(gfn
, slot
, i
);
444 WARN_ON(*write_count
< 0);
448 static int has_wrprotected_page(struct kvm
*kvm
,
452 struct kvm_memory_slot
*slot
;
455 gfn
= unalias_gfn(kvm
, gfn
);
456 slot
= gfn_to_memslot_unaliased(kvm
, gfn
);
458 largepage_idx
= slot_largepage_idx(gfn
, slot
, level
);
459 return *largepage_idx
;
465 static int host_mapping_level(struct kvm
*kvm
, gfn_t gfn
)
467 unsigned long page_size
= PAGE_SIZE
;
468 struct vm_area_struct
*vma
;
472 addr
= gfn_to_hva(kvm
, gfn
);
473 if (kvm_is_error_hva(addr
))
474 return PT_PAGE_TABLE_LEVEL
;
476 down_read(¤t
->mm
->mmap_sem
);
477 vma
= find_vma(current
->mm
, addr
);
481 page_size
= vma_kernel_pagesize(vma
);
484 up_read(¤t
->mm
->mmap_sem
);
486 for (i
= PT_PAGE_TABLE_LEVEL
;
487 i
< (PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
); ++i
) {
488 if (page_size
>= KVM_HPAGE_SIZE(i
))
497 static int mapping_level(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
499 struct kvm_memory_slot
*slot
;
501 int level
= PT_PAGE_TABLE_LEVEL
;
503 slot
= gfn_to_memslot(vcpu
->kvm
, large_gfn
);
504 if (slot
&& slot
->dirty_bitmap
)
505 return PT_PAGE_TABLE_LEVEL
;
507 host_level
= host_mapping_level(vcpu
->kvm
, large_gfn
);
509 if (host_level
== PT_PAGE_TABLE_LEVEL
)
512 for (level
= PT_DIRECTORY_LEVEL
; level
<= host_level
; ++level
)
513 if (has_wrprotected_page(vcpu
->kvm
, large_gfn
, level
))
520 * Take gfn and return the reverse mapping to it.
521 * Note: gfn must be unaliased before this function get called
524 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, int level
)
526 struct kvm_memory_slot
*slot
;
529 slot
= gfn_to_memslot(kvm
, gfn
);
530 if (likely(level
== PT_PAGE_TABLE_LEVEL
))
531 return &slot
->rmap
[gfn
- slot
->base_gfn
];
533 idx
= (gfn
/ KVM_PAGES_PER_HPAGE(level
)) -
534 (slot
->base_gfn
/ KVM_PAGES_PER_HPAGE(level
));
536 return &slot
->lpage_info
[level
- 2][idx
].rmap_pde
;
540 * Reverse mapping data structures:
542 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
543 * that points to page_address(page).
545 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
546 * containing more mappings.
548 * Returns the number of rmap entries before the spte was added or zero if
549 * the spte was not added.
552 static int rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
554 struct kvm_mmu_page
*sp
;
555 struct kvm_rmap_desc
*desc
;
556 unsigned long *rmapp
;
559 if (!is_rmap_spte(*spte
))
561 gfn
= unalias_gfn(vcpu
->kvm
, gfn
);
562 sp
= page_header(__pa(spte
));
563 sp
->gfns
[spte
- sp
->spt
] = gfn
;
564 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
566 rmap_printk("rmap_add: %p %llx 0->1\n", spte
, *spte
);
567 *rmapp
= (unsigned long)spte
;
568 } else if (!(*rmapp
& 1)) {
569 rmap_printk("rmap_add: %p %llx 1->many\n", spte
, *spte
);
570 desc
= mmu_alloc_rmap_desc(vcpu
);
571 desc
->sptes
[0] = (u64
*)*rmapp
;
572 desc
->sptes
[1] = spte
;
573 *rmapp
= (unsigned long)desc
| 1;
575 rmap_printk("rmap_add: %p %llx many->many\n", spte
, *spte
);
576 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
577 while (desc
->sptes
[RMAP_EXT
-1] && desc
->more
) {
581 if (desc
->sptes
[RMAP_EXT
-1]) {
582 desc
->more
= mmu_alloc_rmap_desc(vcpu
);
585 for (i
= 0; desc
->sptes
[i
]; ++i
)
587 desc
->sptes
[i
] = spte
;
592 static void rmap_desc_remove_entry(unsigned long *rmapp
,
593 struct kvm_rmap_desc
*desc
,
595 struct kvm_rmap_desc
*prev_desc
)
599 for (j
= RMAP_EXT
- 1; !desc
->sptes
[j
] && j
> i
; --j
)
601 desc
->sptes
[i
] = desc
->sptes
[j
];
602 desc
->sptes
[j
] = NULL
;
605 if (!prev_desc
&& !desc
->more
)
606 *rmapp
= (unsigned long)desc
->sptes
[0];
609 prev_desc
->more
= desc
->more
;
611 *rmapp
= (unsigned long)desc
->more
| 1;
612 mmu_free_rmap_desc(desc
);
615 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
617 struct kvm_rmap_desc
*desc
;
618 struct kvm_rmap_desc
*prev_desc
;
619 struct kvm_mmu_page
*sp
;
621 unsigned long *rmapp
;
624 if (!is_rmap_spte(*spte
))
626 sp
= page_header(__pa(spte
));
627 pfn
= spte_to_pfn(*spte
);
628 if (*spte
& shadow_accessed_mask
)
629 kvm_set_pfn_accessed(pfn
);
630 if (is_writeble_pte(*spte
))
631 kvm_set_pfn_dirty(pfn
);
632 rmapp
= gfn_to_rmap(kvm
, sp
->gfns
[spte
- sp
->spt
], sp
->role
.level
);
634 printk(KERN_ERR
"rmap_remove: %p %llx 0->BUG\n", spte
, *spte
);
636 } else if (!(*rmapp
& 1)) {
637 rmap_printk("rmap_remove: %p %llx 1->0\n", spte
, *spte
);
638 if ((u64
*)*rmapp
!= spte
) {
639 printk(KERN_ERR
"rmap_remove: %p %llx 1->BUG\n",
645 rmap_printk("rmap_remove: %p %llx many->many\n", spte
, *spte
);
646 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
649 for (i
= 0; i
< RMAP_EXT
&& desc
->sptes
[i
]; ++i
)
650 if (desc
->sptes
[i
] == spte
) {
651 rmap_desc_remove_entry(rmapp
,
663 static u64
*rmap_next(struct kvm
*kvm
, unsigned long *rmapp
, u64
*spte
)
665 struct kvm_rmap_desc
*desc
;
666 struct kvm_rmap_desc
*prev_desc
;
672 else if (!(*rmapp
& 1)) {
674 return (u64
*)*rmapp
;
677 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
681 for (i
= 0; i
< RMAP_EXT
&& desc
->sptes
[i
]; ++i
) {
682 if (prev_spte
== spte
)
683 return desc
->sptes
[i
];
684 prev_spte
= desc
->sptes
[i
];
691 static int rmap_write_protect(struct kvm
*kvm
, u64 gfn
)
693 unsigned long *rmapp
;
695 int i
, write_protected
= 0;
697 gfn
= unalias_gfn(kvm
, gfn
);
698 rmapp
= gfn_to_rmap(kvm
, gfn
, PT_PAGE_TABLE_LEVEL
);
700 spte
= rmap_next(kvm
, rmapp
, NULL
);
703 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
704 rmap_printk("rmap_write_protect: spte %p %llx\n", spte
, *spte
);
705 if (is_writeble_pte(*spte
)) {
706 __set_spte(spte
, *spte
& ~PT_WRITABLE_MASK
);
709 spte
= rmap_next(kvm
, rmapp
, spte
);
711 if (write_protected
) {
714 spte
= rmap_next(kvm
, rmapp
, NULL
);
715 pfn
= spte_to_pfn(*spte
);
716 kvm_set_pfn_dirty(pfn
);
719 /* check for huge page mappings */
720 for (i
= PT_DIRECTORY_LEVEL
;
721 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
722 rmapp
= gfn_to_rmap(kvm
, gfn
, i
);
723 spte
= rmap_next(kvm
, rmapp
, NULL
);
726 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
727 BUG_ON((*spte
& (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
)) != (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
));
728 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte
, *spte
, gfn
);
729 if (is_writeble_pte(*spte
)) {
730 rmap_remove(kvm
, spte
);
732 __set_spte(spte
, shadow_trap_nonpresent_pte
);
736 spte
= rmap_next(kvm
, rmapp
, spte
);
740 return write_protected
;
743 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
747 int need_tlb_flush
= 0;
749 while ((spte
= rmap_next(kvm
, rmapp
, NULL
))) {
750 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
751 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte
, *spte
);
752 rmap_remove(kvm
, spte
);
753 __set_spte(spte
, shadow_trap_nonpresent_pte
);
756 return need_tlb_flush
;
759 static int kvm_set_pte_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
764 pte_t
*ptep
= (pte_t
*)data
;
767 WARN_ON(pte_huge(*ptep
));
768 new_pfn
= pte_pfn(*ptep
);
769 spte
= rmap_next(kvm
, rmapp
, NULL
);
771 BUG_ON(!is_shadow_present_pte(*spte
));
772 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte
, *spte
);
774 if (pte_write(*ptep
)) {
775 rmap_remove(kvm
, spte
);
776 __set_spte(spte
, shadow_trap_nonpresent_pte
);
777 spte
= rmap_next(kvm
, rmapp
, NULL
);
779 new_spte
= *spte
&~ (PT64_BASE_ADDR_MASK
);
780 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
782 new_spte
&= ~PT_WRITABLE_MASK
;
783 new_spte
&= ~SPTE_HOST_WRITEABLE
;
784 if (is_writeble_pte(*spte
))
785 kvm_set_pfn_dirty(spte_to_pfn(*spte
));
786 __set_spte(spte
, new_spte
);
787 spte
= rmap_next(kvm
, rmapp
, spte
);
791 kvm_flush_remote_tlbs(kvm
);
796 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
798 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
805 * If mmap_sem isn't taken, we can look the memslots with only
806 * the mmu_lock by skipping over the slots with userspace_addr == 0.
808 for (i
= 0; i
< kvm
->nmemslots
; i
++) {
809 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[i
];
810 unsigned long start
= memslot
->userspace_addr
;
813 /* mmu_lock protects userspace_addr */
817 end
= start
+ (memslot
->npages
<< PAGE_SHIFT
);
818 if (hva
>= start
&& hva
< end
) {
819 gfn_t gfn_offset
= (hva
- start
) >> PAGE_SHIFT
;
821 retval
|= handler(kvm
, &memslot
->rmap
[gfn_offset
],
824 for (j
= 0; j
< KVM_NR_PAGE_SIZES
- 1; ++j
) {
825 int idx
= gfn_offset
;
826 idx
/= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL
+ j
);
827 retval
|= handler(kvm
,
828 &memslot
->lpage_info
[j
][idx
].rmap_pde
,
837 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
839 return kvm_handle_hva(kvm
, hva
, 0, kvm_unmap_rmapp
);
842 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
844 kvm_handle_hva(kvm
, hva
, (unsigned long)&pte
, kvm_set_pte_rmapp
);
847 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
853 /* always return old for EPT */
854 if (!shadow_accessed_mask
)
857 spte
= rmap_next(kvm
, rmapp
, NULL
);
861 BUG_ON(!(_spte
& PT_PRESENT_MASK
));
862 _young
= _spte
& PT_ACCESSED_MASK
;
865 clear_bit(PT_ACCESSED_SHIFT
, (unsigned long *)spte
);
867 spte
= rmap_next(kvm
, rmapp
, spte
);
872 #define RMAP_RECYCLE_THRESHOLD 1000
874 static void rmap_recycle(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
876 unsigned long *rmapp
;
877 struct kvm_mmu_page
*sp
;
879 sp
= page_header(__pa(spte
));
881 gfn
= unalias_gfn(vcpu
->kvm
, gfn
);
882 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
884 kvm_unmap_rmapp(vcpu
->kvm
, rmapp
, 0);
885 kvm_flush_remote_tlbs(vcpu
->kvm
);
888 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
890 return kvm_handle_hva(kvm
, hva
, 0, kvm_age_rmapp
);
894 static int is_empty_shadow_page(u64
*spt
)
899 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
900 if (is_shadow_present_pte(*pos
)) {
901 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
909 static void kvm_mmu_free_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
911 ASSERT(is_empty_shadow_page(sp
->spt
));
913 __free_page(virt_to_page(sp
->spt
));
914 __free_page(virt_to_page(sp
->gfns
));
916 ++kvm
->arch
.n_free_mmu_pages
;
919 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
921 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
924 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
927 struct kvm_mmu_page
*sp
;
929 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
, sizeof *sp
);
930 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
, PAGE_SIZE
);
931 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
, PAGE_SIZE
);
932 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
933 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
934 INIT_LIST_HEAD(&sp
->oos_link
);
935 bitmap_zero(sp
->slot_bitmap
, KVM_MEMORY_SLOTS
+ KVM_PRIVATE_MEM_SLOTS
);
937 sp
->parent_pte
= parent_pte
;
938 --vcpu
->kvm
->arch
.n_free_mmu_pages
;
942 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
943 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
945 struct kvm_pte_chain
*pte_chain
;
946 struct hlist_node
*node
;
951 if (!sp
->multimapped
) {
952 u64
*old
= sp
->parent_pte
;
955 sp
->parent_pte
= parent_pte
;
959 pte_chain
= mmu_alloc_pte_chain(vcpu
);
960 INIT_HLIST_HEAD(&sp
->parent_ptes
);
961 hlist_add_head(&pte_chain
->link
, &sp
->parent_ptes
);
962 pte_chain
->parent_ptes
[0] = old
;
964 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
) {
965 if (pte_chain
->parent_ptes
[NR_PTE_CHAIN_ENTRIES
-1])
967 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
)
968 if (!pte_chain
->parent_ptes
[i
]) {
969 pte_chain
->parent_ptes
[i
] = parent_pte
;
973 pte_chain
= mmu_alloc_pte_chain(vcpu
);
975 hlist_add_head(&pte_chain
->link
, &sp
->parent_ptes
);
976 pte_chain
->parent_ptes
[0] = parent_pte
;
979 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
982 struct kvm_pte_chain
*pte_chain
;
983 struct hlist_node
*node
;
986 if (!sp
->multimapped
) {
987 BUG_ON(sp
->parent_pte
!= parent_pte
);
988 sp
->parent_pte
= NULL
;
991 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
992 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
993 if (!pte_chain
->parent_ptes
[i
])
995 if (pte_chain
->parent_ptes
[i
] != parent_pte
)
997 while (i
+ 1 < NR_PTE_CHAIN_ENTRIES
998 && pte_chain
->parent_ptes
[i
+ 1]) {
999 pte_chain
->parent_ptes
[i
]
1000 = pte_chain
->parent_ptes
[i
+ 1];
1003 pte_chain
->parent_ptes
[i
] = NULL
;
1005 hlist_del(&pte_chain
->link
);
1006 mmu_free_pte_chain(pte_chain
);
1007 if (hlist_empty(&sp
->parent_ptes
)) {
1008 sp
->multimapped
= 0;
1009 sp
->parent_pte
= NULL
;
1018 static void mmu_parent_walk(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1019 mmu_parent_walk_fn fn
)
1021 struct kvm_pte_chain
*pte_chain
;
1022 struct hlist_node
*node
;
1023 struct kvm_mmu_page
*parent_sp
;
1026 if (!sp
->multimapped
&& sp
->parent_pte
) {
1027 parent_sp
= page_header(__pa(sp
->parent_pte
));
1028 fn(vcpu
, parent_sp
);
1029 mmu_parent_walk(vcpu
, parent_sp
, fn
);
1032 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
1033 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
1034 if (!pte_chain
->parent_ptes
[i
])
1036 parent_sp
= page_header(__pa(pte_chain
->parent_ptes
[i
]));
1037 fn(vcpu
, parent_sp
);
1038 mmu_parent_walk(vcpu
, parent_sp
, fn
);
1042 static void kvm_mmu_update_unsync_bitmap(u64
*spte
)
1045 struct kvm_mmu_page
*sp
= page_header(__pa(spte
));
1047 index
= spte
- sp
->spt
;
1048 if (!__test_and_set_bit(index
, sp
->unsync_child_bitmap
))
1049 sp
->unsync_children
++;
1050 WARN_ON(!sp
->unsync_children
);
1053 static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page
*sp
)
1055 struct kvm_pte_chain
*pte_chain
;
1056 struct hlist_node
*node
;
1059 if (!sp
->parent_pte
)
1062 if (!sp
->multimapped
) {
1063 kvm_mmu_update_unsync_bitmap(sp
->parent_pte
);
1067 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
1068 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
1069 if (!pte_chain
->parent_ptes
[i
])
1071 kvm_mmu_update_unsync_bitmap(pte_chain
->parent_ptes
[i
]);
1075 static int unsync_walk_fn(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
1077 kvm_mmu_update_parents_unsync(sp
);
1081 static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu
*vcpu
,
1082 struct kvm_mmu_page
*sp
)
1084 mmu_parent_walk(vcpu
, sp
, unsync_walk_fn
);
1085 kvm_mmu_update_parents_unsync(sp
);
1088 static void nonpaging_prefetch_page(struct kvm_vcpu
*vcpu
,
1089 struct kvm_mmu_page
*sp
)
1093 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1094 sp
->spt
[i
] = shadow_trap_nonpresent_pte
;
1097 static int nonpaging_sync_page(struct kvm_vcpu
*vcpu
,
1098 struct kvm_mmu_page
*sp
)
1103 static void nonpaging_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
1107 #define KVM_PAGE_ARRAY_NR 16
1109 struct kvm_mmu_pages
{
1110 struct mmu_page_and_offset
{
1111 struct kvm_mmu_page
*sp
;
1113 } page
[KVM_PAGE_ARRAY_NR
];
1117 #define for_each_unsync_children(bitmap, idx) \
1118 for (idx = find_first_bit(bitmap, 512); \
1120 idx = find_next_bit(bitmap, 512, idx+1))
1122 static int mmu_pages_add(struct kvm_mmu_pages
*pvec
, struct kvm_mmu_page
*sp
,
1128 for (i
=0; i
< pvec
->nr
; i
++)
1129 if (pvec
->page
[i
].sp
== sp
)
1132 pvec
->page
[pvec
->nr
].sp
= sp
;
1133 pvec
->page
[pvec
->nr
].idx
= idx
;
1135 return (pvec
->nr
== KVM_PAGE_ARRAY_NR
);
1138 static int __mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1139 struct kvm_mmu_pages
*pvec
)
1141 int i
, ret
, nr_unsync_leaf
= 0;
1143 for_each_unsync_children(sp
->unsync_child_bitmap
, i
) {
1144 u64 ent
= sp
->spt
[i
];
1146 if (is_shadow_present_pte(ent
) && !is_large_pte(ent
)) {
1147 struct kvm_mmu_page
*child
;
1148 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
1150 if (child
->unsync_children
) {
1151 if (mmu_pages_add(pvec
, child
, i
))
1154 ret
= __mmu_unsync_walk(child
, pvec
);
1156 __clear_bit(i
, sp
->unsync_child_bitmap
);
1158 nr_unsync_leaf
+= ret
;
1163 if (child
->unsync
) {
1165 if (mmu_pages_add(pvec
, child
, i
))
1171 if (find_first_bit(sp
->unsync_child_bitmap
, 512) == 512)
1172 sp
->unsync_children
= 0;
1174 return nr_unsync_leaf
;
1177 static int mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1178 struct kvm_mmu_pages
*pvec
)
1180 if (!sp
->unsync_children
)
1183 mmu_pages_add(pvec
, sp
, 0);
1184 return __mmu_unsync_walk(sp
, pvec
);
1187 static struct kvm_mmu_page
*kvm_mmu_lookup_page(struct kvm
*kvm
, gfn_t gfn
)
1190 struct hlist_head
*bucket
;
1191 struct kvm_mmu_page
*sp
;
1192 struct hlist_node
*node
;
1194 pgprintk("%s: looking for gfn %lx\n", __func__
, gfn
);
1195 index
= kvm_page_table_hashfn(gfn
);
1196 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
1197 hlist_for_each_entry(sp
, node
, bucket
, hash_link
)
1198 if (sp
->gfn
== gfn
&& !sp
->role
.direct
1199 && !sp
->role
.invalid
) {
1200 pgprintk("%s: found role %x\n",
1201 __func__
, sp
->role
.word
);
1207 static void kvm_unlink_unsync_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1209 WARN_ON(!sp
->unsync
);
1211 --kvm
->stat
.mmu_unsync
;
1214 static int kvm_mmu_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
);
1216 static int kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
1218 if (sp
->role
.glevels
!= vcpu
->arch
.mmu
.root_level
) {
1219 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1223 trace_kvm_mmu_sync_page(sp
);
1224 if (rmap_write_protect(vcpu
->kvm
, sp
->gfn
))
1225 kvm_flush_remote_tlbs(vcpu
->kvm
);
1226 kvm_unlink_unsync_page(vcpu
->kvm
, sp
);
1227 if (vcpu
->arch
.mmu
.sync_page(vcpu
, sp
)) {
1228 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1232 kvm_mmu_flush_tlb(vcpu
);
1236 struct mmu_page_path
{
1237 struct kvm_mmu_page
*parent
[PT64_ROOT_LEVEL
-1];
1238 unsigned int idx
[PT64_ROOT_LEVEL
-1];
1241 #define for_each_sp(pvec, sp, parents, i) \
1242 for (i = mmu_pages_next(&pvec, &parents, -1), \
1243 sp = pvec.page[i].sp; \
1244 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1245 i = mmu_pages_next(&pvec, &parents, i))
1247 static int mmu_pages_next(struct kvm_mmu_pages
*pvec
,
1248 struct mmu_page_path
*parents
,
1253 for (n
= i
+1; n
< pvec
->nr
; n
++) {
1254 struct kvm_mmu_page
*sp
= pvec
->page
[n
].sp
;
1256 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
1257 parents
->idx
[0] = pvec
->page
[n
].idx
;
1261 parents
->parent
[sp
->role
.level
-2] = sp
;
1262 parents
->idx
[sp
->role
.level
-1] = pvec
->page
[n
].idx
;
1268 static void mmu_pages_clear_parents(struct mmu_page_path
*parents
)
1270 struct kvm_mmu_page
*sp
;
1271 unsigned int level
= 0;
1274 unsigned int idx
= parents
->idx
[level
];
1276 sp
= parents
->parent
[level
];
1280 --sp
->unsync_children
;
1281 WARN_ON((int)sp
->unsync_children
< 0);
1282 __clear_bit(idx
, sp
->unsync_child_bitmap
);
1284 } while (level
< PT64_ROOT_LEVEL
-1 && !sp
->unsync_children
);
1287 static void kvm_mmu_pages_init(struct kvm_mmu_page
*parent
,
1288 struct mmu_page_path
*parents
,
1289 struct kvm_mmu_pages
*pvec
)
1291 parents
->parent
[parent
->role
.level
-1] = NULL
;
1295 static void mmu_sync_children(struct kvm_vcpu
*vcpu
,
1296 struct kvm_mmu_page
*parent
)
1299 struct kvm_mmu_page
*sp
;
1300 struct mmu_page_path parents
;
1301 struct kvm_mmu_pages pages
;
1303 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1304 while (mmu_unsync_walk(parent
, &pages
)) {
1307 for_each_sp(pages
, sp
, parents
, i
)
1308 protected |= rmap_write_protect(vcpu
->kvm
, sp
->gfn
);
1311 kvm_flush_remote_tlbs(vcpu
->kvm
);
1313 for_each_sp(pages
, sp
, parents
, i
) {
1314 kvm_sync_page(vcpu
, sp
);
1315 mmu_pages_clear_parents(&parents
);
1317 cond_resched_lock(&vcpu
->kvm
->mmu_lock
);
1318 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1322 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
1330 union kvm_mmu_page_role role
;
1333 struct hlist_head
*bucket
;
1334 struct kvm_mmu_page
*sp
;
1335 struct hlist_node
*node
, *tmp
;
1337 role
= vcpu
->arch
.mmu
.base_role
;
1339 role
.direct
= direct
;
1340 role
.access
= access
;
1341 if (vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
1342 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
1343 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
1344 role
.quadrant
= quadrant
;
1346 index
= kvm_page_table_hashfn(gfn
);
1347 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
1348 hlist_for_each_entry_safe(sp
, node
, tmp
, bucket
, hash_link
)
1349 if (sp
->gfn
== gfn
) {
1351 if (kvm_sync_page(vcpu
, sp
))
1354 if (sp
->role
.word
!= role
.word
)
1357 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1358 if (sp
->unsync_children
) {
1359 set_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
);
1360 kvm_mmu_mark_parents_unsync(vcpu
, sp
);
1362 trace_kvm_mmu_get_page(sp
, false);
1365 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
1366 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
);
1371 hlist_add_head(&sp
->hash_link
, bucket
);
1373 if (rmap_write_protect(vcpu
->kvm
, gfn
))
1374 kvm_flush_remote_tlbs(vcpu
->kvm
);
1375 account_shadowed(vcpu
->kvm
, gfn
);
1377 if (shadow_trap_nonpresent_pte
!= shadow_notrap_nonpresent_pte
)
1378 vcpu
->arch
.mmu
.prefetch_page(vcpu
, sp
);
1380 nonpaging_prefetch_page(vcpu
, sp
);
1381 trace_kvm_mmu_get_page(sp
, true);
1385 static void shadow_walk_init(struct kvm_shadow_walk_iterator
*iterator
,
1386 struct kvm_vcpu
*vcpu
, u64 addr
)
1388 iterator
->addr
= addr
;
1389 iterator
->shadow_addr
= vcpu
->arch
.mmu
.root_hpa
;
1390 iterator
->level
= vcpu
->arch
.mmu
.shadow_root_level
;
1391 if (iterator
->level
== PT32E_ROOT_LEVEL
) {
1392 iterator
->shadow_addr
1393 = vcpu
->arch
.mmu
.pae_root
[(addr
>> 30) & 3];
1394 iterator
->shadow_addr
&= PT64_BASE_ADDR_MASK
;
1396 if (!iterator
->shadow_addr
)
1397 iterator
->level
= 0;
1401 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator
*iterator
)
1403 if (iterator
->level
< PT_PAGE_TABLE_LEVEL
)
1406 if (iterator
->level
== PT_PAGE_TABLE_LEVEL
)
1407 if (is_large_pte(*iterator
->sptep
))
1410 iterator
->index
= SHADOW_PT_INDEX(iterator
->addr
, iterator
->level
);
1411 iterator
->sptep
= ((u64
*)__va(iterator
->shadow_addr
)) + iterator
->index
;
1415 static void shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
)
1417 iterator
->shadow_addr
= *iterator
->sptep
& PT64_BASE_ADDR_MASK
;
1421 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
1422 struct kvm_mmu_page
*sp
)
1430 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
1433 if (is_shadow_present_pte(ent
)) {
1434 if (!is_last_spte(ent
, sp
->role
.level
)) {
1435 ent
&= PT64_BASE_ADDR_MASK
;
1436 mmu_page_remove_parent_pte(page_header(ent
),
1439 if (is_large_pte(ent
))
1441 rmap_remove(kvm
, &pt
[i
]);
1444 pt
[i
] = shadow_trap_nonpresent_pte
;
1448 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1450 mmu_page_remove_parent_pte(sp
, parent_pte
);
1453 static void kvm_mmu_reset_last_pte_updated(struct kvm
*kvm
)
1456 struct kvm_vcpu
*vcpu
;
1458 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1459 vcpu
->arch
.last_pte_updated
= NULL
;
1462 static void kvm_mmu_unlink_parents(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1466 while (sp
->multimapped
|| sp
->parent_pte
) {
1467 if (!sp
->multimapped
)
1468 parent_pte
= sp
->parent_pte
;
1470 struct kvm_pte_chain
*chain
;
1472 chain
= container_of(sp
->parent_ptes
.first
,
1473 struct kvm_pte_chain
, link
);
1474 parent_pte
= chain
->parent_ptes
[0];
1476 BUG_ON(!parent_pte
);
1477 kvm_mmu_put_page(sp
, parent_pte
);
1478 __set_spte(parent_pte
, shadow_trap_nonpresent_pte
);
1482 static int mmu_zap_unsync_children(struct kvm
*kvm
,
1483 struct kvm_mmu_page
*parent
)
1486 struct mmu_page_path parents
;
1487 struct kvm_mmu_pages pages
;
1489 if (parent
->role
.level
== PT_PAGE_TABLE_LEVEL
)
1492 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1493 while (mmu_unsync_walk(parent
, &pages
)) {
1494 struct kvm_mmu_page
*sp
;
1496 for_each_sp(pages
, sp
, parents
, i
) {
1497 kvm_mmu_zap_page(kvm
, sp
);
1498 mmu_pages_clear_parents(&parents
);
1501 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1507 static int kvm_mmu_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1511 trace_kvm_mmu_zap_page(sp
);
1512 ++kvm
->stat
.mmu_shadow_zapped
;
1513 ret
= mmu_zap_unsync_children(kvm
, sp
);
1514 kvm_mmu_page_unlink_children(kvm
, sp
);
1515 kvm_mmu_unlink_parents(kvm
, sp
);
1516 kvm_flush_remote_tlbs(kvm
);
1517 if (!sp
->role
.invalid
&& !sp
->role
.direct
)
1518 unaccount_shadowed(kvm
, sp
->gfn
);
1520 kvm_unlink_unsync_page(kvm
, sp
);
1521 if (!sp
->root_count
) {
1522 hlist_del(&sp
->hash_link
);
1523 kvm_mmu_free_page(kvm
, sp
);
1525 sp
->role
.invalid
= 1;
1526 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
1527 kvm_reload_remote_mmus(kvm
);
1529 kvm_mmu_reset_last_pte_updated(kvm
);
1534 * Changing the number of mmu pages allocated to the vm
1535 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1537 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int kvm_nr_mmu_pages
)
1541 used_pages
= kvm
->arch
.n_alloc_mmu_pages
- kvm
->arch
.n_free_mmu_pages
;
1542 used_pages
= max(0, used_pages
);
1545 * If we set the number of mmu pages to be smaller be than the
1546 * number of actived pages , we must to free some mmu pages before we
1550 if (used_pages
> kvm_nr_mmu_pages
) {
1551 while (used_pages
> kvm_nr_mmu_pages
&&
1552 !list_empty(&kvm
->arch
.active_mmu_pages
)) {
1553 struct kvm_mmu_page
*page
;
1555 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
1556 struct kvm_mmu_page
, link
);
1557 used_pages
-= kvm_mmu_zap_page(kvm
, page
);
1560 kvm_nr_mmu_pages
= used_pages
;
1561 kvm
->arch
.n_free_mmu_pages
= 0;
1564 kvm
->arch
.n_free_mmu_pages
+= kvm_nr_mmu_pages
1565 - kvm
->arch
.n_alloc_mmu_pages
;
1567 kvm
->arch
.n_alloc_mmu_pages
= kvm_nr_mmu_pages
;
1570 static int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
1573 struct hlist_head
*bucket
;
1574 struct kvm_mmu_page
*sp
;
1575 struct hlist_node
*node
, *n
;
1578 pgprintk("%s: looking for gfn %lx\n", __func__
, gfn
);
1580 index
= kvm_page_table_hashfn(gfn
);
1581 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
1582 hlist_for_each_entry_safe(sp
, node
, n
, bucket
, hash_link
)
1583 if (sp
->gfn
== gfn
&& !sp
->role
.direct
) {
1584 pgprintk("%s: gfn %lx role %x\n", __func__
, gfn
,
1587 if (kvm_mmu_zap_page(kvm
, sp
))
1593 static void mmu_unshadow(struct kvm
*kvm
, gfn_t gfn
)
1596 struct hlist_head
*bucket
;
1597 struct kvm_mmu_page
*sp
;
1598 struct hlist_node
*node
, *nn
;
1600 index
= kvm_page_table_hashfn(gfn
);
1601 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
1602 hlist_for_each_entry_safe(sp
, node
, nn
, bucket
, hash_link
) {
1603 if (sp
->gfn
== gfn
&& !sp
->role
.direct
1604 && !sp
->role
.invalid
) {
1605 pgprintk("%s: zap %lx %x\n",
1606 __func__
, gfn
, sp
->role
.word
);
1607 if (kvm_mmu_zap_page(kvm
, sp
))
1613 static void page_header_update_slot(struct kvm
*kvm
, void *pte
, gfn_t gfn
)
1615 int slot
= memslot_id(kvm
, gfn_to_memslot(kvm
, gfn
));
1616 struct kvm_mmu_page
*sp
= page_header(__pa(pte
));
1618 __set_bit(slot
, sp
->slot_bitmap
);
1621 static void mmu_convert_notrap(struct kvm_mmu_page
*sp
)
1626 if (shadow_trap_nonpresent_pte
== shadow_notrap_nonpresent_pte
)
1629 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
1630 if (pt
[i
] == shadow_notrap_nonpresent_pte
)
1631 __set_spte(&pt
[i
], shadow_trap_nonpresent_pte
);
1635 struct page
*gva_to_page(struct kvm_vcpu
*vcpu
, gva_t gva
)
1639 gpa_t gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, gva
, NULL
);
1641 if (gpa
== UNMAPPED_GVA
)
1644 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1650 * The function is based on mtrr_type_lookup() in
1651 * arch/x86/kernel/cpu/mtrr/generic.c
1653 static int get_mtrr_type(struct mtrr_state_type
*mtrr_state
,
1658 u8 prev_match
, curr_match
;
1659 int num_var_ranges
= KVM_NR_VAR_MTRR
;
1661 if (!mtrr_state
->enabled
)
1664 /* Make end inclusive end, instead of exclusive */
1667 /* Look in fixed ranges. Just return the type as per start */
1668 if (mtrr_state
->have_fixed
&& (start
< 0x100000)) {
1671 if (start
< 0x80000) {
1673 idx
+= (start
>> 16);
1674 return mtrr_state
->fixed_ranges
[idx
];
1675 } else if (start
< 0xC0000) {
1677 idx
+= ((start
- 0x80000) >> 14);
1678 return mtrr_state
->fixed_ranges
[idx
];
1679 } else if (start
< 0x1000000) {
1681 idx
+= ((start
- 0xC0000) >> 12);
1682 return mtrr_state
->fixed_ranges
[idx
];
1687 * Look in variable ranges
1688 * Look of multiple ranges matching this address and pick type
1689 * as per MTRR precedence
1691 if (!(mtrr_state
->enabled
& 2))
1692 return mtrr_state
->def_type
;
1695 for (i
= 0; i
< num_var_ranges
; ++i
) {
1696 unsigned short start_state
, end_state
;
1698 if (!(mtrr_state
->var_ranges
[i
].mask_lo
& (1 << 11)))
1701 base
= (((u64
)mtrr_state
->var_ranges
[i
].base_hi
) << 32) +
1702 (mtrr_state
->var_ranges
[i
].base_lo
& PAGE_MASK
);
1703 mask
= (((u64
)mtrr_state
->var_ranges
[i
].mask_hi
) << 32) +
1704 (mtrr_state
->var_ranges
[i
].mask_lo
& PAGE_MASK
);
1706 start_state
= ((start
& mask
) == (base
& mask
));
1707 end_state
= ((end
& mask
) == (base
& mask
));
1708 if (start_state
!= end_state
)
1711 if ((start
& mask
) != (base
& mask
))
1714 curr_match
= mtrr_state
->var_ranges
[i
].base_lo
& 0xff;
1715 if (prev_match
== 0xFF) {
1716 prev_match
= curr_match
;
1720 if (prev_match
== MTRR_TYPE_UNCACHABLE
||
1721 curr_match
== MTRR_TYPE_UNCACHABLE
)
1722 return MTRR_TYPE_UNCACHABLE
;
1724 if ((prev_match
== MTRR_TYPE_WRBACK
&&
1725 curr_match
== MTRR_TYPE_WRTHROUGH
) ||
1726 (prev_match
== MTRR_TYPE_WRTHROUGH
&&
1727 curr_match
== MTRR_TYPE_WRBACK
)) {
1728 prev_match
= MTRR_TYPE_WRTHROUGH
;
1729 curr_match
= MTRR_TYPE_WRTHROUGH
;
1732 if (prev_match
!= curr_match
)
1733 return MTRR_TYPE_UNCACHABLE
;
1736 if (prev_match
!= 0xFF)
1739 return mtrr_state
->def_type
;
1742 u8
kvm_get_guest_memory_type(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1746 mtrr
= get_mtrr_type(&vcpu
->arch
.mtrr_state
, gfn
<< PAGE_SHIFT
,
1747 (gfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
1748 if (mtrr
== 0xfe || mtrr
== 0xff)
1749 mtrr
= MTRR_TYPE_WRBACK
;
1752 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type
);
1754 static int kvm_unsync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
1757 struct hlist_head
*bucket
;
1758 struct kvm_mmu_page
*s
;
1759 struct hlist_node
*node
, *n
;
1761 trace_kvm_mmu_unsync_page(sp
);
1762 index
= kvm_page_table_hashfn(sp
->gfn
);
1763 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
1764 /* don't unsync if pagetable is shadowed with multiple roles */
1765 hlist_for_each_entry_safe(s
, node
, n
, bucket
, hash_link
) {
1766 if (s
->gfn
!= sp
->gfn
|| s
->role
.direct
)
1768 if (s
->role
.word
!= sp
->role
.word
)
1771 ++vcpu
->kvm
->stat
.mmu_unsync
;
1774 kvm_mmu_mark_parents_unsync(vcpu
, sp
);
1776 mmu_convert_notrap(sp
);
1780 static int mmu_need_write_protect(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1783 struct kvm_mmu_page
*shadow
;
1785 shadow
= kvm_mmu_lookup_page(vcpu
->kvm
, gfn
);
1787 if (shadow
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
1791 if (can_unsync
&& oos_shadow
)
1792 return kvm_unsync_page(vcpu
, shadow
);
1798 static int set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
1799 unsigned pte_access
, int user_fault
,
1800 int write_fault
, int dirty
, int level
,
1801 gfn_t gfn
, pfn_t pfn
, bool speculative
,
1802 bool can_unsync
, bool reset_host_protection
)
1808 * We don't set the accessed bit, since we sometimes want to see
1809 * whether the guest actually used the pte (in order to detect
1812 spte
= shadow_base_present_pte
| shadow_dirty_mask
;
1814 spte
|= shadow_accessed_mask
;
1816 pte_access
&= ~ACC_WRITE_MASK
;
1817 if (pte_access
& ACC_EXEC_MASK
)
1818 spte
|= shadow_x_mask
;
1820 spte
|= shadow_nx_mask
;
1821 if (pte_access
& ACC_USER_MASK
)
1822 spte
|= shadow_user_mask
;
1823 if (level
> PT_PAGE_TABLE_LEVEL
)
1824 spte
|= PT_PAGE_SIZE_MASK
;
1826 spte
|= kvm_x86_ops
->get_mt_mask(vcpu
, gfn
,
1827 kvm_is_mmio_pfn(pfn
));
1829 if (reset_host_protection
)
1830 spte
|= SPTE_HOST_WRITEABLE
;
1832 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
1834 if ((pte_access
& ACC_WRITE_MASK
)
1835 || (write_fault
&& !is_write_protection(vcpu
) && !user_fault
)) {
1837 if (level
> PT_PAGE_TABLE_LEVEL
&&
1838 has_wrprotected_page(vcpu
->kvm
, gfn
, level
)) {
1840 spte
= shadow_trap_nonpresent_pte
;
1844 spte
|= PT_WRITABLE_MASK
;
1846 if (!tdp_enabled
&& !(pte_access
& ACC_WRITE_MASK
))
1847 spte
&= ~PT_USER_MASK
;
1850 * Optimization: for pte sync, if spte was writable the hash
1851 * lookup is unnecessary (and expensive). Write protection
1852 * is responsibility of mmu_get_page / kvm_sync_page.
1853 * Same reasoning can be applied to dirty page accounting.
1855 if (!can_unsync
&& is_writeble_pte(*sptep
))
1858 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
1859 pgprintk("%s: found shadow page for %lx, marking ro\n",
1862 pte_access
&= ~ACC_WRITE_MASK
;
1863 if (is_writeble_pte(spte
))
1864 spte
&= ~PT_WRITABLE_MASK
;
1868 if (pte_access
& ACC_WRITE_MASK
)
1869 mark_page_dirty(vcpu
->kvm
, gfn
);
1872 __set_spte(sptep
, spte
);
1876 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
1877 unsigned pt_access
, unsigned pte_access
,
1878 int user_fault
, int write_fault
, int dirty
,
1879 int *ptwrite
, int level
, gfn_t gfn
,
1880 pfn_t pfn
, bool speculative
,
1881 bool reset_host_protection
)
1883 int was_rmapped
= 0;
1884 int was_writeble
= is_writeble_pte(*sptep
);
1887 pgprintk("%s: spte %llx access %x write_fault %d"
1888 " user_fault %d gfn %lx\n",
1889 __func__
, *sptep
, pt_access
,
1890 write_fault
, user_fault
, gfn
);
1892 if (is_rmap_spte(*sptep
)) {
1894 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1895 * the parent of the now unreachable PTE.
1897 if (level
> PT_PAGE_TABLE_LEVEL
&&
1898 !is_large_pte(*sptep
)) {
1899 struct kvm_mmu_page
*child
;
1902 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
1903 mmu_page_remove_parent_pte(child
, sptep
);
1904 __set_spte(sptep
, shadow_trap_nonpresent_pte
);
1905 kvm_flush_remote_tlbs(vcpu
->kvm
);
1906 } else if (pfn
!= spte_to_pfn(*sptep
)) {
1907 pgprintk("hfn old %lx new %lx\n",
1908 spte_to_pfn(*sptep
), pfn
);
1909 rmap_remove(vcpu
->kvm
, sptep
);
1914 if (set_spte(vcpu
, sptep
, pte_access
, user_fault
, write_fault
,
1915 dirty
, level
, gfn
, pfn
, speculative
, true,
1916 reset_host_protection
)) {
1919 kvm_x86_ops
->tlb_flush(vcpu
);
1922 pgprintk("%s: setting spte %llx\n", __func__
, *sptep
);
1923 pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1924 is_large_pte(*sptep
)? "2MB" : "4kB",
1925 *sptep
& PT_PRESENT_MASK
?"RW":"R", gfn
,
1927 if (!was_rmapped
&& is_large_pte(*sptep
))
1928 ++vcpu
->kvm
->stat
.lpages
;
1930 page_header_update_slot(vcpu
->kvm
, sptep
, gfn
);
1932 rmap_count
= rmap_add(vcpu
, sptep
, gfn
);
1933 kvm_release_pfn_clean(pfn
);
1934 if (rmap_count
> RMAP_RECYCLE_THRESHOLD
)
1935 rmap_recycle(vcpu
, sptep
, gfn
);
1938 kvm_release_pfn_dirty(pfn
);
1940 kvm_release_pfn_clean(pfn
);
1943 vcpu
->arch
.last_pte_updated
= sptep
;
1944 vcpu
->arch
.last_pte_gfn
= gfn
;
1948 static void nonpaging_new_cr3(struct kvm_vcpu
*vcpu
)
1952 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
1953 int level
, gfn_t gfn
, pfn_t pfn
)
1955 struct kvm_shadow_walk_iterator iterator
;
1956 struct kvm_mmu_page
*sp
;
1960 for_each_shadow_entry(vcpu
, (u64
)gfn
<< PAGE_SHIFT
, iterator
) {
1961 if (iterator
.level
== level
) {
1962 mmu_set_spte(vcpu
, iterator
.sptep
, ACC_ALL
, ACC_ALL
,
1963 0, write
, 1, &pt_write
,
1964 level
, gfn
, pfn
, false, true);
1965 ++vcpu
->stat
.pf_fixed
;
1969 if (*iterator
.sptep
== shadow_trap_nonpresent_pte
) {
1970 pseudo_gfn
= (iterator
.addr
& PT64_DIR_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
1971 sp
= kvm_mmu_get_page(vcpu
, pseudo_gfn
, iterator
.addr
,
1973 1, ACC_ALL
, iterator
.sptep
);
1975 pgprintk("nonpaging_map: ENOMEM\n");
1976 kvm_release_pfn_clean(pfn
);
1980 __set_spte(iterator
.sptep
,
1982 | PT_PRESENT_MASK
| PT_WRITABLE_MASK
1983 | shadow_user_mask
| shadow_x_mask
);
1989 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, int write
, gfn_t gfn
)
1994 unsigned long mmu_seq
;
1996 level
= mapping_level(vcpu
, gfn
);
1999 * This path builds a PAE pagetable - so we can map 2mb pages at
2000 * maximum. Therefore check if the level is larger than that.
2002 if (level
> PT_DIRECTORY_LEVEL
)
2003 level
= PT_DIRECTORY_LEVEL
;
2005 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2007 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2009 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
2012 if (is_error_pfn(pfn
)) {
2013 kvm_release_pfn_clean(pfn
);
2017 spin_lock(&vcpu
->kvm
->mmu_lock
);
2018 if (mmu_notifier_retry(vcpu
, mmu_seq
))
2020 kvm_mmu_free_some_pages(vcpu
);
2021 r
= __direct_map(vcpu
, v
, write
, level
, gfn
, pfn
);
2022 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2028 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2029 kvm_release_pfn_clean(pfn
);
2034 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
2037 struct kvm_mmu_page
*sp
;
2039 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2041 spin_lock(&vcpu
->kvm
->mmu_lock
);
2042 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2043 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2045 sp
= page_header(root
);
2047 if (!sp
->root_count
&& sp
->role
.invalid
)
2048 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
2049 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2050 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2053 for (i
= 0; i
< 4; ++i
) {
2054 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2057 root
&= PT64_BASE_ADDR_MASK
;
2058 sp
= page_header(root
);
2060 if (!sp
->root_count
&& sp
->role
.invalid
)
2061 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
2063 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
2065 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2066 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2069 static int mmu_check_root(struct kvm_vcpu
*vcpu
, gfn_t root_gfn
)
2073 if (!kvm_is_visible_gfn(vcpu
->kvm
, root_gfn
)) {
2074 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
2081 static int mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
2085 struct kvm_mmu_page
*sp
;
2089 root_gfn
= vcpu
->arch
.cr3
>> PAGE_SHIFT
;
2091 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2092 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2094 ASSERT(!VALID_PAGE(root
));
2097 if (mmu_check_root(vcpu
, root_gfn
))
2099 spin_lock(&vcpu
->kvm
->mmu_lock
);
2100 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0,
2101 PT64_ROOT_LEVEL
, direct
,
2103 root
= __pa(sp
->spt
);
2105 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2106 vcpu
->arch
.mmu
.root_hpa
= root
;
2109 direct
= !is_paging(vcpu
);
2112 for (i
= 0; i
< 4; ++i
) {
2113 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2115 ASSERT(!VALID_PAGE(root
));
2116 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
2117 pdptr
= kvm_pdptr_read(vcpu
, i
);
2118 if (!is_present_gpte(pdptr
)) {
2119 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
2122 root_gfn
= pdptr
>> PAGE_SHIFT
;
2123 } else if (vcpu
->arch
.mmu
.root_level
== 0)
2125 if (mmu_check_root(vcpu
, root_gfn
))
2127 spin_lock(&vcpu
->kvm
->mmu_lock
);
2128 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
2129 PT32_ROOT_LEVEL
, direct
,
2131 root
= __pa(sp
->spt
);
2133 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2135 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
2137 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
2141 static void mmu_sync_roots(struct kvm_vcpu
*vcpu
)
2144 struct kvm_mmu_page
*sp
;
2146 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2148 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2149 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2150 sp
= page_header(root
);
2151 mmu_sync_children(vcpu
, sp
);
2154 for (i
= 0; i
< 4; ++i
) {
2155 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2157 if (root
&& VALID_PAGE(root
)) {
2158 root
&= PT64_BASE_ADDR_MASK
;
2159 sp
= page_header(root
);
2160 mmu_sync_children(vcpu
, sp
);
2165 void kvm_mmu_sync_roots(struct kvm_vcpu
*vcpu
)
2167 spin_lock(&vcpu
->kvm
->mmu_lock
);
2168 mmu_sync_roots(vcpu
);
2169 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2172 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
2173 u32 access
, u32
*error
)
2180 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
2186 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
2187 r
= mmu_topup_memory_caches(vcpu
);
2192 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2194 gfn
= gva
>> PAGE_SHIFT
;
2196 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
2197 error_code
& PFERR_WRITE_MASK
, gfn
);
2200 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
,
2206 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2207 unsigned long mmu_seq
;
2210 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2212 r
= mmu_topup_memory_caches(vcpu
);
2216 level
= mapping_level(vcpu
, gfn
);
2218 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2220 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2222 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
2223 if (is_error_pfn(pfn
)) {
2224 kvm_release_pfn_clean(pfn
);
2227 spin_lock(&vcpu
->kvm
->mmu_lock
);
2228 if (mmu_notifier_retry(vcpu
, mmu_seq
))
2230 kvm_mmu_free_some_pages(vcpu
);
2231 r
= __direct_map(vcpu
, gpa
, error_code
& PFERR_WRITE_MASK
,
2233 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2238 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2239 kvm_release_pfn_clean(pfn
);
2243 static void nonpaging_free(struct kvm_vcpu
*vcpu
)
2245 mmu_free_roots(vcpu
);
2248 static int nonpaging_init_context(struct kvm_vcpu
*vcpu
)
2250 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2252 context
->new_cr3
= nonpaging_new_cr3
;
2253 context
->page_fault
= nonpaging_page_fault
;
2254 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
2255 context
->free
= nonpaging_free
;
2256 context
->prefetch_page
= nonpaging_prefetch_page
;
2257 context
->sync_page
= nonpaging_sync_page
;
2258 context
->invlpg
= nonpaging_invlpg
;
2259 context
->root_level
= 0;
2260 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
2261 context
->root_hpa
= INVALID_PAGE
;
2265 void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
2267 ++vcpu
->stat
.tlb_flush
;
2268 kvm_x86_ops
->tlb_flush(vcpu
);
2271 static void paging_new_cr3(struct kvm_vcpu
*vcpu
)
2273 pgprintk("%s: cr3 %lx\n", __func__
, vcpu
->arch
.cr3
);
2274 mmu_free_roots(vcpu
);
2277 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
2281 kvm_inject_page_fault(vcpu
, addr
, err_code
);
2284 static void paging_free(struct kvm_vcpu
*vcpu
)
2286 nonpaging_free(vcpu
);
2289 static bool is_rsvd_bits_set(struct kvm_vcpu
*vcpu
, u64 gpte
, int level
)
2293 bit7
= (gpte
>> 7) & 1;
2294 return (gpte
& vcpu
->arch
.mmu
.rsvd_bits_mask
[bit7
][level
-1]) != 0;
2298 #include "paging_tmpl.h"
2302 #include "paging_tmpl.h"
2305 static void reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
, int level
)
2307 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2308 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
2309 u64 exb_bit_rsvd
= 0;
2312 exb_bit_rsvd
= rsvd_bits(63, 63);
2314 case PT32_ROOT_LEVEL
:
2315 /* no rsvd bits for 2 level 4K page table entries */
2316 context
->rsvd_bits_mask
[0][1] = 0;
2317 context
->rsvd_bits_mask
[0][0] = 0;
2318 if (is_cpuid_PSE36())
2319 /* 36bits PSE 4MB page */
2320 context
->rsvd_bits_mask
[1][1] = rsvd_bits(17, 21);
2322 /* 32 bits PSE 4MB page */
2323 context
->rsvd_bits_mask
[1][1] = rsvd_bits(13, 21);
2324 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[1][0];
2326 case PT32E_ROOT_LEVEL
:
2327 context
->rsvd_bits_mask
[0][2] =
2328 rsvd_bits(maxphyaddr
, 63) |
2329 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2330 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
2331 rsvd_bits(maxphyaddr
, 62); /* PDE */
2332 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
2333 rsvd_bits(maxphyaddr
, 62); /* PTE */
2334 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
2335 rsvd_bits(maxphyaddr
, 62) |
2336 rsvd_bits(13, 20); /* large page */
2337 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[1][0];
2339 case PT64_ROOT_LEVEL
:
2340 context
->rsvd_bits_mask
[0][3] = exb_bit_rsvd
|
2341 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
2342 context
->rsvd_bits_mask
[0][2] = exb_bit_rsvd
|
2343 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
2344 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
2345 rsvd_bits(maxphyaddr
, 51);
2346 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
2347 rsvd_bits(maxphyaddr
, 51);
2348 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
2349 context
->rsvd_bits_mask
[1][2] = exb_bit_rsvd
|
2350 rsvd_bits(maxphyaddr
, 51) |
2352 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
2353 rsvd_bits(maxphyaddr
, 51) |
2354 rsvd_bits(13, 20); /* large page */
2355 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[1][0];
2360 static int paging64_init_context_common(struct kvm_vcpu
*vcpu
, int level
)
2362 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2364 ASSERT(is_pae(vcpu
));
2365 context
->new_cr3
= paging_new_cr3
;
2366 context
->page_fault
= paging64_page_fault
;
2367 context
->gva_to_gpa
= paging64_gva_to_gpa
;
2368 context
->prefetch_page
= paging64_prefetch_page
;
2369 context
->sync_page
= paging64_sync_page
;
2370 context
->invlpg
= paging64_invlpg
;
2371 context
->free
= paging_free
;
2372 context
->root_level
= level
;
2373 context
->shadow_root_level
= level
;
2374 context
->root_hpa
= INVALID_PAGE
;
2378 static int paging64_init_context(struct kvm_vcpu
*vcpu
)
2380 reset_rsvds_bits_mask(vcpu
, PT64_ROOT_LEVEL
);
2381 return paging64_init_context_common(vcpu
, PT64_ROOT_LEVEL
);
2384 static int paging32_init_context(struct kvm_vcpu
*vcpu
)
2386 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2388 reset_rsvds_bits_mask(vcpu
, PT32_ROOT_LEVEL
);
2389 context
->new_cr3
= paging_new_cr3
;
2390 context
->page_fault
= paging32_page_fault
;
2391 context
->gva_to_gpa
= paging32_gva_to_gpa
;
2392 context
->free
= paging_free
;
2393 context
->prefetch_page
= paging32_prefetch_page
;
2394 context
->sync_page
= paging32_sync_page
;
2395 context
->invlpg
= paging32_invlpg
;
2396 context
->root_level
= PT32_ROOT_LEVEL
;
2397 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
2398 context
->root_hpa
= INVALID_PAGE
;
2402 static int paging32E_init_context(struct kvm_vcpu
*vcpu
)
2404 reset_rsvds_bits_mask(vcpu
, PT32E_ROOT_LEVEL
);
2405 return paging64_init_context_common(vcpu
, PT32E_ROOT_LEVEL
);
2408 static int init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
2410 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2412 context
->new_cr3
= nonpaging_new_cr3
;
2413 context
->page_fault
= tdp_page_fault
;
2414 context
->free
= nonpaging_free
;
2415 context
->prefetch_page
= nonpaging_prefetch_page
;
2416 context
->sync_page
= nonpaging_sync_page
;
2417 context
->invlpg
= nonpaging_invlpg
;
2418 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
2419 context
->root_hpa
= INVALID_PAGE
;
2421 if (!is_paging(vcpu
)) {
2422 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
2423 context
->root_level
= 0;
2424 } else if (is_long_mode(vcpu
)) {
2425 reset_rsvds_bits_mask(vcpu
, PT64_ROOT_LEVEL
);
2426 context
->gva_to_gpa
= paging64_gva_to_gpa
;
2427 context
->root_level
= PT64_ROOT_LEVEL
;
2428 } else if (is_pae(vcpu
)) {
2429 reset_rsvds_bits_mask(vcpu
, PT32E_ROOT_LEVEL
);
2430 context
->gva_to_gpa
= paging64_gva_to_gpa
;
2431 context
->root_level
= PT32E_ROOT_LEVEL
;
2433 reset_rsvds_bits_mask(vcpu
, PT32_ROOT_LEVEL
);
2434 context
->gva_to_gpa
= paging32_gva_to_gpa
;
2435 context
->root_level
= PT32_ROOT_LEVEL
;
2441 static int init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
2446 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2448 if (!is_paging(vcpu
))
2449 r
= nonpaging_init_context(vcpu
);
2450 else if (is_long_mode(vcpu
))
2451 r
= paging64_init_context(vcpu
);
2452 else if (is_pae(vcpu
))
2453 r
= paging32E_init_context(vcpu
);
2455 r
= paging32_init_context(vcpu
);
2457 vcpu
->arch
.mmu
.base_role
.glevels
= vcpu
->arch
.mmu
.root_level
;
2458 vcpu
->arch
.mmu
.base_role
.cr0_wp
= is_write_protection(vcpu
);
2463 static int init_kvm_mmu(struct kvm_vcpu
*vcpu
)
2465 vcpu
->arch
.update_pte
.pfn
= bad_pfn
;
2468 return init_kvm_tdp_mmu(vcpu
);
2470 return init_kvm_softmmu(vcpu
);
2473 static void destroy_kvm_mmu(struct kvm_vcpu
*vcpu
)
2476 if (VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
)) {
2477 vcpu
->arch
.mmu
.free(vcpu
);
2478 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2482 int kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
2484 destroy_kvm_mmu(vcpu
);
2485 return init_kvm_mmu(vcpu
);
2487 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
2489 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
2493 r
= mmu_topup_memory_caches(vcpu
);
2496 spin_lock(&vcpu
->kvm
->mmu_lock
);
2497 kvm_mmu_free_some_pages(vcpu
);
2498 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2499 r
= mmu_alloc_roots(vcpu
);
2500 spin_lock(&vcpu
->kvm
->mmu_lock
);
2501 mmu_sync_roots(vcpu
);
2502 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2505 /* set_cr3() should ensure TLB has been flushed */
2506 kvm_x86_ops
->set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
2510 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
2512 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
2514 mmu_free_roots(vcpu
);
2517 static void mmu_pte_write_zap_pte(struct kvm_vcpu
*vcpu
,
2518 struct kvm_mmu_page
*sp
,
2522 struct kvm_mmu_page
*child
;
2525 if (is_shadow_present_pte(pte
)) {
2526 if (is_last_spte(pte
, sp
->role
.level
))
2527 rmap_remove(vcpu
->kvm
, spte
);
2529 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2530 mmu_page_remove_parent_pte(child
, spte
);
2533 __set_spte(spte
, shadow_trap_nonpresent_pte
);
2534 if (is_large_pte(pte
))
2535 --vcpu
->kvm
->stat
.lpages
;
2538 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
2539 struct kvm_mmu_page
*sp
,
2543 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
2544 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
2548 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
2549 if (sp
->role
.glevels
== PT32_ROOT_LEVEL
)
2550 paging32_update_pte(vcpu
, sp
, spte
, new);
2552 paging64_update_pte(vcpu
, sp
, spte
, new);
2555 static bool need_remote_flush(u64 old
, u64
new)
2557 if (!is_shadow_present_pte(old
))
2559 if (!is_shadow_present_pte(new))
2561 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
2563 old
^= PT64_NX_MASK
;
2564 new ^= PT64_NX_MASK
;
2565 return (old
& ~new & PT64_PERM_MASK
) != 0;
2568 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, u64 old
, u64
new)
2570 if (need_remote_flush(old
, new))
2571 kvm_flush_remote_tlbs(vcpu
->kvm
);
2573 kvm_mmu_flush_tlb(vcpu
);
2576 static bool last_updated_pte_accessed(struct kvm_vcpu
*vcpu
)
2578 u64
*spte
= vcpu
->arch
.last_pte_updated
;
2580 return !!(spte
&& (*spte
& shadow_accessed_mask
));
2583 static void mmu_guess_page_from_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2584 const u8
*new, int bytes
)
2591 if (bytes
!= 4 && bytes
!= 8)
2595 * Assume that the pte write on a page table of the same type
2596 * as the current vcpu paging mode. This is nearly always true
2597 * (might be false while changing modes). Note it is verified later
2601 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2602 if ((bytes
== 4) && (gpa
% 4 == 0)) {
2603 r
= kvm_read_guest(vcpu
->kvm
, gpa
& ~(u64
)7, &gpte
, 8);
2606 memcpy((void *)&gpte
+ (gpa
% 8), new, 4);
2607 } else if ((bytes
== 8) && (gpa
% 8 == 0)) {
2608 memcpy((void *)&gpte
, new, 8);
2611 if ((bytes
== 4) && (gpa
% 4 == 0))
2612 memcpy((void *)&gpte
, new, 4);
2614 if (!is_present_gpte(gpte
))
2616 gfn
= (gpte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
2618 vcpu
->arch
.update_pte
.mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2620 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
2622 if (is_error_pfn(pfn
)) {
2623 kvm_release_pfn_clean(pfn
);
2626 vcpu
->arch
.update_pte
.gfn
= gfn
;
2627 vcpu
->arch
.update_pte
.pfn
= pfn
;
2630 static void kvm_mmu_access_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2632 u64
*spte
= vcpu
->arch
.last_pte_updated
;
2635 && vcpu
->arch
.last_pte_gfn
== gfn
2636 && shadow_accessed_mask
2637 && !(*spte
& shadow_accessed_mask
)
2638 && is_shadow_present_pte(*spte
))
2639 set_bit(PT_ACCESSED_SHIFT
, (unsigned long *)spte
);
2642 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2643 const u8
*new, int bytes
,
2644 bool guest_initiated
)
2646 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2647 struct kvm_mmu_page
*sp
;
2648 struct hlist_node
*node
, *n
;
2649 struct hlist_head
*bucket
;
2653 unsigned offset
= offset_in_page(gpa
);
2655 unsigned page_offset
;
2656 unsigned misaligned
;
2663 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
2664 mmu_guess_page_from_pte_write(vcpu
, gpa
, new, bytes
);
2665 spin_lock(&vcpu
->kvm
->mmu_lock
);
2666 kvm_mmu_access_page(vcpu
, gfn
);
2667 kvm_mmu_free_some_pages(vcpu
);
2668 ++vcpu
->kvm
->stat
.mmu_pte_write
;
2669 kvm_mmu_audit(vcpu
, "pre pte write");
2670 if (guest_initiated
) {
2671 if (gfn
== vcpu
->arch
.last_pt_write_gfn
2672 && !last_updated_pte_accessed(vcpu
)) {
2673 ++vcpu
->arch
.last_pt_write_count
;
2674 if (vcpu
->arch
.last_pt_write_count
>= 3)
2677 vcpu
->arch
.last_pt_write_gfn
= gfn
;
2678 vcpu
->arch
.last_pt_write_count
= 1;
2679 vcpu
->arch
.last_pte_updated
= NULL
;
2682 index
= kvm_page_table_hashfn(gfn
);
2683 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
2684 hlist_for_each_entry_safe(sp
, node
, n
, bucket
, hash_link
) {
2685 if (sp
->gfn
!= gfn
|| sp
->role
.direct
|| sp
->role
.invalid
)
2687 pte_size
= sp
->role
.glevels
== PT32_ROOT_LEVEL
? 4 : 8;
2688 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
2689 misaligned
|= bytes
< 4;
2690 if (misaligned
|| flooded
) {
2692 * Misaligned accesses are too much trouble to fix
2693 * up; also, they usually indicate a page is not used
2696 * If we're seeing too many writes to a page,
2697 * it may no longer be a page table, or we may be
2698 * forking, in which case it is better to unmap the
2701 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2702 gpa
, bytes
, sp
->role
.word
);
2703 if (kvm_mmu_zap_page(vcpu
->kvm
, sp
))
2705 ++vcpu
->kvm
->stat
.mmu_flooded
;
2708 page_offset
= offset
;
2709 level
= sp
->role
.level
;
2711 if (sp
->role
.glevels
== PT32_ROOT_LEVEL
) {
2712 page_offset
<<= 1; /* 32->64 */
2714 * A 32-bit pde maps 4MB while the shadow pdes map
2715 * only 2MB. So we need to double the offset again
2716 * and zap two pdes instead of one.
2718 if (level
== PT32_ROOT_LEVEL
) {
2719 page_offset
&= ~7; /* kill rounding error */
2723 quadrant
= page_offset
>> PAGE_SHIFT
;
2724 page_offset
&= ~PAGE_MASK
;
2725 if (quadrant
!= sp
->role
.quadrant
)
2728 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
2729 if ((gpa
& (pte_size
- 1)) || (bytes
< pte_size
)) {
2731 r
= kvm_read_guest_atomic(vcpu
->kvm
,
2732 gpa
& ~(u64
)(pte_size
- 1),
2734 new = (const void *)&gentry
;
2740 mmu_pte_write_zap_pte(vcpu
, sp
, spte
);
2742 mmu_pte_write_new_pte(vcpu
, sp
, spte
, new);
2743 mmu_pte_write_flush_tlb(vcpu
, entry
, *spte
);
2747 kvm_mmu_audit(vcpu
, "post pte write");
2748 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2749 if (!is_error_pfn(vcpu
->arch
.update_pte
.pfn
)) {
2750 kvm_release_pfn_clean(vcpu
->arch
.update_pte
.pfn
);
2751 vcpu
->arch
.update_pte
.pfn
= bad_pfn
;
2755 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
2763 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, gva
, NULL
);
2765 spin_lock(&vcpu
->kvm
->mmu_lock
);
2766 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2767 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2770 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
2772 void __kvm_mmu_free_some_pages(struct kvm_vcpu
*vcpu
)
2774 while (vcpu
->kvm
->arch
.n_free_mmu_pages
< KVM_REFILL_PAGES
&&
2775 !list_empty(&vcpu
->kvm
->arch
.active_mmu_pages
)) {
2776 struct kvm_mmu_page
*sp
;
2778 sp
= container_of(vcpu
->kvm
->arch
.active_mmu_pages
.prev
,
2779 struct kvm_mmu_page
, link
);
2780 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
2781 ++vcpu
->kvm
->stat
.mmu_recycled
;
2785 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
)
2788 enum emulation_result er
;
2790 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
);
2799 r
= mmu_topup_memory_caches(vcpu
);
2803 er
= emulate_instruction(vcpu
, vcpu
->run
, cr2
, error_code
, 0);
2808 case EMULATE_DO_MMIO
:
2809 ++vcpu
->stat
.mmio_exits
;
2812 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2813 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
2821 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
2823 void kvm_mmu_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
2825 vcpu
->arch
.mmu
.invlpg(vcpu
, gva
);
2826 kvm_mmu_flush_tlb(vcpu
);
2827 ++vcpu
->stat
.invlpg
;
2829 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg
);
2831 void kvm_enable_tdp(void)
2835 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
2837 void kvm_disable_tdp(void)
2839 tdp_enabled
= false;
2841 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
2843 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
2845 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
2848 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
2856 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2857 * Therefore we need to allocate shadow page tables in the first
2858 * 4GB of memory, which happens to fit the DMA32 zone.
2860 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
2863 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
2864 for (i
= 0; i
< 4; ++i
)
2865 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
2870 free_mmu_pages(vcpu
);
2874 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
2877 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2879 return alloc_mmu_pages(vcpu
);
2882 int kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
2885 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2887 return init_kvm_mmu(vcpu
);
2890 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
2894 destroy_kvm_mmu(vcpu
);
2895 free_mmu_pages(vcpu
);
2896 mmu_free_memory_caches(vcpu
);
2899 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
, int slot
)
2901 struct kvm_mmu_page
*sp
;
2903 list_for_each_entry(sp
, &kvm
->arch
.active_mmu_pages
, link
) {
2907 if (!test_bit(slot
, sp
->slot_bitmap
))
2911 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2913 if (pt
[i
] & PT_WRITABLE_MASK
)
2914 pt
[i
] &= ~PT_WRITABLE_MASK
;
2916 kvm_flush_remote_tlbs(kvm
);
2919 void kvm_mmu_zap_all(struct kvm
*kvm
)
2921 struct kvm_mmu_page
*sp
, *node
;
2923 spin_lock(&kvm
->mmu_lock
);
2924 list_for_each_entry_safe(sp
, node
, &kvm
->arch
.active_mmu_pages
, link
)
2925 if (kvm_mmu_zap_page(kvm
, sp
))
2926 node
= container_of(kvm
->arch
.active_mmu_pages
.next
,
2927 struct kvm_mmu_page
, link
);
2928 spin_unlock(&kvm
->mmu_lock
);
2930 kvm_flush_remote_tlbs(kvm
);
2933 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm
*kvm
)
2935 struct kvm_mmu_page
*page
;
2937 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
2938 struct kvm_mmu_page
, link
);
2939 kvm_mmu_zap_page(kvm
, page
);
2942 static int mmu_shrink(int nr_to_scan
, gfp_t gfp_mask
)
2945 struct kvm
*kvm_freed
= NULL
;
2946 int cache_count
= 0;
2948 spin_lock(&kvm_lock
);
2950 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
2953 if (!down_read_trylock(&kvm
->slots_lock
))
2955 spin_lock(&kvm
->mmu_lock
);
2956 npages
= kvm
->arch
.n_alloc_mmu_pages
-
2957 kvm
->arch
.n_free_mmu_pages
;
2958 cache_count
+= npages
;
2959 if (!kvm_freed
&& nr_to_scan
> 0 && npages
> 0) {
2960 kvm_mmu_remove_one_alloc_mmu_page(kvm
);
2966 spin_unlock(&kvm
->mmu_lock
);
2967 up_read(&kvm
->slots_lock
);
2970 list_move_tail(&kvm_freed
->vm_list
, &vm_list
);
2972 spin_unlock(&kvm_lock
);
2977 static struct shrinker mmu_shrinker
= {
2978 .shrink
= mmu_shrink
,
2979 .seeks
= DEFAULT_SEEKS
* 10,
2982 static void mmu_destroy_caches(void)
2984 if (pte_chain_cache
)
2985 kmem_cache_destroy(pte_chain_cache
);
2986 if (rmap_desc_cache
)
2987 kmem_cache_destroy(rmap_desc_cache
);
2988 if (mmu_page_header_cache
)
2989 kmem_cache_destroy(mmu_page_header_cache
);
2992 void kvm_mmu_module_exit(void)
2994 mmu_destroy_caches();
2995 unregister_shrinker(&mmu_shrinker
);
2998 int kvm_mmu_module_init(void)
3000 pte_chain_cache
= kmem_cache_create("kvm_pte_chain",
3001 sizeof(struct kvm_pte_chain
),
3003 if (!pte_chain_cache
)
3005 rmap_desc_cache
= kmem_cache_create("kvm_rmap_desc",
3006 sizeof(struct kvm_rmap_desc
),
3008 if (!rmap_desc_cache
)
3011 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
3012 sizeof(struct kvm_mmu_page
),
3014 if (!mmu_page_header_cache
)
3017 register_shrinker(&mmu_shrinker
);
3022 mmu_destroy_caches();
3027 * Caculate mmu pages needed for kvm.
3029 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
3032 unsigned int nr_mmu_pages
;
3033 unsigned int nr_pages
= 0;
3035 for (i
= 0; i
< kvm
->nmemslots
; i
++)
3036 nr_pages
+= kvm
->memslots
[i
].npages
;
3038 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
3039 nr_mmu_pages
= max(nr_mmu_pages
,
3040 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
3042 return nr_mmu_pages
;
3045 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
3048 if (len
> buffer
->len
)
3053 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
3058 ret
= pv_mmu_peek_buffer(buffer
, len
);
3063 buffer
->processed
+= len
;
3067 static int kvm_pv_mmu_write(struct kvm_vcpu
*vcpu
,
3068 gpa_t addr
, gpa_t value
)
3073 if (!is_long_mode(vcpu
) && !is_pae(vcpu
))
3076 r
= mmu_topup_memory_caches(vcpu
);
3080 if (!emulator_write_phys(vcpu
, addr
, &value
, bytes
))
3086 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
3088 kvm_set_cr3(vcpu
, vcpu
->arch
.cr3
);
3092 static int kvm_pv_mmu_release_pt(struct kvm_vcpu
*vcpu
, gpa_t addr
)
3094 spin_lock(&vcpu
->kvm
->mmu_lock
);
3095 mmu_unshadow(vcpu
->kvm
, addr
>> PAGE_SHIFT
);
3096 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3100 static int kvm_pv_mmu_op_one(struct kvm_vcpu
*vcpu
,
3101 struct kvm_pv_mmu_op_buffer
*buffer
)
3103 struct kvm_mmu_op_header
*header
;
3105 header
= pv_mmu_peek_buffer(buffer
, sizeof *header
);
3108 switch (header
->op
) {
3109 case KVM_MMU_OP_WRITE_PTE
: {
3110 struct kvm_mmu_op_write_pte
*wpte
;
3112 wpte
= pv_mmu_read_buffer(buffer
, sizeof *wpte
);
3115 return kvm_pv_mmu_write(vcpu
, wpte
->pte_phys
,
3118 case KVM_MMU_OP_FLUSH_TLB
: {
3119 struct kvm_mmu_op_flush_tlb
*ftlb
;
3121 ftlb
= pv_mmu_read_buffer(buffer
, sizeof *ftlb
);
3124 return kvm_pv_mmu_flush_tlb(vcpu
);
3126 case KVM_MMU_OP_RELEASE_PT
: {
3127 struct kvm_mmu_op_release_pt
*rpt
;
3129 rpt
= pv_mmu_read_buffer(buffer
, sizeof *rpt
);
3132 return kvm_pv_mmu_release_pt(vcpu
, rpt
->pt_phys
);
3138 int kvm_pv_mmu_op(struct kvm_vcpu
*vcpu
, unsigned long bytes
,
3139 gpa_t addr
, unsigned long *ret
)
3142 struct kvm_pv_mmu_op_buffer
*buffer
= &vcpu
->arch
.mmu_op_buffer
;
3144 buffer
->ptr
= buffer
->buf
;
3145 buffer
->len
= min_t(unsigned long, bytes
, sizeof buffer
->buf
);
3146 buffer
->processed
= 0;
3148 r
= kvm_read_guest(vcpu
->kvm
, addr
, buffer
->buf
, buffer
->len
);
3152 while (buffer
->len
) {
3153 r
= kvm_pv_mmu_op_one(vcpu
, buffer
);
3162 *ret
= buffer
->processed
;
3166 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu
*vcpu
, u64 addr
, u64 sptes
[4])
3168 struct kvm_shadow_walk_iterator iterator
;
3171 spin_lock(&vcpu
->kvm
->mmu_lock
);
3172 for_each_shadow_entry(vcpu
, addr
, iterator
) {
3173 sptes
[iterator
.level
-1] = *iterator
.sptep
;
3175 if (!is_shadow_present_pte(*iterator
.sptep
))
3178 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3182 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy
);
3186 static const char *audit_msg
;
3188 static gva_t
canonicalize(gva_t gva
)
3190 #ifdef CONFIG_X86_64
3191 gva
= (long long)(gva
<< 16) >> 16;
3197 typedef void (*inspect_spte_fn
) (struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
3200 static void __mmu_spte_walk(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
3205 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
3206 u64 ent
= sp
->spt
[i
];
3208 if (is_shadow_present_pte(ent
)) {
3209 if (!is_last_spte(ent
, sp
->role
.level
)) {
3210 struct kvm_mmu_page
*child
;
3211 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
3212 __mmu_spte_walk(kvm
, child
, fn
);
3214 fn(kvm
, sp
, &sp
->spt
[i
]);
3219 static void mmu_spte_walk(struct kvm_vcpu
*vcpu
, inspect_spte_fn fn
)
3222 struct kvm_mmu_page
*sp
;
3224 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3226 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3227 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3228 sp
= page_header(root
);
3229 __mmu_spte_walk(vcpu
->kvm
, sp
, fn
);
3232 for (i
= 0; i
< 4; ++i
) {
3233 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3235 if (root
&& VALID_PAGE(root
)) {
3236 root
&= PT64_BASE_ADDR_MASK
;
3237 sp
= page_header(root
);
3238 __mmu_spte_walk(vcpu
->kvm
, sp
, fn
);
3244 static void audit_mappings_page(struct kvm_vcpu
*vcpu
, u64 page_pte
,
3245 gva_t va
, int level
)
3247 u64
*pt
= __va(page_pte
& PT64_BASE_ADDR_MASK
);
3249 gva_t va_delta
= 1ul << (PAGE_SHIFT
+ 9 * (level
- 1));
3251 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
, va
+= va_delta
) {
3254 if (ent
== shadow_trap_nonpresent_pte
)
3257 va
= canonicalize(va
);
3258 if (is_shadow_present_pte(ent
) && !is_last_spte(ent
, level
))
3259 audit_mappings_page(vcpu
, ent
, va
, level
- 1);
3261 gpa_t gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, va
, NULL
);
3262 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3263 pfn_t pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
3264 hpa_t hpa
= (hpa_t
)pfn
<< PAGE_SHIFT
;
3266 if (is_error_pfn(pfn
)) {
3267 kvm_release_pfn_clean(pfn
);
3271 if (is_shadow_present_pte(ent
)
3272 && (ent
& PT64_BASE_ADDR_MASK
) != hpa
)
3273 printk(KERN_ERR
"xx audit error: (%s) levels %d"
3274 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3275 audit_msg
, vcpu
->arch
.mmu
.root_level
,
3277 is_shadow_present_pte(ent
));
3278 else if (ent
== shadow_notrap_nonpresent_pte
3279 && !is_error_hpa(hpa
))
3280 printk(KERN_ERR
"audit: (%s) notrap shadow,"
3281 " valid guest gva %lx\n", audit_msg
, va
);
3282 kvm_release_pfn_clean(pfn
);
3288 static void audit_mappings(struct kvm_vcpu
*vcpu
)
3292 if (vcpu
->arch
.mmu
.root_level
== 4)
3293 audit_mappings_page(vcpu
, vcpu
->arch
.mmu
.root_hpa
, 0, 4);
3295 for (i
= 0; i
< 4; ++i
)
3296 if (vcpu
->arch
.mmu
.pae_root
[i
] & PT_PRESENT_MASK
)
3297 audit_mappings_page(vcpu
,
3298 vcpu
->arch
.mmu
.pae_root
[i
],
3303 static int count_rmaps(struct kvm_vcpu
*vcpu
)
3308 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
3309 struct kvm_memory_slot
*m
= &vcpu
->kvm
->memslots
[i
];
3310 struct kvm_rmap_desc
*d
;
3312 for (j
= 0; j
< m
->npages
; ++j
) {
3313 unsigned long *rmapp
= &m
->rmap
[j
];
3317 if (!(*rmapp
& 1)) {
3321 d
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
3323 for (k
= 0; k
< RMAP_EXT
; ++k
)
3335 void inspect_spte_has_rmap(struct kvm
*kvm
, struct kvm_mmu_page
*sp
, u64
*sptep
)
3337 unsigned long *rmapp
;
3338 struct kvm_mmu_page
*rev_sp
;
3341 if (*sptep
& PT_WRITABLE_MASK
) {
3342 rev_sp
= page_header(__pa(sptep
));
3343 gfn
= rev_sp
->gfns
[sptep
- rev_sp
->spt
];
3345 if (!gfn_to_memslot(kvm
, gfn
)) {
3346 if (!printk_ratelimit())
3348 printk(KERN_ERR
"%s: no memslot for gfn %ld\n",
3350 printk(KERN_ERR
"%s: index %ld of sp (gfn=%lx)\n",
3351 audit_msg
, sptep
- rev_sp
->spt
,
3357 rmapp
= gfn_to_rmap(kvm
, rev_sp
->gfns
[sptep
- rev_sp
->spt
],
3358 is_large_pte(*sptep
));
3360 if (!printk_ratelimit())
3362 printk(KERN_ERR
"%s: no rmap for writable spte %llx\n",
3370 void audit_writable_sptes_have_rmaps(struct kvm_vcpu
*vcpu
)
3372 mmu_spte_walk(vcpu
, inspect_spte_has_rmap
);
3375 static void check_writable_mappings_rmap(struct kvm_vcpu
*vcpu
)
3377 struct kvm_mmu_page
*sp
;
3380 list_for_each_entry(sp
, &vcpu
->kvm
->arch
.active_mmu_pages
, link
) {
3383 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
3386 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
3389 if (!(ent
& PT_PRESENT_MASK
))
3391 if (!(ent
& PT_WRITABLE_MASK
))
3393 inspect_spte_has_rmap(vcpu
->kvm
, sp
, &pt
[i
]);
3399 static void audit_rmap(struct kvm_vcpu
*vcpu
)
3401 check_writable_mappings_rmap(vcpu
);
3405 static void audit_write_protection(struct kvm_vcpu
*vcpu
)
3407 struct kvm_mmu_page
*sp
;
3408 struct kvm_memory_slot
*slot
;
3409 unsigned long *rmapp
;
3413 list_for_each_entry(sp
, &vcpu
->kvm
->arch
.active_mmu_pages
, link
) {
3414 if (sp
->role
.direct
)
3419 gfn
= unalias_gfn(vcpu
->kvm
, sp
->gfn
);
3420 slot
= gfn_to_memslot_unaliased(vcpu
->kvm
, sp
->gfn
);
3421 rmapp
= &slot
->rmap
[gfn
- slot
->base_gfn
];
3423 spte
= rmap_next(vcpu
->kvm
, rmapp
, NULL
);
3425 if (*spte
& PT_WRITABLE_MASK
)
3426 printk(KERN_ERR
"%s: (%s) shadow page has "
3427 "writable mappings: gfn %lx role %x\n",
3428 __func__
, audit_msg
, sp
->gfn
,
3430 spte
= rmap_next(vcpu
->kvm
, rmapp
, spte
);
3435 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
)
3442 audit_write_protection(vcpu
);
3443 if (strcmp("pre pte write", audit_msg
) != 0)
3444 audit_mappings(vcpu
);
3445 audit_writable_sptes_have_rmaps(vcpu
);