2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
45 #include <asm/uaccess.h>
50 #include <asm/pvclock.h>
52 #define MAX_IO_MSRS 256
53 #define CR0_RESERVED_BITS \
54 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
55 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
56 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
57 #define CR4_RESERVED_BITS \
58 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
59 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
60 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
61 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
63 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
69 * - enable syscall per default because its emulated by KVM
70 * - enable LME and LMA per default on 64 bit KVM
73 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
75 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
78 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
79 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
81 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
82 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
83 struct kvm_cpuid_entry2 __user
*entries
);
85 struct kvm_x86_ops
*kvm_x86_ops
;
86 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
89 module_param_named(ignore_msrs
, ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
91 struct kvm_stats_debugfs_item debugfs_entries
[] = {
92 { "pf_fixed", VCPU_STAT(pf_fixed
) },
93 { "pf_guest", VCPU_STAT(pf_guest
) },
94 { "tlb_flush", VCPU_STAT(tlb_flush
) },
95 { "invlpg", VCPU_STAT(invlpg
) },
96 { "exits", VCPU_STAT(exits
) },
97 { "io_exits", VCPU_STAT(io_exits
) },
98 { "mmio_exits", VCPU_STAT(mmio_exits
) },
99 { "signal_exits", VCPU_STAT(signal_exits
) },
100 { "irq_window", VCPU_STAT(irq_window_exits
) },
101 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
102 { "halt_exits", VCPU_STAT(halt_exits
) },
103 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
104 { "hypercalls", VCPU_STAT(hypercalls
) },
105 { "request_irq", VCPU_STAT(request_irq_exits
) },
106 { "irq_exits", VCPU_STAT(irq_exits
) },
107 { "host_state_reload", VCPU_STAT(host_state_reload
) },
108 { "efer_reload", VCPU_STAT(efer_reload
) },
109 { "fpu_reload", VCPU_STAT(fpu_reload
) },
110 { "insn_emulation", VCPU_STAT(insn_emulation
) },
111 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
112 { "irq_injections", VCPU_STAT(irq_injections
) },
113 { "nmi_injections", VCPU_STAT(nmi_injections
) },
114 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
115 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
116 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
117 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
118 { "mmu_flooded", VM_STAT(mmu_flooded
) },
119 { "mmu_recycled", VM_STAT(mmu_recycled
) },
120 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
121 { "mmu_unsync", VM_STAT(mmu_unsync
) },
122 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
123 { "largepages", VM_STAT(lpages
) },
127 unsigned long segment_base(u16 selector
)
129 struct descriptor_table gdt
;
130 struct desc_struct
*d
;
131 unsigned long table_base
;
138 table_base
= gdt
.base
;
140 if (selector
& 4) { /* from ldt */
141 u16 ldt_selector
= kvm_read_ldt();
143 table_base
= segment_base(ldt_selector
);
145 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
146 v
= get_desc_base(d
);
148 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
149 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
153 EXPORT_SYMBOL_GPL(segment_base
);
155 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
157 if (irqchip_in_kernel(vcpu
->kvm
))
158 return vcpu
->arch
.apic_base
;
160 return vcpu
->arch
.apic_base
;
162 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
164 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
166 /* TODO: reserve bits check */
167 if (irqchip_in_kernel(vcpu
->kvm
))
168 kvm_lapic_set_base(vcpu
, data
);
170 vcpu
->arch
.apic_base
= data
;
172 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
174 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
176 WARN_ON(vcpu
->arch
.exception
.pending
);
177 vcpu
->arch
.exception
.pending
= true;
178 vcpu
->arch
.exception
.has_error_code
= false;
179 vcpu
->arch
.exception
.nr
= nr
;
181 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
183 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
186 ++vcpu
->stat
.pf_guest
;
188 if (vcpu
->arch
.exception
.pending
) {
189 switch(vcpu
->arch
.exception
.nr
) {
191 /* triple fault -> shutdown */
192 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
195 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
196 vcpu
->arch
.exception
.error_code
= 0;
199 /* replace previous exception with a new one in a hope
200 that instruction re-execution will regenerate lost
202 vcpu
->arch
.exception
.pending
= false;
206 vcpu
->arch
.cr2
= addr
;
207 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
210 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
212 vcpu
->arch
.nmi_pending
= 1;
214 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
216 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
218 WARN_ON(vcpu
->arch
.exception
.pending
);
219 vcpu
->arch
.exception
.pending
= true;
220 vcpu
->arch
.exception
.has_error_code
= true;
221 vcpu
->arch
.exception
.nr
= nr
;
222 vcpu
->arch
.exception
.error_code
= error_code
;
224 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
227 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
228 * a #GP and return false.
230 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
232 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
234 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
237 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
240 * Load the pae pdptrs. Return true is they are all valid.
242 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
244 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
245 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
248 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
250 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
251 offset
* sizeof(u64
), sizeof(pdpte
));
256 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
257 if (is_present_gpte(pdpte
[i
]) &&
258 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
265 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
266 __set_bit(VCPU_EXREG_PDPTR
,
267 (unsigned long *)&vcpu
->arch
.regs_avail
);
268 __set_bit(VCPU_EXREG_PDPTR
,
269 (unsigned long *)&vcpu
->arch
.regs_dirty
);
274 EXPORT_SYMBOL_GPL(load_pdptrs
);
276 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
278 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
282 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
285 if (!test_bit(VCPU_EXREG_PDPTR
,
286 (unsigned long *)&vcpu
->arch
.regs_avail
))
289 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
292 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
298 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
300 if (cr0
& CR0_RESERVED_BITS
) {
301 kvm_inject_gp(vcpu
, 0);
305 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
306 kvm_inject_gp(vcpu
, 0);
310 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
311 kvm_inject_gp(vcpu
, 0);
315 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
317 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
321 kvm_inject_gp(vcpu
, 0);
324 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
326 kvm_inject_gp(vcpu
, 0);
332 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
333 kvm_inject_gp(vcpu
, 0);
339 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
340 vcpu
->arch
.cr0
= cr0
;
342 kvm_mmu_reset_context(vcpu
);
345 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
347 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
349 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0eul
) | (msw
& 0x0f));
351 EXPORT_SYMBOL_GPL(kvm_lmsw
);
353 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
355 unsigned long old_cr4
= vcpu
->arch
.cr4
;
356 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
;
358 if (cr4
& CR4_RESERVED_BITS
) {
359 kvm_inject_gp(vcpu
, 0);
363 if (is_long_mode(vcpu
)) {
364 if (!(cr4
& X86_CR4_PAE
)) {
365 kvm_inject_gp(vcpu
, 0);
368 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
369 && ((cr4
^ old_cr4
) & pdptr_bits
)
370 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
371 kvm_inject_gp(vcpu
, 0);
375 if (cr4
& X86_CR4_VMXE
) {
376 kvm_inject_gp(vcpu
, 0);
379 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
380 vcpu
->arch
.cr4
= cr4
;
381 vcpu
->arch
.mmu
.base_role
.cr4_pge
= (cr4
& X86_CR4_PGE
) && !tdp_enabled
;
382 kvm_mmu_reset_context(vcpu
);
384 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
386 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
388 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
389 kvm_mmu_sync_roots(vcpu
);
390 kvm_mmu_flush_tlb(vcpu
);
394 if (is_long_mode(vcpu
)) {
395 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
396 kvm_inject_gp(vcpu
, 0);
401 if (cr3
& CR3_PAE_RESERVED_BITS
) {
402 kvm_inject_gp(vcpu
, 0);
405 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
406 kvm_inject_gp(vcpu
, 0);
411 * We don't check reserved bits in nonpae mode, because
412 * this isn't enforced, and VMware depends on this.
417 * Does the new cr3 value map to physical memory? (Note, we
418 * catch an invalid cr3 even in real-mode, because it would
419 * cause trouble later on when we turn on paging anyway.)
421 * A real CPU would silently accept an invalid cr3 and would
422 * attempt to use it - with largely undefined (and often hard
423 * to debug) behavior on the guest side.
425 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
426 kvm_inject_gp(vcpu
, 0);
428 vcpu
->arch
.cr3
= cr3
;
429 vcpu
->arch
.mmu
.new_cr3(vcpu
);
432 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
434 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
436 if (cr8
& CR8_RESERVED_BITS
) {
437 kvm_inject_gp(vcpu
, 0);
440 if (irqchip_in_kernel(vcpu
->kvm
))
441 kvm_lapic_set_tpr(vcpu
, cr8
);
443 vcpu
->arch
.cr8
= cr8
;
445 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
447 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
449 if (irqchip_in_kernel(vcpu
->kvm
))
450 return kvm_lapic_get_cr8(vcpu
);
452 return vcpu
->arch
.cr8
;
454 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
456 static inline u32
bit(int bitno
)
458 return 1 << (bitno
& 31);
462 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
463 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
465 * This list is modified at module load time to reflect the
466 * capabilities of the host cpu. This capabilities test skips MSRs that are
467 * kvm-specific. Those are put in the beginning of the list.
470 #define KVM_SAVE_MSRS_BEGIN 2
471 static u32 msrs_to_save
[] = {
472 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
473 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
476 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
478 MSR_IA32_TSC
, MSR_IA32_PERF_STATUS
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
481 static unsigned num_msrs_to_save
;
483 static u32 emulated_msrs
[] = {
484 MSR_IA32_MISC_ENABLE
,
487 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
489 if (efer
& efer_reserved_bits
)
493 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
))
496 if (efer
& EFER_FFXSR
) {
497 struct kvm_cpuid_entry2
*feat
;
499 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
500 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
504 if (efer
& EFER_SVME
) {
505 struct kvm_cpuid_entry2
*feat
;
507 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
508 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
513 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
515 kvm_x86_ops
->set_efer(vcpu
, efer
);
517 vcpu
->arch
.shadow_efer
= efer
;
519 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
520 kvm_mmu_reset_context(vcpu
);
525 void kvm_enable_efer_bits(u64 mask
)
527 efer_reserved_bits
&= ~mask
;
529 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
533 * Writes msr value into into the appropriate "register".
534 * Returns 0 on success, non-0 otherwise.
535 * Assumes vcpu_load() was already called.
537 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
539 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
543 * Adapt set_msr() to msr_io()'s calling convention
545 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
547 return kvm_set_msr(vcpu
, index
, *data
);
550 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
554 struct pvclock_wall_clock wc
;
555 struct timespec boot
;
560 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
565 ++version
; /* first time write, random junk */
569 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
572 * The guest calculates current wall clock time by adding
573 * system time (updated by kvm_write_guest_time below) to the
574 * wall clock specified here. guest system time equals host
575 * system time for us, thus we must fill in host boot time here.
579 wc
.sec
= boot
.tv_sec
;
580 wc
.nsec
= boot
.tv_nsec
;
581 wc
.version
= version
;
583 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
586 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
589 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
591 uint32_t quotient
, remainder
;
593 /* Don't try to replace with do_div(), this one calculates
594 * "(dividend << 32) / divisor" */
596 : "=a" (quotient
), "=d" (remainder
)
597 : "0" (0), "1" (dividend
), "r" (divisor
) );
601 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
603 uint64_t nsecs
= 1000000000LL;
608 tps64
= tsc_khz
* 1000LL;
609 while (tps64
> nsecs
*2) {
614 tps32
= (uint32_t)tps64
;
615 while (tps32
<= (uint32_t)nsecs
) {
620 hv_clock
->tsc_shift
= shift
;
621 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
623 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
624 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
625 hv_clock
->tsc_to_system_mul
);
628 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
630 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
634 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
636 unsigned long this_tsc_khz
;
637 s64 kernel_ns
, max_kernel_ns
;
640 if ((!vcpu
->time_page
))
643 this_tsc_khz
= get_cpu_var(cpu_tsc_khz
);
644 if (unlikely(vcpu
->hv_clock_tsc_khz
!= this_tsc_khz
)) {
645 kvm_set_time_scale(this_tsc_khz
, &vcpu
->hv_clock
);
646 vcpu
->hv_clock_tsc_khz
= this_tsc_khz
;
648 put_cpu_var(cpu_tsc_khz
);
650 /* Keep irq disabled to prevent changes to the clock */
651 local_irq_save(flags
);
652 kvm_get_msr(v
, MSR_IA32_TSC
, &tsc_timestamp
);
654 monotonic_to_bootbased(&ts
);
655 kernel_ns
= timespec_to_ns(&ts
);
656 local_irq_restore(flags
);
659 * Time as measured by the TSC may go backwards when resetting the base
660 * tsc_timestamp. The reason for this is that the TSC resolution is
661 * higher than the resolution of the other clock scales. Thus, many
662 * possible measurments of the TSC correspond to one measurement of any
663 * other clock, and so a spread of values is possible. This is not a
664 * problem for the computation of the nanosecond clock; with TSC rates
665 * around 1GHZ, there can only be a few cycles which correspond to one
666 * nanosecond value, and any path through this code will inevitably
667 * take longer than that. However, with the kernel_ns value itself,
668 * the precision may be much lower, down to HZ granularity. If the
669 * first sampling of TSC against kernel_ns ends in the low part of the
670 * range, and the second in the high end of the range, we can get:
672 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
674 * As the sampling errors potentially range in the thousands of cycles,
675 * it is possible such a time value has already been observed by the
676 * guest. To protect against this, we must compute the system time as
677 * observed by the guest and ensure the new system time is greater.
680 if (vcpu
->hv_clock
.tsc_timestamp
&& vcpu
->last_guest_tsc
) {
681 max_kernel_ns
= vcpu
->last_guest_tsc
-
682 vcpu
->hv_clock
.tsc_timestamp
;
683 max_kernel_ns
= pvclock_scale_delta(max_kernel_ns
,
684 vcpu
->hv_clock
.tsc_to_system_mul
,
685 vcpu
->hv_clock
.tsc_shift
);
686 max_kernel_ns
+= vcpu
->last_kernel_ns
;
689 if (max_kernel_ns
> kernel_ns
)
690 kernel_ns
= max_kernel_ns
;
692 /* With all the info we got, fill in the values */
694 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
695 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
696 vcpu
->last_kernel_ns
= kernel_ns
;
697 vcpu
->last_guest_tsc
= tsc_timestamp
;
700 * The interface expects us to write an even number signaling that the
701 * update is finished. Since the guest won't see the intermediate
702 * state, we just increase by 2 at the end.
704 vcpu
->hv_clock
.version
+= 2;
706 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
708 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
709 sizeof(vcpu
->hv_clock
));
711 kunmap_atomic(shared_kaddr
, KM_USER0
);
713 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
716 static int kvm_request_guest_time_update(struct kvm_vcpu
*v
)
718 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
720 if (!vcpu
->time_page
)
722 set_bit(KVM_REQ_KVMCLOCK_UPDATE
, &v
->requests
);
726 static bool msr_mtrr_valid(unsigned msr
)
729 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
730 case MSR_MTRRfix64K_00000
:
731 case MSR_MTRRfix16K_80000
:
732 case MSR_MTRRfix16K_A0000
:
733 case MSR_MTRRfix4K_C0000
:
734 case MSR_MTRRfix4K_C8000
:
735 case MSR_MTRRfix4K_D0000
:
736 case MSR_MTRRfix4K_D8000
:
737 case MSR_MTRRfix4K_E0000
:
738 case MSR_MTRRfix4K_E8000
:
739 case MSR_MTRRfix4K_F0000
:
740 case MSR_MTRRfix4K_F8000
:
741 case MSR_MTRRdefType
:
742 case MSR_IA32_CR_PAT
:
750 static bool valid_pat_type(unsigned t
)
752 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
755 static bool valid_mtrr_type(unsigned t
)
757 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
760 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
764 if (!msr_mtrr_valid(msr
))
767 if (msr
== MSR_IA32_CR_PAT
) {
768 for (i
= 0; i
< 8; i
++)
769 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
772 } else if (msr
== MSR_MTRRdefType
) {
775 return valid_mtrr_type(data
& 0xff);
776 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
777 for (i
= 0; i
< 8 ; i
++)
778 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
784 return valid_mtrr_type(data
& 0xff);
787 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
789 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
791 if (!mtrr_valid(vcpu
, msr
, data
))
794 if (msr
== MSR_MTRRdefType
) {
795 vcpu
->arch
.mtrr_state
.def_type
= data
;
796 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
797 } else if (msr
== MSR_MTRRfix64K_00000
)
799 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
800 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
801 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
802 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
803 else if (msr
== MSR_IA32_CR_PAT
)
804 vcpu
->arch
.pat
= data
;
805 else { /* Variable MTRRs */
806 int idx
, is_mtrr_mask
;
809 idx
= (msr
- 0x200) / 2;
810 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
813 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
816 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
820 kvm_mmu_reset_context(vcpu
);
824 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
826 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
827 unsigned bank_num
= mcg_cap
& 0xff;
830 case MSR_IA32_MCG_STATUS
:
831 vcpu
->arch
.mcg_status
= data
;
833 case MSR_IA32_MCG_CTL
:
834 if (!(mcg_cap
& MCG_CTL_P
))
836 if (data
!= 0 && data
!= ~(u64
)0)
838 vcpu
->arch
.mcg_ctl
= data
;
841 if (msr
>= MSR_IA32_MC0_CTL
&&
842 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
843 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
844 /* only 0 or all 1s can be written to IA32_MCi_CTL
845 * some Linux kernels though clear bit 10 in bank 4 to
846 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
847 * this to avoid an uncatched #GP in the guest
849 if ((offset
& 0x3) == 0 &&
850 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
852 vcpu
->arch
.mce_banks
[offset
] = data
;
860 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
864 return set_efer(vcpu
, data
);
866 data
&= ~(u64
)0x40; /* ignore flush filter disable */
868 pr_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
873 case MSR_FAM10H_MMIO_CONF_BASE
:
875 pr_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
880 case MSR_AMD64_NB_CFG
:
882 case MSR_IA32_DEBUGCTLMSR
:
884 /* We support the non-activated case already */
886 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
887 /* Values other than LBR and BTF are vendor-specific,
888 thus reserved and should throw a #GP */
891 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
894 case MSR_IA32_UCODE_REV
:
895 case MSR_IA32_UCODE_WRITE
:
896 case MSR_VM_HSAVE_PA
:
897 case MSR_AMD64_PATCH_LOADER
:
899 case 0x200 ... 0x2ff:
900 return set_msr_mtrr(vcpu
, msr
, data
);
901 case MSR_IA32_APICBASE
:
902 kvm_set_apic_base(vcpu
, data
);
904 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
905 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
906 case MSR_IA32_MISC_ENABLE
:
907 vcpu
->arch
.ia32_misc_enable_msr
= data
;
909 case MSR_KVM_WALL_CLOCK
:
910 vcpu
->kvm
->arch
.wall_clock
= data
;
911 kvm_write_wall_clock(vcpu
->kvm
, data
);
913 case MSR_KVM_SYSTEM_TIME
: {
914 if (vcpu
->arch
.time_page
) {
915 kvm_release_page_dirty(vcpu
->arch
.time_page
);
916 vcpu
->arch
.time_page
= NULL
;
919 vcpu
->arch
.time
= data
;
921 /* we verify if the enable bit is set... */
925 /* ...but clean it before doing the actual write */
926 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
928 vcpu
->arch
.time_page
=
929 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
931 if (is_error_page(vcpu
->arch
.time_page
)) {
932 kvm_release_page_clean(vcpu
->arch
.time_page
);
933 vcpu
->arch
.time_page
= NULL
;
936 kvm_request_guest_time_update(vcpu
);
939 case MSR_IA32_MCG_CTL
:
940 case MSR_IA32_MCG_STATUS
:
941 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
942 return set_msr_mce(vcpu
, msr
, data
);
944 /* Performance counters are not protected by a CPUID bit,
945 * so we should check all of them in the generic path for the sake of
946 * cross vendor migration.
947 * Writing a zero into the event select MSRs disables them,
948 * which we perfectly emulate ;-). Any other value should be at least
949 * reported, some guests depend on them.
951 case MSR_P6_EVNTSEL0
:
952 case MSR_P6_EVNTSEL1
:
953 case MSR_K7_EVNTSEL0
:
954 case MSR_K7_EVNTSEL1
:
955 case MSR_K7_EVNTSEL2
:
956 case MSR_K7_EVNTSEL3
:
958 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
959 "0x%x data 0x%llx\n", msr
, data
);
961 /* at least RHEL 4 unconditionally writes to the perfctr registers,
962 * so we ignore writes to make it happy.
964 case MSR_P6_PERFCTR0
:
965 case MSR_P6_PERFCTR1
:
966 case MSR_K7_PERFCTR0
:
967 case MSR_K7_PERFCTR1
:
968 case MSR_K7_PERFCTR2
:
969 case MSR_K7_PERFCTR3
:
970 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
971 "0x%x data 0x%llx\n", msr
, data
);
975 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
979 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
986 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
990 * Reads an msr value (of 'msr_index') into 'pdata'.
991 * Returns 0 on success, non-0 otherwise.
992 * Assumes vcpu_load() was already called.
994 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
996 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
999 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1001 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1003 if (!msr_mtrr_valid(msr
))
1006 if (msr
== MSR_MTRRdefType
)
1007 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
1008 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
1009 else if (msr
== MSR_MTRRfix64K_00000
)
1011 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1012 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
1013 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1014 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
1015 else if (msr
== MSR_IA32_CR_PAT
)
1016 *pdata
= vcpu
->arch
.pat
;
1017 else { /* Variable MTRRs */
1018 int idx
, is_mtrr_mask
;
1021 idx
= (msr
- 0x200) / 2;
1022 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1025 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1028 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1035 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1038 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1039 unsigned bank_num
= mcg_cap
& 0xff;
1042 case MSR_IA32_P5_MC_ADDR
:
1043 case MSR_IA32_P5_MC_TYPE
:
1046 case MSR_IA32_MCG_CAP
:
1047 data
= vcpu
->arch
.mcg_cap
;
1049 case MSR_IA32_MCG_CTL
:
1050 if (!(mcg_cap
& MCG_CTL_P
))
1052 data
= vcpu
->arch
.mcg_ctl
;
1054 case MSR_IA32_MCG_STATUS
:
1055 data
= vcpu
->arch
.mcg_status
;
1058 if (msr
>= MSR_IA32_MC0_CTL
&&
1059 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1060 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1061 data
= vcpu
->arch
.mce_banks
[offset
];
1070 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1075 case MSR_IA32_PLATFORM_ID
:
1076 case MSR_IA32_UCODE_REV
:
1077 case MSR_IA32_EBL_CR_POWERON
:
1078 case MSR_IA32_DEBUGCTLMSR
:
1079 case MSR_IA32_LASTBRANCHFROMIP
:
1080 case MSR_IA32_LASTBRANCHTOIP
:
1081 case MSR_IA32_LASTINTFROMIP
:
1082 case MSR_IA32_LASTINTTOIP
:
1085 case MSR_VM_HSAVE_PA
:
1086 case MSR_P6_PERFCTR0
:
1087 case MSR_P6_PERFCTR1
:
1088 case MSR_P6_EVNTSEL0
:
1089 case MSR_P6_EVNTSEL1
:
1090 case MSR_K7_EVNTSEL0
:
1091 case MSR_K7_PERFCTR0
:
1092 case MSR_K8_INT_PENDING_MSG
:
1093 case MSR_AMD64_NB_CFG
:
1094 case MSR_FAM10H_MMIO_CONF_BASE
:
1098 data
= 0x500 | KVM_NR_VAR_MTRR
;
1100 case 0x200 ... 0x2ff:
1101 return get_msr_mtrr(vcpu
, msr
, pdata
);
1102 case 0xcd: /* fsb frequency */
1105 case MSR_IA32_APICBASE
:
1106 data
= kvm_get_apic_base(vcpu
);
1108 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1109 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1111 case MSR_IA32_MISC_ENABLE
:
1112 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1114 case MSR_IA32_PERF_STATUS
:
1115 /* TSC increment by tick */
1117 /* CPU multiplier */
1118 data
|= (((uint64_t)4ULL) << 40);
1121 data
= vcpu
->arch
.shadow_efer
;
1123 case MSR_KVM_WALL_CLOCK
:
1124 data
= vcpu
->kvm
->arch
.wall_clock
;
1126 case MSR_KVM_SYSTEM_TIME
:
1127 data
= vcpu
->arch
.time
;
1129 case MSR_IA32_P5_MC_ADDR
:
1130 case MSR_IA32_P5_MC_TYPE
:
1131 case MSR_IA32_MCG_CAP
:
1132 case MSR_IA32_MCG_CTL
:
1133 case MSR_IA32_MCG_STATUS
:
1134 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1135 return get_msr_mce(vcpu
, msr
, pdata
);
1138 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1141 pr_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
1149 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1152 * Read or write a bunch of msrs. All parameters are kernel addresses.
1154 * @return number of msrs set successfully.
1156 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
1157 struct kvm_msr_entry
*entries
,
1158 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1159 unsigned index
, u64
*data
))
1165 down_read(&vcpu
->kvm
->slots_lock
);
1166 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
1167 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
1169 up_read(&vcpu
->kvm
->slots_lock
);
1177 * Read or write a bunch of msrs. Parameters are user addresses.
1179 * @return number of msrs set successfully.
1181 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
1182 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1183 unsigned index
, u64
*data
),
1186 struct kvm_msrs msrs
;
1187 struct kvm_msr_entry
*entries
;
1192 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
1196 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
1200 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
1201 entries
= vmalloc(size
);
1206 if (copy_from_user(entries
, user_msrs
->entries
, size
))
1209 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
1214 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
1225 int kvm_dev_ioctl_check_extension(long ext
)
1230 case KVM_CAP_IRQCHIP
:
1232 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
1233 case KVM_CAP_SET_TSS_ADDR
:
1234 case KVM_CAP_EXT_CPUID
:
1235 case KVM_CAP_CLOCKSOURCE
:
1237 case KVM_CAP_NOP_IO_DELAY
:
1238 case KVM_CAP_MP_STATE
:
1239 case KVM_CAP_SYNC_MMU
:
1240 case KVM_CAP_REINJECT_CONTROL
:
1241 case KVM_CAP_IRQ_INJECT_STATUS
:
1242 case KVM_CAP_ASSIGN_DEV_IRQ
:
1244 case KVM_CAP_IOEVENTFD
:
1246 case KVM_CAP_PIT_STATE2
:
1247 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
1248 case KVM_CAP_ADJUST_CLOCK
:
1251 case KVM_CAP_COALESCED_MMIO
:
1252 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1255 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
1257 case KVM_CAP_NR_VCPUS
:
1260 case KVM_CAP_NR_MEMSLOTS
:
1261 r
= KVM_MEMORY_SLOTS
;
1263 case KVM_CAP_PV_MMU
: /* obsolete */
1270 r
= KVM_MAX_MCE_BANKS
;
1280 long kvm_arch_dev_ioctl(struct file
*filp
,
1281 unsigned int ioctl
, unsigned long arg
)
1283 void __user
*argp
= (void __user
*)arg
;
1287 case KVM_GET_MSR_INDEX_LIST
: {
1288 struct kvm_msr_list __user
*user_msr_list
= argp
;
1289 struct kvm_msr_list msr_list
;
1293 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
1296 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
1297 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
1300 if (n
< msr_list
.nmsrs
)
1303 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
1304 num_msrs_to_save
* sizeof(u32
)))
1306 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
1308 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
1313 case KVM_GET_SUPPORTED_CPUID
: {
1314 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1315 struct kvm_cpuid2 cpuid
;
1318 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1320 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
1321 cpuid_arg
->entries
);
1326 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1331 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
1334 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
1336 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
1348 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1350 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
1351 kvm_request_guest_time_update(vcpu
);
1354 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
1356 kvm_x86_ops
->vcpu_put(vcpu
);
1357 kvm_put_guest_fpu(vcpu
);
1360 static int is_efer_nx(void)
1362 unsigned long long efer
= 0;
1364 rdmsrl_safe(MSR_EFER
, &efer
);
1365 return efer
& EFER_NX
;
1368 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
1371 struct kvm_cpuid_entry2
*e
, *entry
;
1374 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
1375 e
= &vcpu
->arch
.cpuid_entries
[i
];
1376 if (e
->function
== 0x80000001) {
1381 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1382 entry
->edx
&= ~(1 << 20);
1383 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1387 /* when an old userspace process fills a new kernel module */
1388 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1389 struct kvm_cpuid
*cpuid
,
1390 struct kvm_cpuid_entry __user
*entries
)
1393 struct kvm_cpuid_entry
*cpuid_entries
;
1396 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1399 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1403 if (copy_from_user(cpuid_entries
, entries
,
1404 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1406 for (i
= 0; i
< cpuid
->nent
; i
++) {
1407 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1408 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1409 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1410 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1411 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1412 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1413 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1414 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1415 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1416 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1418 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1419 cpuid_fix_nx_cap(vcpu
);
1421 kvm_apic_set_version(vcpu
);
1424 vfree(cpuid_entries
);
1429 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1430 struct kvm_cpuid2
*cpuid
,
1431 struct kvm_cpuid_entry2 __user
*entries
)
1436 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1439 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1440 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1442 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1443 kvm_apic_set_version(vcpu
);
1450 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1451 struct kvm_cpuid2
*cpuid
,
1452 struct kvm_cpuid_entry2 __user
*entries
)
1458 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1461 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1462 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1467 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1472 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1475 entry
->function
= function
;
1476 entry
->index
= index
;
1477 cpuid_count(entry
->function
, entry
->index
,
1478 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1482 #define F(x) bit(X86_FEATURE_##x)
1484 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1485 u32 index
, int *nent
, int maxnent
)
1487 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
1488 unsigned f_gbpages
= kvm_x86_ops
->gb_page_enable() ? F(GBPAGES
) : 0;
1489 #ifdef CONFIG_X86_64
1490 unsigned f_lm
= F(LM
);
1496 const u32 kvm_supported_word0_x86_features
=
1497 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1498 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1499 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
1500 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1501 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
1502 0 /* Reserved, DS, ACPI */ | F(MMX
) |
1503 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
1504 0 /* HTT, TM, Reserved, PBE */;
1505 /* cpuid 0x80000001.edx */
1506 const u32 kvm_supported_word1_x86_features
=
1507 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
1508 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
1509 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
1510 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
1511 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
1512 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
1513 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| 0 /* RDTSCP */ |
1514 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
1516 const u32 kvm_supported_word4_x86_features
=
1517 F(XMM3
) | 0 /* Reserved, DTES64, MONITOR */ |
1518 0 /* DS-CPL, VMX, SMX, EST */ |
1519 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1520 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
1521 0 /* Reserved, DCA */ | F(XMM4_1
) |
1522 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
1523 0 /* Reserved, XSAVE, OSXSAVE */;
1524 /* cpuid 0x80000001.ecx */
1525 const u32 kvm_supported_word6_x86_features
=
1526 F(LAHF_LM
) | F(CMP_LEGACY
) | F(SVM
) | 0 /* ExtApicSpace */ |
1527 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
1528 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP
) |
1529 0 /* SKINIT */ | 0 /* WDT */;
1531 /* all calls to cpuid_count() should be made on the same cpu */
1533 do_cpuid_1_ent(entry
, function
, index
);
1538 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1541 entry
->edx
&= kvm_supported_word0_x86_features
;
1542 entry
->ecx
&= kvm_supported_word4_x86_features
;
1543 /* we support x2apic emulation even if host does not support
1544 * it since we emulate x2apic in software */
1545 entry
->ecx
|= F(X2APIC
);
1547 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1548 * may return different values. This forces us to get_cpu() before
1549 * issuing the first command, and also to emulate this annoying behavior
1550 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1552 int t
, times
= entry
->eax
& 0xff;
1554 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1555 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
1556 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1557 do_cpuid_1_ent(&entry
[t
], function
, 0);
1558 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1563 /* function 4 and 0xb have additional index. */
1567 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1568 /* read more entries until cache_type is zero */
1569 for (i
= 1; *nent
< maxnent
; ++i
) {
1570 cache_type
= entry
[i
- 1].eax
& 0x1f;
1573 do_cpuid_1_ent(&entry
[i
], function
, i
);
1575 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1583 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1584 /* read more entries until level_type is zero */
1585 for (i
= 1; *nent
< maxnent
; ++i
) {
1586 level_type
= entry
[i
- 1].ecx
& 0xff00;
1589 do_cpuid_1_ent(&entry
[i
], function
, i
);
1591 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1597 entry
->eax
= min(entry
->eax
, 0x8000001a);
1600 entry
->edx
&= kvm_supported_word1_x86_features
;
1601 entry
->ecx
&= kvm_supported_word6_x86_features
;
1609 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1610 struct kvm_cpuid_entry2 __user
*entries
)
1612 struct kvm_cpuid_entry2
*cpuid_entries
;
1613 int limit
, nent
= 0, r
= -E2BIG
;
1616 if (cpuid
->nent
< 1)
1618 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1619 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
1621 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1625 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1626 limit
= cpuid_entries
[0].eax
;
1627 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1628 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1629 &nent
, cpuid
->nent
);
1631 if (nent
>= cpuid
->nent
)
1634 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1635 limit
= cpuid_entries
[nent
- 1].eax
;
1636 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1637 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1638 &nent
, cpuid
->nent
);
1640 if (nent
>= cpuid
->nent
)
1644 if (copy_to_user(entries
, cpuid_entries
,
1645 nent
* sizeof(struct kvm_cpuid_entry2
)))
1651 vfree(cpuid_entries
);
1656 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1657 struct kvm_lapic_state
*s
)
1660 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1666 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1667 struct kvm_lapic_state
*s
)
1670 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1671 kvm_apic_post_state_restore(vcpu
);
1672 update_cr8_intercept(vcpu
);
1678 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1679 struct kvm_interrupt
*irq
)
1681 if (irq
->irq
< 0 || irq
->irq
>= 256)
1683 if (irqchip_in_kernel(vcpu
->kvm
))
1687 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
1694 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
1697 kvm_inject_nmi(vcpu
);
1703 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1704 struct kvm_tpr_access_ctl
*tac
)
1708 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1712 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
1716 unsigned bank_num
= mcg_cap
& 0xff, bank
;
1720 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
1722 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
1725 vcpu
->arch
.mcg_cap
= mcg_cap
;
1726 /* Init IA32_MCG_CTL to all 1s */
1727 if (mcg_cap
& MCG_CTL_P
)
1728 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
1729 /* Init IA32_MCi_CTL to all 1s */
1730 for (bank
= 0; bank
< bank_num
; bank
++)
1731 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
1737 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
1738 struct kvm_x86_mce
*mce
)
1740 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1741 unsigned bank_num
= mcg_cap
& 0xff;
1742 u64
*banks
= vcpu
->arch
.mce_banks
;
1744 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
1747 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1748 * reporting is disabled
1750 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
1751 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
1753 banks
+= 4 * mce
->bank
;
1755 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1756 * reporting is disabled for the bank
1758 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
1760 if (mce
->status
& MCI_STATUS_UC
) {
1761 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
1762 !(vcpu
->arch
.cr4
& X86_CR4_MCE
)) {
1763 printk(KERN_DEBUG
"kvm: set_mce: "
1764 "injects mce exception while "
1765 "previous one is in progress!\n");
1766 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
1769 if (banks
[1] & MCI_STATUS_VAL
)
1770 mce
->status
|= MCI_STATUS_OVER
;
1771 banks
[2] = mce
->addr
;
1772 banks
[3] = mce
->misc
;
1773 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
1774 banks
[1] = mce
->status
;
1775 kvm_queue_exception(vcpu
, MC_VECTOR
);
1776 } else if (!(banks
[1] & MCI_STATUS_VAL
)
1777 || !(banks
[1] & MCI_STATUS_UC
)) {
1778 if (banks
[1] & MCI_STATUS_VAL
)
1779 mce
->status
|= MCI_STATUS_OVER
;
1780 banks
[2] = mce
->addr
;
1781 banks
[3] = mce
->misc
;
1782 banks
[1] = mce
->status
;
1784 banks
[1] |= MCI_STATUS_OVER
;
1788 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1789 unsigned int ioctl
, unsigned long arg
)
1791 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1792 void __user
*argp
= (void __user
*)arg
;
1794 struct kvm_lapic_state
*lapic
= NULL
;
1797 case KVM_GET_LAPIC
: {
1798 lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1803 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, lapic
);
1807 if (copy_to_user(argp
, lapic
, sizeof(struct kvm_lapic_state
)))
1812 case KVM_SET_LAPIC
: {
1813 lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1818 if (copy_from_user(lapic
, argp
, sizeof(struct kvm_lapic_state
)))
1820 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, lapic
);
1826 case KVM_INTERRUPT
: {
1827 struct kvm_interrupt irq
;
1830 if (copy_from_user(&irq
, argp
, sizeof irq
))
1832 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1839 r
= kvm_vcpu_ioctl_nmi(vcpu
);
1845 case KVM_SET_CPUID
: {
1846 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1847 struct kvm_cpuid cpuid
;
1850 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1852 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1857 case KVM_SET_CPUID2
: {
1858 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1859 struct kvm_cpuid2 cpuid
;
1862 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1864 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1865 cpuid_arg
->entries
);
1870 case KVM_GET_CPUID2
: {
1871 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1872 struct kvm_cpuid2 cpuid
;
1875 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1877 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1878 cpuid_arg
->entries
);
1882 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1888 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1891 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1893 case KVM_TPR_ACCESS_REPORTING
: {
1894 struct kvm_tpr_access_ctl tac
;
1897 if (copy_from_user(&tac
, argp
, sizeof tac
))
1899 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1903 if (copy_to_user(argp
, &tac
, sizeof tac
))
1908 case KVM_SET_VAPIC_ADDR
: {
1909 struct kvm_vapic_addr va
;
1912 if (!irqchip_in_kernel(vcpu
->kvm
))
1915 if (copy_from_user(&va
, argp
, sizeof va
))
1918 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1921 case KVM_X86_SETUP_MCE
: {
1925 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
1927 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
1930 case KVM_X86_SET_MCE
: {
1931 struct kvm_x86_mce mce
;
1934 if (copy_from_user(&mce
, argp
, sizeof mce
))
1937 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
1949 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1953 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1955 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1959 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
1962 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
1966 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1967 u32 kvm_nr_mmu_pages
)
1969 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1972 down_write(&kvm
->slots_lock
);
1973 spin_lock(&kvm
->mmu_lock
);
1975 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1976 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1978 spin_unlock(&kvm
->mmu_lock
);
1979 up_write(&kvm
->slots_lock
);
1983 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1985 return kvm
->arch
.n_alloc_mmu_pages
;
1988 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1991 struct kvm_mem_alias
*alias
;
1993 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1994 alias
= &kvm
->arch
.aliases
[i
];
1995 if (gfn
>= alias
->base_gfn
1996 && gfn
< alias
->base_gfn
+ alias
->npages
)
1997 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
2003 * Set a new alias region. Aliases map a portion of physical memory into
2004 * another portion. This is useful for memory windows, for example the PC
2007 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
2008 struct kvm_memory_alias
*alias
)
2011 struct kvm_mem_alias
*p
;
2014 /* General sanity checks */
2015 if (alias
->memory_size
& (PAGE_SIZE
- 1))
2017 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
2019 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
2021 if (alias
->guest_phys_addr
+ alias
->memory_size
2022 < alias
->guest_phys_addr
)
2024 if (alias
->target_phys_addr
+ alias
->memory_size
2025 < alias
->target_phys_addr
)
2028 down_write(&kvm
->slots_lock
);
2029 spin_lock(&kvm
->mmu_lock
);
2031 p
= &kvm
->arch
.aliases
[alias
->slot
];
2032 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
2033 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
2034 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
2036 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
2037 if (kvm
->arch
.aliases
[n
- 1].npages
)
2039 kvm
->arch
.naliases
= n
;
2041 spin_unlock(&kvm
->mmu_lock
);
2042 kvm_mmu_zap_all(kvm
);
2044 up_write(&kvm
->slots_lock
);
2052 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2057 switch (chip
->chip_id
) {
2058 case KVM_IRQCHIP_PIC_MASTER
:
2059 memcpy(&chip
->chip
.pic
,
2060 &pic_irqchip(kvm
)->pics
[0],
2061 sizeof(struct kvm_pic_state
));
2063 case KVM_IRQCHIP_PIC_SLAVE
:
2064 memcpy(&chip
->chip
.pic
,
2065 &pic_irqchip(kvm
)->pics
[1],
2066 sizeof(struct kvm_pic_state
));
2068 case KVM_IRQCHIP_IOAPIC
:
2069 memcpy(&chip
->chip
.ioapic
,
2070 ioapic_irqchip(kvm
),
2071 sizeof(struct kvm_ioapic_state
));
2080 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2085 switch (chip
->chip_id
) {
2086 case KVM_IRQCHIP_PIC_MASTER
:
2087 spin_lock(&pic_irqchip(kvm
)->lock
);
2088 memcpy(&pic_irqchip(kvm
)->pics
[0],
2090 sizeof(struct kvm_pic_state
));
2091 spin_unlock(&pic_irqchip(kvm
)->lock
);
2093 case KVM_IRQCHIP_PIC_SLAVE
:
2094 spin_lock(&pic_irqchip(kvm
)->lock
);
2095 memcpy(&pic_irqchip(kvm
)->pics
[1],
2097 sizeof(struct kvm_pic_state
));
2098 spin_unlock(&pic_irqchip(kvm
)->lock
);
2100 case KVM_IRQCHIP_IOAPIC
:
2101 mutex_lock(&kvm
->irq_lock
);
2102 memcpy(ioapic_irqchip(kvm
),
2104 sizeof(struct kvm_ioapic_state
));
2105 mutex_unlock(&kvm
->irq_lock
);
2111 kvm_pic_update_irq(pic_irqchip(kvm
));
2115 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2119 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2120 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
2121 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2125 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2129 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2130 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
2131 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
2132 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2136 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2140 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2141 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
2142 sizeof(ps
->channels
));
2143 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
2144 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2145 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
2149 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2151 int r
= 0, start
= 0;
2152 u32 prev_legacy
, cur_legacy
;
2153 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2154 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2155 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2156 if (!prev_legacy
&& cur_legacy
)
2158 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
2159 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
2160 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
2161 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
2162 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2166 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
2167 struct kvm_reinject_control
*control
)
2169 if (!kvm
->arch
.vpit
)
2171 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2172 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
2173 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2178 * Get (and clear) the dirty memory log for a memory slot.
2180 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
2181 struct kvm_dirty_log
*log
)
2185 struct kvm_memory_slot
*memslot
;
2188 down_write(&kvm
->slots_lock
);
2190 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
2194 /* If nothing is dirty, don't bother messing with page tables. */
2196 spin_lock(&kvm
->mmu_lock
);
2197 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
2198 spin_unlock(&kvm
->mmu_lock
);
2199 memslot
= &kvm
->memslots
[log
->slot
];
2200 n
= kvm_dirty_bitmap_bytes(memslot
);
2201 memset(memslot
->dirty_bitmap
, 0, n
);
2205 up_write(&kvm
->slots_lock
);
2209 long kvm_arch_vm_ioctl(struct file
*filp
,
2210 unsigned int ioctl
, unsigned long arg
)
2212 struct kvm
*kvm
= filp
->private_data
;
2213 void __user
*argp
= (void __user
*)arg
;
2216 * This union makes it completely explicit to gcc-3.x
2217 * that these two variables' stack usage should be
2218 * combined, not added together.
2221 struct kvm_pit_state ps
;
2222 struct kvm_pit_state2 ps2
;
2223 struct kvm_memory_alias alias
;
2224 struct kvm_pit_config pit_config
;
2228 case KVM_SET_TSS_ADDR
:
2229 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
2233 case KVM_SET_IDENTITY_MAP_ADDR
: {
2237 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
2239 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
2244 case KVM_SET_MEMORY_REGION
: {
2245 struct kvm_memory_region kvm_mem
;
2246 struct kvm_userspace_memory_region kvm_userspace_mem
;
2249 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
2251 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
2252 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
2253 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
2254 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
2255 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2260 case KVM_SET_NR_MMU_PAGES
:
2261 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
2265 case KVM_GET_NR_MMU_PAGES
:
2266 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
2268 case KVM_SET_MEMORY_ALIAS
:
2270 if (copy_from_user(&u
.alias
, argp
, sizeof(struct kvm_memory_alias
)))
2272 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &u
.alias
);
2276 case KVM_CREATE_IRQCHIP
: {
2277 struct kvm_pic
*vpic
;
2279 mutex_lock(&kvm
->lock
);
2282 goto create_irqchip_unlock
;
2284 if (atomic_read(&kvm
->online_vcpus
))
2285 goto create_irqchip_unlock
;
2287 vpic
= kvm_create_pic(kvm
);
2289 r
= kvm_ioapic_init(kvm
);
2292 goto create_irqchip_unlock
;
2295 goto create_irqchip_unlock
;
2297 kvm
->arch
.vpic
= vpic
;
2299 r
= kvm_setup_default_irq_routing(kvm
);
2301 mutex_lock(&kvm
->irq_lock
);
2302 kfree(kvm
->arch
.vpic
);
2303 kfree(kvm
->arch
.vioapic
);
2304 kvm
->arch
.vpic
= NULL
;
2305 kvm
->arch
.vioapic
= NULL
;
2306 mutex_unlock(&kvm
->irq_lock
);
2308 create_irqchip_unlock
:
2309 mutex_unlock(&kvm
->lock
);
2312 case KVM_CREATE_PIT
:
2313 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
2315 case KVM_CREATE_PIT2
:
2317 if (copy_from_user(&u
.pit_config
, argp
,
2318 sizeof(struct kvm_pit_config
)))
2321 down_write(&kvm
->slots_lock
);
2324 goto create_pit_unlock
;
2326 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
2330 up_write(&kvm
->slots_lock
);
2332 case KVM_IRQ_LINE_STATUS
:
2333 case KVM_IRQ_LINE
: {
2334 struct kvm_irq_level irq_event
;
2337 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
2339 if (irqchip_in_kernel(kvm
)) {
2341 mutex_lock(&kvm
->irq_lock
);
2342 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
2343 irq_event
.irq
, irq_event
.level
);
2344 mutex_unlock(&kvm
->irq_lock
);
2345 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2346 irq_event
.status
= status
;
2347 if (copy_to_user(argp
, &irq_event
,
2355 case KVM_GET_IRQCHIP
: {
2356 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2357 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
2363 if (copy_from_user(chip
, argp
, sizeof *chip
))
2364 goto get_irqchip_out
;
2366 if (!irqchip_in_kernel(kvm
))
2367 goto get_irqchip_out
;
2368 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
2370 goto get_irqchip_out
;
2372 if (copy_to_user(argp
, chip
, sizeof *chip
))
2373 goto get_irqchip_out
;
2381 case KVM_SET_IRQCHIP
: {
2382 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2383 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
2389 if (copy_from_user(chip
, argp
, sizeof *chip
))
2390 goto set_irqchip_out
;
2392 if (!irqchip_in_kernel(kvm
))
2393 goto set_irqchip_out
;
2394 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
2396 goto set_irqchip_out
;
2406 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
2409 if (!kvm
->arch
.vpit
)
2411 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
2415 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
2422 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
2425 if (!kvm
->arch
.vpit
)
2427 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
2433 case KVM_GET_PIT2
: {
2435 if (!kvm
->arch
.vpit
)
2437 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
2441 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
2446 case KVM_SET_PIT2
: {
2448 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
2451 if (!kvm
->arch
.vpit
)
2453 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
2459 case KVM_REINJECT_CONTROL
: {
2460 struct kvm_reinject_control control
;
2462 if (copy_from_user(&control
, argp
, sizeof(control
)))
2464 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
2470 case KVM_SET_CLOCK
: {
2471 struct timespec now
;
2472 struct kvm_clock_data user_ns
;
2477 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
2486 now_ns
= timespec_to_ns(&now
);
2487 delta
= user_ns
.clock
- now_ns
;
2488 kvm
->arch
.kvmclock_offset
= delta
;
2491 case KVM_GET_CLOCK
: {
2492 struct timespec now
;
2493 struct kvm_clock_data user_ns
;
2497 now_ns
= timespec_to_ns(&now
);
2498 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
2500 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
2503 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
2516 static void kvm_init_msr_list(void)
2521 /* skip the first msrs in the list. KVM-specific */
2522 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2523 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2526 msrs_to_save
[j
] = msrs_to_save
[i
];
2529 num_msrs_to_save
= j
;
2532 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
2535 if (vcpu
->arch
.apic
&&
2536 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
2539 return kvm_io_bus_write(&vcpu
->kvm
->mmio_bus
, addr
, len
, v
);
2542 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
2544 if (vcpu
->arch
.apic
&&
2545 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
2548 return kvm_io_bus_read(&vcpu
->kvm
->mmio_bus
, addr
, len
, v
);
2551 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
, u32
*error
)
2553 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
2554 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
, access
, error
);
2557 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
, u32
*error
)
2559 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
2560 access
|= PFERR_FETCH_MASK
;
2561 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
, access
, error
);
2564 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
, u32
*error
)
2566 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
2567 access
|= PFERR_WRITE_MASK
;
2568 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
, access
, error
);
2571 /* uses this to access any guest's mapped memory without checking CPL */
2572 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
, u32
*error
)
2574 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
, 0, error
);
2577 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
2578 struct kvm_vcpu
*vcpu
, u32 access
,
2582 int r
= X86EMUL_CONTINUE
;
2585 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
, access
, error
);
2586 unsigned offset
= addr
& (PAGE_SIZE
-1);
2587 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2590 if (gpa
== UNMAPPED_GVA
) {
2591 r
= X86EMUL_PROPAGATE_FAULT
;
2594 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
2596 r
= X86EMUL_UNHANDLEABLE
;
2608 /* used for instruction fetching */
2609 static int kvm_fetch_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2610 struct kvm_vcpu
*vcpu
, u32
*error
)
2612 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
2613 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
2614 access
| PFERR_FETCH_MASK
, error
);
2617 static int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2618 struct kvm_vcpu
*vcpu
, u32
*error
)
2620 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
2621 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
2625 static int kvm_read_guest_virt_system(gva_t addr
, void *val
, unsigned int bytes
,
2626 struct kvm_vcpu
*vcpu
, u32
*error
)
2628 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, error
);
2631 static int kvm_write_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2632 struct kvm_vcpu
*vcpu
, u32
*error
)
2635 int r
= X86EMUL_CONTINUE
;
2638 gpa_t gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, error
);
2639 unsigned offset
= addr
& (PAGE_SIZE
-1);
2640 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2643 if (gpa
== UNMAPPED_GVA
) {
2644 r
= X86EMUL_PROPAGATE_FAULT
;
2647 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
2649 r
= X86EMUL_UNHANDLEABLE
;
2662 static int emulator_read_emulated(unsigned long addr
,
2665 struct kvm_vcpu
*vcpu
)
2670 if (vcpu
->mmio_read_completed
) {
2671 memcpy(val
, vcpu
->mmio_data
, bytes
);
2672 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
2673 vcpu
->mmio_phys_addr
, *(u64
*)val
);
2674 vcpu
->mmio_read_completed
= 0;
2675 return X86EMUL_CONTINUE
;
2678 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, addr
, &error_code
);
2680 if (gpa
== UNMAPPED_GVA
) {
2681 kvm_inject_page_fault(vcpu
, addr
, error_code
);
2682 return X86EMUL_PROPAGATE_FAULT
;
2685 /* For APIC access vmexit */
2686 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2689 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
, NULL
)
2690 == X86EMUL_CONTINUE
)
2691 return X86EMUL_CONTINUE
;
2695 * Is this MMIO handled locally?
2697 if (!vcpu_mmio_read(vcpu
, gpa
, bytes
, val
)) {
2698 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
, gpa
, *(u64
*)val
);
2699 return X86EMUL_CONTINUE
;
2702 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
2704 vcpu
->mmio_needed
= 1;
2705 vcpu
->mmio_phys_addr
= gpa
;
2706 vcpu
->mmio_size
= bytes
;
2707 vcpu
->mmio_is_write
= 0;
2709 return X86EMUL_UNHANDLEABLE
;
2712 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2713 const void *val
, int bytes
)
2717 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
2720 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
2724 static int emulator_write_emulated_onepage(unsigned long addr
,
2727 struct kvm_vcpu
*vcpu
)
2732 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, &error_code
);
2734 if (gpa
== UNMAPPED_GVA
) {
2735 kvm_inject_page_fault(vcpu
, addr
, error_code
);
2736 return X86EMUL_PROPAGATE_FAULT
;
2739 /* For APIC access vmexit */
2740 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2743 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
2744 return X86EMUL_CONTINUE
;
2747 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
2749 * Is this MMIO handled locally?
2751 if (!vcpu_mmio_write(vcpu
, gpa
, bytes
, val
))
2752 return X86EMUL_CONTINUE
;
2754 vcpu
->mmio_needed
= 1;
2755 vcpu
->mmio_phys_addr
= gpa
;
2756 vcpu
->mmio_size
= bytes
;
2757 vcpu
->mmio_is_write
= 1;
2758 memcpy(vcpu
->mmio_data
, val
, bytes
);
2760 return X86EMUL_CONTINUE
;
2763 int emulator_write_emulated(unsigned long addr
,
2766 struct kvm_vcpu
*vcpu
)
2768 /* Crossing a page boundary? */
2769 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
2772 now
= -addr
& ~PAGE_MASK
;
2773 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
2774 if (rc
!= X86EMUL_CONTINUE
)
2780 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
2782 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
2784 static int emulator_cmpxchg_emulated(unsigned long addr
,
2788 struct kvm_vcpu
*vcpu
)
2790 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
2791 #ifndef CONFIG_X86_64
2792 /* guests cmpxchg8b have to be emulated atomically */
2799 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
2801 if (gpa
== UNMAPPED_GVA
||
2802 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2805 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
2810 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2812 kaddr
= kmap_atomic(page
, KM_USER0
);
2813 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
2814 kunmap_atomic(kaddr
, KM_USER0
);
2815 kvm_release_page_dirty(page
);
2820 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
2823 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2825 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
2828 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
2830 kvm_mmu_invlpg(vcpu
, address
);
2831 return X86EMUL_CONTINUE
;
2834 int emulate_clts(struct kvm_vcpu
*vcpu
)
2836 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
2837 return X86EMUL_CONTINUE
;
2840 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
2842 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
2844 if (!kvm_x86_ops
->get_dr
)
2845 return X86EMUL_UNHANDLEABLE
;
2849 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
2850 return X86EMUL_CONTINUE
;
2852 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
2853 return X86EMUL_UNHANDLEABLE
;
2857 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
2859 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
2862 if (!kvm_x86_ops
->set_dr
)
2863 return X86EMUL_UNHANDLEABLE
;
2865 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
2867 /* FIXME: better handling */
2868 return X86EMUL_UNHANDLEABLE
;
2870 return X86EMUL_CONTINUE
;
2873 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2876 unsigned long rip
= kvm_rip_read(vcpu
);
2877 unsigned long rip_linear
;
2879 if (!printk_ratelimit())
2882 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2884 kvm_read_guest_virt(rip_linear
, (void *)opcodes
, 4, vcpu
, NULL
);
2886 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2887 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2889 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2891 static bool emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
2892 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
2894 struct kvm_cpuid_entry2
*cpuid
= NULL
;
2897 cpuid
= kvm_find_cpuid_entry(ctxt
->vcpu
,
2913 static struct x86_emulate_ops emulate_ops
= {
2914 .read_std
= kvm_read_guest_virt_system
,
2915 .fetch
= kvm_fetch_guest_virt
,
2916 .read_emulated
= emulator_read_emulated
,
2917 .write_emulated
= emulator_write_emulated
,
2918 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2919 .get_cpuid
= emulator_get_cpuid
,
2922 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
2924 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2925 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
2926 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
2927 vcpu
->arch
.regs_dirty
= ~0;
2930 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2931 struct kvm_run
*run
,
2937 struct decode_cache
*c
;
2939 kvm_clear_exception_queue(vcpu
);
2940 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2942 * TODO: fix emulate.c to use guest_read/write_register
2943 * instead of direct ->regs accesses, can save hundred cycles
2944 * on Intel for instructions that don't read/change RSP, for
2947 cache_all_regs(vcpu
);
2949 vcpu
->mmio_is_write
= 0;
2950 vcpu
->arch
.pio
.string
= 0;
2952 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2954 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2956 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2957 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2958 vcpu
->arch
.emulate_ctxt
.mode
=
2959 (!(vcpu
->arch
.cr0
& X86_CR0_PE
)) ? X86EMUL_MODE_REAL
:
2960 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2961 ? X86EMUL_MODE_VM86
: cs_l
2962 ? X86EMUL_MODE_PROT64
: cs_db
2963 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2965 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2967 /* Only allow emulation of specific instructions on #UD
2968 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2969 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2970 if (emulation_type
& EMULTYPE_TRAP_UD
) {
2972 return EMULATE_FAIL
;
2974 case 0x01: /* VMMCALL */
2975 if (c
->modrm_mod
!= 3 || c
->modrm_rm
!= 1)
2976 return EMULATE_FAIL
;
2978 case 0x34: /* sysenter */
2979 case 0x35: /* sysexit */
2980 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
2981 return EMULATE_FAIL
;
2983 case 0x05: /* syscall */
2984 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
2985 return EMULATE_FAIL
;
2988 return EMULATE_FAIL
;
2991 if (!(c
->modrm_reg
== 0 || c
->modrm_reg
== 3))
2992 return EMULATE_FAIL
;
2995 ++vcpu
->stat
.insn_emulation
;
2997 ++vcpu
->stat
.insn_emulation_fail
;
2998 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2999 return EMULATE_DONE
;
3000 return EMULATE_FAIL
;
3004 if (emulation_type
& EMULTYPE_SKIP
) {
3005 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.decode
.eip
);
3006 return EMULATE_DONE
;
3009 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
3010 shadow_mask
= vcpu
->arch
.emulate_ctxt
.interruptibility
;
3013 kvm_x86_ops
->set_interrupt_shadow(vcpu
, shadow_mask
);
3015 if (vcpu
->arch
.pio
.string
)
3016 return EMULATE_DO_MMIO
;
3018 if ((r
|| vcpu
->mmio_is_write
) && run
) {
3019 run
->exit_reason
= KVM_EXIT_MMIO
;
3020 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
3021 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
3022 run
->mmio
.len
= vcpu
->mmio_size
;
3023 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
3027 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
3028 return EMULATE_DONE
;
3029 if (!vcpu
->mmio_needed
) {
3030 kvm_report_emulation_failure(vcpu
, "mmio");
3031 return EMULATE_FAIL
;
3033 return EMULATE_DO_MMIO
;
3036 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
3038 if (vcpu
->mmio_is_write
) {
3039 vcpu
->mmio_needed
= 0;
3040 return EMULATE_DO_MMIO
;
3043 return EMULATE_DONE
;
3045 EXPORT_SYMBOL_GPL(emulate_instruction
);
3047 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
3049 void *p
= vcpu
->arch
.pio_data
;
3050 gva_t q
= vcpu
->arch
.pio
.guest_gva
;
3055 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
3056 if (vcpu
->arch
.pio
.in
)
3057 ret
= kvm_write_guest_virt(q
, p
, bytes
, vcpu
, &error_code
);
3059 ret
= kvm_read_guest_virt(q
, p
, bytes
, vcpu
, &error_code
);
3061 if (ret
== X86EMUL_PROPAGATE_FAULT
)
3062 kvm_inject_page_fault(vcpu
, q
, error_code
);
3067 int complete_pio(struct kvm_vcpu
*vcpu
)
3069 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
3076 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3077 memcpy(&val
, vcpu
->arch
.pio_data
, io
->size
);
3078 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
3082 r
= pio_copy_data(vcpu
);
3089 delta
*= io
->cur_count
;
3091 * The size of the register should really depend on
3092 * current address size.
3094 val
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3096 kvm_register_write(vcpu
, VCPU_REGS_RCX
, val
);
3102 val
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3104 kvm_register_write(vcpu
, VCPU_REGS_RDI
, val
);
3106 val
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3108 kvm_register_write(vcpu
, VCPU_REGS_RSI
, val
);
3112 io
->count
-= io
->cur_count
;
3118 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
3120 /* TODO: String I/O for in kernel device */
3123 if (vcpu
->arch
.pio
.in
)
3124 r
= kvm_io_bus_read(&vcpu
->kvm
->pio_bus
, vcpu
->arch
.pio
.port
,
3125 vcpu
->arch
.pio
.size
, pd
);
3127 r
= kvm_io_bus_write(&vcpu
->kvm
->pio_bus
, vcpu
->arch
.pio
.port
,
3128 vcpu
->arch
.pio
.size
, pd
);
3132 static int pio_string_write(struct kvm_vcpu
*vcpu
)
3134 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
3135 void *pd
= vcpu
->arch
.pio_data
;
3138 for (i
= 0; i
< io
->cur_count
; i
++) {
3139 if (kvm_io_bus_write(&vcpu
->kvm
->pio_bus
,
3140 io
->port
, io
->size
, pd
)) {
3149 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
3150 int size
, unsigned port
)
3154 trace_kvm_pio(!in
, port
, size
, 1);
3156 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
3157 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
3158 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
3159 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
3160 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
3161 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
3162 vcpu
->arch
.pio
.in
= in
;
3163 vcpu
->arch
.pio
.string
= 0;
3164 vcpu
->arch
.pio
.down
= 0;
3165 vcpu
->arch
.pio
.rep
= 0;
3167 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3168 memcpy(vcpu
->arch
.pio_data
, &val
, 4);
3170 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
3176 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
3178 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
3179 int size
, unsigned long count
, int down
,
3180 gva_t address
, int rep
, unsigned port
)
3182 unsigned now
, in_page
;
3185 trace_kvm_pio(!in
, port
, size
, count
);
3187 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
3188 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
3189 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
3190 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
3191 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
3192 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
3193 vcpu
->arch
.pio
.in
= in
;
3194 vcpu
->arch
.pio
.string
= 1;
3195 vcpu
->arch
.pio
.down
= down
;
3196 vcpu
->arch
.pio
.rep
= rep
;
3199 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3204 in_page
= PAGE_SIZE
- offset_in_page(address
);
3206 in_page
= offset_in_page(address
) + size
;
3207 now
= min(count
, (unsigned long)in_page
/ size
);
3212 * String I/O in reverse. Yuck. Kill the guest, fix later.
3214 pr_unimpl(vcpu
, "guest string pio down\n");
3215 kvm_inject_gp(vcpu
, 0);
3218 vcpu
->run
->io
.count
= now
;
3219 vcpu
->arch
.pio
.cur_count
= now
;
3221 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
3222 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3224 vcpu
->arch
.pio
.guest_gva
= address
;
3226 if (!vcpu
->arch
.pio
.in
) {
3227 /* string PIO write */
3228 ret
= pio_copy_data(vcpu
);
3229 if (ret
== X86EMUL_PROPAGATE_FAULT
)
3231 if (ret
== 0 && !pio_string_write(vcpu
)) {
3233 if (vcpu
->arch
.pio
.count
== 0)
3237 /* no string PIO read support yet */
3241 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
3243 static void bounce_off(void *info
)
3248 static unsigned int ref_freq
;
3249 static unsigned long tsc_khz_ref
;
3251 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
3254 struct cpufreq_freqs
*freq
= data
;
3256 struct kvm_vcpu
*vcpu
;
3257 int i
, send_ipi
= 0;
3260 ref_freq
= freq
->old
;
3262 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
3264 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
3266 per_cpu(cpu_tsc_khz
, freq
->cpu
) = cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
3268 spin_lock(&kvm_lock
);
3269 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3270 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
3271 if (vcpu
->cpu
!= freq
->cpu
)
3273 if (!kvm_request_guest_time_update(vcpu
))
3275 if (vcpu
->cpu
!= smp_processor_id())
3279 spin_unlock(&kvm_lock
);
3281 if (freq
->old
< freq
->new && send_ipi
) {
3283 * We upscale the frequency. Must make the guest
3284 * doesn't see old kvmclock values while running with
3285 * the new frequency, otherwise we risk the guest sees
3286 * time go backwards.
3288 * In case we update the frequency for another cpu
3289 * (which might be in guest context) send an interrupt
3290 * to kick the cpu out of guest context. Next time
3291 * guest context is entered kvmclock will be updated,
3292 * so the guest will not see stale values.
3294 smp_call_function_single(freq
->cpu
, bounce_off
, NULL
, 1);
3299 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
3300 .notifier_call
= kvmclock_cpufreq_notifier
3303 int kvm_arch_init(void *opaque
)
3306 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
3309 printk(KERN_ERR
"kvm: already loaded the other module\n");
3314 if (!ops
->cpu_has_kvm_support()) {
3315 printk(KERN_ERR
"kvm: no hardware support\n");
3319 if (ops
->disabled_by_bios()) {
3320 printk(KERN_ERR
"kvm: disabled by bios\n");
3325 r
= kvm_mmu_module_init();
3329 kvm_init_msr_list();
3332 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3333 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
3334 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
3335 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
3337 for_each_possible_cpu(cpu
)
3338 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
3339 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
3340 tsc_khz_ref
= tsc_khz
;
3341 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
3342 CPUFREQ_TRANSITION_NOTIFIER
);
3351 void kvm_arch_exit(void)
3353 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
3354 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
3355 CPUFREQ_TRANSITION_NOTIFIER
);
3357 kvm_mmu_module_exit();
3360 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
3362 ++vcpu
->stat
.halt_exits
;
3363 if (irqchip_in_kernel(vcpu
->kvm
)) {
3364 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
3367 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
3371 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
3373 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
3376 if (is_long_mode(vcpu
))
3379 return a0
| ((gpa_t
)a1
<< 32);
3382 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
3384 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
3387 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3388 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3389 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3390 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3391 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3393 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
3395 if (!is_long_mode(vcpu
)) {
3403 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
3409 case KVM_HC_VAPIC_POLL_IRQ
:
3413 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
3420 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
3421 ++vcpu
->stat
.hypercalls
;
3424 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
3426 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
3428 char instruction
[3];
3430 unsigned long rip
= kvm_rip_read(vcpu
);
3434 * Blow out the MMU to ensure that no other VCPU has an active mapping
3435 * to ensure that the updated hypercall appears atomically across all
3438 kvm_mmu_zap_all(vcpu
->kvm
);
3440 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
3441 if (emulator_write_emulated(rip
, instruction
, 3, vcpu
)
3442 != X86EMUL_CONTINUE
)
3448 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
3450 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
3453 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
3455 struct descriptor_table dt
= { limit
, base
};
3457 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
3460 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
3462 struct descriptor_table dt
= { limit
, base
};
3464 kvm_x86_ops
->set_idt(vcpu
, &dt
);
3467 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
3468 unsigned long *rflags
)
3470 kvm_lmsw(vcpu
, msw
);
3471 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3474 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
3476 unsigned long value
;
3478 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3481 value
= vcpu
->arch
.cr0
;
3484 value
= vcpu
->arch
.cr2
;
3487 value
= vcpu
->arch
.cr3
;
3490 value
= vcpu
->arch
.cr4
;
3493 value
= kvm_get_cr8(vcpu
);
3496 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3503 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
3504 unsigned long *rflags
)
3508 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
3509 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3512 vcpu
->arch
.cr2
= val
;
3515 kvm_set_cr3(vcpu
, val
);
3518 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
3521 kvm_set_cr8(vcpu
, val
& 0xfUL
);
3524 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
3528 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
3530 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
3531 int j
, nent
= vcpu
->arch
.cpuid_nent
;
3533 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
3534 /* when no next entry is found, the current entry[i] is reselected */
3535 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
3536 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
3537 if (ej
->function
== e
->function
) {
3538 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
3542 return 0; /* silence gcc, even though control never reaches here */
3545 /* find an entry with matching function, matching index (if needed), and that
3546 * should be read next (if it's stateful) */
3547 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
3548 u32 function
, u32 index
)
3550 if (e
->function
!= function
)
3552 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
3554 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
3555 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
3560 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
3561 u32 function
, u32 index
)
3564 struct kvm_cpuid_entry2
*best
= NULL
;
3566 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
3567 struct kvm_cpuid_entry2
*e
;
3569 e
= &vcpu
->arch
.cpuid_entries
[i
];
3570 if (is_matching_cpuid_entry(e
, function
, index
)) {
3571 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
3572 move_to_next_stateful_cpuid_entry(vcpu
, i
);
3577 * Both basic or both extended?
3579 if (((e
->function
^ function
) & 0x80000000) == 0)
3580 if (!best
|| e
->function
> best
->function
)
3586 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
3588 struct kvm_cpuid_entry2
*best
;
3590 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
3592 return best
->eax
& 0xff;
3596 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
3598 u32 function
, index
;
3599 struct kvm_cpuid_entry2
*best
;
3601 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3602 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3603 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
3604 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
3605 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
3606 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
3607 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
3609 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
3610 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
3611 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
3612 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
3614 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3615 trace_kvm_cpuid(function
,
3616 kvm_register_read(vcpu
, VCPU_REGS_RAX
),
3617 kvm_register_read(vcpu
, VCPU_REGS_RBX
),
3618 kvm_register_read(vcpu
, VCPU_REGS_RCX
),
3619 kvm_register_read(vcpu
, VCPU_REGS_RDX
));
3621 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
3624 * Check if userspace requested an interrupt window, and that the
3625 * interrupt window is open.
3627 * No need to exit to userspace if we already have an interrupt queued.
3629 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
3630 struct kvm_run
*kvm_run
)
3632 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
3633 kvm_run
->request_interrupt_window
&&
3634 kvm_arch_interrupt_allowed(vcpu
));
3637 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
3638 struct kvm_run
*kvm_run
)
3640 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
3641 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
3642 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
3643 if (irqchip_in_kernel(vcpu
->kvm
))
3644 kvm_run
->ready_for_interrupt_injection
= 1;
3646 kvm_run
->ready_for_interrupt_injection
=
3647 kvm_arch_interrupt_allowed(vcpu
) &&
3648 !kvm_cpu_has_interrupt(vcpu
) &&
3649 !kvm_event_needs_reinjection(vcpu
);
3652 static void vapic_enter(struct kvm_vcpu
*vcpu
)
3654 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3657 if (!apic
|| !apic
->vapic_addr
)
3660 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3662 vcpu
->arch
.apic
->vapic_page
= page
;
3665 static void vapic_exit(struct kvm_vcpu
*vcpu
)
3667 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3669 if (!apic
|| !apic
->vapic_addr
)
3672 down_read(&vcpu
->kvm
->slots_lock
);
3673 kvm_release_page_dirty(apic
->vapic_page
);
3674 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3675 up_read(&vcpu
->kvm
->slots_lock
);
3678 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
3682 if (!kvm_x86_ops
->update_cr8_intercept
)
3685 if (!vcpu
->arch
.apic
)
3688 if (!vcpu
->arch
.apic
->vapic_addr
)
3689 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
3696 tpr
= kvm_lapic_get_cr8(vcpu
);
3698 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
3701 static void inject_pending_event(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3703 /* try to reinject previous events if any */
3704 if (vcpu
->arch
.exception
.pending
) {
3705 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
3706 vcpu
->arch
.exception
.has_error_code
,
3707 vcpu
->arch
.exception
.error_code
);
3711 if (vcpu
->arch
.nmi_injected
) {
3712 kvm_x86_ops
->set_nmi(vcpu
);
3716 if (vcpu
->arch
.interrupt
.pending
) {
3717 kvm_x86_ops
->set_irq(vcpu
);
3721 /* try to inject new event if pending */
3722 if (vcpu
->arch
.nmi_pending
) {
3723 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
3724 vcpu
->arch
.nmi_pending
= false;
3725 vcpu
->arch
.nmi_injected
= true;
3726 kvm_x86_ops
->set_nmi(vcpu
);
3728 } else if (kvm_cpu_has_interrupt(vcpu
)) {
3729 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
3730 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
3732 kvm_x86_ops
->set_irq(vcpu
);
3737 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3740 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
3741 kvm_run
->request_interrupt_window
;
3744 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
3745 kvm_mmu_unload(vcpu
);
3747 r
= kvm_mmu_reload(vcpu
);
3751 if (vcpu
->requests
) {
3752 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
3753 __kvm_migrate_timers(vcpu
);
3754 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE
, &vcpu
->requests
))
3755 kvm_write_guest_time(vcpu
);
3756 if (test_and_clear_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
))
3757 kvm_mmu_sync_roots(vcpu
);
3758 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
3759 kvm_x86_ops
->tlb_flush(vcpu
);
3760 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
3762 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
3766 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
3767 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
3775 kvm_x86_ops
->prepare_guest_switch(vcpu
);
3776 kvm_load_guest_fpu(vcpu
);
3778 kvm_get_msr(vcpu
, MSR_IA32_TSC
, &vcpu
->arch
.last_guest_tsc
);
3780 local_irq_disable();
3782 clear_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3783 smp_mb__after_clear_bit();
3785 if (vcpu
->requests
|| need_resched() || signal_pending(current
)) {
3786 set_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3793 inject_pending_event(vcpu
, kvm_run
);
3795 /* enable NMI/IRQ window open exits if needed */
3796 if (vcpu
->arch
.nmi_pending
)
3797 kvm_x86_ops
->enable_nmi_window(vcpu
);
3798 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
3799 kvm_x86_ops
->enable_irq_window(vcpu
);
3801 if (kvm_lapic_enabled(vcpu
)) {
3802 update_cr8_intercept(vcpu
);
3803 kvm_lapic_sync_to_vapic(vcpu
);
3806 up_read(&vcpu
->kvm
->slots_lock
);
3810 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3812 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
3813 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
3814 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
3815 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
3818 trace_kvm_entry(vcpu
->vcpu_id
);
3819 kvm_x86_ops
->run(vcpu
, kvm_run
);
3821 if (unlikely(vcpu
->arch
.switch_db_regs
|| test_thread_flag(TIF_DEBUG
))) {
3822 set_debugreg(current
->thread
.debugreg0
, 0);
3823 set_debugreg(current
->thread
.debugreg1
, 1);
3824 set_debugreg(current
->thread
.debugreg2
, 2);
3825 set_debugreg(current
->thread
.debugreg3
, 3);
3826 set_debugreg(current
->thread
.debugreg6
, 6);
3827 set_debugreg(current
->thread
.debugreg7
, 7);
3830 set_bit(KVM_REQ_KICK
, &vcpu
->requests
);
3836 * We must have an instruction between local_irq_enable() and
3837 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3838 * the interrupt shadow. The stat.exits increment will do nicely.
3839 * But we need to prevent reordering, hence this barrier():
3847 down_read(&vcpu
->kvm
->slots_lock
);
3850 * Profile KVM exit RIPs:
3852 if (unlikely(prof_on
== KVM_PROFILING
)) {
3853 unsigned long rip
= kvm_rip_read(vcpu
);
3854 profile_hit(KVM_PROFILING
, (void *)rip
);
3858 kvm_lapic_sync_from_vapic(vcpu
);
3860 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
3866 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3870 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
3871 pr_debug("vcpu %d received sipi with vector # %x\n",
3872 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
3873 kvm_lapic_reset(vcpu
);
3874 r
= kvm_arch_vcpu_reset(vcpu
);
3877 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3880 down_read(&vcpu
->kvm
->slots_lock
);
3885 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
)
3886 r
= vcpu_enter_guest(vcpu
, kvm_run
);
3888 up_read(&vcpu
->kvm
->slots_lock
);
3889 kvm_vcpu_block(vcpu
);
3890 down_read(&vcpu
->kvm
->slots_lock
);
3891 if (test_and_clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
))
3893 switch(vcpu
->arch
.mp_state
) {
3894 case KVM_MP_STATE_HALTED
:
3895 vcpu
->arch
.mp_state
=
3896 KVM_MP_STATE_RUNNABLE
;
3897 case KVM_MP_STATE_RUNNABLE
:
3899 case KVM_MP_STATE_SIPI_RECEIVED
:
3910 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
3911 if (kvm_cpu_has_pending_timer(vcpu
))
3912 kvm_inject_pending_timer_irqs(vcpu
);
3914 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
3916 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3917 ++vcpu
->stat
.request_irq_exits
;
3919 if (signal_pending(current
)) {
3921 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3922 ++vcpu
->stat
.signal_exits
;
3924 if (need_resched()) {
3925 up_read(&vcpu
->kvm
->slots_lock
);
3927 down_read(&vcpu
->kvm
->slots_lock
);
3931 up_read(&vcpu
->kvm
->slots_lock
);
3932 post_kvm_run_save(vcpu
, kvm_run
);
3939 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3946 if (vcpu
->sigset_active
)
3947 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
3949 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
3950 kvm_vcpu_block(vcpu
);
3951 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
3956 /* re-sync apic's tpr */
3957 if (!irqchip_in_kernel(vcpu
->kvm
))
3958 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
3960 if (vcpu
->arch
.pio
.cur_count
) {
3961 r
= complete_pio(vcpu
);
3965 #if CONFIG_HAS_IOMEM
3966 if (vcpu
->mmio_needed
) {
3967 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
3968 vcpu
->mmio_read_completed
= 1;
3969 vcpu
->mmio_needed
= 0;
3971 down_read(&vcpu
->kvm
->slots_lock
);
3972 r
= emulate_instruction(vcpu
, kvm_run
,
3973 vcpu
->arch
.mmio_fault_cr2
, 0,
3974 EMULTYPE_NO_DECODE
);
3975 up_read(&vcpu
->kvm
->slots_lock
);
3976 if (r
== EMULATE_DO_MMIO
) {
3978 * Read-modify-write. Back to userspace.
3985 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
3986 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
3987 kvm_run
->hypercall
.ret
);
3989 r
= __vcpu_run(vcpu
, kvm_run
);
3992 if (vcpu
->sigset_active
)
3993 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
3999 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
4003 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4004 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4005 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4006 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4007 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4008 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
4009 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4010 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
4011 #ifdef CONFIG_X86_64
4012 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
4013 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
4014 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
4015 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
4016 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
4017 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
4018 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
4019 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
4022 regs
->rip
= kvm_rip_read(vcpu
);
4023 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
4026 * Don't leak debug flags in case they were set for guest debugging
4028 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
4029 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
4036 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
4040 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
4041 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
4042 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
4043 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
4044 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
4045 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
4046 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
4047 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
4048 #ifdef CONFIG_X86_64
4049 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
4050 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
4051 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
4052 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
4053 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
4054 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
4055 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
4056 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
4060 kvm_rip_write(vcpu
, regs
->rip
);
4061 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
4064 vcpu
->arch
.exception
.pending
= false;
4071 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4072 struct kvm_segment
*var
, int seg
)
4074 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4077 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
4079 struct kvm_segment cs
;
4081 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
4085 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
4087 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
4088 struct kvm_sregs
*sregs
)
4090 struct descriptor_table dt
;
4094 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
4095 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
4096 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
4097 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
4098 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
4099 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
4101 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
4102 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
4104 kvm_x86_ops
->get_idt(vcpu
, &dt
);
4105 sregs
->idt
.limit
= dt
.limit
;
4106 sregs
->idt
.base
= dt
.base
;
4107 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
4108 sregs
->gdt
.limit
= dt
.limit
;
4109 sregs
->gdt
.base
= dt
.base
;
4111 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
4112 sregs
->cr0
= vcpu
->arch
.cr0
;
4113 sregs
->cr2
= vcpu
->arch
.cr2
;
4114 sregs
->cr3
= vcpu
->arch
.cr3
;
4115 sregs
->cr4
= vcpu
->arch
.cr4
;
4116 sregs
->cr8
= kvm_get_cr8(vcpu
);
4117 sregs
->efer
= vcpu
->arch
.shadow_efer
;
4118 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
4120 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
4122 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
4123 set_bit(vcpu
->arch
.interrupt
.nr
,
4124 (unsigned long *)sregs
->interrupt_bitmap
);
4131 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
4132 struct kvm_mp_state
*mp_state
)
4135 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
4140 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
4141 struct kvm_mp_state
*mp_state
)
4144 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
4149 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4150 struct kvm_segment
*var
, int seg
)
4152 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4155 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
4156 struct kvm_segment
*kvm_desct
)
4158 kvm_desct
->base
= get_desc_base(seg_desc
);
4159 kvm_desct
->limit
= get_desc_limit(seg_desc
);
4161 kvm_desct
->limit
<<= 12;
4162 kvm_desct
->limit
|= 0xfff;
4164 kvm_desct
->selector
= selector
;
4165 kvm_desct
->type
= seg_desc
->type
;
4166 kvm_desct
->present
= seg_desc
->p
;
4167 kvm_desct
->dpl
= seg_desc
->dpl
;
4168 kvm_desct
->db
= seg_desc
->d
;
4169 kvm_desct
->s
= seg_desc
->s
;
4170 kvm_desct
->l
= seg_desc
->l
;
4171 kvm_desct
->g
= seg_desc
->g
;
4172 kvm_desct
->avl
= seg_desc
->avl
;
4174 kvm_desct
->unusable
= 1;
4176 kvm_desct
->unusable
= 0;
4177 kvm_desct
->padding
= 0;
4180 static void get_segment_descriptor_dtable(struct kvm_vcpu
*vcpu
,
4182 struct descriptor_table
*dtable
)
4184 if (selector
& 1 << 2) {
4185 struct kvm_segment kvm_seg
;
4187 kvm_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
4189 if (kvm_seg
.unusable
)
4192 dtable
->limit
= kvm_seg
.limit
;
4193 dtable
->base
= kvm_seg
.base
;
4196 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
4199 /* allowed just for 8 bytes segments */
4200 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
4201 struct desc_struct
*seg_desc
)
4203 struct descriptor_table dtable
;
4204 u16 index
= selector
>> 3;
4206 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
4208 if (dtable
.limit
< index
* 8 + 7) {
4209 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
4212 return kvm_read_guest_virt_system(dtable
.base
+ index
*8,
4213 seg_desc
, sizeof(*seg_desc
),
4217 /* allowed just for 8 bytes segments */
4218 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
4219 struct desc_struct
*seg_desc
)
4221 struct descriptor_table dtable
;
4222 u16 index
= selector
>> 3;
4224 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
4226 if (dtable
.limit
< index
* 8 + 7)
4228 return kvm_write_guest_virt(dtable
.base
+ index
*8, seg_desc
, sizeof(*seg_desc
), vcpu
, NULL
);
4231 static gpa_t
get_tss_base_addr_write(struct kvm_vcpu
*vcpu
,
4232 struct desc_struct
*seg_desc
)
4234 u32 base_addr
= get_desc_base(seg_desc
);
4236 return kvm_mmu_gva_to_gpa_write(vcpu
, base_addr
, NULL
);
4239 static gpa_t
get_tss_base_addr_read(struct kvm_vcpu
*vcpu
,
4240 struct desc_struct
*seg_desc
)
4242 u32 base_addr
= get_desc_base(seg_desc
);
4244 return kvm_mmu_gva_to_gpa_read(vcpu
, base_addr
, NULL
);
4247 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
4249 struct kvm_segment kvm_seg
;
4251 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
4252 return kvm_seg
.selector
;
4255 static int kvm_load_realmode_segment(struct kvm_vcpu
*vcpu
, u16 selector
, int seg
)
4257 struct kvm_segment segvar
= {
4258 .base
= selector
<< 4,
4260 .selector
= selector
,
4271 kvm_x86_ops
->set_segment(vcpu
, &segvar
, seg
);
4272 return X86EMUL_CONTINUE
;
4275 static int is_vm86_segment(struct kvm_vcpu
*vcpu
, int seg
)
4277 return (seg
!= VCPU_SREG_LDTR
) &&
4278 (seg
!= VCPU_SREG_TR
) &&
4279 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_VM
);
4282 int kvm_load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
, int seg
)
4284 struct kvm_segment kvm_seg
;
4285 struct desc_struct seg_desc
;
4287 unsigned err_vec
= GP_VECTOR
;
4289 bool null_selector
= !(selector
& ~0x3); /* 0000-0003 are null */
4292 if (is_vm86_segment(vcpu
, seg
) || !(vcpu
->arch
.cr0
& X86_CR0_PE
))
4293 return kvm_load_realmode_segment(vcpu
, selector
, seg
);
4296 /* NULL selector is not valid for TR, CS and SS */
4297 if ((seg
== VCPU_SREG_CS
|| seg
== VCPU_SREG_SS
|| seg
== VCPU_SREG_TR
)
4301 /* TR should be in GDT only */
4302 if (seg
== VCPU_SREG_TR
&& (selector
& (1 << 2)))
4305 ret
= load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
);
4309 seg_desct_to_kvm_desct(&seg_desc
, selector
, &kvm_seg
);
4311 if (null_selector
) { /* for NULL selector skip all following checks */
4312 kvm_seg
.unusable
= 1;
4316 err_code
= selector
& 0xfffc;
4317 err_vec
= GP_VECTOR
;
4319 /* can't load system descriptor into segment selecor */
4320 if (seg
<= VCPU_SREG_GS
&& !kvm_seg
.s
)
4323 if (!kvm_seg
.present
) {
4324 err_vec
= (seg
== VCPU_SREG_SS
) ? SS_VECTOR
: NP_VECTOR
;
4330 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
4335 * segment is not a writable data segment or segment
4336 * selector's RPL != CPL or segment selector's RPL != CPL
4338 if (rpl
!= cpl
|| (kvm_seg
.type
& 0xa) != 0x2 || dpl
!= cpl
)
4342 if (!(kvm_seg
.type
& 8))
4345 if (kvm_seg
.type
& 4) {
4351 if (rpl
> cpl
|| dpl
!= cpl
)
4354 /* CS(RPL) <- CPL */
4355 selector
= (selector
& 0xfffc) | cpl
;
4358 if (kvm_seg
.s
|| (kvm_seg
.type
!= 1 && kvm_seg
.type
!= 9))
4361 case VCPU_SREG_LDTR
:
4362 if (kvm_seg
.s
|| kvm_seg
.type
!= 2)
4365 default: /* DS, ES, FS, or GS */
4367 * segment is not a data or readable code segment or
4368 * ((segment is a data or nonconforming code segment)
4369 * and (both RPL and CPL > DPL))
4371 if ((kvm_seg
.type
& 0xa) == 0x8 ||
4372 (((kvm_seg
.type
& 0xc) != 0xc) && (rpl
> dpl
&& cpl
> dpl
)))
4377 if (!kvm_seg
.unusable
&& kvm_seg
.s
) {
4378 /* mark segment as accessed */
4381 save_guest_segment_descriptor(vcpu
, selector
, &seg_desc
);
4384 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
4385 return X86EMUL_CONTINUE
;
4387 kvm_queue_exception_e(vcpu
, err_vec
, err_code
);
4388 return X86EMUL_PROPAGATE_FAULT
;
4391 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
4392 struct tss_segment_32
*tss
)
4394 tss
->cr3
= vcpu
->arch
.cr3
;
4395 tss
->eip
= kvm_rip_read(vcpu
);
4396 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4397 tss
->eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4398 tss
->ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4399 tss
->edx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4400 tss
->ebx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4401 tss
->esp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4402 tss
->ebp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
4403 tss
->esi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4404 tss
->edi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
4405 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
4406 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
4407 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
4408 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
4409 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
4410 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
4411 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
4414 static void kvm_load_segment_selector(struct kvm_vcpu
*vcpu
, u16 sel
, int seg
)
4416 struct kvm_segment kvm_seg
;
4417 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
4418 kvm_seg
.selector
= sel
;
4419 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
4422 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
4423 struct tss_segment_32
*tss
)
4425 kvm_set_cr3(vcpu
, tss
->cr3
);
4427 kvm_rip_write(vcpu
, tss
->eip
);
4428 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
4430 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->eax
);
4431 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->ecx
);
4432 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->edx
);
4433 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->ebx
);
4434 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->esp
);
4435 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->ebp
);
4436 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->esi
);
4437 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->edi
);
4440 * SDM says that segment selectors are loaded before segment
4443 kvm_load_segment_selector(vcpu
, tss
->ldt_selector
, VCPU_SREG_LDTR
);
4444 kvm_load_segment_selector(vcpu
, tss
->es
, VCPU_SREG_ES
);
4445 kvm_load_segment_selector(vcpu
, tss
->cs
, VCPU_SREG_CS
);
4446 kvm_load_segment_selector(vcpu
, tss
->ss
, VCPU_SREG_SS
);
4447 kvm_load_segment_selector(vcpu
, tss
->ds
, VCPU_SREG_DS
);
4448 kvm_load_segment_selector(vcpu
, tss
->fs
, VCPU_SREG_FS
);
4449 kvm_load_segment_selector(vcpu
, tss
->gs
, VCPU_SREG_GS
);
4452 * Now load segment descriptors. If fault happenes at this stage
4453 * it is handled in a context of new task
4455 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt_selector
, VCPU_SREG_LDTR
))
4458 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, VCPU_SREG_ES
))
4461 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, VCPU_SREG_CS
))
4464 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, VCPU_SREG_SS
))
4467 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, VCPU_SREG_DS
))
4470 if (kvm_load_segment_descriptor(vcpu
, tss
->fs
, VCPU_SREG_FS
))
4473 if (kvm_load_segment_descriptor(vcpu
, tss
->gs
, VCPU_SREG_GS
))
4478 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
4479 struct tss_segment_16
*tss
)
4481 tss
->ip
= kvm_rip_read(vcpu
);
4482 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
4483 tss
->ax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4484 tss
->cx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4485 tss
->dx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4486 tss
->bx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4487 tss
->sp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4488 tss
->bp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
4489 tss
->si
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4490 tss
->di
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
4492 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
4493 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
4494 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
4495 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
4496 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
4497 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
4500 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
4501 struct tss_segment_16
*tss
)
4503 kvm_rip_write(vcpu
, tss
->ip
);
4504 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
4505 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->ax
);
4506 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->cx
);
4507 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->dx
);
4508 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->bx
);
4509 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->sp
);
4510 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->bp
);
4511 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->si
);
4512 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->di
);
4515 * SDM says that segment selectors are loaded before segment
4518 kvm_load_segment_selector(vcpu
, tss
->ldt
, VCPU_SREG_LDTR
);
4519 kvm_load_segment_selector(vcpu
, tss
->es
, VCPU_SREG_ES
);
4520 kvm_load_segment_selector(vcpu
, tss
->cs
, VCPU_SREG_CS
);
4521 kvm_load_segment_selector(vcpu
, tss
->ss
, VCPU_SREG_SS
);
4522 kvm_load_segment_selector(vcpu
, tss
->ds
, VCPU_SREG_DS
);
4525 * Now load segment descriptors. If fault happenes at this stage
4526 * it is handled in a context of new task
4528 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt
, VCPU_SREG_LDTR
))
4531 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, VCPU_SREG_ES
))
4534 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, VCPU_SREG_CS
))
4537 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, VCPU_SREG_SS
))
4540 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, VCPU_SREG_DS
))
4545 static int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
4546 u16 old_tss_sel
, u32 old_tss_base
,
4547 struct desc_struct
*nseg_desc
)
4549 struct tss_segment_16 tss_segment_16
;
4552 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
4553 sizeof tss_segment_16
))
4556 save_state_to_tss16(vcpu
, &tss_segment_16
);
4558 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
4559 sizeof tss_segment_16
))
4562 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr_read(vcpu
, nseg_desc
),
4563 &tss_segment_16
, sizeof tss_segment_16
))
4566 if (old_tss_sel
!= 0xffff) {
4567 tss_segment_16
.prev_task_link
= old_tss_sel
;
4569 if (kvm_write_guest(vcpu
->kvm
,
4570 get_tss_base_addr_write(vcpu
, nseg_desc
),
4571 &tss_segment_16
.prev_task_link
,
4572 sizeof tss_segment_16
.prev_task_link
))
4576 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
4584 static int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
4585 u16 old_tss_sel
, u32 old_tss_base
,
4586 struct desc_struct
*nseg_desc
)
4588 struct tss_segment_32 tss_segment_32
;
4591 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
4592 sizeof tss_segment_32
))
4595 save_state_to_tss32(vcpu
, &tss_segment_32
);
4597 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
4598 sizeof tss_segment_32
))
4601 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr_read(vcpu
, nseg_desc
),
4602 &tss_segment_32
, sizeof tss_segment_32
))
4605 if (old_tss_sel
!= 0xffff) {
4606 tss_segment_32
.prev_task_link
= old_tss_sel
;
4608 if (kvm_write_guest(vcpu
->kvm
,
4609 get_tss_base_addr_write(vcpu
, nseg_desc
),
4610 &tss_segment_32
.prev_task_link
,
4611 sizeof tss_segment_32
.prev_task_link
))
4615 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
4623 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
4625 struct kvm_segment tr_seg
;
4626 struct desc_struct cseg_desc
;
4627 struct desc_struct nseg_desc
;
4629 u32 old_tss_base
= get_segment_base(vcpu
, VCPU_SREG_TR
);
4630 u16 old_tss_sel
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
4633 old_tss_base
= kvm_mmu_gva_to_gpa_write(vcpu
, old_tss_base
, NULL
);
4635 /* FIXME: Handle errors. Failure to read either TSS or their
4636 * descriptors should generate a pagefault.
4638 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
4641 if (load_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
))
4644 if (reason
!= TASK_SWITCH_IRET
) {
4647 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
4648 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
4649 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
4654 desc_limit
= get_desc_limit(&nseg_desc
);
4656 ((desc_limit
< 0x67 && (nseg_desc
.type
& 8)) ||
4657 desc_limit
< 0x2b)) {
4658 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
4662 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
4663 cseg_desc
.type
&= ~(1 << 1); //clear the B flag
4664 save_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
);
4667 if (reason
== TASK_SWITCH_IRET
) {
4668 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4669 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
4672 /* set back link to prev task only if NT bit is set in eflags
4673 note that old_tss_sel is not used afetr this point */
4674 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4675 old_tss_sel
= 0xffff;
4677 /* set back link to prev task only if NT bit is set in eflags
4678 note that old_tss_sel is not used afetr this point */
4679 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
4680 old_tss_sel
= 0xffff;
4682 if (nseg_desc
.type
& 8)
4683 ret
= kvm_task_switch_32(vcpu
, tss_selector
, old_tss_sel
,
4684 old_tss_base
, &nseg_desc
);
4686 ret
= kvm_task_switch_16(vcpu
, tss_selector
, old_tss_sel
,
4687 old_tss_base
, &nseg_desc
);
4689 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
4690 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4691 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
4694 if (reason
!= TASK_SWITCH_IRET
) {
4695 nseg_desc
.type
|= (1 << 1);
4696 save_guest_segment_descriptor(vcpu
, tss_selector
,
4700 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
4701 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
4703 kvm_set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
4707 EXPORT_SYMBOL_GPL(kvm_task_switch
);
4709 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
4710 struct kvm_sregs
*sregs
)
4712 int mmu_reset_needed
= 0;
4713 int pending_vec
, max_bits
;
4714 struct descriptor_table dt
;
4718 dt
.limit
= sregs
->idt
.limit
;
4719 dt
.base
= sregs
->idt
.base
;
4720 kvm_x86_ops
->set_idt(vcpu
, &dt
);
4721 dt
.limit
= sregs
->gdt
.limit
;
4722 dt
.base
= sregs
->gdt
.base
;
4723 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
4725 vcpu
->arch
.cr2
= sregs
->cr2
;
4726 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
4727 vcpu
->arch
.cr3
= sregs
->cr3
;
4729 kvm_set_cr8(vcpu
, sregs
->cr8
);
4731 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
4732 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
4733 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
4735 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
4737 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
4738 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
4739 vcpu
->arch
.cr0
= sregs
->cr0
;
4741 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
4742 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
4743 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
4744 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
4746 if (mmu_reset_needed
)
4747 kvm_mmu_reset_context(vcpu
);
4749 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
4750 pending_vec
= find_first_bit(
4751 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
4752 if (pending_vec
< max_bits
) {
4753 kvm_queue_interrupt(vcpu
, pending_vec
, false);
4754 pr_debug("Set back pending irq %d\n", pending_vec
);
4755 if (irqchip_in_kernel(vcpu
->kvm
))
4756 kvm_pic_clear_isr_ack(vcpu
->kvm
);
4759 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
4760 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
4761 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
4762 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
4763 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
4764 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
4766 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
4767 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
4769 update_cr8_intercept(vcpu
);
4771 /* Older userspace won't unhalt the vcpu on reset. */
4772 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
4773 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
4774 !(vcpu
->arch
.cr0
& X86_CR0_PE
))
4775 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4782 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
4783 struct kvm_guest_debug
*dbg
)
4789 if ((dbg
->control
& (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) ==
4790 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) {
4791 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
4792 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
4793 vcpu
->arch
.switch_db_regs
=
4794 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
4796 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
4797 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
4798 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
4801 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
4803 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
4804 kvm_queue_exception(vcpu
, DB_VECTOR
);
4805 else if (dbg
->control
& KVM_GUESTDBG_INJECT_BP
)
4806 kvm_queue_exception(vcpu
, BP_VECTOR
);
4814 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4815 * we have asm/x86/processor.h
4826 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4827 #ifdef CONFIG_X86_64
4828 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4830 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4835 * Translate a guest virtual address to a guest physical address.
4837 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
4838 struct kvm_translation
*tr
)
4840 unsigned long vaddr
= tr
->linear_address
;
4844 down_read(&vcpu
->kvm
->slots_lock
);
4845 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
4846 up_read(&vcpu
->kvm
->slots_lock
);
4847 tr
->physical_address
= gpa
;
4848 tr
->valid
= gpa
!= UNMAPPED_GVA
;
4856 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4858 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4862 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
4863 fpu
->fcw
= fxsave
->cwd
;
4864 fpu
->fsw
= fxsave
->swd
;
4865 fpu
->ftwx
= fxsave
->twd
;
4866 fpu
->last_opcode
= fxsave
->fop
;
4867 fpu
->last_ip
= fxsave
->rip
;
4868 fpu
->last_dp
= fxsave
->rdp
;
4869 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
4876 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4878 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4882 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
4883 fxsave
->cwd
= fpu
->fcw
;
4884 fxsave
->swd
= fpu
->fsw
;
4885 fxsave
->twd
= fpu
->ftwx
;
4886 fxsave
->fop
= fpu
->last_opcode
;
4887 fxsave
->rip
= fpu
->last_ip
;
4888 fxsave
->rdp
= fpu
->last_dp
;
4889 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
4896 void fx_init(struct kvm_vcpu
*vcpu
)
4898 unsigned after_mxcsr_mask
;
4901 * Touch the fpu the first time in non atomic context as if
4902 * this is the first fpu instruction the exception handler
4903 * will fire before the instruction returns and it'll have to
4904 * allocate ram with GFP_KERNEL.
4907 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4909 /* Initialize guest FPU by resetting ours and saving into guest's */
4911 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4913 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4914 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4917 vcpu
->arch
.cr0
|= X86_CR0_ET
;
4918 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
4919 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
4920 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
4921 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
4923 EXPORT_SYMBOL_GPL(fx_init
);
4925 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
4927 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
4930 vcpu
->guest_fpu_loaded
= 1;
4931 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4932 kvm_fx_restore(&vcpu
->arch
.guest_fx_image
);
4934 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
4936 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
4938 if (!vcpu
->guest_fpu_loaded
)
4941 vcpu
->guest_fpu_loaded
= 0;
4942 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4943 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4944 ++vcpu
->stat
.fpu_reload
;
4946 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
4948 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
4950 if (vcpu
->arch
.time_page
) {
4951 kvm_release_page_dirty(vcpu
->arch
.time_page
);
4952 vcpu
->arch
.time_page
= NULL
;
4955 kvm_x86_ops
->vcpu_free(vcpu
);
4958 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
4961 return kvm_x86_ops
->vcpu_create(kvm
, id
);
4964 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
4968 /* We do fxsave: this must be aligned. */
4969 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
4971 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
4973 r
= kvm_arch_vcpu_reset(vcpu
);
4975 r
= kvm_mmu_setup(vcpu
);
4982 kvm_x86_ops
->vcpu_free(vcpu
);
4986 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
4989 kvm_mmu_unload(vcpu
);
4992 kvm_x86_ops
->vcpu_free(vcpu
);
4995 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
4997 vcpu
->arch
.nmi_pending
= false;
4998 vcpu
->arch
.nmi_injected
= false;
5000 vcpu
->arch
.switch_db_regs
= 0;
5001 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
5002 vcpu
->arch
.dr6
= DR6_FIXED_1
;
5003 vcpu
->arch
.dr7
= DR7_FIXED_1
;
5005 return kvm_x86_ops
->vcpu_reset(vcpu
);
5008 void kvm_arch_hardware_enable(void *garbage
)
5010 kvm_x86_ops
->hardware_enable(garbage
);
5013 void kvm_arch_hardware_disable(void *garbage
)
5015 kvm_x86_ops
->hardware_disable(garbage
);
5018 int kvm_arch_hardware_setup(void)
5020 return kvm_x86_ops
->hardware_setup();
5023 void kvm_arch_hardware_unsetup(void)
5025 kvm_x86_ops
->hardware_unsetup();
5028 void kvm_arch_check_processor_compat(void *rtn
)
5030 kvm_x86_ops
->check_processor_compatibility(rtn
);
5033 bool kvm_vcpu_compatible(struct kvm_vcpu
*vcpu
)
5035 return irqchip_in_kernel(vcpu
->kvm
) == (vcpu
->arch
.apic
!= NULL
);
5038 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
5044 BUG_ON(vcpu
->kvm
== NULL
);
5047 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
5048 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
5049 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5051 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
5053 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
5058 vcpu
->arch
.pio_data
= page_address(page
);
5060 r
= kvm_mmu_create(vcpu
);
5062 goto fail_free_pio_data
;
5064 if (irqchip_in_kernel(kvm
)) {
5065 r
= kvm_create_lapic(vcpu
);
5067 goto fail_mmu_destroy
;
5070 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
5072 if (!vcpu
->arch
.mce_banks
) {
5074 goto fail_free_lapic
;
5076 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
5080 kvm_free_lapic(vcpu
);
5082 kvm_mmu_destroy(vcpu
);
5084 free_page((unsigned long)vcpu
->arch
.pio_data
);
5089 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
5091 kfree(vcpu
->arch
.mce_banks
);
5092 kvm_free_lapic(vcpu
);
5093 down_read(&vcpu
->kvm
->slots_lock
);
5094 kvm_mmu_destroy(vcpu
);
5095 up_read(&vcpu
->kvm
->slots_lock
);
5096 free_page((unsigned long)vcpu
->arch
.pio_data
);
5099 struct kvm
*kvm_arch_create_vm(void)
5101 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
5104 return ERR_PTR(-ENOMEM
);
5106 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
5107 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
5109 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5110 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
5112 rdtscll(kvm
->arch
.vm_init_tsc
);
5117 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
5120 kvm_mmu_unload(vcpu
);
5124 static void kvm_free_vcpus(struct kvm
*kvm
)
5127 struct kvm_vcpu
*vcpu
;
5130 * Unpin any mmu pages first.
5132 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5133 kvm_unload_vcpu_mmu(vcpu
);
5134 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5135 kvm_arch_vcpu_free(vcpu
);
5137 mutex_lock(&kvm
->lock
);
5138 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
5139 kvm
->vcpus
[i
] = NULL
;
5141 atomic_set(&kvm
->online_vcpus
, 0);
5142 mutex_unlock(&kvm
->lock
);
5145 void kvm_arch_sync_events(struct kvm
*kvm
)
5147 kvm_free_all_assigned_devices(kvm
);
5150 void kvm_arch_destroy_vm(struct kvm
*kvm
)
5152 kvm_iommu_unmap_guest(kvm
);
5154 kfree(kvm
->arch
.vpic
);
5155 kfree(kvm
->arch
.vioapic
);
5156 kvm_free_vcpus(kvm
);
5157 kvm_free_physmem(kvm
);
5158 if (kvm
->arch
.apic_access_page
)
5159 put_page(kvm
->arch
.apic_access_page
);
5160 if (kvm
->arch
.ept_identity_pagetable
)
5161 put_page(kvm
->arch
.ept_identity_pagetable
);
5165 int kvm_arch_set_memory_region(struct kvm
*kvm
,
5166 struct kvm_userspace_memory_region
*mem
,
5167 struct kvm_memory_slot old
,
5170 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
5171 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
5173 /*To keep backward compatibility with older userspace,
5174 *x86 needs to hanlde !user_alloc case.
5177 if (npages
&& !old
.rmap
) {
5178 unsigned long userspace_addr
;
5180 down_write(¤t
->mm
->mmap_sem
);
5181 userspace_addr
= do_mmap(NULL
, 0,
5183 PROT_READ
| PROT_WRITE
,
5184 MAP_PRIVATE
| MAP_ANONYMOUS
,
5186 up_write(¤t
->mm
->mmap_sem
);
5188 if (IS_ERR((void *)userspace_addr
))
5189 return PTR_ERR((void *)userspace_addr
);
5191 /* set userspace_addr atomically for kvm_hva_to_rmapp */
5192 spin_lock(&kvm
->mmu_lock
);
5193 memslot
->userspace_addr
= userspace_addr
;
5194 spin_unlock(&kvm
->mmu_lock
);
5196 if (!old
.user_alloc
&& old
.rmap
) {
5199 down_write(¤t
->mm
->mmap_sem
);
5200 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
5201 old
.npages
* PAGE_SIZE
);
5202 up_write(¤t
->mm
->mmap_sem
);
5205 "kvm_vm_ioctl_set_memory_region: "
5206 "failed to munmap memory\n");
5211 spin_lock(&kvm
->mmu_lock
);
5212 if (!kvm
->arch
.n_requested_mmu_pages
) {
5213 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
5214 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
5217 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
5218 spin_unlock(&kvm
->mmu_lock
);
5223 void kvm_arch_flush_shadow(struct kvm
*kvm
)
5225 kvm_mmu_zap_all(kvm
);
5226 kvm_reload_remote_mmus(kvm
);
5229 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
5231 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
5232 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
5233 || vcpu
->arch
.nmi_pending
||
5234 (kvm_arch_interrupt_allowed(vcpu
) &&
5235 kvm_cpu_has_interrupt(vcpu
));
5238 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
5241 int cpu
= vcpu
->cpu
;
5243 if (waitqueue_active(&vcpu
->wq
)) {
5244 wake_up_interruptible(&vcpu
->wq
);
5245 ++vcpu
->stat
.halt_wakeup
;
5249 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
5250 if (!test_and_set_bit(KVM_REQ_KICK
, &vcpu
->requests
))
5251 smp_send_reschedule(cpu
);
5255 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
5257 return kvm_x86_ops
->interrupt_allowed(vcpu
);
5260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
5261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
5262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
5263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
5264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);