2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
40 #include <net/neighbour.h>
41 #include <net/netevent.h>
42 #include <net/route.h>
45 #include "cxgb3_offload.h"
47 #include "iwch_provider.h"
50 static char *states
[] = {
67 module_param(peer2peer
, int, 0644);
68 MODULE_PARM_DESC(peer2peer
, "Support peer2peer ULPs (default=0)");
70 static int ep_timeout_secs
= 60;
71 module_param(ep_timeout_secs
, int, 0644);
72 MODULE_PARM_DESC(ep_timeout_secs
, "CM Endpoint operation timeout "
73 "in seconds (default=60)");
75 static int mpa_rev
= 1;
76 module_param(mpa_rev
, int, 0644);
77 MODULE_PARM_DESC(mpa_rev
, "MPA Revision, 0 supports amso1100, "
78 "1 is spec compliant. (default=1)");
80 static int markers_enabled
= 0;
81 module_param(markers_enabled
, int, 0644);
82 MODULE_PARM_DESC(markers_enabled
, "Enable MPA MARKERS (default(0)=disabled)");
84 static int crc_enabled
= 1;
85 module_param(crc_enabled
, int, 0644);
86 MODULE_PARM_DESC(crc_enabled
, "Enable MPA CRC (default(1)=enabled)");
88 static int rcv_win
= 256 * 1024;
89 module_param(rcv_win
, int, 0644);
90 MODULE_PARM_DESC(rcv_win
, "TCP receive window in bytes (default=256)");
92 static int snd_win
= 32 * 1024;
93 module_param(snd_win
, int, 0644);
94 MODULE_PARM_DESC(snd_win
, "TCP send window in bytes (default=32KB)");
96 static unsigned int nocong
= 0;
97 module_param(nocong
, uint
, 0644);
98 MODULE_PARM_DESC(nocong
, "Turn off congestion control (default=0)");
100 static unsigned int cong_flavor
= 1;
101 module_param(cong_flavor
, uint
, 0644);
102 MODULE_PARM_DESC(cong_flavor
, "TCP Congestion control flavor (default=1)");
104 static void process_work(struct work_struct
*work
);
105 static struct workqueue_struct
*workq
;
106 static DECLARE_WORK(skb_work
, process_work
);
108 static struct sk_buff_head rxq
;
109 static cxgb3_cpl_handler_func work_handlers
[NUM_CPL_CMDS
];
111 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
);
112 static void ep_timeout(unsigned long arg
);
113 static void connect_reply_upcall(struct iwch_ep
*ep
, int status
);
115 static void start_ep_timer(struct iwch_ep
*ep
)
117 PDBG("%s ep %p\n", __func__
, ep
);
118 if (timer_pending(&ep
->timer
)) {
119 PDBG("%s stopped / restarted timer ep %p\n", __func__
, ep
);
120 del_timer_sync(&ep
->timer
);
123 ep
->timer
.expires
= jiffies
+ ep_timeout_secs
* HZ
;
124 ep
->timer
.data
= (unsigned long)ep
;
125 ep
->timer
.function
= ep_timeout
;
126 add_timer(&ep
->timer
);
129 static void stop_ep_timer(struct iwch_ep
*ep
)
131 PDBG("%s ep %p\n", __func__
, ep
);
132 if (!timer_pending(&ep
->timer
)) {
133 printk(KERN_ERR
"%s timer stopped when its not running! ep %p state %u\n",
134 __func__
, ep
, ep
->com
.state
);
138 del_timer_sync(&ep
->timer
);
142 int iwch_l2t_send(struct t3cdev
*tdev
, struct sk_buff
*skb
, struct l2t_entry
*l2e
)
145 struct cxio_rdev
*rdev
;
147 rdev
= (struct cxio_rdev
*)tdev
->ulp
;
148 if (cxio_fatal_error(rdev
)) {
152 error
= l2t_send(tdev
, skb
, l2e
);
158 int iwch_cxgb3_ofld_send(struct t3cdev
*tdev
, struct sk_buff
*skb
)
161 struct cxio_rdev
*rdev
;
163 rdev
= (struct cxio_rdev
*)tdev
->ulp
;
164 if (cxio_fatal_error(rdev
)) {
168 error
= cxgb3_ofld_send(tdev
, skb
);
174 static void release_tid(struct t3cdev
*tdev
, u32 hwtid
, struct sk_buff
*skb
)
176 struct cpl_tid_release
*req
;
178 skb
= get_skb(skb
, sizeof *req
, GFP_KERNEL
);
181 req
= (struct cpl_tid_release
*) skb_put(skb
, sizeof(*req
));
182 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
183 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE
, hwtid
));
184 skb
->priority
= CPL_PRIORITY_SETUP
;
185 iwch_cxgb3_ofld_send(tdev
, skb
);
189 int iwch_quiesce_tid(struct iwch_ep
*ep
)
191 struct cpl_set_tcb_field
*req
;
192 struct sk_buff
*skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
196 req
= (struct cpl_set_tcb_field
*) skb_put(skb
, sizeof(*req
));
197 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
198 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
199 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD
, ep
->hwtid
));
202 req
->word
= htons(W_TCB_RX_QUIESCE
);
203 req
->mask
= cpu_to_be64(1ULL << S_TCB_RX_QUIESCE
);
204 req
->val
= cpu_to_be64(1 << S_TCB_RX_QUIESCE
);
206 skb
->priority
= CPL_PRIORITY_DATA
;
207 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
210 int iwch_resume_tid(struct iwch_ep
*ep
)
212 struct cpl_set_tcb_field
*req
;
213 struct sk_buff
*skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
217 req
= (struct cpl_set_tcb_field
*) skb_put(skb
, sizeof(*req
));
218 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
219 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
220 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD
, ep
->hwtid
));
223 req
->word
= htons(W_TCB_RX_QUIESCE
);
224 req
->mask
= cpu_to_be64(1ULL << S_TCB_RX_QUIESCE
);
227 skb
->priority
= CPL_PRIORITY_DATA
;
228 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
231 static void set_emss(struct iwch_ep
*ep
, u16 opt
)
233 PDBG("%s ep %p opt %u\n", __func__
, ep
, opt
);
234 ep
->emss
= T3C_DATA(ep
->com
.tdev
)->mtus
[G_TCPOPT_MSS(opt
)] - 40;
235 if (G_TCPOPT_TSTAMP(opt
))
239 PDBG("emss=%d\n", ep
->emss
);
242 static enum iwch_ep_state
state_read(struct iwch_ep_common
*epc
)
245 enum iwch_ep_state state
;
247 spin_lock_irqsave(&epc
->lock
, flags
);
249 spin_unlock_irqrestore(&epc
->lock
, flags
);
253 static void __state_set(struct iwch_ep_common
*epc
, enum iwch_ep_state
new)
258 static void state_set(struct iwch_ep_common
*epc
, enum iwch_ep_state
new)
262 spin_lock_irqsave(&epc
->lock
, flags
);
263 PDBG("%s - %s -> %s\n", __func__
, states
[epc
->state
], states
[new]);
264 __state_set(epc
, new);
265 spin_unlock_irqrestore(&epc
->lock
, flags
);
269 static void *alloc_ep(int size
, gfp_t gfp
)
271 struct iwch_ep_common
*epc
;
273 epc
= kzalloc(size
, gfp
);
275 kref_init(&epc
->kref
);
276 spin_lock_init(&epc
->lock
);
277 init_waitqueue_head(&epc
->waitq
);
279 PDBG("%s alloc ep %p\n", __func__
, epc
);
283 void __free_ep(struct kref
*kref
)
286 ep
= container_of(container_of(kref
, struct iwch_ep_common
, kref
),
287 struct iwch_ep
, com
);
288 PDBG("%s ep %p state %s\n", __func__
, ep
, states
[state_read(&ep
->com
)]);
289 if (test_bit(RELEASE_RESOURCES
, &ep
->com
.flags
)) {
290 cxgb3_remove_tid(ep
->com
.tdev
, (void *)ep
, ep
->hwtid
);
291 dst_release(ep
->dst
);
292 l2t_release(L2DATA(ep
->com
.tdev
), ep
->l2t
);
297 static void release_ep_resources(struct iwch_ep
*ep
)
299 PDBG("%s ep %p tid %d\n", __func__
, ep
, ep
->hwtid
);
300 set_bit(RELEASE_RESOURCES
, &ep
->com
.flags
);
304 static void process_work(struct work_struct
*work
)
306 struct sk_buff
*skb
= NULL
;
311 while ((skb
= skb_dequeue(&rxq
))) {
312 ep
= *((void **) (skb
->cb
));
313 tdev
= *((struct t3cdev
**) (skb
->cb
+ sizeof(void *)));
314 ret
= work_handlers
[G_OPCODE(ntohl((__force __be32
)skb
->csum
))](tdev
, skb
, ep
);
315 if (ret
& CPL_RET_BUF_DONE
)
319 * ep was referenced in sched(), and is freed here.
321 put_ep((struct iwch_ep_common
*)ep
);
325 static int status2errno(int status
)
330 case CPL_ERR_CONN_RESET
:
332 case CPL_ERR_ARP_MISS
:
333 return -EHOSTUNREACH
;
334 case CPL_ERR_CONN_TIMEDOUT
:
336 case CPL_ERR_TCAM_FULL
:
338 case CPL_ERR_CONN_EXIST
:
346 * Try and reuse skbs already allocated...
348 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
)
350 if (skb
&& !skb_is_nonlinear(skb
) && !skb_cloned(skb
)) {
354 skb
= alloc_skb(len
, gfp
);
359 static struct rtable
*find_route(struct t3cdev
*dev
, __be32 local_ip
,
360 __be32 peer_ip
, __be16 local_port
,
361 __be16 peer_port
, u8 tos
)
372 .proto
= IPPROTO_TCP
,
380 if (ip_route_output_flow(&init_net
, &rt
, &fl
, NULL
, 0))
385 static unsigned int find_best_mtu(const struct t3c_data
*d
, unsigned short mtu
)
389 while (i
< d
->nmtus
- 1 && d
->mtus
[i
+ 1] <= mtu
)
394 static void arp_failure_discard(struct t3cdev
*dev
, struct sk_buff
*skb
)
396 PDBG("%s t3cdev %p\n", __func__
, dev
);
401 * Handle an ARP failure for an active open.
403 static void act_open_req_arp_failure(struct t3cdev
*dev
, struct sk_buff
*skb
)
405 printk(KERN_ERR MOD
"ARP failure duing connect\n");
410 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
413 static void abort_arp_failure(struct t3cdev
*dev
, struct sk_buff
*skb
)
415 struct cpl_abort_req
*req
= cplhdr(skb
);
417 PDBG("%s t3cdev %p\n", __func__
, dev
);
418 req
->cmd
= CPL_ABORT_NO_RST
;
419 iwch_cxgb3_ofld_send(dev
, skb
);
422 static int send_halfclose(struct iwch_ep
*ep
, gfp_t gfp
)
424 struct cpl_close_con_req
*req
;
427 PDBG("%s ep %p\n", __func__
, ep
);
428 skb
= get_skb(NULL
, sizeof(*req
), gfp
);
430 printk(KERN_ERR MOD
"%s - failed to alloc skb\n", __func__
);
433 skb
->priority
= CPL_PRIORITY_DATA
;
434 set_arp_failure_handler(skb
, arp_failure_discard
);
435 req
= (struct cpl_close_con_req
*) skb_put(skb
, sizeof(*req
));
436 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON
));
437 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
438 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ
, ep
->hwtid
));
439 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
442 static int send_abort(struct iwch_ep
*ep
, struct sk_buff
*skb
, gfp_t gfp
)
444 struct cpl_abort_req
*req
;
446 PDBG("%s ep %p\n", __func__
, ep
);
447 skb
= get_skb(skb
, sizeof(*req
), gfp
);
449 printk(KERN_ERR MOD
"%s - failed to alloc skb.\n",
453 skb
->priority
= CPL_PRIORITY_DATA
;
454 set_arp_failure_handler(skb
, abort_arp_failure
);
455 req
= (struct cpl_abort_req
*) skb_put(skb
, sizeof(*req
));
456 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ
));
457 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
458 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ
, ep
->hwtid
));
459 req
->cmd
= CPL_ABORT_SEND_RST
;
460 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
463 static int send_connect(struct iwch_ep
*ep
)
465 struct cpl_act_open_req
*req
;
467 u32 opt0h
, opt0l
, opt2
;
468 unsigned int mtu_idx
;
471 PDBG("%s ep %p\n", __func__
, ep
);
473 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
475 printk(KERN_ERR MOD
"%s - failed to alloc skb.\n",
479 mtu_idx
= find_best_mtu(T3C_DATA(ep
->com
.tdev
), dst_mtu(ep
->dst
));
480 wscale
= compute_wscale(rcv_win
);
485 V_WND_SCALE(wscale
) |
487 V_L2T_IDX(ep
->l2t
->idx
) | V_TX_CHANNEL(ep
->l2t
->smt_idx
);
488 opt0l
= V_TOS((ep
->tos
>> 2) & M_TOS
) | V_RCV_BUFSIZ(rcv_win
>>10);
489 opt2
= F_RX_COALESCE_VALID
| V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
490 V_CONG_CONTROL_FLAVOR(cong_flavor
);
491 skb
->priority
= CPL_PRIORITY_SETUP
;
492 set_arp_failure_handler(skb
, act_open_req_arp_failure
);
494 req
= (struct cpl_act_open_req
*) skb_put(skb
, sizeof(*req
));
495 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
496 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ
, ep
->atid
));
497 req
->local_port
= ep
->com
.local_addr
.sin_port
;
498 req
->peer_port
= ep
->com
.remote_addr
.sin_port
;
499 req
->local_ip
= ep
->com
.local_addr
.sin_addr
.s_addr
;
500 req
->peer_ip
= ep
->com
.remote_addr
.sin_addr
.s_addr
;
501 req
->opt0h
= htonl(opt0h
);
502 req
->opt0l
= htonl(opt0l
);
504 req
->opt2
= htonl(opt2
);
505 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
508 static void send_mpa_req(struct iwch_ep
*ep
, struct sk_buff
*skb
)
511 struct tx_data_wr
*req
;
512 struct mpa_message
*mpa
;
515 PDBG("%s ep %p pd_len %d\n", __func__
, ep
, ep
->plen
);
517 BUG_ON(skb_cloned(skb
));
519 mpalen
= sizeof(*mpa
) + ep
->plen
;
520 if (skb
->data
+ mpalen
+ sizeof(*req
) > skb_end_pointer(skb
)) {
522 skb
=alloc_skb(mpalen
+ sizeof(*req
), GFP_KERNEL
);
524 connect_reply_upcall(ep
, -ENOMEM
);
529 skb_reserve(skb
, sizeof(*req
));
530 skb_put(skb
, mpalen
);
531 skb
->priority
= CPL_PRIORITY_DATA
;
532 mpa
= (struct mpa_message
*) skb
->data
;
533 memset(mpa
, 0, sizeof(*mpa
));
534 memcpy(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
));
535 mpa
->flags
= (crc_enabled
? MPA_CRC
: 0) |
536 (markers_enabled
? MPA_MARKERS
: 0);
537 mpa
->private_data_size
= htons(ep
->plen
);
538 mpa
->revision
= mpa_rev
;
541 memcpy(mpa
->private_data
, ep
->mpa_pkt
+ sizeof(*mpa
), ep
->plen
);
544 * Reference the mpa skb. This ensures the data area
545 * will remain in memory until the hw acks the tx.
546 * Function tx_ack() will deref it.
549 set_arp_failure_handler(skb
, arp_failure_discard
);
550 skb_reset_transport_header(skb
);
552 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
553 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
)|F_WR_COMPL
);
554 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
555 req
->len
= htonl(len
);
556 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
557 V_TX_SNDBUF(snd_win
>>15));
558 req
->flags
= htonl(F_TX_INIT
);
559 req
->sndseq
= htonl(ep
->snd_seq
);
562 iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
564 state_set(&ep
->com
, MPA_REQ_SENT
);
568 static int send_mpa_reject(struct iwch_ep
*ep
, const void *pdata
, u8 plen
)
571 struct tx_data_wr
*req
;
572 struct mpa_message
*mpa
;
575 PDBG("%s ep %p plen %d\n", __func__
, ep
, plen
);
577 mpalen
= sizeof(*mpa
) + plen
;
579 skb
= get_skb(NULL
, mpalen
+ sizeof(*req
), GFP_KERNEL
);
581 printk(KERN_ERR MOD
"%s - cannot alloc skb!\n", __func__
);
584 skb_reserve(skb
, sizeof(*req
));
585 mpa
= (struct mpa_message
*) skb_put(skb
, mpalen
);
586 memset(mpa
, 0, sizeof(*mpa
));
587 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
588 mpa
->flags
= MPA_REJECT
;
589 mpa
->revision
= mpa_rev
;
590 mpa
->private_data_size
= htons(plen
);
592 memcpy(mpa
->private_data
, pdata
, plen
);
595 * Reference the mpa skb again. This ensures the data area
596 * will remain in memory until the hw acks the tx.
597 * Function tx_ack() will deref it.
600 skb
->priority
= CPL_PRIORITY_DATA
;
601 set_arp_failure_handler(skb
, arp_failure_discard
);
602 skb_reset_transport_header(skb
);
603 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
604 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
)|F_WR_COMPL
);
605 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
606 req
->len
= htonl(mpalen
);
607 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
608 V_TX_SNDBUF(snd_win
>>15));
609 req
->flags
= htonl(F_TX_INIT
);
610 req
->sndseq
= htonl(ep
->snd_seq
);
613 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
616 static int send_mpa_reply(struct iwch_ep
*ep
, const void *pdata
, u8 plen
)
619 struct tx_data_wr
*req
;
620 struct mpa_message
*mpa
;
624 PDBG("%s ep %p plen %d\n", __func__
, ep
, plen
);
626 mpalen
= sizeof(*mpa
) + plen
;
628 skb
= get_skb(NULL
, mpalen
+ sizeof(*req
), GFP_KERNEL
);
630 printk(KERN_ERR MOD
"%s - cannot alloc skb!\n", __func__
);
633 skb
->priority
= CPL_PRIORITY_DATA
;
634 skb_reserve(skb
, sizeof(*req
));
635 mpa
= (struct mpa_message
*) skb_put(skb
, mpalen
);
636 memset(mpa
, 0, sizeof(*mpa
));
637 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
638 mpa
->flags
= (ep
->mpa_attr
.crc_enabled
? MPA_CRC
: 0) |
639 (markers_enabled
? MPA_MARKERS
: 0);
640 mpa
->revision
= mpa_rev
;
641 mpa
->private_data_size
= htons(plen
);
643 memcpy(mpa
->private_data
, pdata
, plen
);
646 * Reference the mpa skb. This ensures the data area
647 * will remain in memory until the hw acks the tx.
648 * Function tx_ack() will deref it.
651 set_arp_failure_handler(skb
, arp_failure_discard
);
652 skb_reset_transport_header(skb
);
654 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
655 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
)|F_WR_COMPL
);
656 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
657 req
->len
= htonl(len
);
658 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
659 V_TX_SNDBUF(snd_win
>>15));
660 req
->flags
= htonl(F_TX_INIT
);
661 req
->sndseq
= htonl(ep
->snd_seq
);
663 state_set(&ep
->com
, MPA_REP_SENT
);
664 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
667 static int act_establish(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
669 struct iwch_ep
*ep
= ctx
;
670 struct cpl_act_establish
*req
= cplhdr(skb
);
671 unsigned int tid
= GET_TID(req
);
673 PDBG("%s ep %p tid %d\n", __func__
, ep
, tid
);
675 dst_confirm(ep
->dst
);
677 /* setup the hwtid for this connection */
679 cxgb3_insert_tid(ep
->com
.tdev
, &t3c_client
, ep
, tid
);
681 ep
->snd_seq
= ntohl(req
->snd_isn
);
682 ep
->rcv_seq
= ntohl(req
->rcv_isn
);
684 set_emss(ep
, ntohs(req
->tcp_opt
));
686 /* dealloc the atid */
687 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
689 /* start MPA negotiation */
690 send_mpa_req(ep
, skb
);
695 static void abort_connection(struct iwch_ep
*ep
, struct sk_buff
*skb
, gfp_t gfp
)
697 PDBG("%s ep %p\n", __FILE__
, ep
);
698 state_set(&ep
->com
, ABORTING
);
699 send_abort(ep
, skb
, gfp
);
702 static void close_complete_upcall(struct iwch_ep
*ep
)
704 struct iw_cm_event event
;
706 PDBG("%s ep %p\n", __func__
, ep
);
707 memset(&event
, 0, sizeof(event
));
708 event
.event
= IW_CM_EVENT_CLOSE
;
710 PDBG("close complete delivered ep %p cm_id %p tid %d\n",
711 ep
, ep
->com
.cm_id
, ep
->hwtid
);
712 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
713 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
714 ep
->com
.cm_id
= NULL
;
719 static void peer_close_upcall(struct iwch_ep
*ep
)
721 struct iw_cm_event event
;
723 PDBG("%s ep %p\n", __func__
, ep
);
724 memset(&event
, 0, sizeof(event
));
725 event
.event
= IW_CM_EVENT_DISCONNECT
;
727 PDBG("peer close delivered ep %p cm_id %p tid %d\n",
728 ep
, ep
->com
.cm_id
, ep
->hwtid
);
729 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
733 static void peer_abort_upcall(struct iwch_ep
*ep
)
735 struct iw_cm_event event
;
737 PDBG("%s ep %p\n", __func__
, ep
);
738 memset(&event
, 0, sizeof(event
));
739 event
.event
= IW_CM_EVENT_CLOSE
;
740 event
.status
= -ECONNRESET
;
742 PDBG("abort delivered ep %p cm_id %p tid %d\n", ep
,
743 ep
->com
.cm_id
, ep
->hwtid
);
744 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
745 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
746 ep
->com
.cm_id
= NULL
;
751 static void connect_reply_upcall(struct iwch_ep
*ep
, int status
)
753 struct iw_cm_event event
;
755 PDBG("%s ep %p status %d\n", __func__
, ep
, status
);
756 memset(&event
, 0, sizeof(event
));
757 event
.event
= IW_CM_EVENT_CONNECT_REPLY
;
758 event
.status
= status
;
759 event
.local_addr
= ep
->com
.local_addr
;
760 event
.remote_addr
= ep
->com
.remote_addr
;
762 if ((status
== 0) || (status
== -ECONNREFUSED
)) {
763 event
.private_data_len
= ep
->plen
;
764 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
);
767 PDBG("%s ep %p tid %d status %d\n", __func__
, ep
,
769 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
772 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
773 ep
->com
.cm_id
= NULL
;
778 static void connect_request_upcall(struct iwch_ep
*ep
)
780 struct iw_cm_event event
;
782 PDBG("%s ep %p tid %d\n", __func__
, ep
, ep
->hwtid
);
783 memset(&event
, 0, sizeof(event
));
784 event
.event
= IW_CM_EVENT_CONNECT_REQUEST
;
785 event
.local_addr
= ep
->com
.local_addr
;
786 event
.remote_addr
= ep
->com
.remote_addr
;
787 event
.private_data_len
= ep
->plen
;
788 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
);
789 event
.provider_data
= ep
;
790 if (state_read(&ep
->parent_ep
->com
) != DEAD
) {
792 ep
->parent_ep
->com
.cm_id
->event_handler(
793 ep
->parent_ep
->com
.cm_id
,
796 put_ep(&ep
->parent_ep
->com
);
797 ep
->parent_ep
= NULL
;
800 static void established_upcall(struct iwch_ep
*ep
)
802 struct iw_cm_event event
;
804 PDBG("%s ep %p\n", __func__
, ep
);
805 memset(&event
, 0, sizeof(event
));
806 event
.event
= IW_CM_EVENT_ESTABLISHED
;
808 PDBG("%s ep %p tid %d\n", __func__
, ep
, ep
->hwtid
);
809 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
813 static int update_rx_credits(struct iwch_ep
*ep
, u32 credits
)
815 struct cpl_rx_data_ack
*req
;
818 PDBG("%s ep %p credits %u\n", __func__
, ep
, credits
);
819 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
821 printk(KERN_ERR MOD
"update_rx_credits - cannot alloc skb!\n");
825 req
= (struct cpl_rx_data_ack
*) skb_put(skb
, sizeof(*req
));
826 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
827 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK
, ep
->hwtid
));
828 req
->credit_dack
= htonl(V_RX_CREDITS(credits
) | V_RX_FORCE_ACK(1));
829 skb
->priority
= CPL_PRIORITY_ACK
;
830 iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
834 static void process_mpa_reply(struct iwch_ep
*ep
, struct sk_buff
*skb
)
836 struct mpa_message
*mpa
;
838 struct iwch_qp_attributes attrs
;
839 enum iwch_qp_attr_mask mask
;
842 PDBG("%s ep %p\n", __func__
, ep
);
845 * Stop mpa timer. If it expired, then the state has
846 * changed and we bail since ep_timeout already aborted
850 if (state_read(&ep
->com
) != MPA_REQ_SENT
)
854 * If we get more than the supported amount of private data
855 * then we must fail this connection.
857 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
)) {
863 * copy the new data into our accumulation buffer.
865 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
867 ep
->mpa_pkt_len
+= skb
->len
;
870 * if we don't even have the mpa message, then bail.
872 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
874 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
876 /* Validate MPA header. */
877 if (mpa
->revision
!= mpa_rev
) {
881 if (memcmp(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
))) {
886 plen
= ntohs(mpa
->private_data_size
);
889 * Fail if there's too much private data.
891 if (plen
> MPA_MAX_PRIVATE_DATA
) {
897 * If plen does not account for pkt size
899 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
)) {
904 ep
->plen
= (u8
) plen
;
907 * If we don't have all the pdata yet, then bail.
908 * We'll continue process when more data arrives.
910 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
913 if (mpa
->flags
& MPA_REJECT
) {
919 * If we get here we have accumulated the entire mpa
920 * start reply message including private data. And
921 * the MPA header is valid.
923 state_set(&ep
->com
, FPDU_MODE
);
924 ep
->mpa_attr
.initiator
= 1;
925 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
926 ep
->mpa_attr
.recv_marker_enabled
= markers_enabled
;
927 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
928 ep
->mpa_attr
.version
= mpa_rev
;
929 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
930 "xmit_marker_enabled=%d, version=%d\n", __func__
,
931 ep
->mpa_attr
.crc_enabled
, ep
->mpa_attr
.recv_marker_enabled
,
932 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
);
934 attrs
.mpa_attr
= ep
->mpa_attr
;
935 attrs
.max_ird
= ep
->ird
;
936 attrs
.max_ord
= ep
->ord
;
937 attrs
.llp_stream_handle
= ep
;
938 attrs
.next_state
= IWCH_QP_STATE_RTS
;
940 mask
= IWCH_QP_ATTR_NEXT_STATE
|
941 IWCH_QP_ATTR_LLP_STREAM_HANDLE
| IWCH_QP_ATTR_MPA_ATTR
|
942 IWCH_QP_ATTR_MAX_IRD
| IWCH_QP_ATTR_MAX_ORD
;
944 /* bind QP and TID with INIT_WR */
945 err
= iwch_modify_qp(ep
->com
.qp
->rhp
,
946 ep
->com
.qp
, mask
, &attrs
, 1);
950 if (peer2peer
&& iwch_rqes_posted(ep
->com
.qp
) == 0) {
951 iwch_post_zb_read(ep
->com
.qp
);
956 abort_connection(ep
, skb
, GFP_KERNEL
);
958 connect_reply_upcall(ep
, err
);
962 static void process_mpa_request(struct iwch_ep
*ep
, struct sk_buff
*skb
)
964 struct mpa_message
*mpa
;
967 PDBG("%s ep %p\n", __func__
, ep
);
970 * Stop mpa timer. If it expired, then the state has
971 * changed and we bail since ep_timeout already aborted
975 if (state_read(&ep
->com
) != MPA_REQ_WAIT
)
979 * If we get more than the supported amount of private data
980 * then we must fail this connection.
982 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
)) {
983 abort_connection(ep
, skb
, GFP_KERNEL
);
987 PDBG("%s enter (%s line %u)\n", __func__
, __FILE__
, __LINE__
);
990 * Copy the new data into our accumulation buffer.
992 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
994 ep
->mpa_pkt_len
+= skb
->len
;
997 * If we don't even have the mpa message, then bail.
998 * We'll continue process when more data arrives.
1000 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
1002 PDBG("%s enter (%s line %u)\n", __func__
, __FILE__
, __LINE__
);
1003 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
1006 * Validate MPA Header.
1008 if (mpa
->revision
!= mpa_rev
) {
1009 abort_connection(ep
, skb
, GFP_KERNEL
);
1013 if (memcmp(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
))) {
1014 abort_connection(ep
, skb
, GFP_KERNEL
);
1018 plen
= ntohs(mpa
->private_data_size
);
1021 * Fail if there's too much private data.
1023 if (plen
> MPA_MAX_PRIVATE_DATA
) {
1024 abort_connection(ep
, skb
, GFP_KERNEL
);
1029 * If plen does not account for pkt size
1031 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
)) {
1032 abort_connection(ep
, skb
, GFP_KERNEL
);
1035 ep
->plen
= (u8
) plen
;
1038 * If we don't have all the pdata yet, then bail.
1040 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
1044 * If we get here we have accumulated the entire mpa
1045 * start reply message including private data.
1047 ep
->mpa_attr
.initiator
= 0;
1048 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
1049 ep
->mpa_attr
.recv_marker_enabled
= markers_enabled
;
1050 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
1051 ep
->mpa_attr
.version
= mpa_rev
;
1052 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1053 "xmit_marker_enabled=%d, version=%d\n", __func__
,
1054 ep
->mpa_attr
.crc_enabled
, ep
->mpa_attr
.recv_marker_enabled
,
1055 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
);
1057 state_set(&ep
->com
, MPA_REQ_RCVD
);
1060 connect_request_upcall(ep
);
1064 static int rx_data(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1066 struct iwch_ep
*ep
= ctx
;
1067 struct cpl_rx_data
*hdr
= cplhdr(skb
);
1068 unsigned int dlen
= ntohs(hdr
->len
);
1070 PDBG("%s ep %p dlen %u\n", __func__
, ep
, dlen
);
1072 skb_pull(skb
, sizeof(*hdr
));
1073 skb_trim(skb
, dlen
);
1075 ep
->rcv_seq
+= dlen
;
1076 BUG_ON(ep
->rcv_seq
!= (ntohl(hdr
->seq
) + dlen
));
1078 switch (state_read(&ep
->com
)) {
1080 process_mpa_reply(ep
, skb
);
1083 process_mpa_request(ep
, skb
);
1088 printk(KERN_ERR MOD
"%s Unexpected streaming data."
1089 " ep %p state %d tid %d\n",
1090 __func__
, ep
, state_read(&ep
->com
), ep
->hwtid
);
1093 * The ep will timeout and inform the ULP of the failure.
1099 /* update RX credits */
1100 update_rx_credits(ep
, dlen
);
1102 return CPL_RET_BUF_DONE
;
1106 * Upcall from the adapter indicating data has been transmitted.
1107 * For us its just the single MPA request or reply. We can now free
1108 * the skb holding the mpa message.
1110 static int tx_ack(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1112 struct iwch_ep
*ep
= ctx
;
1113 struct cpl_wr_ack
*hdr
= cplhdr(skb
);
1114 unsigned int credits
= ntohs(hdr
->credits
);
1116 PDBG("%s ep %p credits %u\n", __func__
, ep
, credits
);
1119 PDBG(KERN_ERR
"%s 0 credit ack ep %p state %u\n",
1120 __func__
, ep
, state_read(&ep
->com
));
1121 return CPL_RET_BUF_DONE
;
1124 BUG_ON(credits
!= 1);
1125 dst_confirm(ep
->dst
);
1127 PDBG("%s rdma_init wr_ack ep %p state %u\n",
1128 __func__
, ep
, state_read(&ep
->com
));
1129 if (ep
->mpa_attr
.initiator
) {
1130 PDBG("%s initiator ep %p state %u\n",
1131 __func__
, ep
, state_read(&ep
->com
));
1133 iwch_post_zb_read(ep
->com
.qp
);
1135 PDBG("%s responder ep %p state %u\n",
1136 __func__
, ep
, state_read(&ep
->com
));
1137 ep
->com
.rpl_done
= 1;
1138 wake_up(&ep
->com
.waitq
);
1141 PDBG("%s lsm ack ep %p state %u freeing skb\n",
1142 __func__
, ep
, state_read(&ep
->com
));
1143 kfree_skb(ep
->mpa_skb
);
1146 return CPL_RET_BUF_DONE
;
1149 static int abort_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1151 struct iwch_ep
*ep
= ctx
;
1152 unsigned long flags
;
1155 PDBG("%s ep %p\n", __func__
, ep
);
1159 * We get 2 abort replies from the HW. The first one must
1160 * be ignored except for scribbling that we need one more.
1162 if (!test_and_set_bit(ABORT_REQ_IN_PROGRESS
, &ep
->com
.flags
)) {
1163 return CPL_RET_BUF_DONE
;
1166 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1167 switch (ep
->com
.state
) {
1169 close_complete_upcall(ep
);
1170 __state_set(&ep
->com
, DEAD
);
1174 printk(KERN_ERR
"%s ep %p state %d\n",
1175 __func__
, ep
, ep
->com
.state
);
1178 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1181 release_ep_resources(ep
);
1182 return CPL_RET_BUF_DONE
;
1186 * Return whether a failed active open has allocated a TID
1188 static inline int act_open_has_tid(int status
)
1190 return status
!= CPL_ERR_TCAM_FULL
&& status
!= CPL_ERR_CONN_EXIST
&&
1191 status
!= CPL_ERR_ARP_MISS
;
1194 static int act_open_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1196 struct iwch_ep
*ep
= ctx
;
1197 struct cpl_act_open_rpl
*rpl
= cplhdr(skb
);
1199 PDBG("%s ep %p status %u errno %d\n", __func__
, ep
, rpl
->status
,
1200 status2errno(rpl
->status
));
1201 connect_reply_upcall(ep
, status2errno(rpl
->status
));
1202 state_set(&ep
->com
, DEAD
);
1203 if (ep
->com
.tdev
->type
!= T3A
&& act_open_has_tid(rpl
->status
))
1204 release_tid(ep
->com
.tdev
, GET_TID(rpl
), NULL
);
1205 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
1206 dst_release(ep
->dst
);
1207 l2t_release(L2DATA(ep
->com
.tdev
), ep
->l2t
);
1209 return CPL_RET_BUF_DONE
;
1212 static int listen_start(struct iwch_listen_ep
*ep
)
1214 struct sk_buff
*skb
;
1215 struct cpl_pass_open_req
*req
;
1217 PDBG("%s ep %p\n", __func__
, ep
);
1218 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
1220 printk(KERN_ERR MOD
"t3c_listen_start failed to alloc skb!\n");
1224 req
= (struct cpl_pass_open_req
*) skb_put(skb
, sizeof(*req
));
1225 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1226 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ
, ep
->stid
));
1227 req
->local_port
= ep
->com
.local_addr
.sin_port
;
1228 req
->local_ip
= ep
->com
.local_addr
.sin_addr
.s_addr
;
1231 req
->peer_netmask
= 0;
1232 req
->opt0h
= htonl(F_DELACK
| F_TCAM_BYPASS
);
1233 req
->opt0l
= htonl(V_RCV_BUFSIZ(rcv_win
>>10));
1234 req
->opt1
= htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK
));
1237 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
1240 static int pass_open_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1242 struct iwch_listen_ep
*ep
= ctx
;
1243 struct cpl_pass_open_rpl
*rpl
= cplhdr(skb
);
1245 PDBG("%s ep %p status %d error %d\n", __func__
, ep
,
1246 rpl
->status
, status2errno(rpl
->status
));
1247 ep
->com
.rpl_err
= status2errno(rpl
->status
);
1248 ep
->com
.rpl_done
= 1;
1249 wake_up(&ep
->com
.waitq
);
1251 return CPL_RET_BUF_DONE
;
1254 static int listen_stop(struct iwch_listen_ep
*ep
)
1256 struct sk_buff
*skb
;
1257 struct cpl_close_listserv_req
*req
;
1259 PDBG("%s ep %p\n", __func__
, ep
);
1260 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
1262 printk(KERN_ERR MOD
"%s - failed to alloc skb\n", __func__
);
1265 req
= (struct cpl_close_listserv_req
*) skb_put(skb
, sizeof(*req
));
1266 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1268 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ
, ep
->stid
));
1270 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
1273 static int close_listsrv_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
,
1276 struct iwch_listen_ep
*ep
= ctx
;
1277 struct cpl_close_listserv_rpl
*rpl
= cplhdr(skb
);
1279 PDBG("%s ep %p\n", __func__
, ep
);
1280 ep
->com
.rpl_err
= status2errno(rpl
->status
);
1281 ep
->com
.rpl_done
= 1;
1282 wake_up(&ep
->com
.waitq
);
1283 return CPL_RET_BUF_DONE
;
1286 static void accept_cr(struct iwch_ep
*ep
, __be32 peer_ip
, struct sk_buff
*skb
)
1288 struct cpl_pass_accept_rpl
*rpl
;
1289 unsigned int mtu_idx
;
1290 u32 opt0h
, opt0l
, opt2
;
1293 PDBG("%s ep %p\n", __func__
, ep
);
1294 BUG_ON(skb_cloned(skb
));
1295 skb_trim(skb
, sizeof(*rpl
));
1297 mtu_idx
= find_best_mtu(T3C_DATA(ep
->com
.tdev
), dst_mtu(ep
->dst
));
1298 wscale
= compute_wscale(rcv_win
);
1299 opt0h
= V_NAGLE(0) |
1303 V_WND_SCALE(wscale
) |
1304 V_MSS_IDX(mtu_idx
) |
1305 V_L2T_IDX(ep
->l2t
->idx
) | V_TX_CHANNEL(ep
->l2t
->smt_idx
);
1306 opt0l
= V_TOS((ep
->tos
>> 2) & M_TOS
) | V_RCV_BUFSIZ(rcv_win
>>10);
1307 opt2
= F_RX_COALESCE_VALID
| V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
1308 V_CONG_CONTROL_FLAVOR(cong_flavor
);
1311 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1312 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL
, ep
->hwtid
));
1313 rpl
->peer_ip
= peer_ip
;
1314 rpl
->opt0h
= htonl(opt0h
);
1315 rpl
->opt0l_status
= htonl(opt0l
| CPL_PASS_OPEN_ACCEPT
);
1316 rpl
->opt2
= htonl(opt2
);
1317 rpl
->rsvd
= rpl
->opt2
; /* workaround for HW bug */
1318 skb
->priority
= CPL_PRIORITY_SETUP
;
1319 iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
1324 static void reject_cr(struct t3cdev
*tdev
, u32 hwtid
, __be32 peer_ip
,
1325 struct sk_buff
*skb
)
1327 PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__
, tdev
, hwtid
,
1329 BUG_ON(skb_cloned(skb
));
1330 skb_trim(skb
, sizeof(struct cpl_tid_release
));
1333 if (tdev
->type
!= T3A
)
1334 release_tid(tdev
, hwtid
, skb
);
1336 struct cpl_pass_accept_rpl
*rpl
;
1339 skb
->priority
= CPL_PRIORITY_SETUP
;
1340 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1341 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL
,
1343 rpl
->peer_ip
= peer_ip
;
1344 rpl
->opt0h
= htonl(F_TCAM_BYPASS
);
1345 rpl
->opt0l_status
= htonl(CPL_PASS_OPEN_REJECT
);
1347 rpl
->rsvd
= rpl
->opt2
;
1348 iwch_cxgb3_ofld_send(tdev
, skb
);
1352 static int pass_accept_req(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1354 struct iwch_ep
*child_ep
, *parent_ep
= ctx
;
1355 struct cpl_pass_accept_req
*req
= cplhdr(skb
);
1356 unsigned int hwtid
= GET_TID(req
);
1357 struct dst_entry
*dst
;
1358 struct l2t_entry
*l2t
;
1362 PDBG("%s parent ep %p tid %u\n", __func__
, parent_ep
, hwtid
);
1364 if (state_read(&parent_ep
->com
) != LISTEN
) {
1365 printk(KERN_ERR
"%s - listening ep not in LISTEN\n",
1371 * Find the netdev for this connection request.
1373 tim
.mac_addr
= req
->dst_mac
;
1374 tim
.vlan_tag
= ntohs(req
->vlan_tag
);
1375 if (tdev
->ctl(tdev
, GET_IFF_FROM_MAC
, &tim
) < 0 || !tim
.dev
) {
1377 "%s bad dst mac %02x %02x %02x %02x %02x %02x\n",
1388 /* Find output route */
1389 rt
= find_route(tdev
,
1393 req
->peer_port
, G_PASS_OPEN_TOS(ntohl(req
->tos_tid
)));
1395 printk(KERN_ERR MOD
"%s - failed to find dst entry!\n",
1400 l2t
= t3_l2t_get(tdev
, dst
->neighbour
, dst
->neighbour
->dev
);
1402 printk(KERN_ERR MOD
"%s - failed to allocate l2t entry!\n",
1407 child_ep
= alloc_ep(sizeof(*child_ep
), GFP_KERNEL
);
1409 printk(KERN_ERR MOD
"%s - failed to allocate ep entry!\n",
1411 l2t_release(L2DATA(tdev
), l2t
);
1415 state_set(&child_ep
->com
, CONNECTING
);
1416 child_ep
->com
.tdev
= tdev
;
1417 child_ep
->com
.cm_id
= NULL
;
1418 child_ep
->com
.local_addr
.sin_family
= PF_INET
;
1419 child_ep
->com
.local_addr
.sin_port
= req
->local_port
;
1420 child_ep
->com
.local_addr
.sin_addr
.s_addr
= req
->local_ip
;
1421 child_ep
->com
.remote_addr
.sin_family
= PF_INET
;
1422 child_ep
->com
.remote_addr
.sin_port
= req
->peer_port
;
1423 child_ep
->com
.remote_addr
.sin_addr
.s_addr
= req
->peer_ip
;
1424 get_ep(&parent_ep
->com
);
1425 child_ep
->parent_ep
= parent_ep
;
1426 child_ep
->tos
= G_PASS_OPEN_TOS(ntohl(req
->tos_tid
));
1427 child_ep
->l2t
= l2t
;
1428 child_ep
->dst
= dst
;
1429 child_ep
->hwtid
= hwtid
;
1430 init_timer(&child_ep
->timer
);
1431 cxgb3_insert_tid(tdev
, &t3c_client
, child_ep
, hwtid
);
1432 accept_cr(child_ep
, req
->peer_ip
, skb
);
1435 reject_cr(tdev
, hwtid
, req
->peer_ip
, skb
);
1437 return CPL_RET_BUF_DONE
;
1440 static int pass_establish(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1442 struct iwch_ep
*ep
= ctx
;
1443 struct cpl_pass_establish
*req
= cplhdr(skb
);
1445 PDBG("%s ep %p\n", __func__
, ep
);
1446 ep
->snd_seq
= ntohl(req
->snd_isn
);
1447 ep
->rcv_seq
= ntohl(req
->rcv_isn
);
1449 set_emss(ep
, ntohs(req
->tcp_opt
));
1451 dst_confirm(ep
->dst
);
1452 state_set(&ep
->com
, MPA_REQ_WAIT
);
1455 return CPL_RET_BUF_DONE
;
1458 static int peer_close(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1460 struct iwch_ep
*ep
= ctx
;
1461 struct iwch_qp_attributes attrs
;
1462 unsigned long flags
;
1466 PDBG("%s ep %p\n", __func__
, ep
);
1467 dst_confirm(ep
->dst
);
1469 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1470 switch (ep
->com
.state
) {
1472 __state_set(&ep
->com
, CLOSING
);
1475 __state_set(&ep
->com
, CLOSING
);
1476 connect_reply_upcall(ep
, -ECONNRESET
);
1481 * We're gonna mark this puppy DEAD, but keep
1482 * the reference on it until the ULP accepts or
1483 * rejects the CR. Also wake up anyone waiting
1484 * in rdma connection migration (see iwch_accept_cr()).
1486 __state_set(&ep
->com
, CLOSING
);
1487 ep
->com
.rpl_done
= 1;
1488 ep
->com
.rpl_err
= -ECONNRESET
;
1489 PDBG("waking up ep %p\n", ep
);
1490 wake_up(&ep
->com
.waitq
);
1493 __state_set(&ep
->com
, CLOSING
);
1494 ep
->com
.rpl_done
= 1;
1495 ep
->com
.rpl_err
= -ECONNRESET
;
1496 PDBG("waking up ep %p\n", ep
);
1497 wake_up(&ep
->com
.waitq
);
1501 __state_set(&ep
->com
, CLOSING
);
1502 attrs
.next_state
= IWCH_QP_STATE_CLOSING
;
1503 iwch_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1504 IWCH_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1505 peer_close_upcall(ep
);
1511 __state_set(&ep
->com
, MORIBUND
);
1516 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1517 attrs
.next_state
= IWCH_QP_STATE_IDLE
;
1518 iwch_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1519 IWCH_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1521 close_complete_upcall(ep
);
1522 __state_set(&ep
->com
, DEAD
);
1532 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1534 iwch_ep_disconnect(ep
, 0, GFP_KERNEL
);
1536 release_ep_resources(ep
);
1537 return CPL_RET_BUF_DONE
;
1541 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1543 static int is_neg_adv_abort(unsigned int status
)
1545 return status
== CPL_ERR_RTX_NEG_ADVICE
||
1546 status
== CPL_ERR_PERSIST_NEG_ADVICE
;
1549 static int peer_abort(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1551 struct cpl_abort_req_rss
*req
= cplhdr(skb
);
1552 struct iwch_ep
*ep
= ctx
;
1553 struct cpl_abort_rpl
*rpl
;
1554 struct sk_buff
*rpl_skb
;
1555 struct iwch_qp_attributes attrs
;
1558 unsigned long flags
;
1560 if (is_neg_adv_abort(req
->status
)) {
1561 PDBG("%s neg_adv_abort ep %p tid %d\n", __func__
, ep
,
1563 t3_l2t_send_event(ep
->com
.tdev
, ep
->l2t
);
1564 return CPL_RET_BUF_DONE
;
1568 * We get 2 peer aborts from the HW. The first one must
1569 * be ignored except for scribbling that we need one more.
1571 if (!test_and_set_bit(PEER_ABORT_IN_PROGRESS
, &ep
->com
.flags
)) {
1572 return CPL_RET_BUF_DONE
;
1575 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1576 PDBG("%s ep %p state %u\n", __func__
, ep
, ep
->com
.state
);
1577 switch (ep
->com
.state
) {
1585 connect_reply_upcall(ep
, -ECONNRESET
);
1588 ep
->com
.rpl_done
= 1;
1589 ep
->com
.rpl_err
= -ECONNRESET
;
1590 PDBG("waking up ep %p\n", ep
);
1591 wake_up(&ep
->com
.waitq
);
1596 * We're gonna mark this puppy DEAD, but keep
1597 * the reference on it until the ULP accepts or
1598 * rejects the CR. Also wake up anyone waiting
1599 * in rdma connection migration (see iwch_accept_cr()).
1601 ep
->com
.rpl_done
= 1;
1602 ep
->com
.rpl_err
= -ECONNRESET
;
1603 PDBG("waking up ep %p\n", ep
);
1604 wake_up(&ep
->com
.waitq
);
1611 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1612 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1613 ret
= iwch_modify_qp(ep
->com
.qp
->rhp
,
1614 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1618 "%s - qp <- error failed!\n",
1621 peer_abort_upcall(ep
);
1626 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__
);
1627 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1628 return CPL_RET_BUF_DONE
;
1633 dst_confirm(ep
->dst
);
1634 if (ep
->com
.state
!= ABORTING
) {
1635 __state_set(&ep
->com
, DEAD
);
1638 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1640 rpl_skb
= get_skb(skb
, sizeof(*rpl
), GFP_KERNEL
);
1642 printk(KERN_ERR MOD
"%s - cannot allocate skb!\n",
1647 rpl_skb
->priority
= CPL_PRIORITY_DATA
;
1648 rpl
= (struct cpl_abort_rpl
*) skb_put(rpl_skb
, sizeof(*rpl
));
1649 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL
));
1650 rpl
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
1651 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL
, ep
->hwtid
));
1652 rpl
->cmd
= CPL_ABORT_NO_RST
;
1653 iwch_cxgb3_ofld_send(ep
->com
.tdev
, rpl_skb
);
1656 release_ep_resources(ep
);
1657 return CPL_RET_BUF_DONE
;
1660 static int close_con_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1662 struct iwch_ep
*ep
= ctx
;
1663 struct iwch_qp_attributes attrs
;
1664 unsigned long flags
;
1667 PDBG("%s ep %p\n", __func__
, ep
);
1670 /* The cm_id may be null if we failed to connect */
1671 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1672 switch (ep
->com
.state
) {
1674 __state_set(&ep
->com
, MORIBUND
);
1678 if ((ep
->com
.cm_id
) && (ep
->com
.qp
)) {
1679 attrs
.next_state
= IWCH_QP_STATE_IDLE
;
1680 iwch_modify_qp(ep
->com
.qp
->rhp
,
1682 IWCH_QP_ATTR_NEXT_STATE
,
1685 close_complete_upcall(ep
);
1686 __state_set(&ep
->com
, DEAD
);
1696 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1698 release_ep_resources(ep
);
1699 return CPL_RET_BUF_DONE
;
1703 * T3A does 3 things when a TERM is received:
1704 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1705 * 2) generate an async event on the QP with the TERMINATE opcode
1706 * 3) post a TERMINATE opcde cqe into the associated CQ.
1708 * For (1), we save the message in the qp for later consumer consumption.
1709 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1710 * For (3), we toss the CQE in cxio_poll_cq().
1712 * terminate() handles case (1)...
1714 static int terminate(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1716 struct iwch_ep
*ep
= ctx
;
1718 if (state_read(&ep
->com
) != FPDU_MODE
)
1719 return CPL_RET_BUF_DONE
;
1721 PDBG("%s ep %p\n", __func__
, ep
);
1722 skb_pull(skb
, sizeof(struct cpl_rdma_terminate
));
1723 PDBG("%s saving %d bytes of term msg\n", __func__
, skb
->len
);
1724 skb_copy_from_linear_data(skb
, ep
->com
.qp
->attr
.terminate_buffer
,
1726 ep
->com
.qp
->attr
.terminate_msg_len
= skb
->len
;
1727 ep
->com
.qp
->attr
.is_terminate_local
= 0;
1728 return CPL_RET_BUF_DONE
;
1731 static int ec_status(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1733 struct cpl_rdma_ec_status
*rep
= cplhdr(skb
);
1734 struct iwch_ep
*ep
= ctx
;
1736 PDBG("%s ep %p tid %u status %d\n", __func__
, ep
, ep
->hwtid
,
1739 struct iwch_qp_attributes attrs
;
1741 printk(KERN_ERR MOD
"%s BAD CLOSE - Aborting tid %u\n",
1742 __func__
, ep
->hwtid
);
1744 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1745 iwch_modify_qp(ep
->com
.qp
->rhp
,
1746 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1748 abort_connection(ep
, NULL
, GFP_KERNEL
);
1750 return CPL_RET_BUF_DONE
;
1753 static void ep_timeout(unsigned long arg
)
1755 struct iwch_ep
*ep
= (struct iwch_ep
*)arg
;
1756 struct iwch_qp_attributes attrs
;
1757 unsigned long flags
;
1760 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1761 PDBG("%s ep %p tid %u state %d\n", __func__
, ep
, ep
->hwtid
,
1763 switch (ep
->com
.state
) {
1765 __state_set(&ep
->com
, ABORTING
);
1766 connect_reply_upcall(ep
, -ETIMEDOUT
);
1769 __state_set(&ep
->com
, ABORTING
);
1773 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1774 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1775 iwch_modify_qp(ep
->com
.qp
->rhp
,
1776 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1779 __state_set(&ep
->com
, ABORTING
);
1782 printk(KERN_ERR
"%s unexpected state ep %p state %u\n",
1783 __func__
, ep
, ep
->com
.state
);
1787 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1789 abort_connection(ep
, NULL
, GFP_ATOMIC
);
1793 int iwch_reject_cr(struct iw_cm_id
*cm_id
, const void *pdata
, u8 pdata_len
)
1796 struct iwch_ep
*ep
= to_ep(cm_id
);
1797 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1799 if (state_read(&ep
->com
) == DEAD
) {
1803 BUG_ON(state_read(&ep
->com
) != MPA_REQ_RCVD
);
1805 abort_connection(ep
, NULL
, GFP_KERNEL
);
1807 err
= send_mpa_reject(ep
, pdata
, pdata_len
);
1808 err
= iwch_ep_disconnect(ep
, 0, GFP_KERNEL
);
1814 int iwch_accept_cr(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
1817 struct iwch_qp_attributes attrs
;
1818 enum iwch_qp_attr_mask mask
;
1819 struct iwch_ep
*ep
= to_ep(cm_id
);
1820 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1821 struct iwch_qp
*qp
= get_qhp(h
, conn_param
->qpn
);
1823 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1824 if (state_read(&ep
->com
) == DEAD
) {
1829 BUG_ON(state_read(&ep
->com
) != MPA_REQ_RCVD
);
1832 if ((conn_param
->ord
> qp
->rhp
->attr
.max_rdma_read_qp_depth
) ||
1833 (conn_param
->ird
> qp
->rhp
->attr
.max_rdma_reads_per_qp
)) {
1834 abort_connection(ep
, NULL
, GFP_KERNEL
);
1839 cm_id
->add_ref(cm_id
);
1840 ep
->com
.cm_id
= cm_id
;
1843 ep
->ird
= conn_param
->ird
;
1844 ep
->ord
= conn_param
->ord
;
1846 if (peer2peer
&& ep
->ird
== 0)
1849 PDBG("%s %d ird %d ord %d\n", __func__
, __LINE__
, ep
->ird
, ep
->ord
);
1851 /* bind QP to EP and move to RTS */
1852 attrs
.mpa_attr
= ep
->mpa_attr
;
1853 attrs
.max_ird
= ep
->ird
;
1854 attrs
.max_ord
= ep
->ord
;
1855 attrs
.llp_stream_handle
= ep
;
1856 attrs
.next_state
= IWCH_QP_STATE_RTS
;
1858 /* bind QP and TID with INIT_WR */
1859 mask
= IWCH_QP_ATTR_NEXT_STATE
|
1860 IWCH_QP_ATTR_LLP_STREAM_HANDLE
|
1861 IWCH_QP_ATTR_MPA_ATTR
|
1862 IWCH_QP_ATTR_MAX_IRD
|
1863 IWCH_QP_ATTR_MAX_ORD
;
1865 err
= iwch_modify_qp(ep
->com
.qp
->rhp
,
1866 ep
->com
.qp
, mask
, &attrs
, 1);
1870 /* if needed, wait for wr_ack */
1871 if (iwch_rqes_posted(qp
)) {
1872 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
1873 err
= ep
->com
.rpl_err
;
1878 err
= send_mpa_reply(ep
, conn_param
->private_data
,
1879 conn_param
->private_data_len
);
1884 state_set(&ep
->com
, FPDU_MODE
);
1885 established_upcall(ep
);
1889 ep
->com
.cm_id
= NULL
;
1891 cm_id
->rem_ref(cm_id
);
1897 static int is_loopback_dst(struct iw_cm_id
*cm_id
)
1899 struct net_device
*dev
;
1901 dev
= ip_dev_find(&init_net
, cm_id
->remote_addr
.sin_addr
.s_addr
);
1908 int iwch_connect(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
1911 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1915 if (is_loopback_dst(cm_id
)) {
1920 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
1922 printk(KERN_ERR MOD
"%s - cannot alloc ep.\n", __func__
);
1926 init_timer(&ep
->timer
);
1927 ep
->plen
= conn_param
->private_data_len
;
1929 memcpy(ep
->mpa_pkt
+ sizeof(struct mpa_message
),
1930 conn_param
->private_data
, ep
->plen
);
1931 ep
->ird
= conn_param
->ird
;
1932 ep
->ord
= conn_param
->ord
;
1934 if (peer2peer
&& ep
->ord
== 0)
1937 ep
->com
.tdev
= h
->rdev
.t3cdev_p
;
1939 cm_id
->add_ref(cm_id
);
1940 ep
->com
.cm_id
= cm_id
;
1941 ep
->com
.qp
= get_qhp(h
, conn_param
->qpn
);
1942 BUG_ON(!ep
->com
.qp
);
1943 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__
, conn_param
->qpn
,
1947 * Allocate an active TID to initiate a TCP connection.
1949 ep
->atid
= cxgb3_alloc_atid(h
->rdev
.t3cdev_p
, &t3c_client
, ep
);
1950 if (ep
->atid
== -1) {
1951 printk(KERN_ERR MOD
"%s - cannot alloc atid.\n", __func__
);
1957 rt
= find_route(h
->rdev
.t3cdev_p
,
1958 cm_id
->local_addr
.sin_addr
.s_addr
,
1959 cm_id
->remote_addr
.sin_addr
.s_addr
,
1960 cm_id
->local_addr
.sin_port
,
1961 cm_id
->remote_addr
.sin_port
, IPTOS_LOWDELAY
);
1963 printk(KERN_ERR MOD
"%s - cannot find route.\n", __func__
);
1964 err
= -EHOSTUNREACH
;
1967 ep
->dst
= &rt
->u
.dst
;
1969 /* get a l2t entry */
1970 ep
->l2t
= t3_l2t_get(ep
->com
.tdev
, ep
->dst
->neighbour
,
1971 ep
->dst
->neighbour
->dev
);
1973 printk(KERN_ERR MOD
"%s - cannot alloc l2e.\n", __func__
);
1978 state_set(&ep
->com
, CONNECTING
);
1979 ep
->tos
= IPTOS_LOWDELAY
;
1980 ep
->com
.local_addr
= cm_id
->local_addr
;
1981 ep
->com
.remote_addr
= cm_id
->remote_addr
;
1983 /* send connect request to rnic */
1984 err
= send_connect(ep
);
1988 l2t_release(L2DATA(h
->rdev
.t3cdev_p
), ep
->l2t
);
1990 dst_release(ep
->dst
);
1992 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
1994 cm_id
->rem_ref(cm_id
);
2000 int iwch_create_listen(struct iw_cm_id
*cm_id
, int backlog
)
2003 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
2004 struct iwch_listen_ep
*ep
;
2009 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
2011 printk(KERN_ERR MOD
"%s - cannot alloc ep.\n", __func__
);
2015 PDBG("%s ep %p\n", __func__
, ep
);
2016 ep
->com
.tdev
= h
->rdev
.t3cdev_p
;
2017 cm_id
->add_ref(cm_id
);
2018 ep
->com
.cm_id
= cm_id
;
2019 ep
->backlog
= backlog
;
2020 ep
->com
.local_addr
= cm_id
->local_addr
;
2023 * Allocate a server TID.
2025 ep
->stid
= cxgb3_alloc_stid(h
->rdev
.t3cdev_p
, &t3c_client
, ep
);
2026 if (ep
->stid
== -1) {
2027 printk(KERN_ERR MOD
"%s - cannot alloc atid.\n", __func__
);
2032 state_set(&ep
->com
, LISTEN
);
2033 err
= listen_start(ep
);
2037 /* wait for pass_open_rpl */
2038 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
2039 err
= ep
->com
.rpl_err
;
2041 cm_id
->provider_data
= ep
;
2045 cxgb3_free_stid(ep
->com
.tdev
, ep
->stid
);
2047 cm_id
->rem_ref(cm_id
);
2054 int iwch_destroy_listen(struct iw_cm_id
*cm_id
)
2057 struct iwch_listen_ep
*ep
= to_listen_ep(cm_id
);
2059 PDBG("%s ep %p\n", __func__
, ep
);
2062 state_set(&ep
->com
, DEAD
);
2063 ep
->com
.rpl_done
= 0;
2064 ep
->com
.rpl_err
= 0;
2065 err
= listen_stop(ep
);
2068 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
2069 cxgb3_free_stid(ep
->com
.tdev
, ep
->stid
);
2071 err
= ep
->com
.rpl_err
;
2072 cm_id
->rem_ref(cm_id
);
2077 int iwch_ep_disconnect(struct iwch_ep
*ep
, int abrupt
, gfp_t gfp
)
2080 unsigned long flags
;
2083 struct t3cdev
*tdev
;
2084 struct cxio_rdev
*rdev
;
2086 spin_lock_irqsave(&ep
->com
.lock
, flags
);
2088 PDBG("%s ep %p state %s, abrupt %d\n", __func__
, ep
,
2089 states
[ep
->com
.state
], abrupt
);
2091 tdev
= (struct t3cdev
*)ep
->com
.tdev
;
2092 rdev
= (struct cxio_rdev
*)tdev
->ulp
;
2093 if (cxio_fatal_error(rdev
)) {
2095 close_complete_upcall(ep
);
2096 ep
->com
.state
= DEAD
;
2098 switch (ep
->com
.state
) {
2106 ep
->com
.state
= ABORTING
;
2108 ep
->com
.state
= CLOSING
;
2111 set_bit(CLOSE_SENT
, &ep
->com
.flags
);
2114 if (!test_and_set_bit(CLOSE_SENT
, &ep
->com
.flags
)) {
2118 ep
->com
.state
= ABORTING
;
2120 ep
->com
.state
= MORIBUND
;
2126 PDBG("%s ignoring disconnect ep %p state %u\n",
2127 __func__
, ep
, ep
->com
.state
);
2134 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
2137 ret
= send_abort(ep
, NULL
, gfp
);
2139 ret
= send_halfclose(ep
, gfp
);
2144 release_ep_resources(ep
);
2148 int iwch_ep_redirect(void *ctx
, struct dst_entry
*old
, struct dst_entry
*new,
2149 struct l2t_entry
*l2t
)
2151 struct iwch_ep
*ep
= ctx
;
2156 PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__
, ep
, new,
2159 l2t_release(L2DATA(ep
->com
.tdev
), ep
->l2t
);
2167 * All the CM events are handled on a work queue to have a safe context.
2169 static int sched(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
2171 struct iwch_ep_common
*epc
= ctx
;
2176 * Save ctx and tdev in the skb->cb area.
2178 *((void **) skb
->cb
) = ctx
;
2179 *((struct t3cdev
**) (skb
->cb
+ sizeof(void *))) = tdev
;
2182 * Queue the skb and schedule the worker thread.
2184 skb_queue_tail(&rxq
, skb
);
2185 queue_work(workq
, &skb_work
);
2189 static int set_tcb_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
2191 struct cpl_set_tcb_rpl
*rpl
= cplhdr(skb
);
2193 if (rpl
->status
!= CPL_ERR_NONE
) {
2194 printk(KERN_ERR MOD
"Unexpected SET_TCB_RPL status %u "
2195 "for tid %u\n", rpl
->status
, GET_TID(rpl
));
2197 return CPL_RET_BUF_DONE
;
2200 int __init
iwch_cm_init(void)
2202 skb_queue_head_init(&rxq
);
2204 workq
= create_singlethread_workqueue("iw_cxgb3");
2209 * All upcalls from the T3 Core go to sched() to
2210 * schedule the processing on a work queue.
2212 t3c_handlers
[CPL_ACT_ESTABLISH
] = sched
;
2213 t3c_handlers
[CPL_ACT_OPEN_RPL
] = sched
;
2214 t3c_handlers
[CPL_RX_DATA
] = sched
;
2215 t3c_handlers
[CPL_TX_DMA_ACK
] = sched
;
2216 t3c_handlers
[CPL_ABORT_RPL_RSS
] = sched
;
2217 t3c_handlers
[CPL_ABORT_RPL
] = sched
;
2218 t3c_handlers
[CPL_PASS_OPEN_RPL
] = sched
;
2219 t3c_handlers
[CPL_CLOSE_LISTSRV_RPL
] = sched
;
2220 t3c_handlers
[CPL_PASS_ACCEPT_REQ
] = sched
;
2221 t3c_handlers
[CPL_PASS_ESTABLISH
] = sched
;
2222 t3c_handlers
[CPL_PEER_CLOSE
] = sched
;
2223 t3c_handlers
[CPL_CLOSE_CON_RPL
] = sched
;
2224 t3c_handlers
[CPL_ABORT_REQ_RSS
] = sched
;
2225 t3c_handlers
[CPL_RDMA_TERMINATE
] = sched
;
2226 t3c_handlers
[CPL_RDMA_EC_STATUS
] = sched
;
2227 t3c_handlers
[CPL_SET_TCB_RPL
] = set_tcb_rpl
;
2230 * These are the real handlers that are called from a
2233 work_handlers
[CPL_ACT_ESTABLISH
] = act_establish
;
2234 work_handlers
[CPL_ACT_OPEN_RPL
] = act_open_rpl
;
2235 work_handlers
[CPL_RX_DATA
] = rx_data
;
2236 work_handlers
[CPL_TX_DMA_ACK
] = tx_ack
;
2237 work_handlers
[CPL_ABORT_RPL_RSS
] = abort_rpl
;
2238 work_handlers
[CPL_ABORT_RPL
] = abort_rpl
;
2239 work_handlers
[CPL_PASS_OPEN_RPL
] = pass_open_rpl
;
2240 work_handlers
[CPL_CLOSE_LISTSRV_RPL
] = close_listsrv_rpl
;
2241 work_handlers
[CPL_PASS_ACCEPT_REQ
] = pass_accept_req
;
2242 work_handlers
[CPL_PASS_ESTABLISH
] = pass_establish
;
2243 work_handlers
[CPL_PEER_CLOSE
] = peer_close
;
2244 work_handlers
[CPL_ABORT_REQ_RSS
] = peer_abort
;
2245 work_handlers
[CPL_CLOSE_CON_RPL
] = close_con_rpl
;
2246 work_handlers
[CPL_RDMA_TERMINATE
] = terminate
;
2247 work_handlers
[CPL_RDMA_EC_STATUS
] = ec_status
;
2251 void __exit
iwch_cm_term(void)
2253 flush_workqueue(workq
);
2254 destroy_workqueue(workq
);