initial commit with v2.6.32.60
[linux-2.6.32.60-moxart.git] / arch / x86 / kvm / x86.c
blob271fddf47cb7f5dd7a656f0baf391e0939638141
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
45 #include <asm/uaccess.h>
46 #include <asm/msr.h>
47 #include <asm/desc.h>
48 #include <asm/mtrr.h>
49 #include <asm/mce.h>
50 #include <asm/pvclock.h>
52 #define MAX_IO_MSRS 256
53 #define CR0_RESERVED_BITS \
54 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
55 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
56 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
57 #define CR4_RESERVED_BITS \
58 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
59 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
60 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
61 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
63 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
68 /* EFER defaults:
69 * - enable syscall per default because its emulated by KVM
70 * - enable LME and LMA per default on 64 bit KVM
72 #ifdef CONFIG_X86_64
73 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
74 #else
75 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
76 #endif
78 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
79 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
81 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
82 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
83 struct kvm_cpuid_entry2 __user *entries);
85 struct kvm_x86_ops *kvm_x86_ops;
86 EXPORT_SYMBOL_GPL(kvm_x86_ops);
88 int ignore_msrs = 0;
89 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
91 struct kvm_stats_debugfs_item debugfs_entries[] = {
92 { "pf_fixed", VCPU_STAT(pf_fixed) },
93 { "pf_guest", VCPU_STAT(pf_guest) },
94 { "tlb_flush", VCPU_STAT(tlb_flush) },
95 { "invlpg", VCPU_STAT(invlpg) },
96 { "exits", VCPU_STAT(exits) },
97 { "io_exits", VCPU_STAT(io_exits) },
98 { "mmio_exits", VCPU_STAT(mmio_exits) },
99 { "signal_exits", VCPU_STAT(signal_exits) },
100 { "irq_window", VCPU_STAT(irq_window_exits) },
101 { "nmi_window", VCPU_STAT(nmi_window_exits) },
102 { "halt_exits", VCPU_STAT(halt_exits) },
103 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
104 { "hypercalls", VCPU_STAT(hypercalls) },
105 { "request_irq", VCPU_STAT(request_irq_exits) },
106 { "irq_exits", VCPU_STAT(irq_exits) },
107 { "host_state_reload", VCPU_STAT(host_state_reload) },
108 { "efer_reload", VCPU_STAT(efer_reload) },
109 { "fpu_reload", VCPU_STAT(fpu_reload) },
110 { "insn_emulation", VCPU_STAT(insn_emulation) },
111 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
112 { "irq_injections", VCPU_STAT(irq_injections) },
113 { "nmi_injections", VCPU_STAT(nmi_injections) },
114 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
115 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
116 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
117 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
118 { "mmu_flooded", VM_STAT(mmu_flooded) },
119 { "mmu_recycled", VM_STAT(mmu_recycled) },
120 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
121 { "mmu_unsync", VM_STAT(mmu_unsync) },
122 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
123 { "largepages", VM_STAT(lpages) },
124 { NULL }
127 unsigned long segment_base(u16 selector)
129 struct descriptor_table gdt;
130 struct desc_struct *d;
131 unsigned long table_base;
132 unsigned long v;
134 if (selector == 0)
135 return 0;
137 kvm_get_gdt(&gdt);
138 table_base = gdt.base;
140 if (selector & 4) { /* from ldt */
141 u16 ldt_selector = kvm_read_ldt();
143 table_base = segment_base(ldt_selector);
145 d = (struct desc_struct *)(table_base + (selector & ~7));
146 v = get_desc_base(d);
147 #ifdef CONFIG_X86_64
148 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
149 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
150 #endif
151 return v;
153 EXPORT_SYMBOL_GPL(segment_base);
155 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
157 if (irqchip_in_kernel(vcpu->kvm))
158 return vcpu->arch.apic_base;
159 else
160 return vcpu->arch.apic_base;
162 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
164 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
166 /* TODO: reserve bits check */
167 if (irqchip_in_kernel(vcpu->kvm))
168 kvm_lapic_set_base(vcpu, data);
169 else
170 vcpu->arch.apic_base = data;
172 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
174 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
176 WARN_ON(vcpu->arch.exception.pending);
177 vcpu->arch.exception.pending = true;
178 vcpu->arch.exception.has_error_code = false;
179 vcpu->arch.exception.nr = nr;
181 EXPORT_SYMBOL_GPL(kvm_queue_exception);
183 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
184 u32 error_code)
186 ++vcpu->stat.pf_guest;
188 if (vcpu->arch.exception.pending) {
189 switch(vcpu->arch.exception.nr) {
190 case DF_VECTOR:
191 /* triple fault -> shutdown */
192 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
193 return;
194 case PF_VECTOR:
195 vcpu->arch.exception.nr = DF_VECTOR;
196 vcpu->arch.exception.error_code = 0;
197 return;
198 default:
199 /* replace previous exception with a new one in a hope
200 that instruction re-execution will regenerate lost
201 exception */
202 vcpu->arch.exception.pending = false;
203 break;
206 vcpu->arch.cr2 = addr;
207 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
210 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
212 vcpu->arch.nmi_pending = 1;
214 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
216 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
218 WARN_ON(vcpu->arch.exception.pending);
219 vcpu->arch.exception.pending = true;
220 vcpu->arch.exception.has_error_code = true;
221 vcpu->arch.exception.nr = nr;
222 vcpu->arch.exception.error_code = error_code;
224 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
227 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
228 * a #GP and return false.
230 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
232 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
233 return true;
234 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
235 return false;
237 EXPORT_SYMBOL_GPL(kvm_require_cpl);
240 * Load the pae pdptrs. Return true is they are all valid.
242 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
244 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
245 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
246 int i;
247 int ret;
248 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
250 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
251 offset * sizeof(u64), sizeof(pdpte));
252 if (ret < 0) {
253 ret = 0;
254 goto out;
256 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
257 if (is_present_gpte(pdpte[i]) &&
258 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
259 ret = 0;
260 goto out;
263 ret = 1;
265 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
266 __set_bit(VCPU_EXREG_PDPTR,
267 (unsigned long *)&vcpu->arch.regs_avail);
268 __set_bit(VCPU_EXREG_PDPTR,
269 (unsigned long *)&vcpu->arch.regs_dirty);
270 out:
272 return ret;
274 EXPORT_SYMBOL_GPL(load_pdptrs);
276 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
278 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
279 bool changed = true;
280 int r;
282 if (is_long_mode(vcpu) || !is_pae(vcpu))
283 return false;
285 if (!test_bit(VCPU_EXREG_PDPTR,
286 (unsigned long *)&vcpu->arch.regs_avail))
287 return true;
289 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
290 if (r < 0)
291 goto out;
292 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
293 out:
295 return changed;
298 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
300 if (cr0 & CR0_RESERVED_BITS) {
301 kvm_inject_gp(vcpu, 0);
302 return;
305 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
306 kvm_inject_gp(vcpu, 0);
307 return;
310 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
311 kvm_inject_gp(vcpu, 0);
312 return;
315 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
316 #ifdef CONFIG_X86_64
317 if ((vcpu->arch.shadow_efer & EFER_LME)) {
318 int cs_db, cs_l;
320 if (!is_pae(vcpu)) {
321 kvm_inject_gp(vcpu, 0);
322 return;
324 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
325 if (cs_l) {
326 kvm_inject_gp(vcpu, 0);
327 return;
330 } else
331 #endif
332 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
333 kvm_inject_gp(vcpu, 0);
334 return;
339 kvm_x86_ops->set_cr0(vcpu, cr0);
340 vcpu->arch.cr0 = cr0;
342 kvm_mmu_reset_context(vcpu);
343 return;
345 EXPORT_SYMBOL_GPL(kvm_set_cr0);
347 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
349 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0eul) | (msw & 0x0f));
351 EXPORT_SYMBOL_GPL(kvm_lmsw);
353 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
355 unsigned long old_cr4 = vcpu->arch.cr4;
356 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
358 if (cr4 & CR4_RESERVED_BITS) {
359 kvm_inject_gp(vcpu, 0);
360 return;
363 if (is_long_mode(vcpu)) {
364 if (!(cr4 & X86_CR4_PAE)) {
365 kvm_inject_gp(vcpu, 0);
366 return;
368 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
369 && ((cr4 ^ old_cr4) & pdptr_bits)
370 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
371 kvm_inject_gp(vcpu, 0);
372 return;
375 if (cr4 & X86_CR4_VMXE) {
376 kvm_inject_gp(vcpu, 0);
377 return;
379 kvm_x86_ops->set_cr4(vcpu, cr4);
380 vcpu->arch.cr4 = cr4;
381 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
382 kvm_mmu_reset_context(vcpu);
384 EXPORT_SYMBOL_GPL(kvm_set_cr4);
386 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
388 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
389 kvm_mmu_sync_roots(vcpu);
390 kvm_mmu_flush_tlb(vcpu);
391 return;
394 if (is_long_mode(vcpu)) {
395 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
396 kvm_inject_gp(vcpu, 0);
397 return;
399 } else {
400 if (is_pae(vcpu)) {
401 if (cr3 & CR3_PAE_RESERVED_BITS) {
402 kvm_inject_gp(vcpu, 0);
403 return;
405 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
406 kvm_inject_gp(vcpu, 0);
407 return;
411 * We don't check reserved bits in nonpae mode, because
412 * this isn't enforced, and VMware depends on this.
417 * Does the new cr3 value map to physical memory? (Note, we
418 * catch an invalid cr3 even in real-mode, because it would
419 * cause trouble later on when we turn on paging anyway.)
421 * A real CPU would silently accept an invalid cr3 and would
422 * attempt to use it - with largely undefined (and often hard
423 * to debug) behavior on the guest side.
425 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
426 kvm_inject_gp(vcpu, 0);
427 else {
428 vcpu->arch.cr3 = cr3;
429 vcpu->arch.mmu.new_cr3(vcpu);
432 EXPORT_SYMBOL_GPL(kvm_set_cr3);
434 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
436 if (cr8 & CR8_RESERVED_BITS) {
437 kvm_inject_gp(vcpu, 0);
438 return;
440 if (irqchip_in_kernel(vcpu->kvm))
441 kvm_lapic_set_tpr(vcpu, cr8);
442 else
443 vcpu->arch.cr8 = cr8;
445 EXPORT_SYMBOL_GPL(kvm_set_cr8);
447 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
449 if (irqchip_in_kernel(vcpu->kvm))
450 return kvm_lapic_get_cr8(vcpu);
451 else
452 return vcpu->arch.cr8;
454 EXPORT_SYMBOL_GPL(kvm_get_cr8);
456 static inline u32 bit(int bitno)
458 return 1 << (bitno & 31);
462 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
463 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
465 * This list is modified at module load time to reflect the
466 * capabilities of the host cpu. This capabilities test skips MSRs that are
467 * kvm-specific. Those are put in the beginning of the list.
470 #define KVM_SAVE_MSRS_BEGIN 2
471 static u32 msrs_to_save[] = {
472 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
473 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
474 MSR_K6_STAR,
475 #ifdef CONFIG_X86_64
476 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
477 #endif
478 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
481 static unsigned num_msrs_to_save;
483 static u32 emulated_msrs[] = {
484 MSR_IA32_MISC_ENABLE,
487 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
489 if (efer & efer_reserved_bits)
490 return 1;
492 if (is_paging(vcpu)
493 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME))
494 return 1;
496 if (efer & EFER_FFXSR) {
497 struct kvm_cpuid_entry2 *feat;
499 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
500 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
501 return 1;
504 if (efer & EFER_SVME) {
505 struct kvm_cpuid_entry2 *feat;
507 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
508 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
509 return 1;
512 efer &= ~EFER_LMA;
513 efer |= vcpu->arch.shadow_efer & EFER_LMA;
515 kvm_x86_ops->set_efer(vcpu, efer);
517 vcpu->arch.shadow_efer = efer;
519 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
520 kvm_mmu_reset_context(vcpu);
522 return 0;
525 void kvm_enable_efer_bits(u64 mask)
527 efer_reserved_bits &= ~mask;
529 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
533 * Writes msr value into into the appropriate "register".
534 * Returns 0 on success, non-0 otherwise.
535 * Assumes vcpu_load() was already called.
537 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
539 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
543 * Adapt set_msr() to msr_io()'s calling convention
545 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
547 return kvm_set_msr(vcpu, index, *data);
550 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
552 int version;
553 int r;
554 struct pvclock_wall_clock wc;
555 struct timespec boot;
557 if (!wall_clock)
558 return;
560 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
561 if (r)
562 return;
564 if (version & 1)
565 ++version; /* first time write, random junk */
567 ++version;
569 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
572 * The guest calculates current wall clock time by adding
573 * system time (updated by kvm_write_guest_time below) to the
574 * wall clock specified here. guest system time equals host
575 * system time for us, thus we must fill in host boot time here.
577 getboottime(&boot);
579 wc.sec = boot.tv_sec;
580 wc.nsec = boot.tv_nsec;
581 wc.version = version;
583 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
585 version++;
586 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
589 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
591 uint32_t quotient, remainder;
593 /* Don't try to replace with do_div(), this one calculates
594 * "(dividend << 32) / divisor" */
595 __asm__ ( "divl %4"
596 : "=a" (quotient), "=d" (remainder)
597 : "0" (0), "1" (dividend), "r" (divisor) );
598 return quotient;
601 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
603 uint64_t nsecs = 1000000000LL;
604 int32_t shift = 0;
605 uint64_t tps64;
606 uint32_t tps32;
608 tps64 = tsc_khz * 1000LL;
609 while (tps64 > nsecs*2) {
610 tps64 >>= 1;
611 shift--;
614 tps32 = (uint32_t)tps64;
615 while (tps32 <= (uint32_t)nsecs) {
616 tps32 <<= 1;
617 shift++;
620 hv_clock->tsc_shift = shift;
621 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
623 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
624 __func__, tsc_khz, hv_clock->tsc_shift,
625 hv_clock->tsc_to_system_mul);
628 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
630 static void kvm_write_guest_time(struct kvm_vcpu *v)
632 struct timespec ts;
633 unsigned long flags;
634 struct kvm_vcpu_arch *vcpu = &v->arch;
635 void *shared_kaddr;
636 unsigned long this_tsc_khz;
637 s64 kernel_ns, max_kernel_ns;
638 u64 tsc_timestamp;
640 if ((!vcpu->time_page))
641 return;
643 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
644 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
645 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
646 vcpu->hv_clock_tsc_khz = this_tsc_khz;
648 put_cpu_var(cpu_tsc_khz);
650 /* Keep irq disabled to prevent changes to the clock */
651 local_irq_save(flags);
652 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
653 ktime_get_ts(&ts);
654 monotonic_to_bootbased(&ts);
655 kernel_ns = timespec_to_ns(&ts);
656 local_irq_restore(flags);
659 * Time as measured by the TSC may go backwards when resetting the base
660 * tsc_timestamp. The reason for this is that the TSC resolution is
661 * higher than the resolution of the other clock scales. Thus, many
662 * possible measurments of the TSC correspond to one measurement of any
663 * other clock, and so a spread of values is possible. This is not a
664 * problem for the computation of the nanosecond clock; with TSC rates
665 * around 1GHZ, there can only be a few cycles which correspond to one
666 * nanosecond value, and any path through this code will inevitably
667 * take longer than that. However, with the kernel_ns value itself,
668 * the precision may be much lower, down to HZ granularity. If the
669 * first sampling of TSC against kernel_ns ends in the low part of the
670 * range, and the second in the high end of the range, we can get:
672 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
674 * As the sampling errors potentially range in the thousands of cycles,
675 * it is possible such a time value has already been observed by the
676 * guest. To protect against this, we must compute the system time as
677 * observed by the guest and ensure the new system time is greater.
679 max_kernel_ns = 0;
680 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
681 max_kernel_ns = vcpu->last_guest_tsc -
682 vcpu->hv_clock.tsc_timestamp;
683 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
684 vcpu->hv_clock.tsc_to_system_mul,
685 vcpu->hv_clock.tsc_shift);
686 max_kernel_ns += vcpu->last_kernel_ns;
689 if (max_kernel_ns > kernel_ns)
690 kernel_ns = max_kernel_ns;
692 /* With all the info we got, fill in the values */
694 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
695 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
696 vcpu->last_kernel_ns = kernel_ns;
697 vcpu->last_guest_tsc = tsc_timestamp;
700 * The interface expects us to write an even number signaling that the
701 * update is finished. Since the guest won't see the intermediate
702 * state, we just increase by 2 at the end.
704 vcpu->hv_clock.version += 2;
706 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
708 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
709 sizeof(vcpu->hv_clock));
711 kunmap_atomic(shared_kaddr, KM_USER0);
713 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
716 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
718 struct kvm_vcpu_arch *vcpu = &v->arch;
720 if (!vcpu->time_page)
721 return 0;
722 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
723 return 1;
726 static bool msr_mtrr_valid(unsigned msr)
728 switch (msr) {
729 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
730 case MSR_MTRRfix64K_00000:
731 case MSR_MTRRfix16K_80000:
732 case MSR_MTRRfix16K_A0000:
733 case MSR_MTRRfix4K_C0000:
734 case MSR_MTRRfix4K_C8000:
735 case MSR_MTRRfix4K_D0000:
736 case MSR_MTRRfix4K_D8000:
737 case MSR_MTRRfix4K_E0000:
738 case MSR_MTRRfix4K_E8000:
739 case MSR_MTRRfix4K_F0000:
740 case MSR_MTRRfix4K_F8000:
741 case MSR_MTRRdefType:
742 case MSR_IA32_CR_PAT:
743 return true;
744 case 0x2f8:
745 return true;
747 return false;
750 static bool valid_pat_type(unsigned t)
752 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
755 static bool valid_mtrr_type(unsigned t)
757 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
760 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
762 int i;
764 if (!msr_mtrr_valid(msr))
765 return false;
767 if (msr == MSR_IA32_CR_PAT) {
768 for (i = 0; i < 8; i++)
769 if (!valid_pat_type((data >> (i * 8)) & 0xff))
770 return false;
771 return true;
772 } else if (msr == MSR_MTRRdefType) {
773 if (data & ~0xcff)
774 return false;
775 return valid_mtrr_type(data & 0xff);
776 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
777 for (i = 0; i < 8 ; i++)
778 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
779 return false;
780 return true;
783 /* variable MTRRs */
784 return valid_mtrr_type(data & 0xff);
787 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
789 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
791 if (!mtrr_valid(vcpu, msr, data))
792 return 1;
794 if (msr == MSR_MTRRdefType) {
795 vcpu->arch.mtrr_state.def_type = data;
796 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
797 } else if (msr == MSR_MTRRfix64K_00000)
798 p[0] = data;
799 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
800 p[1 + msr - MSR_MTRRfix16K_80000] = data;
801 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
802 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
803 else if (msr == MSR_IA32_CR_PAT)
804 vcpu->arch.pat = data;
805 else { /* Variable MTRRs */
806 int idx, is_mtrr_mask;
807 u64 *pt;
809 idx = (msr - 0x200) / 2;
810 is_mtrr_mask = msr - 0x200 - 2 * idx;
811 if (!is_mtrr_mask)
812 pt =
813 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
814 else
815 pt =
816 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
817 *pt = data;
820 kvm_mmu_reset_context(vcpu);
821 return 0;
824 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
826 u64 mcg_cap = vcpu->arch.mcg_cap;
827 unsigned bank_num = mcg_cap & 0xff;
829 switch (msr) {
830 case MSR_IA32_MCG_STATUS:
831 vcpu->arch.mcg_status = data;
832 break;
833 case MSR_IA32_MCG_CTL:
834 if (!(mcg_cap & MCG_CTL_P))
835 return 1;
836 if (data != 0 && data != ~(u64)0)
837 return -1;
838 vcpu->arch.mcg_ctl = data;
839 break;
840 default:
841 if (msr >= MSR_IA32_MC0_CTL &&
842 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
843 u32 offset = msr - MSR_IA32_MC0_CTL;
844 /* only 0 or all 1s can be written to IA32_MCi_CTL
845 * some Linux kernels though clear bit 10 in bank 4 to
846 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
847 * this to avoid an uncatched #GP in the guest
849 if ((offset & 0x3) == 0 &&
850 data != 0 && (data | (1 << 10)) != ~(u64)0)
851 return -1;
852 vcpu->arch.mce_banks[offset] = data;
853 break;
855 return 1;
857 return 0;
860 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
862 switch (msr) {
863 case MSR_EFER:
864 return set_efer(vcpu, data);
865 case MSR_K7_HWCR:
866 data &= ~(u64)0x40; /* ignore flush filter disable */
867 if (data != 0) {
868 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
869 data);
870 return 1;
872 break;
873 case MSR_FAM10H_MMIO_CONF_BASE:
874 if (data != 0) {
875 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
876 "0x%llx\n", data);
877 return 1;
879 break;
880 case MSR_AMD64_NB_CFG:
881 break;
882 case MSR_IA32_DEBUGCTLMSR:
883 if (!data) {
884 /* We support the non-activated case already */
885 break;
886 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
887 /* Values other than LBR and BTF are vendor-specific,
888 thus reserved and should throw a #GP */
889 return 1;
891 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
892 __func__, data);
893 break;
894 case MSR_IA32_UCODE_REV:
895 case MSR_IA32_UCODE_WRITE:
896 case MSR_VM_HSAVE_PA:
897 case MSR_AMD64_PATCH_LOADER:
898 break;
899 case 0x200 ... 0x2ff:
900 return set_msr_mtrr(vcpu, msr, data);
901 case MSR_IA32_APICBASE:
902 kvm_set_apic_base(vcpu, data);
903 break;
904 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
905 return kvm_x2apic_msr_write(vcpu, msr, data);
906 case MSR_IA32_MISC_ENABLE:
907 vcpu->arch.ia32_misc_enable_msr = data;
908 break;
909 case MSR_KVM_WALL_CLOCK:
910 vcpu->kvm->arch.wall_clock = data;
911 kvm_write_wall_clock(vcpu->kvm, data);
912 break;
913 case MSR_KVM_SYSTEM_TIME: {
914 if (vcpu->arch.time_page) {
915 kvm_release_page_dirty(vcpu->arch.time_page);
916 vcpu->arch.time_page = NULL;
919 vcpu->arch.time = data;
921 /* we verify if the enable bit is set... */
922 if (!(data & 1))
923 break;
925 /* ...but clean it before doing the actual write */
926 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
928 vcpu->arch.time_page =
929 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
931 if (is_error_page(vcpu->arch.time_page)) {
932 kvm_release_page_clean(vcpu->arch.time_page);
933 vcpu->arch.time_page = NULL;
936 kvm_request_guest_time_update(vcpu);
937 break;
939 case MSR_IA32_MCG_CTL:
940 case MSR_IA32_MCG_STATUS:
941 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
942 return set_msr_mce(vcpu, msr, data);
944 /* Performance counters are not protected by a CPUID bit,
945 * so we should check all of them in the generic path for the sake of
946 * cross vendor migration.
947 * Writing a zero into the event select MSRs disables them,
948 * which we perfectly emulate ;-). Any other value should be at least
949 * reported, some guests depend on them.
951 case MSR_P6_EVNTSEL0:
952 case MSR_P6_EVNTSEL1:
953 case MSR_K7_EVNTSEL0:
954 case MSR_K7_EVNTSEL1:
955 case MSR_K7_EVNTSEL2:
956 case MSR_K7_EVNTSEL3:
957 if (data != 0)
958 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
959 "0x%x data 0x%llx\n", msr, data);
960 break;
961 /* at least RHEL 4 unconditionally writes to the perfctr registers,
962 * so we ignore writes to make it happy.
964 case MSR_P6_PERFCTR0:
965 case MSR_P6_PERFCTR1:
966 case MSR_K7_PERFCTR0:
967 case MSR_K7_PERFCTR1:
968 case MSR_K7_PERFCTR2:
969 case MSR_K7_PERFCTR3:
970 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
971 "0x%x data 0x%llx\n", msr, data);
972 break;
973 default:
974 if (!ignore_msrs) {
975 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
976 msr, data);
977 return 1;
978 } else {
979 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
980 msr, data);
981 break;
984 return 0;
986 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
990 * Reads an msr value (of 'msr_index') into 'pdata'.
991 * Returns 0 on success, non-0 otherwise.
992 * Assumes vcpu_load() was already called.
994 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
996 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
999 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1001 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1003 if (!msr_mtrr_valid(msr))
1004 return 1;
1006 if (msr == MSR_MTRRdefType)
1007 *pdata = vcpu->arch.mtrr_state.def_type +
1008 (vcpu->arch.mtrr_state.enabled << 10);
1009 else if (msr == MSR_MTRRfix64K_00000)
1010 *pdata = p[0];
1011 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1012 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1013 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1014 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1015 else if (msr == MSR_IA32_CR_PAT)
1016 *pdata = vcpu->arch.pat;
1017 else { /* Variable MTRRs */
1018 int idx, is_mtrr_mask;
1019 u64 *pt;
1021 idx = (msr - 0x200) / 2;
1022 is_mtrr_mask = msr - 0x200 - 2 * idx;
1023 if (!is_mtrr_mask)
1024 pt =
1025 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1026 else
1027 pt =
1028 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1029 *pdata = *pt;
1032 return 0;
1035 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1037 u64 data;
1038 u64 mcg_cap = vcpu->arch.mcg_cap;
1039 unsigned bank_num = mcg_cap & 0xff;
1041 switch (msr) {
1042 case MSR_IA32_P5_MC_ADDR:
1043 case MSR_IA32_P5_MC_TYPE:
1044 data = 0;
1045 break;
1046 case MSR_IA32_MCG_CAP:
1047 data = vcpu->arch.mcg_cap;
1048 break;
1049 case MSR_IA32_MCG_CTL:
1050 if (!(mcg_cap & MCG_CTL_P))
1051 return 1;
1052 data = vcpu->arch.mcg_ctl;
1053 break;
1054 case MSR_IA32_MCG_STATUS:
1055 data = vcpu->arch.mcg_status;
1056 break;
1057 default:
1058 if (msr >= MSR_IA32_MC0_CTL &&
1059 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1060 u32 offset = msr - MSR_IA32_MC0_CTL;
1061 data = vcpu->arch.mce_banks[offset];
1062 break;
1064 return 1;
1066 *pdata = data;
1067 return 0;
1070 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1072 u64 data;
1074 switch (msr) {
1075 case MSR_IA32_PLATFORM_ID:
1076 case MSR_IA32_UCODE_REV:
1077 case MSR_IA32_EBL_CR_POWERON:
1078 case MSR_IA32_DEBUGCTLMSR:
1079 case MSR_IA32_LASTBRANCHFROMIP:
1080 case MSR_IA32_LASTBRANCHTOIP:
1081 case MSR_IA32_LASTINTFROMIP:
1082 case MSR_IA32_LASTINTTOIP:
1083 case MSR_K8_SYSCFG:
1084 case MSR_K7_HWCR:
1085 case MSR_VM_HSAVE_PA:
1086 case MSR_P6_PERFCTR0:
1087 case MSR_P6_PERFCTR1:
1088 case MSR_P6_EVNTSEL0:
1089 case MSR_P6_EVNTSEL1:
1090 case MSR_K7_EVNTSEL0:
1091 case MSR_K7_PERFCTR0:
1092 case MSR_K8_INT_PENDING_MSG:
1093 case MSR_AMD64_NB_CFG:
1094 case MSR_FAM10H_MMIO_CONF_BASE:
1095 data = 0;
1096 break;
1097 case MSR_MTRRcap:
1098 data = 0x500 | KVM_NR_VAR_MTRR;
1099 break;
1100 case 0x200 ... 0x2ff:
1101 return get_msr_mtrr(vcpu, msr, pdata);
1102 case 0xcd: /* fsb frequency */
1103 data = 3;
1104 break;
1105 case MSR_IA32_APICBASE:
1106 data = kvm_get_apic_base(vcpu);
1107 break;
1108 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1109 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1110 break;
1111 case MSR_IA32_MISC_ENABLE:
1112 data = vcpu->arch.ia32_misc_enable_msr;
1113 break;
1114 case MSR_IA32_PERF_STATUS:
1115 /* TSC increment by tick */
1116 data = 1000ULL;
1117 /* CPU multiplier */
1118 data |= (((uint64_t)4ULL) << 40);
1119 break;
1120 case MSR_EFER:
1121 data = vcpu->arch.shadow_efer;
1122 break;
1123 case MSR_KVM_WALL_CLOCK:
1124 data = vcpu->kvm->arch.wall_clock;
1125 break;
1126 case MSR_KVM_SYSTEM_TIME:
1127 data = vcpu->arch.time;
1128 break;
1129 case MSR_IA32_P5_MC_ADDR:
1130 case MSR_IA32_P5_MC_TYPE:
1131 case MSR_IA32_MCG_CAP:
1132 case MSR_IA32_MCG_CTL:
1133 case MSR_IA32_MCG_STATUS:
1134 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1135 return get_msr_mce(vcpu, msr, pdata);
1136 default:
1137 if (!ignore_msrs) {
1138 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1139 return 1;
1140 } else {
1141 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1142 data = 0;
1144 break;
1146 *pdata = data;
1147 return 0;
1149 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1152 * Read or write a bunch of msrs. All parameters are kernel addresses.
1154 * @return number of msrs set successfully.
1156 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1157 struct kvm_msr_entry *entries,
1158 int (*do_msr)(struct kvm_vcpu *vcpu,
1159 unsigned index, u64 *data))
1161 int i;
1163 vcpu_load(vcpu);
1165 down_read(&vcpu->kvm->slots_lock);
1166 for (i = 0; i < msrs->nmsrs; ++i)
1167 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1168 break;
1169 up_read(&vcpu->kvm->slots_lock);
1171 vcpu_put(vcpu);
1173 return i;
1177 * Read or write a bunch of msrs. Parameters are user addresses.
1179 * @return number of msrs set successfully.
1181 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1182 int (*do_msr)(struct kvm_vcpu *vcpu,
1183 unsigned index, u64 *data),
1184 int writeback)
1186 struct kvm_msrs msrs;
1187 struct kvm_msr_entry *entries;
1188 int r, n;
1189 unsigned size;
1191 r = -EFAULT;
1192 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1193 goto out;
1195 r = -E2BIG;
1196 if (msrs.nmsrs >= MAX_IO_MSRS)
1197 goto out;
1199 r = -ENOMEM;
1200 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1201 entries = vmalloc(size);
1202 if (!entries)
1203 goto out;
1205 r = -EFAULT;
1206 if (copy_from_user(entries, user_msrs->entries, size))
1207 goto out_free;
1209 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1210 if (r < 0)
1211 goto out_free;
1213 r = -EFAULT;
1214 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1215 goto out_free;
1217 r = n;
1219 out_free:
1220 vfree(entries);
1221 out:
1222 return r;
1225 int kvm_dev_ioctl_check_extension(long ext)
1227 int r;
1229 switch (ext) {
1230 case KVM_CAP_IRQCHIP:
1231 case KVM_CAP_HLT:
1232 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1233 case KVM_CAP_SET_TSS_ADDR:
1234 case KVM_CAP_EXT_CPUID:
1235 case KVM_CAP_CLOCKSOURCE:
1236 case KVM_CAP_PIT:
1237 case KVM_CAP_NOP_IO_DELAY:
1238 case KVM_CAP_MP_STATE:
1239 case KVM_CAP_SYNC_MMU:
1240 case KVM_CAP_REINJECT_CONTROL:
1241 case KVM_CAP_IRQ_INJECT_STATUS:
1242 case KVM_CAP_ASSIGN_DEV_IRQ:
1243 case KVM_CAP_IRQFD:
1244 case KVM_CAP_IOEVENTFD:
1245 case KVM_CAP_PIT2:
1246 case KVM_CAP_PIT_STATE2:
1247 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1248 case KVM_CAP_ADJUST_CLOCK:
1249 r = 1;
1250 break;
1251 case KVM_CAP_COALESCED_MMIO:
1252 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1253 break;
1254 case KVM_CAP_VAPIC:
1255 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1256 break;
1257 case KVM_CAP_NR_VCPUS:
1258 r = KVM_MAX_VCPUS;
1259 break;
1260 case KVM_CAP_NR_MEMSLOTS:
1261 r = KVM_MEMORY_SLOTS;
1262 break;
1263 case KVM_CAP_PV_MMU: /* obsolete */
1264 r = 0;
1265 break;
1266 case KVM_CAP_IOMMU:
1267 r = iommu_found();
1268 break;
1269 case KVM_CAP_MCE:
1270 r = KVM_MAX_MCE_BANKS;
1271 break;
1272 default:
1273 r = 0;
1274 break;
1276 return r;
1280 long kvm_arch_dev_ioctl(struct file *filp,
1281 unsigned int ioctl, unsigned long arg)
1283 void __user *argp = (void __user *)arg;
1284 long r;
1286 switch (ioctl) {
1287 case KVM_GET_MSR_INDEX_LIST: {
1288 struct kvm_msr_list __user *user_msr_list = argp;
1289 struct kvm_msr_list msr_list;
1290 unsigned n;
1292 r = -EFAULT;
1293 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1294 goto out;
1295 n = msr_list.nmsrs;
1296 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1297 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1298 goto out;
1299 r = -E2BIG;
1300 if (n < msr_list.nmsrs)
1301 goto out;
1302 r = -EFAULT;
1303 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1304 num_msrs_to_save * sizeof(u32)))
1305 goto out;
1306 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1307 &emulated_msrs,
1308 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1309 goto out;
1310 r = 0;
1311 break;
1313 case KVM_GET_SUPPORTED_CPUID: {
1314 struct kvm_cpuid2 __user *cpuid_arg = argp;
1315 struct kvm_cpuid2 cpuid;
1317 r = -EFAULT;
1318 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1319 goto out;
1320 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1321 cpuid_arg->entries);
1322 if (r)
1323 goto out;
1325 r = -EFAULT;
1326 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1327 goto out;
1328 r = 0;
1329 break;
1331 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1332 u64 mce_cap;
1334 mce_cap = KVM_MCE_CAP_SUPPORTED;
1335 r = -EFAULT;
1336 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1337 goto out;
1338 r = 0;
1339 break;
1341 default:
1342 r = -EINVAL;
1344 out:
1345 return r;
1348 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1350 kvm_x86_ops->vcpu_load(vcpu, cpu);
1351 kvm_request_guest_time_update(vcpu);
1354 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1356 kvm_x86_ops->vcpu_put(vcpu);
1357 kvm_put_guest_fpu(vcpu);
1360 static int is_efer_nx(void)
1362 unsigned long long efer = 0;
1364 rdmsrl_safe(MSR_EFER, &efer);
1365 return efer & EFER_NX;
1368 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1370 int i;
1371 struct kvm_cpuid_entry2 *e, *entry;
1373 entry = NULL;
1374 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1375 e = &vcpu->arch.cpuid_entries[i];
1376 if (e->function == 0x80000001) {
1377 entry = e;
1378 break;
1381 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1382 entry->edx &= ~(1 << 20);
1383 printk(KERN_INFO "kvm: guest NX capability removed\n");
1387 /* when an old userspace process fills a new kernel module */
1388 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1389 struct kvm_cpuid *cpuid,
1390 struct kvm_cpuid_entry __user *entries)
1392 int r, i;
1393 struct kvm_cpuid_entry *cpuid_entries;
1395 r = -E2BIG;
1396 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1397 goto out;
1398 r = -ENOMEM;
1399 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1400 if (!cpuid_entries)
1401 goto out;
1402 r = -EFAULT;
1403 if (copy_from_user(cpuid_entries, entries,
1404 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1405 goto out_free;
1406 for (i = 0; i < cpuid->nent; i++) {
1407 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1408 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1409 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1410 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1411 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1412 vcpu->arch.cpuid_entries[i].index = 0;
1413 vcpu->arch.cpuid_entries[i].flags = 0;
1414 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1415 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1416 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1418 vcpu->arch.cpuid_nent = cpuid->nent;
1419 cpuid_fix_nx_cap(vcpu);
1420 r = 0;
1421 kvm_apic_set_version(vcpu);
1423 out_free:
1424 vfree(cpuid_entries);
1425 out:
1426 return r;
1429 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1430 struct kvm_cpuid2 *cpuid,
1431 struct kvm_cpuid_entry2 __user *entries)
1433 int r;
1435 r = -E2BIG;
1436 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1437 goto out;
1438 r = -EFAULT;
1439 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1440 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1441 goto out;
1442 vcpu->arch.cpuid_nent = cpuid->nent;
1443 kvm_apic_set_version(vcpu);
1444 return 0;
1446 out:
1447 return r;
1450 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1451 struct kvm_cpuid2 *cpuid,
1452 struct kvm_cpuid_entry2 __user *entries)
1454 int r;
1456 vcpu_load(vcpu);
1457 r = -E2BIG;
1458 if (cpuid->nent < vcpu->arch.cpuid_nent)
1459 goto out;
1460 r = -EFAULT;
1461 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1462 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1463 goto out;
1464 return 0;
1466 out:
1467 cpuid->nent = vcpu->arch.cpuid_nent;
1468 vcpu_put(vcpu);
1469 return r;
1472 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1473 u32 index)
1475 entry->function = function;
1476 entry->index = index;
1477 cpuid_count(entry->function, entry->index,
1478 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1479 entry->flags = 0;
1482 #define F(x) bit(X86_FEATURE_##x)
1484 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1485 u32 index, int *nent, int maxnent)
1487 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1488 unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1489 #ifdef CONFIG_X86_64
1490 unsigned f_lm = F(LM);
1491 #else
1492 unsigned f_lm = 0;
1493 #endif
1495 /* cpuid 1.edx */
1496 const u32 kvm_supported_word0_x86_features =
1497 F(FPU) | F(VME) | F(DE) | F(PSE) |
1498 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1499 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1500 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1501 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1502 0 /* Reserved, DS, ACPI */ | F(MMX) |
1503 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1504 0 /* HTT, TM, Reserved, PBE */;
1505 /* cpuid 0x80000001.edx */
1506 const u32 kvm_supported_word1_x86_features =
1507 F(FPU) | F(VME) | F(DE) | F(PSE) |
1508 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1509 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1510 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1511 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1512 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1513 F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
1514 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1515 /* cpuid 1.ecx */
1516 const u32 kvm_supported_word4_x86_features =
1517 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1518 0 /* DS-CPL, VMX, SMX, EST */ |
1519 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1520 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1521 0 /* Reserved, DCA */ | F(XMM4_1) |
1522 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1523 0 /* Reserved, XSAVE, OSXSAVE */;
1524 /* cpuid 0x80000001.ecx */
1525 const u32 kvm_supported_word6_x86_features =
1526 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1527 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1528 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
1529 0 /* SKINIT */ | 0 /* WDT */;
1531 /* all calls to cpuid_count() should be made on the same cpu */
1532 get_cpu();
1533 do_cpuid_1_ent(entry, function, index);
1534 ++*nent;
1536 switch (function) {
1537 case 0:
1538 entry->eax = min(entry->eax, (u32)0xb);
1539 break;
1540 case 1:
1541 entry->edx &= kvm_supported_word0_x86_features;
1542 entry->ecx &= kvm_supported_word4_x86_features;
1543 /* we support x2apic emulation even if host does not support
1544 * it since we emulate x2apic in software */
1545 entry->ecx |= F(X2APIC);
1546 break;
1547 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1548 * may return different values. This forces us to get_cpu() before
1549 * issuing the first command, and also to emulate this annoying behavior
1550 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1551 case 2: {
1552 int t, times = entry->eax & 0xff;
1554 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1555 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1556 for (t = 1; t < times && *nent < maxnent; ++t) {
1557 do_cpuid_1_ent(&entry[t], function, 0);
1558 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1559 ++*nent;
1561 break;
1563 /* function 4 and 0xb have additional index. */
1564 case 4: {
1565 int i, cache_type;
1567 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1568 /* read more entries until cache_type is zero */
1569 for (i = 1; *nent < maxnent; ++i) {
1570 cache_type = entry[i - 1].eax & 0x1f;
1571 if (!cache_type)
1572 break;
1573 do_cpuid_1_ent(&entry[i], function, i);
1574 entry[i].flags |=
1575 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1576 ++*nent;
1578 break;
1580 case 0xb: {
1581 int i, level_type;
1583 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1584 /* read more entries until level_type is zero */
1585 for (i = 1; *nent < maxnent; ++i) {
1586 level_type = entry[i - 1].ecx & 0xff00;
1587 if (!level_type)
1588 break;
1589 do_cpuid_1_ent(&entry[i], function, i);
1590 entry[i].flags |=
1591 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1592 ++*nent;
1594 break;
1596 case 0x80000000:
1597 entry->eax = min(entry->eax, 0x8000001a);
1598 break;
1599 case 0x80000001:
1600 entry->edx &= kvm_supported_word1_x86_features;
1601 entry->ecx &= kvm_supported_word6_x86_features;
1602 break;
1604 put_cpu();
1607 #undef F
1609 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1610 struct kvm_cpuid_entry2 __user *entries)
1612 struct kvm_cpuid_entry2 *cpuid_entries;
1613 int limit, nent = 0, r = -E2BIG;
1614 u32 func;
1616 if (cpuid->nent < 1)
1617 goto out;
1618 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1619 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1620 r = -ENOMEM;
1621 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1622 if (!cpuid_entries)
1623 goto out;
1625 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1626 limit = cpuid_entries[0].eax;
1627 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1628 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1629 &nent, cpuid->nent);
1630 r = -E2BIG;
1631 if (nent >= cpuid->nent)
1632 goto out_free;
1634 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1635 limit = cpuid_entries[nent - 1].eax;
1636 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1637 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1638 &nent, cpuid->nent);
1639 r = -E2BIG;
1640 if (nent >= cpuid->nent)
1641 goto out_free;
1643 r = -EFAULT;
1644 if (copy_to_user(entries, cpuid_entries,
1645 nent * sizeof(struct kvm_cpuid_entry2)))
1646 goto out_free;
1647 cpuid->nent = nent;
1648 r = 0;
1650 out_free:
1651 vfree(cpuid_entries);
1652 out:
1653 return r;
1656 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1657 struct kvm_lapic_state *s)
1659 vcpu_load(vcpu);
1660 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1661 vcpu_put(vcpu);
1663 return 0;
1666 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1667 struct kvm_lapic_state *s)
1669 vcpu_load(vcpu);
1670 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1671 kvm_apic_post_state_restore(vcpu);
1672 update_cr8_intercept(vcpu);
1673 vcpu_put(vcpu);
1675 return 0;
1678 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1679 struct kvm_interrupt *irq)
1681 if (irq->irq < 0 || irq->irq >= 256)
1682 return -EINVAL;
1683 if (irqchip_in_kernel(vcpu->kvm))
1684 return -ENXIO;
1685 vcpu_load(vcpu);
1687 kvm_queue_interrupt(vcpu, irq->irq, false);
1689 vcpu_put(vcpu);
1691 return 0;
1694 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1696 vcpu_load(vcpu);
1697 kvm_inject_nmi(vcpu);
1698 vcpu_put(vcpu);
1700 return 0;
1703 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1704 struct kvm_tpr_access_ctl *tac)
1706 if (tac->flags)
1707 return -EINVAL;
1708 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1709 return 0;
1712 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1713 u64 mcg_cap)
1715 int r;
1716 unsigned bank_num = mcg_cap & 0xff, bank;
1718 vcpu_load(vcpu);
1719 r = -EINVAL;
1720 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
1721 goto out;
1722 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1723 goto out;
1724 r = 0;
1725 vcpu->arch.mcg_cap = mcg_cap;
1726 /* Init IA32_MCG_CTL to all 1s */
1727 if (mcg_cap & MCG_CTL_P)
1728 vcpu->arch.mcg_ctl = ~(u64)0;
1729 /* Init IA32_MCi_CTL to all 1s */
1730 for (bank = 0; bank < bank_num; bank++)
1731 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1732 out:
1733 vcpu_put(vcpu);
1734 return r;
1737 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1738 struct kvm_x86_mce *mce)
1740 u64 mcg_cap = vcpu->arch.mcg_cap;
1741 unsigned bank_num = mcg_cap & 0xff;
1742 u64 *banks = vcpu->arch.mce_banks;
1744 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1745 return -EINVAL;
1747 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1748 * reporting is disabled
1750 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1751 vcpu->arch.mcg_ctl != ~(u64)0)
1752 return 0;
1753 banks += 4 * mce->bank;
1755 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1756 * reporting is disabled for the bank
1758 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1759 return 0;
1760 if (mce->status & MCI_STATUS_UC) {
1761 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1762 !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1763 printk(KERN_DEBUG "kvm: set_mce: "
1764 "injects mce exception while "
1765 "previous one is in progress!\n");
1766 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1767 return 0;
1769 if (banks[1] & MCI_STATUS_VAL)
1770 mce->status |= MCI_STATUS_OVER;
1771 banks[2] = mce->addr;
1772 banks[3] = mce->misc;
1773 vcpu->arch.mcg_status = mce->mcg_status;
1774 banks[1] = mce->status;
1775 kvm_queue_exception(vcpu, MC_VECTOR);
1776 } else if (!(banks[1] & MCI_STATUS_VAL)
1777 || !(banks[1] & MCI_STATUS_UC)) {
1778 if (banks[1] & MCI_STATUS_VAL)
1779 mce->status |= MCI_STATUS_OVER;
1780 banks[2] = mce->addr;
1781 banks[3] = mce->misc;
1782 banks[1] = mce->status;
1783 } else
1784 banks[1] |= MCI_STATUS_OVER;
1785 return 0;
1788 long kvm_arch_vcpu_ioctl(struct file *filp,
1789 unsigned int ioctl, unsigned long arg)
1791 struct kvm_vcpu *vcpu = filp->private_data;
1792 void __user *argp = (void __user *)arg;
1793 int r;
1794 struct kvm_lapic_state *lapic = NULL;
1796 switch (ioctl) {
1797 case KVM_GET_LAPIC: {
1798 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1800 r = -ENOMEM;
1801 if (!lapic)
1802 goto out;
1803 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1804 if (r)
1805 goto out;
1806 r = -EFAULT;
1807 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1808 goto out;
1809 r = 0;
1810 break;
1812 case KVM_SET_LAPIC: {
1813 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1814 r = -ENOMEM;
1815 if (!lapic)
1816 goto out;
1817 r = -EFAULT;
1818 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1819 goto out;
1820 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1821 if (r)
1822 goto out;
1823 r = 0;
1824 break;
1826 case KVM_INTERRUPT: {
1827 struct kvm_interrupt irq;
1829 r = -EFAULT;
1830 if (copy_from_user(&irq, argp, sizeof irq))
1831 goto out;
1832 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1833 if (r)
1834 goto out;
1835 r = 0;
1836 break;
1838 case KVM_NMI: {
1839 r = kvm_vcpu_ioctl_nmi(vcpu);
1840 if (r)
1841 goto out;
1842 r = 0;
1843 break;
1845 case KVM_SET_CPUID: {
1846 struct kvm_cpuid __user *cpuid_arg = argp;
1847 struct kvm_cpuid cpuid;
1849 r = -EFAULT;
1850 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1851 goto out;
1852 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1853 if (r)
1854 goto out;
1855 break;
1857 case KVM_SET_CPUID2: {
1858 struct kvm_cpuid2 __user *cpuid_arg = argp;
1859 struct kvm_cpuid2 cpuid;
1861 r = -EFAULT;
1862 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1863 goto out;
1864 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1865 cpuid_arg->entries);
1866 if (r)
1867 goto out;
1868 break;
1870 case KVM_GET_CPUID2: {
1871 struct kvm_cpuid2 __user *cpuid_arg = argp;
1872 struct kvm_cpuid2 cpuid;
1874 r = -EFAULT;
1875 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1876 goto out;
1877 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1878 cpuid_arg->entries);
1879 if (r)
1880 goto out;
1881 r = -EFAULT;
1882 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1883 goto out;
1884 r = 0;
1885 break;
1887 case KVM_GET_MSRS:
1888 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1889 break;
1890 case KVM_SET_MSRS:
1891 r = msr_io(vcpu, argp, do_set_msr, 0);
1892 break;
1893 case KVM_TPR_ACCESS_REPORTING: {
1894 struct kvm_tpr_access_ctl tac;
1896 r = -EFAULT;
1897 if (copy_from_user(&tac, argp, sizeof tac))
1898 goto out;
1899 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1900 if (r)
1901 goto out;
1902 r = -EFAULT;
1903 if (copy_to_user(argp, &tac, sizeof tac))
1904 goto out;
1905 r = 0;
1906 break;
1908 case KVM_SET_VAPIC_ADDR: {
1909 struct kvm_vapic_addr va;
1911 r = -EINVAL;
1912 if (!irqchip_in_kernel(vcpu->kvm))
1913 goto out;
1914 r = -EFAULT;
1915 if (copy_from_user(&va, argp, sizeof va))
1916 goto out;
1917 r = 0;
1918 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1919 break;
1921 case KVM_X86_SETUP_MCE: {
1922 u64 mcg_cap;
1924 r = -EFAULT;
1925 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1926 goto out;
1927 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1928 break;
1930 case KVM_X86_SET_MCE: {
1931 struct kvm_x86_mce mce;
1933 r = -EFAULT;
1934 if (copy_from_user(&mce, argp, sizeof mce))
1935 goto out;
1936 vcpu_load(vcpu);
1937 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1938 vcpu_put(vcpu);
1939 break;
1941 default:
1942 r = -EINVAL;
1944 out:
1945 kfree(lapic);
1946 return r;
1949 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1951 int ret;
1953 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1954 return -1;
1955 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1956 return ret;
1959 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
1960 u64 ident_addr)
1962 kvm->arch.ept_identity_map_addr = ident_addr;
1963 return 0;
1966 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1967 u32 kvm_nr_mmu_pages)
1969 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1970 return -EINVAL;
1972 down_write(&kvm->slots_lock);
1973 spin_lock(&kvm->mmu_lock);
1975 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1976 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1978 spin_unlock(&kvm->mmu_lock);
1979 up_write(&kvm->slots_lock);
1980 return 0;
1983 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1985 return kvm->arch.n_alloc_mmu_pages;
1988 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1990 int i;
1991 struct kvm_mem_alias *alias;
1993 for (i = 0; i < kvm->arch.naliases; ++i) {
1994 alias = &kvm->arch.aliases[i];
1995 if (gfn >= alias->base_gfn
1996 && gfn < alias->base_gfn + alias->npages)
1997 return alias->target_gfn + gfn - alias->base_gfn;
1999 return gfn;
2003 * Set a new alias region. Aliases map a portion of physical memory into
2004 * another portion. This is useful for memory windows, for example the PC
2005 * VGA region.
2007 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2008 struct kvm_memory_alias *alias)
2010 int r, n;
2011 struct kvm_mem_alias *p;
2013 r = -EINVAL;
2014 /* General sanity checks */
2015 if (alias->memory_size & (PAGE_SIZE - 1))
2016 goto out;
2017 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2018 goto out;
2019 if (alias->slot >= KVM_ALIAS_SLOTS)
2020 goto out;
2021 if (alias->guest_phys_addr + alias->memory_size
2022 < alias->guest_phys_addr)
2023 goto out;
2024 if (alias->target_phys_addr + alias->memory_size
2025 < alias->target_phys_addr)
2026 goto out;
2028 down_write(&kvm->slots_lock);
2029 spin_lock(&kvm->mmu_lock);
2031 p = &kvm->arch.aliases[alias->slot];
2032 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2033 p->npages = alias->memory_size >> PAGE_SHIFT;
2034 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2036 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2037 if (kvm->arch.aliases[n - 1].npages)
2038 break;
2039 kvm->arch.naliases = n;
2041 spin_unlock(&kvm->mmu_lock);
2042 kvm_mmu_zap_all(kvm);
2044 up_write(&kvm->slots_lock);
2046 return 0;
2048 out:
2049 return r;
2052 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2054 int r;
2056 r = 0;
2057 switch (chip->chip_id) {
2058 case KVM_IRQCHIP_PIC_MASTER:
2059 memcpy(&chip->chip.pic,
2060 &pic_irqchip(kvm)->pics[0],
2061 sizeof(struct kvm_pic_state));
2062 break;
2063 case KVM_IRQCHIP_PIC_SLAVE:
2064 memcpy(&chip->chip.pic,
2065 &pic_irqchip(kvm)->pics[1],
2066 sizeof(struct kvm_pic_state));
2067 break;
2068 case KVM_IRQCHIP_IOAPIC:
2069 memcpy(&chip->chip.ioapic,
2070 ioapic_irqchip(kvm),
2071 sizeof(struct kvm_ioapic_state));
2072 break;
2073 default:
2074 r = -EINVAL;
2075 break;
2077 return r;
2080 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2082 int r;
2084 r = 0;
2085 switch (chip->chip_id) {
2086 case KVM_IRQCHIP_PIC_MASTER:
2087 spin_lock(&pic_irqchip(kvm)->lock);
2088 memcpy(&pic_irqchip(kvm)->pics[0],
2089 &chip->chip.pic,
2090 sizeof(struct kvm_pic_state));
2091 spin_unlock(&pic_irqchip(kvm)->lock);
2092 break;
2093 case KVM_IRQCHIP_PIC_SLAVE:
2094 spin_lock(&pic_irqchip(kvm)->lock);
2095 memcpy(&pic_irqchip(kvm)->pics[1],
2096 &chip->chip.pic,
2097 sizeof(struct kvm_pic_state));
2098 spin_unlock(&pic_irqchip(kvm)->lock);
2099 break;
2100 case KVM_IRQCHIP_IOAPIC:
2101 mutex_lock(&kvm->irq_lock);
2102 memcpy(ioapic_irqchip(kvm),
2103 &chip->chip.ioapic,
2104 sizeof(struct kvm_ioapic_state));
2105 mutex_unlock(&kvm->irq_lock);
2106 break;
2107 default:
2108 r = -EINVAL;
2109 break;
2111 kvm_pic_update_irq(pic_irqchip(kvm));
2112 return r;
2115 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2117 int r = 0;
2119 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2120 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2121 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2122 return r;
2125 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2127 int r = 0;
2129 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2130 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2131 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2132 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2133 return r;
2136 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2138 int r = 0;
2140 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2141 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2142 sizeof(ps->channels));
2143 ps->flags = kvm->arch.vpit->pit_state.flags;
2144 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2145 memset(&ps->reserved, 0, sizeof(ps->reserved));
2146 return r;
2149 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2151 int r = 0, start = 0;
2152 u32 prev_legacy, cur_legacy;
2153 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2154 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2155 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2156 if (!prev_legacy && cur_legacy)
2157 start = 1;
2158 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2159 sizeof(kvm->arch.vpit->pit_state.channels));
2160 kvm->arch.vpit->pit_state.flags = ps->flags;
2161 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2162 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2163 return r;
2166 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2167 struct kvm_reinject_control *control)
2169 if (!kvm->arch.vpit)
2170 return -ENXIO;
2171 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2172 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2173 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2174 return 0;
2178 * Get (and clear) the dirty memory log for a memory slot.
2180 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2181 struct kvm_dirty_log *log)
2183 int r;
2184 unsigned long n;
2185 struct kvm_memory_slot *memslot;
2186 int is_dirty = 0;
2188 down_write(&kvm->slots_lock);
2190 r = kvm_get_dirty_log(kvm, log, &is_dirty);
2191 if (r)
2192 goto out;
2194 /* If nothing is dirty, don't bother messing with page tables. */
2195 if (is_dirty) {
2196 spin_lock(&kvm->mmu_lock);
2197 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2198 spin_unlock(&kvm->mmu_lock);
2199 memslot = &kvm->memslots[log->slot];
2200 n = kvm_dirty_bitmap_bytes(memslot);
2201 memset(memslot->dirty_bitmap, 0, n);
2203 r = 0;
2204 out:
2205 up_write(&kvm->slots_lock);
2206 return r;
2209 long kvm_arch_vm_ioctl(struct file *filp,
2210 unsigned int ioctl, unsigned long arg)
2212 struct kvm *kvm = filp->private_data;
2213 void __user *argp = (void __user *)arg;
2214 int r = -EINVAL;
2216 * This union makes it completely explicit to gcc-3.x
2217 * that these two variables' stack usage should be
2218 * combined, not added together.
2220 union {
2221 struct kvm_pit_state ps;
2222 struct kvm_pit_state2 ps2;
2223 struct kvm_memory_alias alias;
2224 struct kvm_pit_config pit_config;
2225 } u;
2227 switch (ioctl) {
2228 case KVM_SET_TSS_ADDR:
2229 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2230 if (r < 0)
2231 goto out;
2232 break;
2233 case KVM_SET_IDENTITY_MAP_ADDR: {
2234 u64 ident_addr;
2236 r = -EFAULT;
2237 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2238 goto out;
2239 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2240 if (r < 0)
2241 goto out;
2242 break;
2244 case KVM_SET_MEMORY_REGION: {
2245 struct kvm_memory_region kvm_mem;
2246 struct kvm_userspace_memory_region kvm_userspace_mem;
2248 r = -EFAULT;
2249 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2250 goto out;
2251 kvm_userspace_mem.slot = kvm_mem.slot;
2252 kvm_userspace_mem.flags = kvm_mem.flags;
2253 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2254 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2255 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2256 if (r)
2257 goto out;
2258 break;
2260 case KVM_SET_NR_MMU_PAGES:
2261 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2262 if (r)
2263 goto out;
2264 break;
2265 case KVM_GET_NR_MMU_PAGES:
2266 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2267 break;
2268 case KVM_SET_MEMORY_ALIAS:
2269 r = -EFAULT;
2270 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2271 goto out;
2272 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2273 if (r)
2274 goto out;
2275 break;
2276 case KVM_CREATE_IRQCHIP: {
2277 struct kvm_pic *vpic;
2279 mutex_lock(&kvm->lock);
2280 r = -EEXIST;
2281 if (kvm->arch.vpic)
2282 goto create_irqchip_unlock;
2283 r = -EINVAL;
2284 if (atomic_read(&kvm->online_vcpus))
2285 goto create_irqchip_unlock;
2286 r = -ENOMEM;
2287 vpic = kvm_create_pic(kvm);
2288 if (vpic) {
2289 r = kvm_ioapic_init(kvm);
2290 if (r) {
2291 kfree(vpic);
2292 goto create_irqchip_unlock;
2294 } else
2295 goto create_irqchip_unlock;
2296 smp_wmb();
2297 kvm->arch.vpic = vpic;
2298 smp_wmb();
2299 r = kvm_setup_default_irq_routing(kvm);
2300 if (r) {
2301 mutex_lock(&kvm->irq_lock);
2302 kfree(kvm->arch.vpic);
2303 kfree(kvm->arch.vioapic);
2304 kvm->arch.vpic = NULL;
2305 kvm->arch.vioapic = NULL;
2306 mutex_unlock(&kvm->irq_lock);
2308 create_irqchip_unlock:
2309 mutex_unlock(&kvm->lock);
2310 break;
2312 case KVM_CREATE_PIT:
2313 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2314 goto create_pit;
2315 case KVM_CREATE_PIT2:
2316 r = -EFAULT;
2317 if (copy_from_user(&u.pit_config, argp,
2318 sizeof(struct kvm_pit_config)))
2319 goto out;
2320 create_pit:
2321 down_write(&kvm->slots_lock);
2322 r = -EEXIST;
2323 if (kvm->arch.vpit)
2324 goto create_pit_unlock;
2325 r = -ENOMEM;
2326 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2327 if (kvm->arch.vpit)
2328 r = 0;
2329 create_pit_unlock:
2330 up_write(&kvm->slots_lock);
2331 break;
2332 case KVM_IRQ_LINE_STATUS:
2333 case KVM_IRQ_LINE: {
2334 struct kvm_irq_level irq_event;
2336 r = -EFAULT;
2337 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2338 goto out;
2339 if (irqchip_in_kernel(kvm)) {
2340 __s32 status;
2341 mutex_lock(&kvm->irq_lock);
2342 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2343 irq_event.irq, irq_event.level);
2344 mutex_unlock(&kvm->irq_lock);
2345 if (ioctl == KVM_IRQ_LINE_STATUS) {
2346 irq_event.status = status;
2347 if (copy_to_user(argp, &irq_event,
2348 sizeof irq_event))
2349 goto out;
2351 r = 0;
2353 break;
2355 case KVM_GET_IRQCHIP: {
2356 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2357 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2359 r = -ENOMEM;
2360 if (!chip)
2361 goto out;
2362 r = -EFAULT;
2363 if (copy_from_user(chip, argp, sizeof *chip))
2364 goto get_irqchip_out;
2365 r = -ENXIO;
2366 if (!irqchip_in_kernel(kvm))
2367 goto get_irqchip_out;
2368 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2369 if (r)
2370 goto get_irqchip_out;
2371 r = -EFAULT;
2372 if (copy_to_user(argp, chip, sizeof *chip))
2373 goto get_irqchip_out;
2374 r = 0;
2375 get_irqchip_out:
2376 kfree(chip);
2377 if (r)
2378 goto out;
2379 break;
2381 case KVM_SET_IRQCHIP: {
2382 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2383 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2385 r = -ENOMEM;
2386 if (!chip)
2387 goto out;
2388 r = -EFAULT;
2389 if (copy_from_user(chip, argp, sizeof *chip))
2390 goto set_irqchip_out;
2391 r = -ENXIO;
2392 if (!irqchip_in_kernel(kvm))
2393 goto set_irqchip_out;
2394 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2395 if (r)
2396 goto set_irqchip_out;
2397 r = 0;
2398 set_irqchip_out:
2399 kfree(chip);
2400 if (r)
2401 goto out;
2402 break;
2404 case KVM_GET_PIT: {
2405 r = -EFAULT;
2406 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2407 goto out;
2408 r = -ENXIO;
2409 if (!kvm->arch.vpit)
2410 goto out;
2411 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2412 if (r)
2413 goto out;
2414 r = -EFAULT;
2415 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2416 goto out;
2417 r = 0;
2418 break;
2420 case KVM_SET_PIT: {
2421 r = -EFAULT;
2422 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2423 goto out;
2424 r = -ENXIO;
2425 if (!kvm->arch.vpit)
2426 goto out;
2427 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2428 if (r)
2429 goto out;
2430 r = 0;
2431 break;
2433 case KVM_GET_PIT2: {
2434 r = -ENXIO;
2435 if (!kvm->arch.vpit)
2436 goto out;
2437 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2438 if (r)
2439 goto out;
2440 r = -EFAULT;
2441 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2442 goto out;
2443 r = 0;
2444 break;
2446 case KVM_SET_PIT2: {
2447 r = -EFAULT;
2448 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2449 goto out;
2450 r = -ENXIO;
2451 if (!kvm->arch.vpit)
2452 goto out;
2453 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2454 if (r)
2455 goto out;
2456 r = 0;
2457 break;
2459 case KVM_REINJECT_CONTROL: {
2460 struct kvm_reinject_control control;
2461 r = -EFAULT;
2462 if (copy_from_user(&control, argp, sizeof(control)))
2463 goto out;
2464 r = kvm_vm_ioctl_reinject(kvm, &control);
2465 if (r)
2466 goto out;
2467 r = 0;
2468 break;
2470 case KVM_SET_CLOCK: {
2471 struct timespec now;
2472 struct kvm_clock_data user_ns;
2473 u64 now_ns;
2474 s64 delta;
2476 r = -EFAULT;
2477 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2478 goto out;
2480 r = -EINVAL;
2481 if (user_ns.flags)
2482 goto out;
2484 r = 0;
2485 ktime_get_ts(&now);
2486 now_ns = timespec_to_ns(&now);
2487 delta = user_ns.clock - now_ns;
2488 kvm->arch.kvmclock_offset = delta;
2489 break;
2491 case KVM_GET_CLOCK: {
2492 struct timespec now;
2493 struct kvm_clock_data user_ns;
2494 u64 now_ns;
2496 ktime_get_ts(&now);
2497 now_ns = timespec_to_ns(&now);
2498 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2499 user_ns.flags = 0;
2500 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
2502 r = -EFAULT;
2503 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2504 goto out;
2505 r = 0;
2506 break;
2509 default:
2512 out:
2513 return r;
2516 static void kvm_init_msr_list(void)
2518 u32 dummy[2];
2519 unsigned i, j;
2521 /* skip the first msrs in the list. KVM-specific */
2522 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
2523 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2524 continue;
2525 if (j < i)
2526 msrs_to_save[j] = msrs_to_save[i];
2527 j++;
2529 num_msrs_to_save = j;
2532 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2533 const void *v)
2535 if (vcpu->arch.apic &&
2536 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2537 return 0;
2539 return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2542 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2544 if (vcpu->arch.apic &&
2545 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2546 return 0;
2548 return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2551 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
2553 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
2554 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
2557 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
2559 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
2560 access |= PFERR_FETCH_MASK;
2561 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
2564 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
2566 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
2567 access |= PFERR_WRITE_MASK;
2568 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
2571 /* uses this to access any guest's mapped memory without checking CPL */
2572 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
2574 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
2577 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
2578 struct kvm_vcpu *vcpu, u32 access,
2579 u32 *error)
2581 void *data = val;
2582 int r = X86EMUL_CONTINUE;
2584 while (bytes) {
2585 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
2586 unsigned offset = addr & (PAGE_SIZE-1);
2587 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2588 int ret;
2590 if (gpa == UNMAPPED_GVA) {
2591 r = X86EMUL_PROPAGATE_FAULT;
2592 goto out;
2594 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2595 if (ret < 0) {
2596 r = X86EMUL_UNHANDLEABLE;
2597 goto out;
2600 bytes -= toread;
2601 data += toread;
2602 addr += toread;
2604 out:
2605 return r;
2608 /* used for instruction fetching */
2609 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
2610 struct kvm_vcpu *vcpu, u32 *error)
2612 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
2613 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
2614 access | PFERR_FETCH_MASK, error);
2617 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2618 struct kvm_vcpu *vcpu, u32 *error)
2620 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
2621 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
2622 error);
2625 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
2626 struct kvm_vcpu *vcpu, u32 *error)
2628 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
2631 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2632 struct kvm_vcpu *vcpu, u32 *error)
2634 void *data = val;
2635 int r = X86EMUL_CONTINUE;
2637 while (bytes) {
2638 gpa_t gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error);
2639 unsigned offset = addr & (PAGE_SIZE-1);
2640 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2641 int ret;
2643 if (gpa == UNMAPPED_GVA) {
2644 r = X86EMUL_PROPAGATE_FAULT;
2645 goto out;
2647 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2648 if (ret < 0) {
2649 r = X86EMUL_UNHANDLEABLE;
2650 goto out;
2653 bytes -= towrite;
2654 data += towrite;
2655 addr += towrite;
2657 out:
2658 return r;
2662 static int emulator_read_emulated(unsigned long addr,
2663 void *val,
2664 unsigned int bytes,
2665 struct kvm_vcpu *vcpu)
2667 gpa_t gpa;
2668 u32 error_code;
2670 if (vcpu->mmio_read_completed) {
2671 memcpy(val, vcpu->mmio_data, bytes);
2672 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2673 vcpu->mmio_phys_addr, *(u64 *)val);
2674 vcpu->mmio_read_completed = 0;
2675 return X86EMUL_CONTINUE;
2678 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
2680 if (gpa == UNMAPPED_GVA) {
2681 kvm_inject_page_fault(vcpu, addr, error_code);
2682 return X86EMUL_PROPAGATE_FAULT;
2685 /* For APIC access vmexit */
2686 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2687 goto mmio;
2689 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
2690 == X86EMUL_CONTINUE)
2691 return X86EMUL_CONTINUE;
2693 mmio:
2695 * Is this MMIO handled locally?
2697 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2698 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2699 return X86EMUL_CONTINUE;
2702 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2704 vcpu->mmio_needed = 1;
2705 vcpu->mmio_phys_addr = gpa;
2706 vcpu->mmio_size = bytes;
2707 vcpu->mmio_is_write = 0;
2709 return X86EMUL_UNHANDLEABLE;
2712 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2713 const void *val, int bytes)
2715 int ret;
2717 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2718 if (ret < 0)
2719 return 0;
2720 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2721 return 1;
2724 static int emulator_write_emulated_onepage(unsigned long addr,
2725 const void *val,
2726 unsigned int bytes,
2727 struct kvm_vcpu *vcpu)
2729 gpa_t gpa;
2730 u32 error_code;
2732 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
2734 if (gpa == UNMAPPED_GVA) {
2735 kvm_inject_page_fault(vcpu, addr, error_code);
2736 return X86EMUL_PROPAGATE_FAULT;
2739 /* For APIC access vmexit */
2740 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2741 goto mmio;
2743 if (emulator_write_phys(vcpu, gpa, val, bytes))
2744 return X86EMUL_CONTINUE;
2746 mmio:
2747 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2749 * Is this MMIO handled locally?
2751 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2752 return X86EMUL_CONTINUE;
2754 vcpu->mmio_needed = 1;
2755 vcpu->mmio_phys_addr = gpa;
2756 vcpu->mmio_size = bytes;
2757 vcpu->mmio_is_write = 1;
2758 memcpy(vcpu->mmio_data, val, bytes);
2760 return X86EMUL_CONTINUE;
2763 int emulator_write_emulated(unsigned long addr,
2764 const void *val,
2765 unsigned int bytes,
2766 struct kvm_vcpu *vcpu)
2768 /* Crossing a page boundary? */
2769 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2770 int rc, now;
2772 now = -addr & ~PAGE_MASK;
2773 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2774 if (rc != X86EMUL_CONTINUE)
2775 return rc;
2776 addr += now;
2777 val += now;
2778 bytes -= now;
2780 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2782 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2784 static int emulator_cmpxchg_emulated(unsigned long addr,
2785 const void *old,
2786 const void *new,
2787 unsigned int bytes,
2788 struct kvm_vcpu *vcpu)
2790 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2791 #ifndef CONFIG_X86_64
2792 /* guests cmpxchg8b have to be emulated atomically */
2793 if (bytes == 8) {
2794 gpa_t gpa;
2795 struct page *page;
2796 char *kaddr;
2797 u64 val;
2799 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
2801 if (gpa == UNMAPPED_GVA ||
2802 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2803 goto emul_write;
2805 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2806 goto emul_write;
2808 val = *(u64 *)new;
2810 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2812 kaddr = kmap_atomic(page, KM_USER0);
2813 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2814 kunmap_atomic(kaddr, KM_USER0);
2815 kvm_release_page_dirty(page);
2817 emul_write:
2818 #endif
2820 return emulator_write_emulated(addr, new, bytes, vcpu);
2823 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2825 return kvm_x86_ops->get_segment_base(vcpu, seg);
2828 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2830 kvm_mmu_invlpg(vcpu, address);
2831 return X86EMUL_CONTINUE;
2834 int emulate_clts(struct kvm_vcpu *vcpu)
2836 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2837 return X86EMUL_CONTINUE;
2840 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2842 struct kvm_vcpu *vcpu = ctxt->vcpu;
2844 if (!kvm_x86_ops->get_dr)
2845 return X86EMUL_UNHANDLEABLE;
2847 switch (dr) {
2848 case 0 ... 3:
2849 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2850 return X86EMUL_CONTINUE;
2851 default:
2852 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2853 return X86EMUL_UNHANDLEABLE;
2857 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2859 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2860 int exception;
2862 if (!kvm_x86_ops->set_dr)
2863 return X86EMUL_UNHANDLEABLE;
2865 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2866 if (exception) {
2867 /* FIXME: better handling */
2868 return X86EMUL_UNHANDLEABLE;
2870 return X86EMUL_CONTINUE;
2873 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2875 u8 opcodes[4];
2876 unsigned long rip = kvm_rip_read(vcpu);
2877 unsigned long rip_linear;
2879 if (!printk_ratelimit())
2880 return;
2882 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2884 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
2886 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2887 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2889 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2891 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
2892 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
2894 struct kvm_cpuid_entry2 *cpuid = NULL;
2896 if (eax && ecx)
2897 cpuid = kvm_find_cpuid_entry(ctxt->vcpu,
2898 *eax, *ecx);
2900 if (cpuid) {
2901 *eax = cpuid->eax;
2902 *ecx = cpuid->ecx;
2903 if (ebx)
2904 *ebx = cpuid->ebx;
2905 if (edx)
2906 *edx = cpuid->edx;
2907 return true;
2910 return false;
2913 static struct x86_emulate_ops emulate_ops = {
2914 .read_std = kvm_read_guest_virt_system,
2915 .fetch = kvm_fetch_guest_virt,
2916 .read_emulated = emulator_read_emulated,
2917 .write_emulated = emulator_write_emulated,
2918 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2919 .get_cpuid = emulator_get_cpuid,
2922 static void cache_all_regs(struct kvm_vcpu *vcpu)
2924 kvm_register_read(vcpu, VCPU_REGS_RAX);
2925 kvm_register_read(vcpu, VCPU_REGS_RSP);
2926 kvm_register_read(vcpu, VCPU_REGS_RIP);
2927 vcpu->arch.regs_dirty = ~0;
2930 int emulate_instruction(struct kvm_vcpu *vcpu,
2931 struct kvm_run *run,
2932 unsigned long cr2,
2933 u16 error_code,
2934 int emulation_type)
2936 int r, shadow_mask;
2937 struct decode_cache *c;
2939 kvm_clear_exception_queue(vcpu);
2940 vcpu->arch.mmio_fault_cr2 = cr2;
2942 * TODO: fix emulate.c to use guest_read/write_register
2943 * instead of direct ->regs accesses, can save hundred cycles
2944 * on Intel for instructions that don't read/change RSP, for
2945 * for example.
2947 cache_all_regs(vcpu);
2949 vcpu->mmio_is_write = 0;
2950 vcpu->arch.pio.string = 0;
2952 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2953 int cs_db, cs_l;
2954 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2956 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2957 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2958 vcpu->arch.emulate_ctxt.mode =
2959 (!(vcpu->arch.cr0 & X86_CR0_PE)) ? X86EMUL_MODE_REAL :
2960 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2961 ? X86EMUL_MODE_VM86 : cs_l
2962 ? X86EMUL_MODE_PROT64 : cs_db
2963 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2965 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2967 /* Only allow emulation of specific instructions on #UD
2968 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2969 c = &vcpu->arch.emulate_ctxt.decode;
2970 if (emulation_type & EMULTYPE_TRAP_UD) {
2971 if (!c->twobyte)
2972 return EMULATE_FAIL;
2973 switch (c->b) {
2974 case 0x01: /* VMMCALL */
2975 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2976 return EMULATE_FAIL;
2977 break;
2978 case 0x34: /* sysenter */
2979 case 0x35: /* sysexit */
2980 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2981 return EMULATE_FAIL;
2982 break;
2983 case 0x05: /* syscall */
2984 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2985 return EMULATE_FAIL;
2986 break;
2987 default:
2988 return EMULATE_FAIL;
2991 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2992 return EMULATE_FAIL;
2995 ++vcpu->stat.insn_emulation;
2996 if (r) {
2997 ++vcpu->stat.insn_emulation_fail;
2998 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2999 return EMULATE_DONE;
3000 return EMULATE_FAIL;
3004 if (emulation_type & EMULTYPE_SKIP) {
3005 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3006 return EMULATE_DONE;
3009 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3010 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3012 if (r == 0)
3013 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3015 if (vcpu->arch.pio.string)
3016 return EMULATE_DO_MMIO;
3018 if ((r || vcpu->mmio_is_write) && run) {
3019 run->exit_reason = KVM_EXIT_MMIO;
3020 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3021 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3022 run->mmio.len = vcpu->mmio_size;
3023 run->mmio.is_write = vcpu->mmio_is_write;
3026 if (r) {
3027 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3028 return EMULATE_DONE;
3029 if (!vcpu->mmio_needed) {
3030 kvm_report_emulation_failure(vcpu, "mmio");
3031 return EMULATE_FAIL;
3033 return EMULATE_DO_MMIO;
3036 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3038 if (vcpu->mmio_is_write) {
3039 vcpu->mmio_needed = 0;
3040 return EMULATE_DO_MMIO;
3043 return EMULATE_DONE;
3045 EXPORT_SYMBOL_GPL(emulate_instruction);
3047 static int pio_copy_data(struct kvm_vcpu *vcpu)
3049 void *p = vcpu->arch.pio_data;
3050 gva_t q = vcpu->arch.pio.guest_gva;
3051 unsigned bytes;
3052 int ret;
3053 u32 error_code;
3055 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3056 if (vcpu->arch.pio.in)
3057 ret = kvm_write_guest_virt(q, p, bytes, vcpu, &error_code);
3058 else
3059 ret = kvm_read_guest_virt(q, p, bytes, vcpu, &error_code);
3061 if (ret == X86EMUL_PROPAGATE_FAULT)
3062 kvm_inject_page_fault(vcpu, q, error_code);
3064 return ret;
3067 int complete_pio(struct kvm_vcpu *vcpu)
3069 struct kvm_pio_request *io = &vcpu->arch.pio;
3070 long delta;
3071 int r;
3072 unsigned long val;
3074 if (!io->string) {
3075 if (io->in) {
3076 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3077 memcpy(&val, vcpu->arch.pio_data, io->size);
3078 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3080 } else {
3081 if (io->in) {
3082 r = pio_copy_data(vcpu);
3083 if (r)
3084 goto out;
3087 delta = 1;
3088 if (io->rep) {
3089 delta *= io->cur_count;
3091 * The size of the register should really depend on
3092 * current address size.
3094 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3095 val -= delta;
3096 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3098 if (io->down)
3099 delta = -delta;
3100 delta *= io->size;
3101 if (io->in) {
3102 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3103 val += delta;
3104 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3105 } else {
3106 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3107 val += delta;
3108 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3111 out:
3112 io->count -= io->cur_count;
3113 io->cur_count = 0;
3115 return 0;
3118 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3120 /* TODO: String I/O for in kernel device */
3121 int r;
3123 if (vcpu->arch.pio.in)
3124 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3125 vcpu->arch.pio.size, pd);
3126 else
3127 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3128 vcpu->arch.pio.size, pd);
3129 return r;
3132 static int pio_string_write(struct kvm_vcpu *vcpu)
3134 struct kvm_pio_request *io = &vcpu->arch.pio;
3135 void *pd = vcpu->arch.pio_data;
3136 int i, r = 0;
3138 for (i = 0; i < io->cur_count; i++) {
3139 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
3140 io->port, io->size, pd)) {
3141 r = -EOPNOTSUPP;
3142 break;
3144 pd += io->size;
3146 return r;
3149 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
3150 int size, unsigned port)
3152 unsigned long val;
3154 trace_kvm_pio(!in, port, size, 1);
3156 vcpu->run->exit_reason = KVM_EXIT_IO;
3157 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3158 vcpu->run->io.size = vcpu->arch.pio.size = size;
3159 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3160 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3161 vcpu->run->io.port = vcpu->arch.pio.port = port;
3162 vcpu->arch.pio.in = in;
3163 vcpu->arch.pio.string = 0;
3164 vcpu->arch.pio.down = 0;
3165 vcpu->arch.pio.rep = 0;
3167 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3168 memcpy(vcpu->arch.pio_data, &val, 4);
3170 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3171 complete_pio(vcpu);
3172 return 1;
3174 return 0;
3176 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3178 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
3179 int size, unsigned long count, int down,
3180 gva_t address, int rep, unsigned port)
3182 unsigned now, in_page;
3183 int ret = 0;
3185 trace_kvm_pio(!in, port, size, count);
3187 vcpu->run->exit_reason = KVM_EXIT_IO;
3188 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3189 vcpu->run->io.size = vcpu->arch.pio.size = size;
3190 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3191 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3192 vcpu->run->io.port = vcpu->arch.pio.port = port;
3193 vcpu->arch.pio.in = in;
3194 vcpu->arch.pio.string = 1;
3195 vcpu->arch.pio.down = down;
3196 vcpu->arch.pio.rep = rep;
3198 if (!count) {
3199 kvm_x86_ops->skip_emulated_instruction(vcpu);
3200 return 1;
3203 if (!down)
3204 in_page = PAGE_SIZE - offset_in_page(address);
3205 else
3206 in_page = offset_in_page(address) + size;
3207 now = min(count, (unsigned long)in_page / size);
3208 if (!now)
3209 now = 1;
3210 if (down) {
3212 * String I/O in reverse. Yuck. Kill the guest, fix later.
3214 pr_unimpl(vcpu, "guest string pio down\n");
3215 kvm_inject_gp(vcpu, 0);
3216 return 1;
3218 vcpu->run->io.count = now;
3219 vcpu->arch.pio.cur_count = now;
3221 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3222 kvm_x86_ops->skip_emulated_instruction(vcpu);
3224 vcpu->arch.pio.guest_gva = address;
3226 if (!vcpu->arch.pio.in) {
3227 /* string PIO write */
3228 ret = pio_copy_data(vcpu);
3229 if (ret == X86EMUL_PROPAGATE_FAULT)
3230 return 1;
3231 if (ret == 0 && !pio_string_write(vcpu)) {
3232 complete_pio(vcpu);
3233 if (vcpu->arch.pio.count == 0)
3234 ret = 1;
3237 /* no string PIO read support yet */
3239 return ret;
3241 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3243 static void bounce_off(void *info)
3245 /* nothing */
3248 static unsigned int ref_freq;
3249 static unsigned long tsc_khz_ref;
3251 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3252 void *data)
3254 struct cpufreq_freqs *freq = data;
3255 struct kvm *kvm;
3256 struct kvm_vcpu *vcpu;
3257 int i, send_ipi = 0;
3259 if (!ref_freq)
3260 ref_freq = freq->old;
3262 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3263 return 0;
3264 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3265 return 0;
3266 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
3268 spin_lock(&kvm_lock);
3269 list_for_each_entry(kvm, &vm_list, vm_list) {
3270 kvm_for_each_vcpu(i, vcpu, kvm) {
3271 if (vcpu->cpu != freq->cpu)
3272 continue;
3273 if (!kvm_request_guest_time_update(vcpu))
3274 continue;
3275 if (vcpu->cpu != smp_processor_id())
3276 send_ipi++;
3279 spin_unlock(&kvm_lock);
3281 if (freq->old < freq->new && send_ipi) {
3283 * We upscale the frequency. Must make the guest
3284 * doesn't see old kvmclock values while running with
3285 * the new frequency, otherwise we risk the guest sees
3286 * time go backwards.
3288 * In case we update the frequency for another cpu
3289 * (which might be in guest context) send an interrupt
3290 * to kick the cpu out of guest context. Next time
3291 * guest context is entered kvmclock will be updated,
3292 * so the guest will not see stale values.
3294 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3296 return 0;
3299 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3300 .notifier_call = kvmclock_cpufreq_notifier
3303 int kvm_arch_init(void *opaque)
3305 int r, cpu;
3306 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3308 if (kvm_x86_ops) {
3309 printk(KERN_ERR "kvm: already loaded the other module\n");
3310 r = -EEXIST;
3311 goto out;
3314 if (!ops->cpu_has_kvm_support()) {
3315 printk(KERN_ERR "kvm: no hardware support\n");
3316 r = -EOPNOTSUPP;
3317 goto out;
3319 if (ops->disabled_by_bios()) {
3320 printk(KERN_ERR "kvm: disabled by bios\n");
3321 r = -EOPNOTSUPP;
3322 goto out;
3325 r = kvm_mmu_module_init();
3326 if (r)
3327 goto out;
3329 kvm_init_msr_list();
3331 kvm_x86_ops = ops;
3332 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3333 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3334 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3335 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3337 for_each_possible_cpu(cpu)
3338 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3339 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3340 tsc_khz_ref = tsc_khz;
3341 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3342 CPUFREQ_TRANSITION_NOTIFIER);
3345 return 0;
3347 out:
3348 return r;
3351 void kvm_arch_exit(void)
3353 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3354 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3355 CPUFREQ_TRANSITION_NOTIFIER);
3356 kvm_x86_ops = NULL;
3357 kvm_mmu_module_exit();
3360 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3362 ++vcpu->stat.halt_exits;
3363 if (irqchip_in_kernel(vcpu->kvm)) {
3364 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3365 return 1;
3366 } else {
3367 vcpu->run->exit_reason = KVM_EXIT_HLT;
3368 return 0;
3371 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3373 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3374 unsigned long a1)
3376 if (is_long_mode(vcpu))
3377 return a0;
3378 else
3379 return a0 | ((gpa_t)a1 << 32);
3382 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3384 unsigned long nr, a0, a1, a2, a3, ret;
3385 int r = 1;
3387 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3388 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3389 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3390 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3391 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3393 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3395 if (!is_long_mode(vcpu)) {
3396 nr &= 0xFFFFFFFF;
3397 a0 &= 0xFFFFFFFF;
3398 a1 &= 0xFFFFFFFF;
3399 a2 &= 0xFFFFFFFF;
3400 a3 &= 0xFFFFFFFF;
3403 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3404 ret = -KVM_EPERM;
3405 goto out;
3408 switch (nr) {
3409 case KVM_HC_VAPIC_POLL_IRQ:
3410 ret = 0;
3411 break;
3412 case KVM_HC_MMU_OP:
3413 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3414 break;
3415 default:
3416 ret = -KVM_ENOSYS;
3417 break;
3419 out:
3420 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3421 ++vcpu->stat.hypercalls;
3422 return r;
3424 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3426 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3428 char instruction[3];
3429 int ret = 0;
3430 unsigned long rip = kvm_rip_read(vcpu);
3434 * Blow out the MMU to ensure that no other VCPU has an active mapping
3435 * to ensure that the updated hypercall appears atomically across all
3436 * VCPUs.
3438 kvm_mmu_zap_all(vcpu->kvm);
3440 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3441 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3442 != X86EMUL_CONTINUE)
3443 ret = -EFAULT;
3445 return ret;
3448 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3450 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3453 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3455 struct descriptor_table dt = { limit, base };
3457 kvm_x86_ops->set_gdt(vcpu, &dt);
3460 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3462 struct descriptor_table dt = { limit, base };
3464 kvm_x86_ops->set_idt(vcpu, &dt);
3467 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3468 unsigned long *rflags)
3470 kvm_lmsw(vcpu, msw);
3471 *rflags = kvm_x86_ops->get_rflags(vcpu);
3474 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3476 unsigned long value;
3478 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3479 switch (cr) {
3480 case 0:
3481 value = vcpu->arch.cr0;
3482 break;
3483 case 2:
3484 value = vcpu->arch.cr2;
3485 break;
3486 case 3:
3487 value = vcpu->arch.cr3;
3488 break;
3489 case 4:
3490 value = vcpu->arch.cr4;
3491 break;
3492 case 8:
3493 value = kvm_get_cr8(vcpu);
3494 break;
3495 default:
3496 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3497 return 0;
3500 return value;
3503 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3504 unsigned long *rflags)
3506 switch (cr) {
3507 case 0:
3508 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3509 *rflags = kvm_x86_ops->get_rflags(vcpu);
3510 break;
3511 case 2:
3512 vcpu->arch.cr2 = val;
3513 break;
3514 case 3:
3515 kvm_set_cr3(vcpu, val);
3516 break;
3517 case 4:
3518 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3519 break;
3520 case 8:
3521 kvm_set_cr8(vcpu, val & 0xfUL);
3522 break;
3523 default:
3524 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3528 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3530 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3531 int j, nent = vcpu->arch.cpuid_nent;
3533 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3534 /* when no next entry is found, the current entry[i] is reselected */
3535 for (j = i + 1; ; j = (j + 1) % nent) {
3536 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3537 if (ej->function == e->function) {
3538 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3539 return j;
3542 return 0; /* silence gcc, even though control never reaches here */
3545 /* find an entry with matching function, matching index (if needed), and that
3546 * should be read next (if it's stateful) */
3547 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3548 u32 function, u32 index)
3550 if (e->function != function)
3551 return 0;
3552 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3553 return 0;
3554 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3555 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3556 return 0;
3557 return 1;
3560 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3561 u32 function, u32 index)
3563 int i;
3564 struct kvm_cpuid_entry2 *best = NULL;
3566 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3567 struct kvm_cpuid_entry2 *e;
3569 e = &vcpu->arch.cpuid_entries[i];
3570 if (is_matching_cpuid_entry(e, function, index)) {
3571 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3572 move_to_next_stateful_cpuid_entry(vcpu, i);
3573 best = e;
3574 break;
3577 * Both basic or both extended?
3579 if (((e->function ^ function) & 0x80000000) == 0)
3580 if (!best || e->function > best->function)
3581 best = e;
3583 return best;
3586 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3588 struct kvm_cpuid_entry2 *best;
3590 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3591 if (best)
3592 return best->eax & 0xff;
3593 return 36;
3596 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3598 u32 function, index;
3599 struct kvm_cpuid_entry2 *best;
3601 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3602 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3603 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3604 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3605 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3606 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3607 best = kvm_find_cpuid_entry(vcpu, function, index);
3608 if (best) {
3609 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3610 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3611 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3612 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3614 kvm_x86_ops->skip_emulated_instruction(vcpu);
3615 trace_kvm_cpuid(function,
3616 kvm_register_read(vcpu, VCPU_REGS_RAX),
3617 kvm_register_read(vcpu, VCPU_REGS_RBX),
3618 kvm_register_read(vcpu, VCPU_REGS_RCX),
3619 kvm_register_read(vcpu, VCPU_REGS_RDX));
3621 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3624 * Check if userspace requested an interrupt window, and that the
3625 * interrupt window is open.
3627 * No need to exit to userspace if we already have an interrupt queued.
3629 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3630 struct kvm_run *kvm_run)
3632 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3633 kvm_run->request_interrupt_window &&
3634 kvm_arch_interrupt_allowed(vcpu));
3637 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3638 struct kvm_run *kvm_run)
3640 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3641 kvm_run->cr8 = kvm_get_cr8(vcpu);
3642 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3643 if (irqchip_in_kernel(vcpu->kvm))
3644 kvm_run->ready_for_interrupt_injection = 1;
3645 else
3646 kvm_run->ready_for_interrupt_injection =
3647 kvm_arch_interrupt_allowed(vcpu) &&
3648 !kvm_cpu_has_interrupt(vcpu) &&
3649 !kvm_event_needs_reinjection(vcpu);
3652 static void vapic_enter(struct kvm_vcpu *vcpu)
3654 struct kvm_lapic *apic = vcpu->arch.apic;
3655 struct page *page;
3657 if (!apic || !apic->vapic_addr)
3658 return;
3660 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3662 vcpu->arch.apic->vapic_page = page;
3665 static void vapic_exit(struct kvm_vcpu *vcpu)
3667 struct kvm_lapic *apic = vcpu->arch.apic;
3669 if (!apic || !apic->vapic_addr)
3670 return;
3672 down_read(&vcpu->kvm->slots_lock);
3673 kvm_release_page_dirty(apic->vapic_page);
3674 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3675 up_read(&vcpu->kvm->slots_lock);
3678 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3680 int max_irr, tpr;
3682 if (!kvm_x86_ops->update_cr8_intercept)
3683 return;
3685 if (!vcpu->arch.apic)
3686 return;
3688 if (!vcpu->arch.apic->vapic_addr)
3689 max_irr = kvm_lapic_find_highest_irr(vcpu);
3690 else
3691 max_irr = -1;
3693 if (max_irr != -1)
3694 max_irr >>= 4;
3696 tpr = kvm_lapic_get_cr8(vcpu);
3698 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3701 static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3703 /* try to reinject previous events if any */
3704 if (vcpu->arch.exception.pending) {
3705 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3706 vcpu->arch.exception.has_error_code,
3707 vcpu->arch.exception.error_code);
3708 return;
3711 if (vcpu->arch.nmi_injected) {
3712 kvm_x86_ops->set_nmi(vcpu);
3713 return;
3716 if (vcpu->arch.interrupt.pending) {
3717 kvm_x86_ops->set_irq(vcpu);
3718 return;
3721 /* try to inject new event if pending */
3722 if (vcpu->arch.nmi_pending) {
3723 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3724 vcpu->arch.nmi_pending = false;
3725 vcpu->arch.nmi_injected = true;
3726 kvm_x86_ops->set_nmi(vcpu);
3728 } else if (kvm_cpu_has_interrupt(vcpu)) {
3729 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3730 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3731 false);
3732 kvm_x86_ops->set_irq(vcpu);
3737 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3739 int r;
3740 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3741 kvm_run->request_interrupt_window;
3743 if (vcpu->requests)
3744 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3745 kvm_mmu_unload(vcpu);
3747 r = kvm_mmu_reload(vcpu);
3748 if (unlikely(r))
3749 goto out;
3751 if (vcpu->requests) {
3752 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3753 __kvm_migrate_timers(vcpu);
3754 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3755 kvm_write_guest_time(vcpu);
3756 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3757 kvm_mmu_sync_roots(vcpu);
3758 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3759 kvm_x86_ops->tlb_flush(vcpu);
3760 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3761 &vcpu->requests)) {
3762 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3763 r = 0;
3764 goto out;
3766 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3767 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3768 r = 0;
3769 goto out;
3773 preempt_disable();
3775 kvm_x86_ops->prepare_guest_switch(vcpu);
3776 kvm_load_guest_fpu(vcpu);
3778 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
3780 local_irq_disable();
3782 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3783 smp_mb__after_clear_bit();
3785 if (vcpu->requests || need_resched() || signal_pending(current)) {
3786 set_bit(KVM_REQ_KICK, &vcpu->requests);
3787 local_irq_enable();
3788 preempt_enable();
3789 r = 1;
3790 goto out;
3793 inject_pending_event(vcpu, kvm_run);
3795 /* enable NMI/IRQ window open exits if needed */
3796 if (vcpu->arch.nmi_pending)
3797 kvm_x86_ops->enable_nmi_window(vcpu);
3798 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3799 kvm_x86_ops->enable_irq_window(vcpu);
3801 if (kvm_lapic_enabled(vcpu)) {
3802 update_cr8_intercept(vcpu);
3803 kvm_lapic_sync_to_vapic(vcpu);
3806 up_read(&vcpu->kvm->slots_lock);
3808 kvm_guest_enter();
3810 if (unlikely(vcpu->arch.switch_db_regs)) {
3811 set_debugreg(0, 7);
3812 set_debugreg(vcpu->arch.eff_db[0], 0);
3813 set_debugreg(vcpu->arch.eff_db[1], 1);
3814 set_debugreg(vcpu->arch.eff_db[2], 2);
3815 set_debugreg(vcpu->arch.eff_db[3], 3);
3818 trace_kvm_entry(vcpu->vcpu_id);
3819 kvm_x86_ops->run(vcpu, kvm_run);
3821 if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
3822 set_debugreg(current->thread.debugreg0, 0);
3823 set_debugreg(current->thread.debugreg1, 1);
3824 set_debugreg(current->thread.debugreg2, 2);
3825 set_debugreg(current->thread.debugreg3, 3);
3826 set_debugreg(current->thread.debugreg6, 6);
3827 set_debugreg(current->thread.debugreg7, 7);
3830 set_bit(KVM_REQ_KICK, &vcpu->requests);
3831 local_irq_enable();
3833 ++vcpu->stat.exits;
3836 * We must have an instruction between local_irq_enable() and
3837 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3838 * the interrupt shadow. The stat.exits increment will do nicely.
3839 * But we need to prevent reordering, hence this barrier():
3841 barrier();
3843 kvm_guest_exit();
3845 preempt_enable();
3847 down_read(&vcpu->kvm->slots_lock);
3850 * Profile KVM exit RIPs:
3852 if (unlikely(prof_on == KVM_PROFILING)) {
3853 unsigned long rip = kvm_rip_read(vcpu);
3854 profile_hit(KVM_PROFILING, (void *)rip);
3858 kvm_lapic_sync_from_vapic(vcpu);
3860 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3861 out:
3862 return r;
3866 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3868 int r;
3870 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3871 pr_debug("vcpu %d received sipi with vector # %x\n",
3872 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3873 kvm_lapic_reset(vcpu);
3874 r = kvm_arch_vcpu_reset(vcpu);
3875 if (r)
3876 return r;
3877 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3880 down_read(&vcpu->kvm->slots_lock);
3881 vapic_enter(vcpu);
3883 r = 1;
3884 while (r > 0) {
3885 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3886 r = vcpu_enter_guest(vcpu, kvm_run);
3887 else {
3888 up_read(&vcpu->kvm->slots_lock);
3889 kvm_vcpu_block(vcpu);
3890 down_read(&vcpu->kvm->slots_lock);
3891 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3893 switch(vcpu->arch.mp_state) {
3894 case KVM_MP_STATE_HALTED:
3895 vcpu->arch.mp_state =
3896 KVM_MP_STATE_RUNNABLE;
3897 case KVM_MP_STATE_RUNNABLE:
3898 break;
3899 case KVM_MP_STATE_SIPI_RECEIVED:
3900 default:
3901 r = -EINTR;
3902 break;
3907 if (r <= 0)
3908 break;
3910 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3911 if (kvm_cpu_has_pending_timer(vcpu))
3912 kvm_inject_pending_timer_irqs(vcpu);
3914 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3915 r = -EINTR;
3916 kvm_run->exit_reason = KVM_EXIT_INTR;
3917 ++vcpu->stat.request_irq_exits;
3919 if (signal_pending(current)) {
3920 r = -EINTR;
3921 kvm_run->exit_reason = KVM_EXIT_INTR;
3922 ++vcpu->stat.signal_exits;
3924 if (need_resched()) {
3925 up_read(&vcpu->kvm->slots_lock);
3926 kvm_resched(vcpu);
3927 down_read(&vcpu->kvm->slots_lock);
3931 up_read(&vcpu->kvm->slots_lock);
3932 post_kvm_run_save(vcpu, kvm_run);
3934 vapic_exit(vcpu);
3936 return r;
3939 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3941 int r;
3942 sigset_t sigsaved;
3944 vcpu_load(vcpu);
3946 if (vcpu->sigset_active)
3947 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3949 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3950 kvm_vcpu_block(vcpu);
3951 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3952 r = -EAGAIN;
3953 goto out;
3956 /* re-sync apic's tpr */
3957 if (!irqchip_in_kernel(vcpu->kvm))
3958 kvm_set_cr8(vcpu, kvm_run->cr8);
3960 if (vcpu->arch.pio.cur_count) {
3961 r = complete_pio(vcpu);
3962 if (r)
3963 goto out;
3965 #if CONFIG_HAS_IOMEM
3966 if (vcpu->mmio_needed) {
3967 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3968 vcpu->mmio_read_completed = 1;
3969 vcpu->mmio_needed = 0;
3971 down_read(&vcpu->kvm->slots_lock);
3972 r = emulate_instruction(vcpu, kvm_run,
3973 vcpu->arch.mmio_fault_cr2, 0,
3974 EMULTYPE_NO_DECODE);
3975 up_read(&vcpu->kvm->slots_lock);
3976 if (r == EMULATE_DO_MMIO) {
3978 * Read-modify-write. Back to userspace.
3980 r = 0;
3981 goto out;
3984 #endif
3985 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3986 kvm_register_write(vcpu, VCPU_REGS_RAX,
3987 kvm_run->hypercall.ret);
3989 r = __vcpu_run(vcpu, kvm_run);
3991 out:
3992 if (vcpu->sigset_active)
3993 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3995 vcpu_put(vcpu);
3996 return r;
3999 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4001 vcpu_load(vcpu);
4003 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4004 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4005 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4006 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4007 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4008 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4009 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4010 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4011 #ifdef CONFIG_X86_64
4012 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4013 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4014 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4015 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4016 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4017 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4018 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4019 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4020 #endif
4022 regs->rip = kvm_rip_read(vcpu);
4023 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
4026 * Don't leak debug flags in case they were set for guest debugging
4028 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4029 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
4031 vcpu_put(vcpu);
4033 return 0;
4036 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4038 vcpu_load(vcpu);
4040 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4041 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4042 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4043 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4044 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4045 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4046 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4047 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4048 #ifdef CONFIG_X86_64
4049 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4050 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4051 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4052 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4053 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4054 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4055 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4056 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4058 #endif
4060 kvm_rip_write(vcpu, regs->rip);
4061 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
4064 vcpu->arch.exception.pending = false;
4066 vcpu_put(vcpu);
4068 return 0;
4071 void kvm_get_segment(struct kvm_vcpu *vcpu,
4072 struct kvm_segment *var, int seg)
4074 kvm_x86_ops->get_segment(vcpu, var, seg);
4077 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4079 struct kvm_segment cs;
4081 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4082 *db = cs.db;
4083 *l = cs.l;
4085 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4087 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4088 struct kvm_sregs *sregs)
4090 struct descriptor_table dt;
4092 vcpu_load(vcpu);
4094 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4095 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4096 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4097 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4098 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4099 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4101 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4102 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4104 kvm_x86_ops->get_idt(vcpu, &dt);
4105 sregs->idt.limit = dt.limit;
4106 sregs->idt.base = dt.base;
4107 kvm_x86_ops->get_gdt(vcpu, &dt);
4108 sregs->gdt.limit = dt.limit;
4109 sregs->gdt.base = dt.base;
4111 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4112 sregs->cr0 = vcpu->arch.cr0;
4113 sregs->cr2 = vcpu->arch.cr2;
4114 sregs->cr3 = vcpu->arch.cr3;
4115 sregs->cr4 = vcpu->arch.cr4;
4116 sregs->cr8 = kvm_get_cr8(vcpu);
4117 sregs->efer = vcpu->arch.shadow_efer;
4118 sregs->apic_base = kvm_get_apic_base(vcpu);
4120 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4122 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4123 set_bit(vcpu->arch.interrupt.nr,
4124 (unsigned long *)sregs->interrupt_bitmap);
4126 vcpu_put(vcpu);
4128 return 0;
4131 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4132 struct kvm_mp_state *mp_state)
4134 vcpu_load(vcpu);
4135 mp_state->mp_state = vcpu->arch.mp_state;
4136 vcpu_put(vcpu);
4137 return 0;
4140 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4141 struct kvm_mp_state *mp_state)
4143 vcpu_load(vcpu);
4144 vcpu->arch.mp_state = mp_state->mp_state;
4145 vcpu_put(vcpu);
4146 return 0;
4149 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4150 struct kvm_segment *var, int seg)
4152 kvm_x86_ops->set_segment(vcpu, var, seg);
4155 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4156 struct kvm_segment *kvm_desct)
4158 kvm_desct->base = get_desc_base(seg_desc);
4159 kvm_desct->limit = get_desc_limit(seg_desc);
4160 if (seg_desc->g) {
4161 kvm_desct->limit <<= 12;
4162 kvm_desct->limit |= 0xfff;
4164 kvm_desct->selector = selector;
4165 kvm_desct->type = seg_desc->type;
4166 kvm_desct->present = seg_desc->p;
4167 kvm_desct->dpl = seg_desc->dpl;
4168 kvm_desct->db = seg_desc->d;
4169 kvm_desct->s = seg_desc->s;
4170 kvm_desct->l = seg_desc->l;
4171 kvm_desct->g = seg_desc->g;
4172 kvm_desct->avl = seg_desc->avl;
4173 if (!selector)
4174 kvm_desct->unusable = 1;
4175 else
4176 kvm_desct->unusable = 0;
4177 kvm_desct->padding = 0;
4180 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4181 u16 selector,
4182 struct descriptor_table *dtable)
4184 if (selector & 1 << 2) {
4185 struct kvm_segment kvm_seg;
4187 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4189 if (kvm_seg.unusable)
4190 dtable->limit = 0;
4191 else
4192 dtable->limit = kvm_seg.limit;
4193 dtable->base = kvm_seg.base;
4195 else
4196 kvm_x86_ops->get_gdt(vcpu, dtable);
4199 /* allowed just for 8 bytes segments */
4200 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4201 struct desc_struct *seg_desc)
4203 struct descriptor_table dtable;
4204 u16 index = selector >> 3;
4206 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4208 if (dtable.limit < index * 8 + 7) {
4209 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4210 return 1;
4212 return kvm_read_guest_virt_system(dtable.base + index*8,
4213 seg_desc, sizeof(*seg_desc),
4214 vcpu, NULL);
4217 /* allowed just for 8 bytes segments */
4218 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4219 struct desc_struct *seg_desc)
4221 struct descriptor_table dtable;
4222 u16 index = selector >> 3;
4224 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4226 if (dtable.limit < index * 8 + 7)
4227 return 1;
4228 return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu, NULL);
4231 static gpa_t get_tss_base_addr_write(struct kvm_vcpu *vcpu,
4232 struct desc_struct *seg_desc)
4234 u32 base_addr = get_desc_base(seg_desc);
4236 return kvm_mmu_gva_to_gpa_write(vcpu, base_addr, NULL);
4239 static gpa_t get_tss_base_addr_read(struct kvm_vcpu *vcpu,
4240 struct desc_struct *seg_desc)
4242 u32 base_addr = get_desc_base(seg_desc);
4244 return kvm_mmu_gva_to_gpa_read(vcpu, base_addr, NULL);
4247 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4249 struct kvm_segment kvm_seg;
4251 kvm_get_segment(vcpu, &kvm_seg, seg);
4252 return kvm_seg.selector;
4255 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4257 struct kvm_segment segvar = {
4258 .base = selector << 4,
4259 .limit = 0xffff,
4260 .selector = selector,
4261 .type = 3,
4262 .present = 1,
4263 .dpl = 3,
4264 .db = 0,
4265 .s = 1,
4266 .l = 0,
4267 .g = 0,
4268 .avl = 0,
4269 .unusable = 0,
4271 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4272 return X86EMUL_CONTINUE;
4275 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4277 return (seg != VCPU_SREG_LDTR) &&
4278 (seg != VCPU_SREG_TR) &&
4279 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_VM);
4282 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg)
4284 struct kvm_segment kvm_seg;
4285 struct desc_struct seg_desc;
4286 u8 dpl, rpl, cpl;
4287 unsigned err_vec = GP_VECTOR;
4288 u32 err_code = 0;
4289 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
4290 int ret;
4292 if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4293 return kvm_load_realmode_segment(vcpu, selector, seg);
4296 /* NULL selector is not valid for TR, CS and SS */
4297 if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
4298 && null_selector)
4299 goto exception;
4301 /* TR should be in GDT only */
4302 if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
4303 goto exception;
4305 ret = load_guest_segment_descriptor(vcpu, selector, &seg_desc);
4306 if (ret)
4307 return ret;
4309 seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
4311 if (null_selector) { /* for NULL selector skip all following checks */
4312 kvm_seg.unusable = 1;
4313 goto load;
4316 err_code = selector & 0xfffc;
4317 err_vec = GP_VECTOR;
4319 /* can't load system descriptor into segment selecor */
4320 if (seg <= VCPU_SREG_GS && !kvm_seg.s)
4321 goto exception;
4323 if (!kvm_seg.present) {
4324 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
4325 goto exception;
4328 rpl = selector & 3;
4329 dpl = kvm_seg.dpl;
4330 cpl = kvm_x86_ops->get_cpl(vcpu);
4332 switch (seg) {
4333 case VCPU_SREG_SS:
4335 * segment is not a writable data segment or segment
4336 * selector's RPL != CPL or segment selector's RPL != CPL
4338 if (rpl != cpl || (kvm_seg.type & 0xa) != 0x2 || dpl != cpl)
4339 goto exception;
4340 break;
4341 case VCPU_SREG_CS:
4342 if (!(kvm_seg.type & 8))
4343 goto exception;
4345 if (kvm_seg.type & 4) {
4346 /* conforming */
4347 if (dpl > cpl)
4348 goto exception;
4349 } else {
4350 /* nonconforming */
4351 if (rpl > cpl || dpl != cpl)
4352 goto exception;
4354 /* CS(RPL) <- CPL */
4355 selector = (selector & 0xfffc) | cpl;
4356 break;
4357 case VCPU_SREG_TR:
4358 if (kvm_seg.s || (kvm_seg.type != 1 && kvm_seg.type != 9))
4359 goto exception;
4360 break;
4361 case VCPU_SREG_LDTR:
4362 if (kvm_seg.s || kvm_seg.type != 2)
4363 goto exception;
4364 break;
4365 default: /* DS, ES, FS, or GS */
4367 * segment is not a data or readable code segment or
4368 * ((segment is a data or nonconforming code segment)
4369 * and (both RPL and CPL > DPL))
4371 if ((kvm_seg.type & 0xa) == 0x8 ||
4372 (((kvm_seg.type & 0xc) != 0xc) && (rpl > dpl && cpl > dpl)))
4373 goto exception;
4374 break;
4377 if (!kvm_seg.unusable && kvm_seg.s) {
4378 /* mark segment as accessed */
4379 kvm_seg.type |= 1;
4380 seg_desc.type |= 1;
4381 save_guest_segment_descriptor(vcpu, selector, &seg_desc);
4383 load:
4384 kvm_set_segment(vcpu, &kvm_seg, seg);
4385 return X86EMUL_CONTINUE;
4386 exception:
4387 kvm_queue_exception_e(vcpu, err_vec, err_code);
4388 return X86EMUL_PROPAGATE_FAULT;
4391 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4392 struct tss_segment_32 *tss)
4394 tss->cr3 = vcpu->arch.cr3;
4395 tss->eip = kvm_rip_read(vcpu);
4396 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4397 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4398 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4399 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4400 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4401 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4402 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4403 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4404 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4405 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4406 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4407 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4408 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4409 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4410 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4411 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4414 static void kvm_load_segment_selector(struct kvm_vcpu *vcpu, u16 sel, int seg)
4416 struct kvm_segment kvm_seg;
4417 kvm_get_segment(vcpu, &kvm_seg, seg);
4418 kvm_seg.selector = sel;
4419 kvm_set_segment(vcpu, &kvm_seg, seg);
4422 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4423 struct tss_segment_32 *tss)
4425 kvm_set_cr3(vcpu, tss->cr3);
4427 kvm_rip_write(vcpu, tss->eip);
4428 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4430 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4431 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4432 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4433 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4434 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4435 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4436 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4437 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4440 * SDM says that segment selectors are loaded before segment
4441 * descriptors
4443 kvm_load_segment_selector(vcpu, tss->ldt_selector, VCPU_SREG_LDTR);
4444 kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
4445 kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
4446 kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
4447 kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
4448 kvm_load_segment_selector(vcpu, tss->fs, VCPU_SREG_FS);
4449 kvm_load_segment_selector(vcpu, tss->gs, VCPU_SREG_GS);
4452 * Now load segment descriptors. If fault happenes at this stage
4453 * it is handled in a context of new task
4455 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, VCPU_SREG_LDTR))
4456 return 1;
4458 if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
4459 return 1;
4461 if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
4462 return 1;
4464 if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
4465 return 1;
4467 if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
4468 return 1;
4470 if (kvm_load_segment_descriptor(vcpu, tss->fs, VCPU_SREG_FS))
4471 return 1;
4473 if (kvm_load_segment_descriptor(vcpu, tss->gs, VCPU_SREG_GS))
4474 return 1;
4475 return 0;
4478 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4479 struct tss_segment_16 *tss)
4481 tss->ip = kvm_rip_read(vcpu);
4482 tss->flag = kvm_x86_ops->get_rflags(vcpu);
4483 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4484 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4485 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4486 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4487 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4488 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4489 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4490 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4492 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4493 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4494 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4495 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4496 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4497 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4500 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4501 struct tss_segment_16 *tss)
4503 kvm_rip_write(vcpu, tss->ip);
4504 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4505 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4506 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4507 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4508 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4509 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4510 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4511 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4512 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4515 * SDM says that segment selectors are loaded before segment
4516 * descriptors
4518 kvm_load_segment_selector(vcpu, tss->ldt, VCPU_SREG_LDTR);
4519 kvm_load_segment_selector(vcpu, tss->es, VCPU_SREG_ES);
4520 kvm_load_segment_selector(vcpu, tss->cs, VCPU_SREG_CS);
4521 kvm_load_segment_selector(vcpu, tss->ss, VCPU_SREG_SS);
4522 kvm_load_segment_selector(vcpu, tss->ds, VCPU_SREG_DS);
4525 * Now load segment descriptors. If fault happenes at this stage
4526 * it is handled in a context of new task
4528 if (kvm_load_segment_descriptor(vcpu, tss->ldt, VCPU_SREG_LDTR))
4529 return 1;
4531 if (kvm_load_segment_descriptor(vcpu, tss->es, VCPU_SREG_ES))
4532 return 1;
4534 if (kvm_load_segment_descriptor(vcpu, tss->cs, VCPU_SREG_CS))
4535 return 1;
4537 if (kvm_load_segment_descriptor(vcpu, tss->ss, VCPU_SREG_SS))
4538 return 1;
4540 if (kvm_load_segment_descriptor(vcpu, tss->ds, VCPU_SREG_DS))
4541 return 1;
4542 return 0;
4545 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4546 u16 old_tss_sel, u32 old_tss_base,
4547 struct desc_struct *nseg_desc)
4549 struct tss_segment_16 tss_segment_16;
4550 int ret = 0;
4552 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4553 sizeof tss_segment_16))
4554 goto out;
4556 save_state_to_tss16(vcpu, &tss_segment_16);
4558 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4559 sizeof tss_segment_16))
4560 goto out;
4562 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
4563 &tss_segment_16, sizeof tss_segment_16))
4564 goto out;
4566 if (old_tss_sel != 0xffff) {
4567 tss_segment_16.prev_task_link = old_tss_sel;
4569 if (kvm_write_guest(vcpu->kvm,
4570 get_tss_base_addr_write(vcpu, nseg_desc),
4571 &tss_segment_16.prev_task_link,
4572 sizeof tss_segment_16.prev_task_link))
4573 goto out;
4576 if (load_state_from_tss16(vcpu, &tss_segment_16))
4577 goto out;
4579 ret = 1;
4580 out:
4581 return ret;
4584 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4585 u16 old_tss_sel, u32 old_tss_base,
4586 struct desc_struct *nseg_desc)
4588 struct tss_segment_32 tss_segment_32;
4589 int ret = 0;
4591 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4592 sizeof tss_segment_32))
4593 goto out;
4595 save_state_to_tss32(vcpu, &tss_segment_32);
4597 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4598 sizeof tss_segment_32))
4599 goto out;
4601 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
4602 &tss_segment_32, sizeof tss_segment_32))
4603 goto out;
4605 if (old_tss_sel != 0xffff) {
4606 tss_segment_32.prev_task_link = old_tss_sel;
4608 if (kvm_write_guest(vcpu->kvm,
4609 get_tss_base_addr_write(vcpu, nseg_desc),
4610 &tss_segment_32.prev_task_link,
4611 sizeof tss_segment_32.prev_task_link))
4612 goto out;
4615 if (load_state_from_tss32(vcpu, &tss_segment_32))
4616 goto out;
4618 ret = 1;
4619 out:
4620 return ret;
4623 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4625 struct kvm_segment tr_seg;
4626 struct desc_struct cseg_desc;
4627 struct desc_struct nseg_desc;
4628 int ret = 0;
4629 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4630 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4631 u32 desc_limit;
4633 old_tss_base = kvm_mmu_gva_to_gpa_write(vcpu, old_tss_base, NULL);
4635 /* FIXME: Handle errors. Failure to read either TSS or their
4636 * descriptors should generate a pagefault.
4638 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4639 goto out;
4641 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4642 goto out;
4644 if (reason != TASK_SWITCH_IRET) {
4645 int cpl;
4647 cpl = kvm_x86_ops->get_cpl(vcpu);
4648 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4649 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4650 return 1;
4654 desc_limit = get_desc_limit(&nseg_desc);
4655 if (!nseg_desc.p ||
4656 ((desc_limit < 0x67 && (nseg_desc.type & 8)) ||
4657 desc_limit < 0x2b)) {
4658 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4659 return 1;
4662 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4663 cseg_desc.type &= ~(1 << 1); //clear the B flag
4664 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4667 if (reason == TASK_SWITCH_IRET) {
4668 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4669 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4672 /* set back link to prev task only if NT bit is set in eflags
4673 note that old_tss_sel is not used afetr this point */
4674 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4675 old_tss_sel = 0xffff;
4677 /* set back link to prev task only if NT bit is set in eflags
4678 note that old_tss_sel is not used afetr this point */
4679 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4680 old_tss_sel = 0xffff;
4682 if (nseg_desc.type & 8)
4683 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4684 old_tss_base, &nseg_desc);
4685 else
4686 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4687 old_tss_base, &nseg_desc);
4689 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4690 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4691 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4694 if (reason != TASK_SWITCH_IRET) {
4695 nseg_desc.type |= (1 << 1);
4696 save_guest_segment_descriptor(vcpu, tss_selector,
4697 &nseg_desc);
4700 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4701 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4702 tr_seg.type = 11;
4703 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4704 out:
4705 return ret;
4707 EXPORT_SYMBOL_GPL(kvm_task_switch);
4709 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4710 struct kvm_sregs *sregs)
4712 int mmu_reset_needed = 0;
4713 int pending_vec, max_bits;
4714 struct descriptor_table dt;
4716 vcpu_load(vcpu);
4718 dt.limit = sregs->idt.limit;
4719 dt.base = sregs->idt.base;
4720 kvm_x86_ops->set_idt(vcpu, &dt);
4721 dt.limit = sregs->gdt.limit;
4722 dt.base = sregs->gdt.base;
4723 kvm_x86_ops->set_gdt(vcpu, &dt);
4725 vcpu->arch.cr2 = sregs->cr2;
4726 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4727 vcpu->arch.cr3 = sregs->cr3;
4729 kvm_set_cr8(vcpu, sregs->cr8);
4731 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4732 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4733 kvm_set_apic_base(vcpu, sregs->apic_base);
4735 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4737 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4738 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4739 vcpu->arch.cr0 = sregs->cr0;
4741 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4742 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4743 if (!is_long_mode(vcpu) && is_pae(vcpu))
4744 load_pdptrs(vcpu, vcpu->arch.cr3);
4746 if (mmu_reset_needed)
4747 kvm_mmu_reset_context(vcpu);
4749 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4750 pending_vec = find_first_bit(
4751 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4752 if (pending_vec < max_bits) {
4753 kvm_queue_interrupt(vcpu, pending_vec, false);
4754 pr_debug("Set back pending irq %d\n", pending_vec);
4755 if (irqchip_in_kernel(vcpu->kvm))
4756 kvm_pic_clear_isr_ack(vcpu->kvm);
4759 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4760 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4761 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4762 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4763 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4764 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4766 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4767 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4769 update_cr8_intercept(vcpu);
4771 /* Older userspace won't unhalt the vcpu on reset. */
4772 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4773 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4774 !(vcpu->arch.cr0 & X86_CR0_PE))
4775 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4777 vcpu_put(vcpu);
4779 return 0;
4782 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4783 struct kvm_guest_debug *dbg)
4785 int i, r;
4787 vcpu_load(vcpu);
4789 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4790 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4791 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4792 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4793 vcpu->arch.switch_db_regs =
4794 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4795 } else {
4796 for (i = 0; i < KVM_NR_DB_REGS; i++)
4797 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4798 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4801 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4803 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4804 kvm_queue_exception(vcpu, DB_VECTOR);
4805 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4806 kvm_queue_exception(vcpu, BP_VECTOR);
4808 vcpu_put(vcpu);
4810 return r;
4814 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4815 * we have asm/x86/processor.h
4817 struct fxsave {
4818 u16 cwd;
4819 u16 swd;
4820 u16 twd;
4821 u16 fop;
4822 u64 rip;
4823 u64 rdp;
4824 u32 mxcsr;
4825 u32 mxcsr_mask;
4826 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4827 #ifdef CONFIG_X86_64
4828 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4829 #else
4830 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4831 #endif
4835 * Translate a guest virtual address to a guest physical address.
4837 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4838 struct kvm_translation *tr)
4840 unsigned long vaddr = tr->linear_address;
4841 gpa_t gpa;
4843 vcpu_load(vcpu);
4844 down_read(&vcpu->kvm->slots_lock);
4845 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
4846 up_read(&vcpu->kvm->slots_lock);
4847 tr->physical_address = gpa;
4848 tr->valid = gpa != UNMAPPED_GVA;
4849 tr->writeable = 1;
4850 tr->usermode = 0;
4851 vcpu_put(vcpu);
4853 return 0;
4856 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4858 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4860 vcpu_load(vcpu);
4862 memcpy(fpu->fpr, fxsave->st_space, 128);
4863 fpu->fcw = fxsave->cwd;
4864 fpu->fsw = fxsave->swd;
4865 fpu->ftwx = fxsave->twd;
4866 fpu->last_opcode = fxsave->fop;
4867 fpu->last_ip = fxsave->rip;
4868 fpu->last_dp = fxsave->rdp;
4869 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4871 vcpu_put(vcpu);
4873 return 0;
4876 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4878 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4880 vcpu_load(vcpu);
4882 memcpy(fxsave->st_space, fpu->fpr, 128);
4883 fxsave->cwd = fpu->fcw;
4884 fxsave->swd = fpu->fsw;
4885 fxsave->twd = fpu->ftwx;
4886 fxsave->fop = fpu->last_opcode;
4887 fxsave->rip = fpu->last_ip;
4888 fxsave->rdp = fpu->last_dp;
4889 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4891 vcpu_put(vcpu);
4893 return 0;
4896 void fx_init(struct kvm_vcpu *vcpu)
4898 unsigned after_mxcsr_mask;
4901 * Touch the fpu the first time in non atomic context as if
4902 * this is the first fpu instruction the exception handler
4903 * will fire before the instruction returns and it'll have to
4904 * allocate ram with GFP_KERNEL.
4906 if (!used_math())
4907 kvm_fx_save(&vcpu->arch.host_fx_image);
4909 /* Initialize guest FPU by resetting ours and saving into guest's */
4910 preempt_disable();
4911 kvm_fx_save(&vcpu->arch.host_fx_image);
4912 kvm_fx_finit();
4913 kvm_fx_save(&vcpu->arch.guest_fx_image);
4914 kvm_fx_restore(&vcpu->arch.host_fx_image);
4915 preempt_enable();
4917 vcpu->arch.cr0 |= X86_CR0_ET;
4918 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4919 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4920 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4921 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4923 EXPORT_SYMBOL_GPL(fx_init);
4925 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4927 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4928 return;
4930 vcpu->guest_fpu_loaded = 1;
4931 kvm_fx_save(&vcpu->arch.host_fx_image);
4932 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4934 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4936 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4938 if (!vcpu->guest_fpu_loaded)
4939 return;
4941 vcpu->guest_fpu_loaded = 0;
4942 kvm_fx_save(&vcpu->arch.guest_fx_image);
4943 kvm_fx_restore(&vcpu->arch.host_fx_image);
4944 ++vcpu->stat.fpu_reload;
4946 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4948 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4950 if (vcpu->arch.time_page) {
4951 kvm_release_page_dirty(vcpu->arch.time_page);
4952 vcpu->arch.time_page = NULL;
4955 kvm_x86_ops->vcpu_free(vcpu);
4958 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4959 unsigned int id)
4961 return kvm_x86_ops->vcpu_create(kvm, id);
4964 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4966 int r;
4968 /* We do fxsave: this must be aligned. */
4969 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4971 vcpu->arch.mtrr_state.have_fixed = 1;
4972 vcpu_load(vcpu);
4973 r = kvm_arch_vcpu_reset(vcpu);
4974 if (r == 0)
4975 r = kvm_mmu_setup(vcpu);
4976 vcpu_put(vcpu);
4977 if (r < 0)
4978 goto free_vcpu;
4980 return 0;
4981 free_vcpu:
4982 kvm_x86_ops->vcpu_free(vcpu);
4983 return r;
4986 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4988 vcpu_load(vcpu);
4989 kvm_mmu_unload(vcpu);
4990 vcpu_put(vcpu);
4992 kvm_x86_ops->vcpu_free(vcpu);
4995 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4997 vcpu->arch.nmi_pending = false;
4998 vcpu->arch.nmi_injected = false;
5000 vcpu->arch.switch_db_regs = 0;
5001 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5002 vcpu->arch.dr6 = DR6_FIXED_1;
5003 vcpu->arch.dr7 = DR7_FIXED_1;
5005 return kvm_x86_ops->vcpu_reset(vcpu);
5008 void kvm_arch_hardware_enable(void *garbage)
5010 kvm_x86_ops->hardware_enable(garbage);
5013 void kvm_arch_hardware_disable(void *garbage)
5015 kvm_x86_ops->hardware_disable(garbage);
5018 int kvm_arch_hardware_setup(void)
5020 return kvm_x86_ops->hardware_setup();
5023 void kvm_arch_hardware_unsetup(void)
5025 kvm_x86_ops->hardware_unsetup();
5028 void kvm_arch_check_processor_compat(void *rtn)
5030 kvm_x86_ops->check_processor_compatibility(rtn);
5033 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
5035 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
5038 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5040 struct page *page;
5041 struct kvm *kvm;
5042 int r;
5044 BUG_ON(vcpu->kvm == NULL);
5045 kvm = vcpu->kvm;
5047 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5048 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5049 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5050 else
5051 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5053 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5054 if (!page) {
5055 r = -ENOMEM;
5056 goto fail;
5058 vcpu->arch.pio_data = page_address(page);
5060 r = kvm_mmu_create(vcpu);
5061 if (r < 0)
5062 goto fail_free_pio_data;
5064 if (irqchip_in_kernel(kvm)) {
5065 r = kvm_create_lapic(vcpu);
5066 if (r < 0)
5067 goto fail_mmu_destroy;
5070 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5071 GFP_KERNEL);
5072 if (!vcpu->arch.mce_banks) {
5073 r = -ENOMEM;
5074 goto fail_free_lapic;
5076 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5078 return 0;
5079 fail_free_lapic:
5080 kvm_free_lapic(vcpu);
5081 fail_mmu_destroy:
5082 kvm_mmu_destroy(vcpu);
5083 fail_free_pio_data:
5084 free_page((unsigned long)vcpu->arch.pio_data);
5085 fail:
5086 return r;
5089 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5091 kfree(vcpu->arch.mce_banks);
5092 kvm_free_lapic(vcpu);
5093 down_read(&vcpu->kvm->slots_lock);
5094 kvm_mmu_destroy(vcpu);
5095 up_read(&vcpu->kvm->slots_lock);
5096 free_page((unsigned long)vcpu->arch.pio_data);
5099 struct kvm *kvm_arch_create_vm(void)
5101 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5103 if (!kvm)
5104 return ERR_PTR(-ENOMEM);
5106 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5107 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5109 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5110 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5112 rdtscll(kvm->arch.vm_init_tsc);
5114 return kvm;
5117 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5119 vcpu_load(vcpu);
5120 kvm_mmu_unload(vcpu);
5121 vcpu_put(vcpu);
5124 static void kvm_free_vcpus(struct kvm *kvm)
5126 unsigned int i;
5127 struct kvm_vcpu *vcpu;
5130 * Unpin any mmu pages first.
5132 kvm_for_each_vcpu(i, vcpu, kvm)
5133 kvm_unload_vcpu_mmu(vcpu);
5134 kvm_for_each_vcpu(i, vcpu, kvm)
5135 kvm_arch_vcpu_free(vcpu);
5137 mutex_lock(&kvm->lock);
5138 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5139 kvm->vcpus[i] = NULL;
5141 atomic_set(&kvm->online_vcpus, 0);
5142 mutex_unlock(&kvm->lock);
5145 void kvm_arch_sync_events(struct kvm *kvm)
5147 kvm_free_all_assigned_devices(kvm);
5150 void kvm_arch_destroy_vm(struct kvm *kvm)
5152 kvm_iommu_unmap_guest(kvm);
5153 kvm_free_pit(kvm);
5154 kfree(kvm->arch.vpic);
5155 kfree(kvm->arch.vioapic);
5156 kvm_free_vcpus(kvm);
5157 kvm_free_physmem(kvm);
5158 if (kvm->arch.apic_access_page)
5159 put_page(kvm->arch.apic_access_page);
5160 if (kvm->arch.ept_identity_pagetable)
5161 put_page(kvm->arch.ept_identity_pagetable);
5162 kfree(kvm);
5165 int kvm_arch_set_memory_region(struct kvm *kvm,
5166 struct kvm_userspace_memory_region *mem,
5167 struct kvm_memory_slot old,
5168 int user_alloc)
5170 int npages = mem->memory_size >> PAGE_SHIFT;
5171 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
5173 /*To keep backward compatibility with older userspace,
5174 *x86 needs to hanlde !user_alloc case.
5176 if (!user_alloc) {
5177 if (npages && !old.rmap) {
5178 unsigned long userspace_addr;
5180 down_write(&current->mm->mmap_sem);
5181 userspace_addr = do_mmap(NULL, 0,
5182 npages * PAGE_SIZE,
5183 PROT_READ | PROT_WRITE,
5184 MAP_PRIVATE | MAP_ANONYMOUS,
5186 up_write(&current->mm->mmap_sem);
5188 if (IS_ERR((void *)userspace_addr))
5189 return PTR_ERR((void *)userspace_addr);
5191 /* set userspace_addr atomically for kvm_hva_to_rmapp */
5192 spin_lock(&kvm->mmu_lock);
5193 memslot->userspace_addr = userspace_addr;
5194 spin_unlock(&kvm->mmu_lock);
5195 } else {
5196 if (!old.user_alloc && old.rmap) {
5197 int ret;
5199 down_write(&current->mm->mmap_sem);
5200 ret = do_munmap(current->mm, old.userspace_addr,
5201 old.npages * PAGE_SIZE);
5202 up_write(&current->mm->mmap_sem);
5203 if (ret < 0)
5204 printk(KERN_WARNING
5205 "kvm_vm_ioctl_set_memory_region: "
5206 "failed to munmap memory\n");
5211 spin_lock(&kvm->mmu_lock);
5212 if (!kvm->arch.n_requested_mmu_pages) {
5213 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5214 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5217 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5218 spin_unlock(&kvm->mmu_lock);
5220 return 0;
5223 void kvm_arch_flush_shadow(struct kvm *kvm)
5225 kvm_mmu_zap_all(kvm);
5226 kvm_reload_remote_mmus(kvm);
5229 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5231 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5232 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5233 || vcpu->arch.nmi_pending ||
5234 (kvm_arch_interrupt_allowed(vcpu) &&
5235 kvm_cpu_has_interrupt(vcpu));
5238 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5240 int me;
5241 int cpu = vcpu->cpu;
5243 if (waitqueue_active(&vcpu->wq)) {
5244 wake_up_interruptible(&vcpu->wq);
5245 ++vcpu->stat.halt_wakeup;
5248 me = get_cpu();
5249 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5250 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5251 smp_send_reschedule(cpu);
5252 put_cpu();
5255 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5257 return kvm_x86_ops->interrupt_allowed(vcpu);
5260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);