initial commit with v2.6.32.60
[linux-2.6.32.60-moxart.git] / arch / x86 / mm / pageattr.c
blob6d440878466c7bea250014dd2bf941f7a672a84e
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
17 #include <asm/e820.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
25 #include <asm/pat.h>
28 * The current flushing context - we pass it instead of 5 arguments:
30 struct cpa_data {
31 unsigned long *vaddr;
32 pgprot_t mask_set;
33 pgprot_t mask_clr;
34 int numpages;
35 int flags;
36 unsigned long pfn;
37 unsigned force_split : 1;
38 int curpage;
39 struct page **pages;
43 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45 * entries change the page attribute in parallel to some other cpu
46 * splitting a large page entry along with changing the attribute.
48 static DEFINE_SPINLOCK(cpa_lock);
50 #define CPA_FLUSHTLB 1
51 #define CPA_ARRAY 2
52 #define CPA_PAGES_ARRAY 4
54 #ifdef CONFIG_PROC_FS
55 static unsigned long direct_pages_count[PG_LEVEL_NUM];
57 void update_page_count(int level, unsigned long pages)
59 /* Protect against CPA */
60 spin_lock(&pgd_lock);
61 direct_pages_count[level] += pages;
62 spin_unlock(&pgd_lock);
65 static void split_page_count(int level)
67 direct_pages_count[level]--;
68 direct_pages_count[level - 1] += PTRS_PER_PTE;
71 void arch_report_meminfo(struct seq_file *m)
73 seq_printf(m, "DirectMap4k: %8lu kB\n",
74 direct_pages_count[PG_LEVEL_4K] << 2);
75 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
76 seq_printf(m, "DirectMap2M: %8lu kB\n",
77 direct_pages_count[PG_LEVEL_2M] << 11);
78 #else
79 seq_printf(m, "DirectMap4M: %8lu kB\n",
80 direct_pages_count[PG_LEVEL_2M] << 12);
81 #endif
82 #ifdef CONFIG_X86_64
83 if (direct_gbpages)
84 seq_printf(m, "DirectMap1G: %8lu kB\n",
85 direct_pages_count[PG_LEVEL_1G] << 20);
86 #endif
88 #else
89 static inline void split_page_count(int level) { }
90 #endif
92 #ifdef CONFIG_X86_64
94 static inline unsigned long highmap_start_pfn(void)
96 return __pa(_text) >> PAGE_SHIFT;
99 static inline unsigned long highmap_end_pfn(void)
101 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 #endif
106 #ifdef CONFIG_DEBUG_PAGEALLOC
107 # define debug_pagealloc 1
108 #else
109 # define debug_pagealloc 0
110 #endif
112 static inline int
113 within(unsigned long addr, unsigned long start, unsigned long end)
115 return addr >= start && addr < end;
119 * Flushing functions
123 * clflush_cache_range - flush a cache range with clflush
124 * @addr: virtual start address
125 * @size: number of bytes to flush
127 * clflush is an unordered instruction which needs fencing with mfence
128 * to avoid ordering issues.
130 void clflush_cache_range(void *vaddr, unsigned int size)
132 void *vend = vaddr + size - 1;
134 mb();
136 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
137 clflush(vaddr);
139 * Flush any possible final partial cacheline:
141 clflush(vend);
143 mb();
145 EXPORT_SYMBOL_GPL(clflush_cache_range);
147 static void __cpa_flush_all(void *arg)
149 unsigned long cache = (unsigned long)arg;
152 * Flush all to work around Errata in early athlons regarding
153 * large page flushing.
155 __flush_tlb_all();
157 if (cache && boot_cpu_data.x86 >= 4)
158 wbinvd();
161 static void cpa_flush_all(unsigned long cache)
163 BUG_ON(irqs_disabled());
165 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168 static void __cpa_flush_range(void *arg)
171 * We could optimize that further and do individual per page
172 * tlb invalidates for a low number of pages. Caveat: we must
173 * flush the high aliases on 64bit as well.
175 __flush_tlb_all();
178 static void cpa_flush_range(unsigned long start, int numpages, int cache)
180 unsigned int i, level;
181 unsigned long addr;
183 BUG_ON(irqs_disabled());
184 WARN_ON(PAGE_ALIGN(start) != start);
186 on_each_cpu(__cpa_flush_range, NULL, 1);
188 if (!cache)
189 return;
192 * We only need to flush on one CPU,
193 * clflush is a MESI-coherent instruction that
194 * will cause all other CPUs to flush the same
195 * cachelines:
197 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
198 pte_t *pte = lookup_address(addr, &level);
201 * Only flush present addresses:
203 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
204 clflush_cache_range((void *) addr, PAGE_SIZE);
208 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
209 int in_flags, struct page **pages)
211 unsigned int i, level;
212 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214 BUG_ON(irqs_disabled());
216 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218 if (!cache || do_wbinvd)
219 return;
222 * We only need to flush on one CPU,
223 * clflush is a MESI-coherent instruction that
224 * will cause all other CPUs to flush the same
225 * cachelines:
227 for (i = 0; i < numpages; i++) {
228 unsigned long addr;
229 pte_t *pte;
231 if (in_flags & CPA_PAGES_ARRAY)
232 addr = (unsigned long)page_address(pages[i]);
233 else
234 addr = start[i];
236 pte = lookup_address(addr, &level);
239 * Only flush present addresses:
241 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
242 clflush_cache_range((void *)addr, PAGE_SIZE);
247 * Certain areas of memory on x86 require very specific protection flags,
248 * for example the BIOS area or kernel text. Callers don't always get this
249 * right (again, ioremap() on BIOS memory is not uncommon) so this function
250 * checks and fixes these known static required protection bits.
252 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
253 unsigned long pfn)
255 pgprot_t forbidden = __pgprot(0);
258 * The BIOS area between 640k and 1Mb needs to be executable for
259 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
262 pgprot_val(forbidden) |= _PAGE_NX;
265 * The kernel text needs to be executable for obvious reasons
266 * Does not cover __inittext since that is gone later on. On
267 * 64bit we do not enforce !NX on the low mapping
269 if (within(address, (unsigned long)_text, (unsigned long)_etext))
270 pgprot_val(forbidden) |= _PAGE_NX;
273 * The .rodata section needs to be read-only. Using the pfn
274 * catches all aliases.
276 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
277 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
278 pgprot_val(forbidden) |= _PAGE_RW;
280 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
282 return prot;
286 * Lookup the page table entry for a virtual address. Return a pointer
287 * to the entry and the level of the mapping.
289 * Note: We return pud and pmd either when the entry is marked large
290 * or when the present bit is not set. Otherwise we would return a
291 * pointer to a nonexisting mapping.
293 pte_t *lookup_address(unsigned long address, unsigned int *level)
295 pgd_t *pgd = pgd_offset_k(address);
296 pud_t *pud;
297 pmd_t *pmd;
299 *level = PG_LEVEL_NONE;
301 if (pgd_none(*pgd))
302 return NULL;
304 pud = pud_offset(pgd, address);
305 if (pud_none(*pud))
306 return NULL;
308 *level = PG_LEVEL_1G;
309 if (pud_large(*pud) || !pud_present(*pud))
310 return (pte_t *)pud;
312 pmd = pmd_offset(pud, address);
313 if (pmd_none(*pmd))
314 return NULL;
316 *level = PG_LEVEL_2M;
317 if (pmd_large(*pmd) || !pmd_present(*pmd))
318 return (pte_t *)pmd;
320 *level = PG_LEVEL_4K;
322 return pte_offset_kernel(pmd, address);
324 EXPORT_SYMBOL_GPL(lookup_address);
327 * Set the new pmd in all the pgds we know about:
329 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
331 /* change init_mm */
332 set_pte_atomic(kpte, pte);
333 #ifdef CONFIG_X86_32
334 if (!SHARED_KERNEL_PMD) {
335 struct page *page;
337 list_for_each_entry(page, &pgd_list, lru) {
338 pgd_t *pgd;
339 pud_t *pud;
340 pmd_t *pmd;
342 pgd = (pgd_t *)page_address(page) + pgd_index(address);
343 pud = pud_offset(pgd, address);
344 pmd = pmd_offset(pud, address);
345 set_pte_atomic((pte_t *)pmd, pte);
348 #endif
351 static int
352 try_preserve_large_page(pte_t *kpte, unsigned long address,
353 struct cpa_data *cpa)
355 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
356 pte_t new_pte, old_pte, *tmp;
357 pgprot_t old_prot, new_prot;
358 int i, do_split = 1;
359 unsigned int level;
361 if (cpa->force_split)
362 return 1;
364 spin_lock(&pgd_lock);
366 * Check for races, another CPU might have split this page
367 * up already:
369 tmp = lookup_address(address, &level);
370 if (tmp != kpte)
371 goto out_unlock;
373 switch (level) {
374 case PG_LEVEL_2M:
375 psize = PMD_PAGE_SIZE;
376 pmask = PMD_PAGE_MASK;
377 break;
378 #ifdef CONFIG_X86_64
379 case PG_LEVEL_1G:
380 psize = PUD_PAGE_SIZE;
381 pmask = PUD_PAGE_MASK;
382 break;
383 #endif
384 default:
385 do_split = -EINVAL;
386 goto out_unlock;
390 * Calculate the number of pages, which fit into this large
391 * page starting at address:
393 nextpage_addr = (address + psize) & pmask;
394 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
395 if (numpages < cpa->numpages)
396 cpa->numpages = numpages;
399 * We are safe now. Check whether the new pgprot is the same:
401 old_pte = *kpte;
402 old_prot = new_prot = pte_pgprot(old_pte);
404 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
405 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
408 * old_pte points to the large page base address. So we need
409 * to add the offset of the virtual address:
411 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
412 cpa->pfn = pfn;
414 new_prot = static_protections(new_prot, address, pfn);
417 * We need to check the full range, whether
418 * static_protection() requires a different pgprot for one of
419 * the pages in the range we try to preserve:
421 addr = address + PAGE_SIZE;
422 pfn++;
423 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
424 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
426 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
427 goto out_unlock;
431 * If there are no changes, return. maxpages has been updated
432 * above:
434 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
435 do_split = 0;
436 goto out_unlock;
440 * We need to change the attributes. Check, whether we can
441 * change the large page in one go. We request a split, when
442 * the address is not aligned and the number of pages is
443 * smaller than the number of pages in the large page. Note
444 * that we limited the number of possible pages already to
445 * the number of pages in the large page.
447 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
449 * The address is aligned and the number of pages
450 * covers the full page.
452 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
453 __set_pmd_pte(kpte, address, new_pte);
454 cpa->flags |= CPA_FLUSHTLB;
455 do_split = 0;
458 out_unlock:
459 spin_unlock(&pgd_lock);
461 return do_split;
464 static int split_large_page(pte_t *kpte, unsigned long address)
466 unsigned long pfn, pfninc = 1;
467 unsigned int i, level;
468 pte_t *pbase, *tmp;
469 pgprot_t ref_prot;
470 struct page *base;
472 if (!debug_pagealloc)
473 spin_unlock(&cpa_lock);
474 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
475 if (!debug_pagealloc)
476 spin_lock(&cpa_lock);
477 if (!base)
478 return -ENOMEM;
480 spin_lock(&pgd_lock);
482 * Check for races, another CPU might have split this page
483 * up for us already:
485 tmp = lookup_address(address, &level);
486 if (tmp != kpte)
487 goto out_unlock;
489 pbase = (pte_t *)page_address(base);
490 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
491 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
493 * If we ever want to utilize the PAT bit, we need to
494 * update this function to make sure it's converted from
495 * bit 12 to bit 7 when we cross from the 2MB level to
496 * the 4K level:
498 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
500 #ifdef CONFIG_X86_64
501 if (level == PG_LEVEL_1G) {
502 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
503 pgprot_val(ref_prot) |= _PAGE_PSE;
505 #endif
508 * Get the target pfn from the original entry:
510 pfn = pte_pfn(*kpte);
511 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
512 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
514 if (address >= (unsigned long)__va(0) &&
515 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
516 split_page_count(level);
518 #ifdef CONFIG_X86_64
519 if (address >= (unsigned long)__va(1UL<<32) &&
520 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
521 split_page_count(level);
522 #endif
525 * Install the new, split up pagetable.
527 * We use the standard kernel pagetable protections for the new
528 * pagetable protections, the actual ptes set above control the
529 * primary protection behavior:
531 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
534 * Intel Atom errata AAH41 workaround.
536 * The real fix should be in hw or in a microcode update, but
537 * we also probabilistically try to reduce the window of having
538 * a large TLB mixed with 4K TLBs while instruction fetches are
539 * going on.
541 __flush_tlb_all();
543 base = NULL;
545 out_unlock:
547 * If we dropped out via the lookup_address check under
548 * pgd_lock then stick the page back into the pool:
550 if (base)
551 __free_page(base);
552 spin_unlock(&pgd_lock);
554 return 0;
557 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
558 int primary)
561 * Ignore all non primary paths.
563 if (!primary)
564 return 0;
567 * Ignore the NULL PTE for kernel identity mapping, as it is expected
568 * to have holes.
569 * Also set numpages to '1' indicating that we processed cpa req for
570 * one virtual address page and its pfn. TBD: numpages can be set based
571 * on the initial value and the level returned by lookup_address().
573 if (within(vaddr, PAGE_OFFSET,
574 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
575 cpa->numpages = 1;
576 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
577 return 0;
578 } else {
579 WARN(1, KERN_WARNING "CPA: called for zero pte. "
580 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
581 *cpa->vaddr);
583 return -EFAULT;
587 static int __change_page_attr(struct cpa_data *cpa, int primary)
589 unsigned long address;
590 int do_split, err;
591 unsigned int level;
592 pte_t *kpte, old_pte;
594 if (cpa->flags & CPA_PAGES_ARRAY) {
595 struct page *page = cpa->pages[cpa->curpage];
596 if (unlikely(PageHighMem(page)))
597 return 0;
598 address = (unsigned long)page_address(page);
599 } else if (cpa->flags & CPA_ARRAY)
600 address = cpa->vaddr[cpa->curpage];
601 else
602 address = *cpa->vaddr;
603 repeat:
604 kpte = lookup_address(address, &level);
605 if (!kpte)
606 return __cpa_process_fault(cpa, address, primary);
608 old_pte = *kpte;
609 if (!pte_val(old_pte))
610 return __cpa_process_fault(cpa, address, primary);
612 if (level == PG_LEVEL_4K) {
613 pte_t new_pte;
614 pgprot_t new_prot = pte_pgprot(old_pte);
615 unsigned long pfn = pte_pfn(old_pte);
617 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
618 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
620 new_prot = static_protections(new_prot, address, pfn);
623 * We need to keep the pfn from the existing PTE,
624 * after all we're only going to change it's attributes
625 * not the memory it points to
627 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
628 cpa->pfn = pfn;
630 * Do we really change anything ?
632 if (pte_val(old_pte) != pte_val(new_pte)) {
633 set_pte_atomic(kpte, new_pte);
634 cpa->flags |= CPA_FLUSHTLB;
636 cpa->numpages = 1;
637 return 0;
641 * Check, whether we can keep the large page intact
642 * and just change the pte:
644 do_split = try_preserve_large_page(kpte, address, cpa);
646 * When the range fits into the existing large page,
647 * return. cp->numpages and cpa->tlbflush have been updated in
648 * try_large_page:
650 if (do_split <= 0)
651 return do_split;
654 * We have to split the large page:
656 err = split_large_page(kpte, address);
657 if (!err) {
659 * Do a global flush tlb after splitting the large page
660 * and before we do the actual change page attribute in the PTE.
662 * With out this, we violate the TLB application note, that says
663 * "The TLBs may contain both ordinary and large-page
664 * translations for a 4-KByte range of linear addresses. This
665 * may occur if software modifies the paging structures so that
666 * the page size used for the address range changes. If the two
667 * translations differ with respect to page frame or attributes
668 * (e.g., permissions), processor behavior is undefined and may
669 * be implementation-specific."
671 * We do this global tlb flush inside the cpa_lock, so that we
672 * don't allow any other cpu, with stale tlb entries change the
673 * page attribute in parallel, that also falls into the
674 * just split large page entry.
676 flush_tlb_all();
677 goto repeat;
680 return err;
683 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
685 static int cpa_process_alias(struct cpa_data *cpa)
687 struct cpa_data alias_cpa;
688 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
689 unsigned long vaddr;
690 int ret;
692 if (cpa->pfn >= max_pfn_mapped)
693 return 0;
695 #ifdef CONFIG_X86_64
696 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
697 return 0;
698 #endif
700 * No need to redo, when the primary call touched the direct
701 * mapping already:
703 if (cpa->flags & CPA_PAGES_ARRAY) {
704 struct page *page = cpa->pages[cpa->curpage];
705 if (unlikely(PageHighMem(page)))
706 return 0;
707 vaddr = (unsigned long)page_address(page);
708 } else if (cpa->flags & CPA_ARRAY)
709 vaddr = cpa->vaddr[cpa->curpage];
710 else
711 vaddr = *cpa->vaddr;
713 if (!(within(vaddr, PAGE_OFFSET,
714 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
716 alias_cpa = *cpa;
717 alias_cpa.vaddr = &laddr;
718 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
720 ret = __change_page_attr_set_clr(&alias_cpa, 0);
721 if (ret)
722 return ret;
725 #ifdef CONFIG_X86_64
727 * If the primary call didn't touch the high mapping already
728 * and the physical address is inside the kernel map, we need
729 * to touch the high mapped kernel as well:
731 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
732 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
733 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
734 __START_KERNEL_map - phys_base;
735 alias_cpa = *cpa;
736 alias_cpa.vaddr = &temp_cpa_vaddr;
737 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
740 * The high mapping range is imprecise, so ignore the
741 * return value.
743 __change_page_attr_set_clr(&alias_cpa, 0);
745 #endif
747 return 0;
750 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
752 int ret, numpages = cpa->numpages;
754 while (numpages) {
756 * Store the remaining nr of pages for the large page
757 * preservation check.
759 cpa->numpages = numpages;
760 /* for array changes, we can't use large page */
761 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
762 cpa->numpages = 1;
764 if (!debug_pagealloc)
765 spin_lock(&cpa_lock);
766 ret = __change_page_attr(cpa, checkalias);
767 if (!debug_pagealloc)
768 spin_unlock(&cpa_lock);
769 if (ret)
770 return ret;
772 if (checkalias) {
773 ret = cpa_process_alias(cpa);
774 if (ret)
775 return ret;
779 * Adjust the number of pages with the result of the
780 * CPA operation. Either a large page has been
781 * preserved or a single page update happened.
783 BUG_ON(cpa->numpages > numpages);
784 numpages -= cpa->numpages;
785 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
786 cpa->curpage++;
787 else
788 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
791 return 0;
794 static inline int cache_attr(pgprot_t attr)
796 return pgprot_val(attr) &
797 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
800 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
801 pgprot_t mask_set, pgprot_t mask_clr,
802 int force_split, int in_flag,
803 struct page **pages)
805 struct cpa_data cpa;
806 int ret, cache, checkalias;
807 unsigned long baddr = 0;
810 * Check, if we are requested to change a not supported
811 * feature:
813 mask_set = canon_pgprot(mask_set);
814 mask_clr = canon_pgprot(mask_clr);
815 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
816 return 0;
818 /* Ensure we are PAGE_SIZE aligned */
819 if (in_flag & CPA_ARRAY) {
820 int i;
821 for (i = 0; i < numpages; i++) {
822 if (addr[i] & ~PAGE_MASK) {
823 addr[i] &= PAGE_MASK;
824 WARN_ON_ONCE(1);
827 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
829 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
830 * No need to cehck in that case
832 if (*addr & ~PAGE_MASK) {
833 *addr &= PAGE_MASK;
835 * People should not be passing in unaligned addresses:
837 WARN_ON_ONCE(1);
840 * Save address for cache flush. *addr is modified in the call
841 * to __change_page_attr_set_clr() below.
843 baddr = *addr;
846 /* Must avoid aliasing mappings in the highmem code */
847 kmap_flush_unused();
849 vm_unmap_aliases();
851 cpa.vaddr = addr;
852 cpa.pages = pages;
853 cpa.numpages = numpages;
854 cpa.mask_set = mask_set;
855 cpa.mask_clr = mask_clr;
856 cpa.flags = 0;
857 cpa.curpage = 0;
858 cpa.force_split = force_split;
860 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
861 cpa.flags |= in_flag;
863 /* No alias checking for _NX bit modifications */
864 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
866 ret = __change_page_attr_set_clr(&cpa, checkalias);
869 * Check whether we really changed something:
871 if (!(cpa.flags & CPA_FLUSHTLB))
872 goto out;
875 * No need to flush, when we did not set any of the caching
876 * attributes:
878 cache = cache_attr(mask_set);
881 * On success we use clflush, when the CPU supports it to
882 * avoid the wbindv. If the CPU does not support it and in the
883 * error case we fall back to cpa_flush_all (which uses
884 * wbindv):
886 if (!ret && cpu_has_clflush) {
887 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
888 cpa_flush_array(addr, numpages, cache,
889 cpa.flags, pages);
890 } else
891 cpa_flush_range(baddr, numpages, cache);
892 } else
893 cpa_flush_all(cache);
895 out:
896 return ret;
899 static inline int change_page_attr_set(unsigned long *addr, int numpages,
900 pgprot_t mask, int array)
902 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
903 (array ? CPA_ARRAY : 0), NULL);
906 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
907 pgprot_t mask, int array)
909 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
910 (array ? CPA_ARRAY : 0), NULL);
913 static inline int cpa_set_pages_array(struct page **pages, int numpages,
914 pgprot_t mask)
916 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
917 CPA_PAGES_ARRAY, pages);
920 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
921 pgprot_t mask)
923 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
924 CPA_PAGES_ARRAY, pages);
927 int _set_memory_uc(unsigned long addr, int numpages)
930 * for now UC MINUS. see comments in ioremap_nocache()
932 return change_page_attr_set(&addr, numpages,
933 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
936 int set_memory_uc(unsigned long addr, int numpages)
938 int ret;
941 * for now UC MINUS. see comments in ioremap_nocache()
943 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
944 _PAGE_CACHE_UC_MINUS, NULL);
945 if (ret)
946 goto out_err;
948 ret = _set_memory_uc(addr, numpages);
949 if (ret)
950 goto out_free;
952 return 0;
954 out_free:
955 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
956 out_err:
957 return ret;
959 EXPORT_SYMBOL(set_memory_uc);
961 int set_memory_array_uc(unsigned long *addr, int addrinarray)
963 int i, j;
964 int ret;
967 * for now UC MINUS. see comments in ioremap_nocache()
969 for (i = 0; i < addrinarray; i++) {
970 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
971 _PAGE_CACHE_UC_MINUS, NULL);
972 if (ret)
973 goto out_free;
976 ret = change_page_attr_set(addr, addrinarray,
977 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
978 if (ret)
979 goto out_free;
981 return 0;
983 out_free:
984 for (j = 0; j < i; j++)
985 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
987 return ret;
989 EXPORT_SYMBOL(set_memory_array_uc);
991 int _set_memory_wc(unsigned long addr, int numpages)
993 int ret;
994 unsigned long addr_copy = addr;
996 ret = change_page_attr_set(&addr, numpages,
997 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
998 if (!ret) {
999 ret = change_page_attr_set_clr(&addr_copy, numpages,
1000 __pgprot(_PAGE_CACHE_WC),
1001 __pgprot(_PAGE_CACHE_MASK),
1002 0, 0, NULL);
1004 return ret;
1007 int set_memory_wc(unsigned long addr, int numpages)
1009 int ret;
1011 if (!pat_enabled)
1012 return set_memory_uc(addr, numpages);
1014 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1015 _PAGE_CACHE_WC, NULL);
1016 if (ret)
1017 goto out_err;
1019 ret = _set_memory_wc(addr, numpages);
1020 if (ret)
1021 goto out_free;
1023 return 0;
1025 out_free:
1026 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1027 out_err:
1028 return ret;
1030 EXPORT_SYMBOL(set_memory_wc);
1032 int _set_memory_wb(unsigned long addr, int numpages)
1034 return change_page_attr_clear(&addr, numpages,
1035 __pgprot(_PAGE_CACHE_MASK), 0);
1038 int set_memory_wb(unsigned long addr, int numpages)
1040 int ret;
1042 ret = _set_memory_wb(addr, numpages);
1043 if (ret)
1044 return ret;
1046 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1047 return 0;
1049 EXPORT_SYMBOL(set_memory_wb);
1051 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1053 int i;
1054 int ret;
1056 ret = change_page_attr_clear(addr, addrinarray,
1057 __pgprot(_PAGE_CACHE_MASK), 1);
1058 if (ret)
1059 return ret;
1061 for (i = 0; i < addrinarray; i++)
1062 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1064 return 0;
1066 EXPORT_SYMBOL(set_memory_array_wb);
1068 int set_memory_x(unsigned long addr, int numpages)
1070 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1072 EXPORT_SYMBOL(set_memory_x);
1074 int set_memory_nx(unsigned long addr, int numpages)
1076 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1078 EXPORT_SYMBOL(set_memory_nx);
1080 int set_memory_ro(unsigned long addr, int numpages)
1082 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1084 EXPORT_SYMBOL_GPL(set_memory_ro);
1086 int set_memory_rw(unsigned long addr, int numpages)
1088 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1090 EXPORT_SYMBOL_GPL(set_memory_rw);
1092 int set_memory_np(unsigned long addr, int numpages)
1094 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1097 int set_memory_4k(unsigned long addr, int numpages)
1099 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1100 __pgprot(0), 1, 0, NULL);
1103 int set_pages_uc(struct page *page, int numpages)
1105 unsigned long addr = (unsigned long)page_address(page);
1107 return set_memory_uc(addr, numpages);
1109 EXPORT_SYMBOL(set_pages_uc);
1111 int set_pages_array_uc(struct page **pages, int addrinarray)
1113 unsigned long start;
1114 unsigned long end;
1115 int i;
1116 int free_idx;
1118 for (i = 0; i < addrinarray; i++) {
1119 if (PageHighMem(pages[i]))
1120 continue;
1121 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1122 end = start + PAGE_SIZE;
1123 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1124 goto err_out;
1127 if (cpa_set_pages_array(pages, addrinarray,
1128 __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1129 return 0; /* Success */
1131 err_out:
1132 free_idx = i;
1133 for (i = 0; i < free_idx; i++) {
1134 if (PageHighMem(pages[i]))
1135 continue;
1136 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1137 end = start + PAGE_SIZE;
1138 free_memtype(start, end);
1140 return -EINVAL;
1142 EXPORT_SYMBOL(set_pages_array_uc);
1144 int set_pages_wb(struct page *page, int numpages)
1146 unsigned long addr = (unsigned long)page_address(page);
1148 return set_memory_wb(addr, numpages);
1150 EXPORT_SYMBOL(set_pages_wb);
1152 int set_pages_array_wb(struct page **pages, int addrinarray)
1154 int retval;
1155 unsigned long start;
1156 unsigned long end;
1157 int i;
1159 retval = cpa_clear_pages_array(pages, addrinarray,
1160 __pgprot(_PAGE_CACHE_MASK));
1161 if (retval)
1162 return retval;
1164 for (i = 0; i < addrinarray; i++) {
1165 if (PageHighMem(pages[i]))
1166 continue;
1167 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1168 end = start + PAGE_SIZE;
1169 free_memtype(start, end);
1172 return 0;
1174 EXPORT_SYMBOL(set_pages_array_wb);
1176 int set_pages_x(struct page *page, int numpages)
1178 unsigned long addr = (unsigned long)page_address(page);
1180 return set_memory_x(addr, numpages);
1182 EXPORT_SYMBOL(set_pages_x);
1184 int set_pages_nx(struct page *page, int numpages)
1186 unsigned long addr = (unsigned long)page_address(page);
1188 return set_memory_nx(addr, numpages);
1190 EXPORT_SYMBOL(set_pages_nx);
1192 int set_pages_ro(struct page *page, int numpages)
1194 unsigned long addr = (unsigned long)page_address(page);
1196 return set_memory_ro(addr, numpages);
1199 int set_pages_rw(struct page *page, int numpages)
1201 unsigned long addr = (unsigned long)page_address(page);
1203 return set_memory_rw(addr, numpages);
1206 #ifdef CONFIG_DEBUG_PAGEALLOC
1208 static int __set_pages_p(struct page *page, int numpages)
1210 unsigned long tempaddr = (unsigned long) page_address(page);
1211 struct cpa_data cpa = { .vaddr = &tempaddr,
1212 .numpages = numpages,
1213 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1214 .mask_clr = __pgprot(0),
1215 .flags = 0};
1218 * No alias checking needed for setting present flag. otherwise,
1219 * we may need to break large pages for 64-bit kernel text
1220 * mappings (this adds to complexity if we want to do this from
1221 * atomic context especially). Let's keep it simple!
1223 return __change_page_attr_set_clr(&cpa, 0);
1226 static int __set_pages_np(struct page *page, int numpages)
1228 unsigned long tempaddr = (unsigned long) page_address(page);
1229 struct cpa_data cpa = { .vaddr = &tempaddr,
1230 .numpages = numpages,
1231 .mask_set = __pgprot(0),
1232 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1233 .flags = 0};
1236 * No alias checking needed for setting not present flag. otherwise,
1237 * we may need to break large pages for 64-bit kernel text
1238 * mappings (this adds to complexity if we want to do this from
1239 * atomic context especially). Let's keep it simple!
1241 return __change_page_attr_set_clr(&cpa, 0);
1244 void kernel_map_pages(struct page *page, int numpages, int enable)
1246 if (PageHighMem(page))
1247 return;
1248 if (!enable) {
1249 debug_check_no_locks_freed(page_address(page),
1250 numpages * PAGE_SIZE);
1254 * If page allocator is not up yet then do not call c_p_a():
1256 if (!debug_pagealloc_enabled)
1257 return;
1260 * The return value is ignored as the calls cannot fail.
1261 * Large pages for identity mappings are not used at boot time
1262 * and hence no memory allocations during large page split.
1264 if (enable)
1265 __set_pages_p(page, numpages);
1266 else
1267 __set_pages_np(page, numpages);
1270 * We should perform an IPI and flush all tlbs,
1271 * but that can deadlock->flush only current cpu:
1273 __flush_tlb_all();
1276 #ifdef CONFIG_HIBERNATION
1278 bool kernel_page_present(struct page *page)
1280 unsigned int level;
1281 pte_t *pte;
1283 if (PageHighMem(page))
1284 return false;
1286 pte = lookup_address((unsigned long)page_address(page), &level);
1287 return (pte_val(*pte) & _PAGE_PRESENT);
1290 #endif /* CONFIG_HIBERNATION */
1292 #endif /* CONFIG_DEBUG_PAGEALLOC */
1295 * The testcases use internal knowledge of the implementation that shouldn't
1296 * be exposed to the rest of the kernel. Include these directly here.
1298 #ifdef CONFIG_CPA_DEBUG
1299 #include "pageattr-test.c"
1300 #endif