initial commit with v2.6.32.60
[linux-2.6.32.60-moxart.git] / drivers / md / raid5.c
blob883215db9c637a678086af3026c751bac6446b50
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include "md.h"
54 #include "raid5.h"
55 #include "bitmap.h"
58 * Stripe cache
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 * The following can be used to debug the driver
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100 * We maintain a biased count of active stripes in the bottom 16 bits of
101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 static inline int raid5_bi_phys_segments(struct bio *bio)
105 return bio->bi_phys_segments & 0xffff;
108 static inline int raid5_bi_hw_segments(struct bio *bio)
110 return (bio->bi_phys_segments >> 16) & 0xffff;
113 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 --bio->bi_phys_segments;
116 return raid5_bi_phys_segments(bio);
119 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 unsigned short val = raid5_bi_hw_segments(bio);
123 --val;
124 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125 return val;
128 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 /* Find first data disk in a raid6 stripe */
134 static inline int raid6_d0(struct stripe_head *sh)
136 if (sh->ddf_layout)
137 /* ddf always start from first device */
138 return 0;
139 /* md starts just after Q block */
140 if (sh->qd_idx == sh->disks - 1)
141 return 0;
142 else
143 return sh->qd_idx + 1;
145 static inline int raid6_next_disk(int disk, int raid_disks)
147 disk++;
148 return (disk < raid_disks) ? disk : 0;
151 /* When walking through the disks in a raid5, starting at raid6_d0,
152 * We need to map each disk to a 'slot', where the data disks are slot
153 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
154 * is raid_disks-1. This help does that mapping.
156 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
157 int *count, int syndrome_disks)
159 int slot = *count;
161 if (sh->ddf_layout)
162 (*count)++;
163 if (idx == sh->pd_idx)
164 return syndrome_disks;
165 if (idx == sh->qd_idx)
166 return syndrome_disks + 1;
167 if (!sh->ddf_layout)
168 (*count)++;
169 return slot;
172 static void return_io(struct bio *return_bi)
174 struct bio *bi = return_bi;
175 while (bi) {
177 return_bi = bi->bi_next;
178 bi->bi_next = NULL;
179 bi->bi_size = 0;
180 bio_endio(bi, 0);
181 bi = return_bi;
185 static void print_raid5_conf (raid5_conf_t *conf);
187 static int stripe_operations_active(struct stripe_head *sh)
189 return sh->check_state || sh->reconstruct_state ||
190 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
191 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196 if (atomic_dec_and_test(&sh->count)) {
197 BUG_ON(!list_empty(&sh->lru));
198 BUG_ON(atomic_read(&conf->active_stripes)==0);
199 if (test_bit(STRIPE_HANDLE, &sh->state)) {
200 if (test_bit(STRIPE_DELAYED, &sh->state)) {
201 list_add_tail(&sh->lru, &conf->delayed_list);
202 blk_plug_device(conf->mddev->queue);
203 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0) {
205 list_add_tail(&sh->lru, &conf->bitmap_list);
206 blk_plug_device(conf->mddev->queue);
207 } else {
208 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209 list_add_tail(&sh->lru, &conf->handle_list);
211 md_wakeup_thread(conf->mddev->thread);
212 } else {
213 BUG_ON(stripe_operations_active(sh));
214 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215 atomic_dec(&conf->preread_active_stripes);
216 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217 md_wakeup_thread(conf->mddev->thread);
219 atomic_dec(&conf->active_stripes);
220 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221 list_add_tail(&sh->lru, &conf->inactive_list);
222 wake_up(&conf->wait_for_stripe);
223 if (conf->retry_read_aligned)
224 md_wakeup_thread(conf->mddev->thread);
230 static void release_stripe(struct stripe_head *sh)
232 raid5_conf_t *conf = sh->raid_conf;
233 unsigned long flags;
235 spin_lock_irqsave(&conf->device_lock, flags);
236 __release_stripe(conf, sh);
237 spin_unlock_irqrestore(&conf->device_lock, flags);
240 static inline void remove_hash(struct stripe_head *sh)
242 pr_debug("remove_hash(), stripe %llu\n",
243 (unsigned long long)sh->sector);
245 hlist_del_init(&sh->hash);
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
250 struct hlist_head *hp = stripe_hash(conf, sh->sector);
252 pr_debug("insert_hash(), stripe %llu\n",
253 (unsigned long long)sh->sector);
255 CHECK_DEVLOCK();
256 hlist_add_head(&sh->hash, hp);
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
263 struct stripe_head *sh = NULL;
264 struct list_head *first;
266 CHECK_DEVLOCK();
267 if (list_empty(&conf->inactive_list))
268 goto out;
269 first = conf->inactive_list.next;
270 sh = list_entry(first, struct stripe_head, lru);
271 list_del_init(first);
272 remove_hash(sh);
273 atomic_inc(&conf->active_stripes);
274 out:
275 return sh;
278 static void shrink_buffers(struct stripe_head *sh, int num)
280 struct page *p;
281 int i;
283 for (i=0; i<num ; i++) {
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
288 put_page(p);
292 static int grow_buffers(struct stripe_head *sh, int num)
294 int i;
296 for (i=0; i<num; i++) {
297 struct page *page;
299 if (!(page = alloc_page(GFP_KERNEL))) {
300 return 1;
302 sh->dev[i].page = page;
304 return 0;
307 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
308 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
309 struct stripe_head *sh);
311 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313 raid5_conf_t *conf = sh->raid_conf;
314 int i;
316 BUG_ON(atomic_read(&sh->count) != 0);
317 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
318 BUG_ON(stripe_operations_active(sh));
320 CHECK_DEVLOCK();
321 pr_debug("init_stripe called, stripe %llu\n",
322 (unsigned long long)sh->sector);
324 remove_hash(sh);
326 sh->generation = conf->generation - previous;
327 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
328 sh->sector = sector;
329 stripe_set_idx(sector, conf, previous, sh);
330 sh->state = 0;
333 for (i = sh->disks; i--; ) {
334 struct r5dev *dev = &sh->dev[i];
336 if (dev->toread || dev->read || dev->towrite || dev->written ||
337 test_bit(R5_LOCKED, &dev->flags)) {
338 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
339 (unsigned long long)sh->sector, i, dev->toread,
340 dev->read, dev->towrite, dev->written,
341 test_bit(R5_LOCKED, &dev->flags));
342 BUG();
344 dev->flags = 0;
345 raid5_build_block(sh, i, previous);
347 insert_hash(conf, sh);
350 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
351 short generation)
353 struct stripe_head *sh;
354 struct hlist_node *hn;
356 CHECK_DEVLOCK();
357 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
358 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
359 if (sh->sector == sector && sh->generation == generation)
360 return sh;
361 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
362 return NULL;
365 static void unplug_slaves(mddev_t *mddev);
366 static void raid5_unplug_device(struct request_queue *q);
368 static struct stripe_head *
369 get_active_stripe(raid5_conf_t *conf, sector_t sector,
370 int previous, int noblock, int noquiesce)
372 struct stripe_head *sh;
374 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
376 spin_lock_irq(&conf->device_lock);
378 do {
379 wait_event_lock_irq(conf->wait_for_stripe,
380 conf->quiesce == 0 || noquiesce,
381 conf->device_lock, /* nothing */);
382 sh = __find_stripe(conf, sector, conf->generation - previous);
383 if (!sh) {
384 if (!conf->inactive_blocked)
385 sh = get_free_stripe(conf);
386 if (noblock && sh == NULL)
387 break;
388 if (!sh) {
389 conf->inactive_blocked = 1;
390 wait_event_lock_irq(conf->wait_for_stripe,
391 !list_empty(&conf->inactive_list) &&
392 (atomic_read(&conf->active_stripes)
393 < (conf->max_nr_stripes *3/4)
394 || !conf->inactive_blocked),
395 conf->device_lock,
396 raid5_unplug_device(conf->mddev->queue)
398 conf->inactive_blocked = 0;
399 } else
400 init_stripe(sh, sector, previous);
401 } else {
402 if (atomic_read(&sh->count)) {
403 BUG_ON(!list_empty(&sh->lru)
404 && !test_bit(STRIPE_EXPANDING, &sh->state));
405 } else {
406 if (!test_bit(STRIPE_HANDLE, &sh->state))
407 atomic_inc(&conf->active_stripes);
408 if (list_empty(&sh->lru) &&
409 !test_bit(STRIPE_EXPANDING, &sh->state))
410 BUG();
411 list_del_init(&sh->lru);
414 } while (sh == NULL);
416 if (sh)
417 atomic_inc(&sh->count);
419 spin_unlock_irq(&conf->device_lock);
420 return sh;
423 static void
424 raid5_end_read_request(struct bio *bi, int error);
425 static void
426 raid5_end_write_request(struct bio *bi, int error);
428 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
430 raid5_conf_t *conf = sh->raid_conf;
431 int i, disks = sh->disks;
433 might_sleep();
435 for (i = disks; i--; ) {
436 int rw;
437 struct bio *bi;
438 mdk_rdev_t *rdev;
439 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
440 rw = WRITE;
441 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
442 rw = READ;
443 else
444 continue;
446 bi = &sh->dev[i].req;
448 bi->bi_rw = rw;
449 if (rw & WRITE)
450 bi->bi_end_io = raid5_end_write_request;
451 else
452 bi->bi_end_io = raid5_end_read_request;
454 rcu_read_lock();
455 rdev = rcu_dereference(conf->disks[i].rdev);
456 if (rdev && test_bit(Faulty, &rdev->flags))
457 rdev = NULL;
458 if (rdev)
459 atomic_inc(&rdev->nr_pending);
460 rcu_read_unlock();
462 if (rdev) {
463 if (s->syncing || s->expanding || s->expanded)
464 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
466 set_bit(STRIPE_IO_STARTED, &sh->state);
468 bi->bi_bdev = rdev->bdev;
469 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
470 __func__, (unsigned long long)sh->sector,
471 bi->bi_rw, i);
472 atomic_inc(&sh->count);
473 bi->bi_sector = sh->sector + rdev->data_offset;
474 bi->bi_flags = 1 << BIO_UPTODATE;
475 bi->bi_vcnt = 1;
476 bi->bi_max_vecs = 1;
477 bi->bi_idx = 0;
478 bi->bi_io_vec = &sh->dev[i].vec;
479 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
480 bi->bi_io_vec[0].bv_offset = 0;
481 bi->bi_size = STRIPE_SIZE;
482 bi->bi_next = NULL;
483 if ((rw & WRITE) &&
484 test_bit(R5_ReWrite, &sh->dev[i].flags))
485 atomic_add(STRIPE_SECTORS,
486 &rdev->corrected_errors);
487 generic_make_request(bi);
488 } else {
489 if (rw & WRITE)
490 set_bit(STRIPE_DEGRADED, &sh->state);
491 pr_debug("skip op %ld on disc %d for sector %llu\n",
492 bi->bi_rw, i, (unsigned long long)sh->sector);
493 clear_bit(R5_LOCKED, &sh->dev[i].flags);
494 set_bit(STRIPE_HANDLE, &sh->state);
499 static struct dma_async_tx_descriptor *
500 async_copy_data(int frombio, struct bio *bio, struct page *page,
501 sector_t sector, struct dma_async_tx_descriptor *tx)
503 struct bio_vec *bvl;
504 struct page *bio_page;
505 int i;
506 int page_offset;
507 struct async_submit_ctl submit;
508 enum async_tx_flags flags = 0;
510 if (bio->bi_sector >= sector)
511 page_offset = (signed)(bio->bi_sector - sector) * 512;
512 else
513 page_offset = (signed)(sector - bio->bi_sector) * -512;
515 if (frombio)
516 flags |= ASYNC_TX_FENCE;
517 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
519 bio_for_each_segment(bvl, bio, i) {
520 int len = bio_iovec_idx(bio, i)->bv_len;
521 int clen;
522 int b_offset = 0;
524 if (page_offset < 0) {
525 b_offset = -page_offset;
526 page_offset += b_offset;
527 len -= b_offset;
530 if (len > 0 && page_offset + len > STRIPE_SIZE)
531 clen = STRIPE_SIZE - page_offset;
532 else
533 clen = len;
535 if (clen > 0) {
536 b_offset += bio_iovec_idx(bio, i)->bv_offset;
537 bio_page = bio_iovec_idx(bio, i)->bv_page;
538 if (frombio)
539 tx = async_memcpy(page, bio_page, page_offset,
540 b_offset, clen, &submit);
541 else
542 tx = async_memcpy(bio_page, page, b_offset,
543 page_offset, clen, &submit);
545 /* chain the operations */
546 submit.depend_tx = tx;
548 if (clen < len) /* hit end of page */
549 break;
550 page_offset += len;
553 return tx;
556 static void ops_complete_biofill(void *stripe_head_ref)
558 struct stripe_head *sh = stripe_head_ref;
559 struct bio *return_bi = NULL;
560 raid5_conf_t *conf = sh->raid_conf;
561 int i;
563 pr_debug("%s: stripe %llu\n", __func__,
564 (unsigned long long)sh->sector);
566 /* clear completed biofills */
567 spin_lock_irq(&conf->device_lock);
568 for (i = sh->disks; i--; ) {
569 struct r5dev *dev = &sh->dev[i];
571 /* acknowledge completion of a biofill operation */
572 /* and check if we need to reply to a read request,
573 * new R5_Wantfill requests are held off until
574 * !STRIPE_BIOFILL_RUN
576 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
577 struct bio *rbi, *rbi2;
579 BUG_ON(!dev->read);
580 rbi = dev->read;
581 dev->read = NULL;
582 while (rbi && rbi->bi_sector <
583 dev->sector + STRIPE_SECTORS) {
584 rbi2 = r5_next_bio(rbi, dev->sector);
585 if (!raid5_dec_bi_phys_segments(rbi)) {
586 rbi->bi_next = return_bi;
587 return_bi = rbi;
589 rbi = rbi2;
593 spin_unlock_irq(&conf->device_lock);
594 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
596 return_io(return_bi);
598 set_bit(STRIPE_HANDLE, &sh->state);
599 release_stripe(sh);
602 static void ops_run_biofill(struct stripe_head *sh)
604 struct dma_async_tx_descriptor *tx = NULL;
605 raid5_conf_t *conf = sh->raid_conf;
606 struct async_submit_ctl submit;
607 int i;
609 pr_debug("%s: stripe %llu\n", __func__,
610 (unsigned long long)sh->sector);
612 for (i = sh->disks; i--; ) {
613 struct r5dev *dev = &sh->dev[i];
614 if (test_bit(R5_Wantfill, &dev->flags)) {
615 struct bio *rbi;
616 spin_lock_irq(&conf->device_lock);
617 dev->read = rbi = dev->toread;
618 dev->toread = NULL;
619 spin_unlock_irq(&conf->device_lock);
620 while (rbi && rbi->bi_sector <
621 dev->sector + STRIPE_SECTORS) {
622 tx = async_copy_data(0, rbi, dev->page,
623 dev->sector, tx);
624 rbi = r5_next_bio(rbi, dev->sector);
629 atomic_inc(&sh->count);
630 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
631 async_trigger_callback(&submit);
634 static void mark_target_uptodate(struct stripe_head *sh, int target)
636 struct r5dev *tgt;
638 if (target < 0)
639 return;
641 tgt = &sh->dev[target];
642 set_bit(R5_UPTODATE, &tgt->flags);
643 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
644 clear_bit(R5_Wantcompute, &tgt->flags);
647 static void ops_complete_compute(void *stripe_head_ref)
649 struct stripe_head *sh = stripe_head_ref;
651 pr_debug("%s: stripe %llu\n", __func__,
652 (unsigned long long)sh->sector);
654 /* mark the computed target(s) as uptodate */
655 mark_target_uptodate(sh, sh->ops.target);
656 mark_target_uptodate(sh, sh->ops.target2);
658 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
659 if (sh->check_state == check_state_compute_run)
660 sh->check_state = check_state_compute_result;
661 set_bit(STRIPE_HANDLE, &sh->state);
662 release_stripe(sh);
665 /* return a pointer to the address conversion region of the scribble buffer */
666 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
667 struct raid5_percpu *percpu)
669 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
672 static struct dma_async_tx_descriptor *
673 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
675 int disks = sh->disks;
676 struct page **xor_srcs = percpu->scribble;
677 int target = sh->ops.target;
678 struct r5dev *tgt = &sh->dev[target];
679 struct page *xor_dest = tgt->page;
680 int count = 0;
681 struct dma_async_tx_descriptor *tx;
682 struct async_submit_ctl submit;
683 int i;
685 pr_debug("%s: stripe %llu block: %d\n",
686 __func__, (unsigned long long)sh->sector, target);
687 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
689 for (i = disks; i--; )
690 if (i != target)
691 xor_srcs[count++] = sh->dev[i].page;
693 atomic_inc(&sh->count);
695 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
696 ops_complete_compute, sh, to_addr_conv(sh, percpu));
697 if (unlikely(count == 1))
698 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
699 else
700 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
702 return tx;
705 /* set_syndrome_sources - populate source buffers for gen_syndrome
706 * @srcs - (struct page *) array of size sh->disks
707 * @sh - stripe_head to parse
709 * Populates srcs in proper layout order for the stripe and returns the
710 * 'count' of sources to be used in a call to async_gen_syndrome. The P
711 * destination buffer is recorded in srcs[count] and the Q destination
712 * is recorded in srcs[count+1]].
714 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
716 int disks = sh->disks;
717 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
718 int d0_idx = raid6_d0(sh);
719 int count;
720 int i;
722 for (i = 0; i < disks; i++)
723 srcs[i] = NULL;
725 count = 0;
726 i = d0_idx;
727 do {
728 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
730 srcs[slot] = sh->dev[i].page;
731 i = raid6_next_disk(i, disks);
732 } while (i != d0_idx);
734 return syndrome_disks;
737 static struct dma_async_tx_descriptor *
738 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
740 int disks = sh->disks;
741 struct page **blocks = percpu->scribble;
742 int target;
743 int qd_idx = sh->qd_idx;
744 struct dma_async_tx_descriptor *tx;
745 struct async_submit_ctl submit;
746 struct r5dev *tgt;
747 struct page *dest;
748 int i;
749 int count;
751 if (sh->ops.target < 0)
752 target = sh->ops.target2;
753 else if (sh->ops.target2 < 0)
754 target = sh->ops.target;
755 else
756 /* we should only have one valid target */
757 BUG();
758 BUG_ON(target < 0);
759 pr_debug("%s: stripe %llu block: %d\n",
760 __func__, (unsigned long long)sh->sector, target);
762 tgt = &sh->dev[target];
763 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
764 dest = tgt->page;
766 atomic_inc(&sh->count);
768 if (target == qd_idx) {
769 count = set_syndrome_sources(blocks, sh);
770 blocks[count] = NULL; /* regenerating p is not necessary */
771 BUG_ON(blocks[count+1] != dest); /* q should already be set */
772 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
773 ops_complete_compute, sh,
774 to_addr_conv(sh, percpu));
775 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
776 } else {
777 /* Compute any data- or p-drive using XOR */
778 count = 0;
779 for (i = disks; i-- ; ) {
780 if (i == target || i == qd_idx)
781 continue;
782 blocks[count++] = sh->dev[i].page;
785 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
786 NULL, ops_complete_compute, sh,
787 to_addr_conv(sh, percpu));
788 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
791 return tx;
794 static struct dma_async_tx_descriptor *
795 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
797 int i, count, disks = sh->disks;
798 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
799 int d0_idx = raid6_d0(sh);
800 int faila = -1, failb = -1;
801 int target = sh->ops.target;
802 int target2 = sh->ops.target2;
803 struct r5dev *tgt = &sh->dev[target];
804 struct r5dev *tgt2 = &sh->dev[target2];
805 struct dma_async_tx_descriptor *tx;
806 struct page **blocks = percpu->scribble;
807 struct async_submit_ctl submit;
809 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
810 __func__, (unsigned long long)sh->sector, target, target2);
811 BUG_ON(target < 0 || target2 < 0);
812 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
813 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
815 /* we need to open-code set_syndrome_sources to handle the
816 * slot number conversion for 'faila' and 'failb'
818 for (i = 0; i < disks ; i++)
819 blocks[i] = NULL;
820 count = 0;
821 i = d0_idx;
822 do {
823 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
825 blocks[slot] = sh->dev[i].page;
827 if (i == target)
828 faila = slot;
829 if (i == target2)
830 failb = slot;
831 i = raid6_next_disk(i, disks);
832 } while (i != d0_idx);
834 BUG_ON(faila == failb);
835 if (failb < faila)
836 swap(faila, failb);
837 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
838 __func__, (unsigned long long)sh->sector, faila, failb);
840 atomic_inc(&sh->count);
842 if (failb == syndrome_disks+1) {
843 /* Q disk is one of the missing disks */
844 if (faila == syndrome_disks) {
845 /* Missing P+Q, just recompute */
846 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
847 ops_complete_compute, sh,
848 to_addr_conv(sh, percpu));
849 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
850 STRIPE_SIZE, &submit);
851 } else {
852 struct page *dest;
853 int data_target;
854 int qd_idx = sh->qd_idx;
856 /* Missing D+Q: recompute D from P, then recompute Q */
857 if (target == qd_idx)
858 data_target = target2;
859 else
860 data_target = target;
862 count = 0;
863 for (i = disks; i-- ; ) {
864 if (i == data_target || i == qd_idx)
865 continue;
866 blocks[count++] = sh->dev[i].page;
868 dest = sh->dev[data_target].page;
869 init_async_submit(&submit,
870 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
871 NULL, NULL, NULL,
872 to_addr_conv(sh, percpu));
873 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
874 &submit);
876 count = set_syndrome_sources(blocks, sh);
877 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
878 ops_complete_compute, sh,
879 to_addr_conv(sh, percpu));
880 return async_gen_syndrome(blocks, 0, count+2,
881 STRIPE_SIZE, &submit);
883 } else {
884 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
885 ops_complete_compute, sh,
886 to_addr_conv(sh, percpu));
887 if (failb == syndrome_disks) {
888 /* We're missing D+P. */
889 return async_raid6_datap_recov(syndrome_disks+2,
890 STRIPE_SIZE, faila,
891 blocks, &submit);
892 } else {
893 /* We're missing D+D. */
894 return async_raid6_2data_recov(syndrome_disks+2,
895 STRIPE_SIZE, faila, failb,
896 blocks, &submit);
902 static void ops_complete_prexor(void *stripe_head_ref)
904 struct stripe_head *sh = stripe_head_ref;
906 pr_debug("%s: stripe %llu\n", __func__,
907 (unsigned long long)sh->sector);
910 static struct dma_async_tx_descriptor *
911 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
912 struct dma_async_tx_descriptor *tx)
914 int disks = sh->disks;
915 struct page **xor_srcs = percpu->scribble;
916 int count = 0, pd_idx = sh->pd_idx, i;
917 struct async_submit_ctl submit;
919 /* existing parity data subtracted */
920 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
922 pr_debug("%s: stripe %llu\n", __func__,
923 (unsigned long long)sh->sector);
925 for (i = disks; i--; ) {
926 struct r5dev *dev = &sh->dev[i];
927 /* Only process blocks that are known to be uptodate */
928 if (test_bit(R5_Wantdrain, &dev->flags))
929 xor_srcs[count++] = dev->page;
932 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
933 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
934 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
936 return tx;
939 static struct dma_async_tx_descriptor *
940 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
942 int disks = sh->disks;
943 int i;
945 pr_debug("%s: stripe %llu\n", __func__,
946 (unsigned long long)sh->sector);
948 for (i = disks; i--; ) {
949 struct r5dev *dev = &sh->dev[i];
950 struct bio *chosen;
952 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
953 struct bio *wbi;
955 spin_lock(&sh->lock);
956 chosen = dev->towrite;
957 dev->towrite = NULL;
958 BUG_ON(dev->written);
959 wbi = dev->written = chosen;
960 spin_unlock(&sh->lock);
962 while (wbi && wbi->bi_sector <
963 dev->sector + STRIPE_SECTORS) {
964 tx = async_copy_data(1, wbi, dev->page,
965 dev->sector, tx);
966 wbi = r5_next_bio(wbi, dev->sector);
971 return tx;
974 static void ops_complete_reconstruct(void *stripe_head_ref)
976 struct stripe_head *sh = stripe_head_ref;
977 int disks = sh->disks;
978 int pd_idx = sh->pd_idx;
979 int qd_idx = sh->qd_idx;
980 int i;
982 pr_debug("%s: stripe %llu\n", __func__,
983 (unsigned long long)sh->sector);
985 for (i = disks; i--; ) {
986 struct r5dev *dev = &sh->dev[i];
988 if (dev->written || i == pd_idx || i == qd_idx)
989 set_bit(R5_UPTODATE, &dev->flags);
992 if (sh->reconstruct_state == reconstruct_state_drain_run)
993 sh->reconstruct_state = reconstruct_state_drain_result;
994 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
995 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
996 else {
997 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
998 sh->reconstruct_state = reconstruct_state_result;
1001 set_bit(STRIPE_HANDLE, &sh->state);
1002 release_stripe(sh);
1005 static void
1006 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1007 struct dma_async_tx_descriptor *tx)
1009 int disks = sh->disks;
1010 struct page **xor_srcs = percpu->scribble;
1011 struct async_submit_ctl submit;
1012 int count = 0, pd_idx = sh->pd_idx, i;
1013 struct page *xor_dest;
1014 int prexor = 0;
1015 unsigned long flags;
1017 pr_debug("%s: stripe %llu\n", __func__,
1018 (unsigned long long)sh->sector);
1020 /* check if prexor is active which means only process blocks
1021 * that are part of a read-modify-write (written)
1023 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1024 prexor = 1;
1025 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1026 for (i = disks; i--; ) {
1027 struct r5dev *dev = &sh->dev[i];
1028 if (dev->written)
1029 xor_srcs[count++] = dev->page;
1031 } else {
1032 xor_dest = sh->dev[pd_idx].page;
1033 for (i = disks; i--; ) {
1034 struct r5dev *dev = &sh->dev[i];
1035 if (i != pd_idx)
1036 xor_srcs[count++] = dev->page;
1040 /* 1/ if we prexor'd then the dest is reused as a source
1041 * 2/ if we did not prexor then we are redoing the parity
1042 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1043 * for the synchronous xor case
1045 flags = ASYNC_TX_ACK |
1046 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1048 atomic_inc(&sh->count);
1050 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1051 to_addr_conv(sh, percpu));
1052 if (unlikely(count == 1))
1053 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1054 else
1055 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1058 static void
1059 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1060 struct dma_async_tx_descriptor *tx)
1062 struct async_submit_ctl submit;
1063 struct page **blocks = percpu->scribble;
1064 int count;
1066 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1068 count = set_syndrome_sources(blocks, sh);
1070 atomic_inc(&sh->count);
1072 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1073 sh, to_addr_conv(sh, percpu));
1074 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1077 static void ops_complete_check(void *stripe_head_ref)
1079 struct stripe_head *sh = stripe_head_ref;
1081 pr_debug("%s: stripe %llu\n", __func__,
1082 (unsigned long long)sh->sector);
1084 sh->check_state = check_state_check_result;
1085 set_bit(STRIPE_HANDLE, &sh->state);
1086 release_stripe(sh);
1089 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1091 int disks = sh->disks;
1092 int pd_idx = sh->pd_idx;
1093 int qd_idx = sh->qd_idx;
1094 struct page *xor_dest;
1095 struct page **xor_srcs = percpu->scribble;
1096 struct dma_async_tx_descriptor *tx;
1097 struct async_submit_ctl submit;
1098 int count;
1099 int i;
1101 pr_debug("%s: stripe %llu\n", __func__,
1102 (unsigned long long)sh->sector);
1104 count = 0;
1105 xor_dest = sh->dev[pd_idx].page;
1106 xor_srcs[count++] = xor_dest;
1107 for (i = disks; i--; ) {
1108 if (i == pd_idx || i == qd_idx)
1109 continue;
1110 xor_srcs[count++] = sh->dev[i].page;
1113 init_async_submit(&submit, 0, NULL, NULL, NULL,
1114 to_addr_conv(sh, percpu));
1115 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1116 &sh->ops.zero_sum_result, &submit);
1118 atomic_inc(&sh->count);
1119 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1120 tx = async_trigger_callback(&submit);
1123 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1125 struct page **srcs = percpu->scribble;
1126 struct async_submit_ctl submit;
1127 int count;
1129 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1130 (unsigned long long)sh->sector, checkp);
1132 count = set_syndrome_sources(srcs, sh);
1133 if (!checkp)
1134 srcs[count] = NULL;
1136 atomic_inc(&sh->count);
1137 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1138 sh, to_addr_conv(sh, percpu));
1139 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1140 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1143 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1145 int overlap_clear = 0, i, disks = sh->disks;
1146 struct dma_async_tx_descriptor *tx = NULL;
1147 raid5_conf_t *conf = sh->raid_conf;
1148 int level = conf->level;
1149 struct raid5_percpu *percpu;
1150 unsigned long cpu;
1152 cpu = get_cpu();
1153 percpu = per_cpu_ptr(conf->percpu, cpu);
1154 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1155 ops_run_biofill(sh);
1156 overlap_clear++;
1159 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1160 if (level < 6)
1161 tx = ops_run_compute5(sh, percpu);
1162 else {
1163 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1164 tx = ops_run_compute6_1(sh, percpu);
1165 else
1166 tx = ops_run_compute6_2(sh, percpu);
1168 /* terminate the chain if reconstruct is not set to be run */
1169 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1170 async_tx_ack(tx);
1173 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1174 tx = ops_run_prexor(sh, percpu, tx);
1176 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1177 tx = ops_run_biodrain(sh, tx);
1178 overlap_clear++;
1181 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1182 if (level < 6)
1183 ops_run_reconstruct5(sh, percpu, tx);
1184 else
1185 ops_run_reconstruct6(sh, percpu, tx);
1188 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1189 if (sh->check_state == check_state_run)
1190 ops_run_check_p(sh, percpu);
1191 else if (sh->check_state == check_state_run_q)
1192 ops_run_check_pq(sh, percpu, 0);
1193 else if (sh->check_state == check_state_run_pq)
1194 ops_run_check_pq(sh, percpu, 1);
1195 else
1196 BUG();
1199 if (overlap_clear)
1200 for (i = disks; i--; ) {
1201 struct r5dev *dev = &sh->dev[i];
1202 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1203 wake_up(&sh->raid_conf->wait_for_overlap);
1205 put_cpu();
1208 #ifdef CONFIG_MULTICORE_RAID456
1209 static void async_run_ops(void *param, async_cookie_t cookie)
1211 struct stripe_head *sh = param;
1212 unsigned long ops_request = sh->ops.request;
1214 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1215 wake_up(&sh->ops.wait_for_ops);
1217 __raid_run_ops(sh, ops_request);
1218 release_stripe(sh);
1221 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223 /* since handle_stripe can be called outside of raid5d context
1224 * we need to ensure sh->ops.request is de-staged before another
1225 * request arrives
1227 wait_event(sh->ops.wait_for_ops,
1228 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1229 sh->ops.request = ops_request;
1231 atomic_inc(&sh->count);
1232 async_schedule(async_run_ops, sh);
1234 #else
1235 #define raid_run_ops __raid_run_ops
1236 #endif
1238 static int grow_one_stripe(raid5_conf_t *conf)
1240 struct stripe_head *sh;
1241 int disks = max(conf->raid_disks, conf->previous_raid_disks);
1242 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1243 if (!sh)
1244 return 0;
1245 memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1246 sh->raid_conf = conf;
1247 spin_lock_init(&sh->lock);
1248 #ifdef CONFIG_MULTICORE_RAID456
1249 init_waitqueue_head(&sh->ops.wait_for_ops);
1250 #endif
1252 if (grow_buffers(sh, disks)) {
1253 shrink_buffers(sh, disks);
1254 kmem_cache_free(conf->slab_cache, sh);
1255 return 0;
1257 /* we just created an active stripe so... */
1258 atomic_set(&sh->count, 1);
1259 atomic_inc(&conf->active_stripes);
1260 INIT_LIST_HEAD(&sh->lru);
1261 release_stripe(sh);
1262 return 1;
1265 static int grow_stripes(raid5_conf_t *conf, int num)
1267 struct kmem_cache *sc;
1268 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1270 sprintf(conf->cache_name[0],
1271 "raid%d-%s", conf->level, mdname(conf->mddev));
1272 sprintf(conf->cache_name[1],
1273 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1274 conf->active_name = 0;
1275 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1276 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1277 0, 0, NULL);
1278 if (!sc)
1279 return 1;
1280 conf->slab_cache = sc;
1281 conf->pool_size = devs;
1282 while (num--)
1283 if (!grow_one_stripe(conf))
1284 return 1;
1285 return 0;
1289 * scribble_len - return the required size of the scribble region
1290 * @num - total number of disks in the array
1292 * The size must be enough to contain:
1293 * 1/ a struct page pointer for each device in the array +2
1294 * 2/ room to convert each entry in (1) to its corresponding dma
1295 * (dma_map_page()) or page (page_address()) address.
1297 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1298 * calculate over all devices (not just the data blocks), using zeros in place
1299 * of the P and Q blocks.
1301 static size_t scribble_len(int num)
1303 size_t len;
1305 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1307 return len;
1310 static int resize_stripes(raid5_conf_t *conf, int newsize)
1312 /* Make all the stripes able to hold 'newsize' devices.
1313 * New slots in each stripe get 'page' set to a new page.
1315 * This happens in stages:
1316 * 1/ create a new kmem_cache and allocate the required number of
1317 * stripe_heads.
1318 * 2/ gather all the old stripe_heads and tranfer the pages across
1319 * to the new stripe_heads. This will have the side effect of
1320 * freezing the array as once all stripe_heads have been collected,
1321 * no IO will be possible. Old stripe heads are freed once their
1322 * pages have been transferred over, and the old kmem_cache is
1323 * freed when all stripes are done.
1324 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1325 * we simple return a failre status - no need to clean anything up.
1326 * 4/ allocate new pages for the new slots in the new stripe_heads.
1327 * If this fails, we don't bother trying the shrink the
1328 * stripe_heads down again, we just leave them as they are.
1329 * As each stripe_head is processed the new one is released into
1330 * active service.
1332 * Once step2 is started, we cannot afford to wait for a write,
1333 * so we use GFP_NOIO allocations.
1335 struct stripe_head *osh, *nsh;
1336 LIST_HEAD(newstripes);
1337 struct disk_info *ndisks;
1338 unsigned long cpu;
1339 int err;
1340 struct kmem_cache *sc;
1341 int i;
1343 if (newsize <= conf->pool_size)
1344 return 0; /* never bother to shrink */
1346 err = md_allow_write(conf->mddev);
1347 if (err)
1348 return err;
1350 /* Step 1 */
1351 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1352 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1353 0, 0, NULL);
1354 if (!sc)
1355 return -ENOMEM;
1357 for (i = conf->max_nr_stripes; i; i--) {
1358 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1359 if (!nsh)
1360 break;
1362 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1364 nsh->raid_conf = conf;
1365 spin_lock_init(&nsh->lock);
1366 #ifdef CONFIG_MULTICORE_RAID456
1367 init_waitqueue_head(&nsh->ops.wait_for_ops);
1368 #endif
1370 list_add(&nsh->lru, &newstripes);
1372 if (i) {
1373 /* didn't get enough, give up */
1374 while (!list_empty(&newstripes)) {
1375 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1376 list_del(&nsh->lru);
1377 kmem_cache_free(sc, nsh);
1379 kmem_cache_destroy(sc);
1380 return -ENOMEM;
1382 /* Step 2 - Must use GFP_NOIO now.
1383 * OK, we have enough stripes, start collecting inactive
1384 * stripes and copying them over
1386 list_for_each_entry(nsh, &newstripes, lru) {
1387 spin_lock_irq(&conf->device_lock);
1388 wait_event_lock_irq(conf->wait_for_stripe,
1389 !list_empty(&conf->inactive_list),
1390 conf->device_lock,
1391 unplug_slaves(conf->mddev)
1393 osh = get_free_stripe(conf);
1394 spin_unlock_irq(&conf->device_lock);
1395 atomic_set(&nsh->count, 1);
1396 for(i=0; i<conf->pool_size; i++)
1397 nsh->dev[i].page = osh->dev[i].page;
1398 for( ; i<newsize; i++)
1399 nsh->dev[i].page = NULL;
1400 kmem_cache_free(conf->slab_cache, osh);
1402 kmem_cache_destroy(conf->slab_cache);
1404 /* Step 3.
1405 * At this point, we are holding all the stripes so the array
1406 * is completely stalled, so now is a good time to resize
1407 * conf->disks and the scribble region
1409 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1410 if (ndisks) {
1411 for (i=0; i<conf->raid_disks; i++)
1412 ndisks[i] = conf->disks[i];
1413 kfree(conf->disks);
1414 conf->disks = ndisks;
1415 } else
1416 err = -ENOMEM;
1418 get_online_cpus();
1419 conf->scribble_len = scribble_len(newsize);
1420 for_each_present_cpu(cpu) {
1421 struct raid5_percpu *percpu;
1422 void *scribble;
1424 percpu = per_cpu_ptr(conf->percpu, cpu);
1425 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1427 if (scribble) {
1428 kfree(percpu->scribble);
1429 percpu->scribble = scribble;
1430 } else {
1431 err = -ENOMEM;
1432 break;
1435 put_online_cpus();
1437 /* Step 4, return new stripes to service */
1438 while(!list_empty(&newstripes)) {
1439 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1440 list_del_init(&nsh->lru);
1442 for (i=conf->raid_disks; i < newsize; i++)
1443 if (nsh->dev[i].page == NULL) {
1444 struct page *p = alloc_page(GFP_NOIO);
1445 nsh->dev[i].page = p;
1446 if (!p)
1447 err = -ENOMEM;
1449 release_stripe(nsh);
1451 /* critical section pass, GFP_NOIO no longer needed */
1453 conf->slab_cache = sc;
1454 conf->active_name = 1-conf->active_name;
1455 conf->pool_size = newsize;
1456 return err;
1459 static int drop_one_stripe(raid5_conf_t *conf)
1461 struct stripe_head *sh;
1463 spin_lock_irq(&conf->device_lock);
1464 sh = get_free_stripe(conf);
1465 spin_unlock_irq(&conf->device_lock);
1466 if (!sh)
1467 return 0;
1468 BUG_ON(atomic_read(&sh->count));
1469 shrink_buffers(sh, conf->pool_size);
1470 kmem_cache_free(conf->slab_cache, sh);
1471 atomic_dec(&conf->active_stripes);
1472 return 1;
1475 static void shrink_stripes(raid5_conf_t *conf)
1477 while (drop_one_stripe(conf))
1480 if (conf->slab_cache)
1481 kmem_cache_destroy(conf->slab_cache);
1482 conf->slab_cache = NULL;
1485 static void raid5_end_read_request(struct bio * bi, int error)
1487 struct stripe_head *sh = bi->bi_private;
1488 raid5_conf_t *conf = sh->raid_conf;
1489 int disks = sh->disks, i;
1490 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1491 char b[BDEVNAME_SIZE];
1492 mdk_rdev_t *rdev;
1495 for (i=0 ; i<disks; i++)
1496 if (bi == &sh->dev[i].req)
1497 break;
1499 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1500 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1501 uptodate);
1502 if (i == disks) {
1503 BUG();
1504 return;
1507 if (uptodate) {
1508 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1509 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1510 rdev = conf->disks[i].rdev;
1511 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1512 " (%lu sectors at %llu on %s)\n",
1513 mdname(conf->mddev), STRIPE_SECTORS,
1514 (unsigned long long)(sh->sector
1515 + rdev->data_offset),
1516 bdevname(rdev->bdev, b));
1517 clear_bit(R5_ReadError, &sh->dev[i].flags);
1518 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1520 if (atomic_read(&conf->disks[i].rdev->read_errors))
1521 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1522 } else {
1523 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1524 int retry = 0;
1525 rdev = conf->disks[i].rdev;
1527 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1528 atomic_inc(&rdev->read_errors);
1529 if (conf->mddev->degraded >= conf->max_degraded)
1530 printk_rl(KERN_WARNING
1531 "raid5:%s: read error not correctable "
1532 "(sector %llu on %s).\n",
1533 mdname(conf->mddev),
1534 (unsigned long long)(sh->sector
1535 + rdev->data_offset),
1536 bdn);
1537 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1538 /* Oh, no!!! */
1539 printk_rl(KERN_WARNING
1540 "raid5:%s: read error NOT corrected!! "
1541 "(sector %llu on %s).\n",
1542 mdname(conf->mddev),
1543 (unsigned long long)(sh->sector
1544 + rdev->data_offset),
1545 bdn);
1546 else if (atomic_read(&rdev->read_errors)
1547 > conf->max_nr_stripes)
1548 printk(KERN_WARNING
1549 "raid5:%s: Too many read errors, failing device %s.\n",
1550 mdname(conf->mddev), bdn);
1551 else
1552 retry = 1;
1553 if (retry)
1554 set_bit(R5_ReadError, &sh->dev[i].flags);
1555 else {
1556 clear_bit(R5_ReadError, &sh->dev[i].flags);
1557 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1558 md_error(conf->mddev, rdev);
1561 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1562 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1563 set_bit(STRIPE_HANDLE, &sh->state);
1564 release_stripe(sh);
1567 static void raid5_end_write_request(struct bio *bi, int error)
1569 struct stripe_head *sh = bi->bi_private;
1570 raid5_conf_t *conf = sh->raid_conf;
1571 int disks = sh->disks, i;
1572 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1574 for (i=0 ; i<disks; i++)
1575 if (bi == &sh->dev[i].req)
1576 break;
1578 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1579 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1580 uptodate);
1581 if (i == disks) {
1582 BUG();
1583 return;
1586 if (!uptodate)
1587 md_error(conf->mddev, conf->disks[i].rdev);
1589 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1591 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1592 set_bit(STRIPE_HANDLE, &sh->state);
1593 release_stripe(sh);
1597 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1599 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1601 struct r5dev *dev = &sh->dev[i];
1603 bio_init(&dev->req);
1604 dev->req.bi_io_vec = &dev->vec;
1605 dev->req.bi_vcnt++;
1606 dev->req.bi_max_vecs++;
1607 dev->vec.bv_page = dev->page;
1608 dev->vec.bv_len = STRIPE_SIZE;
1609 dev->vec.bv_offset = 0;
1611 dev->req.bi_sector = sh->sector;
1612 dev->req.bi_private = sh;
1614 dev->flags = 0;
1615 dev->sector = compute_blocknr(sh, i, previous);
1618 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1620 char b[BDEVNAME_SIZE];
1621 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1622 pr_debug("raid5: error called\n");
1624 if (!test_bit(Faulty, &rdev->flags)) {
1625 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1626 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1627 unsigned long flags;
1628 spin_lock_irqsave(&conf->device_lock, flags);
1629 mddev->degraded++;
1630 spin_unlock_irqrestore(&conf->device_lock, flags);
1632 * if recovery was running, make sure it aborts.
1634 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636 set_bit(Faulty, &rdev->flags);
1637 printk(KERN_ALERT
1638 "raid5: Disk failure on %s, disabling device.\n"
1639 "raid5: Operation continuing on %d devices.\n",
1640 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1645 * Input: a 'big' sector number,
1646 * Output: index of the data and parity disk, and the sector # in them.
1648 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1649 int previous, int *dd_idx,
1650 struct stripe_head *sh)
1652 sector_t stripe, stripe2;
1653 sector_t chunk_number;
1654 unsigned int chunk_offset;
1655 int pd_idx, qd_idx;
1656 int ddf_layout = 0;
1657 sector_t new_sector;
1658 int algorithm = previous ? conf->prev_algo
1659 : conf->algorithm;
1660 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1661 : conf->chunk_sectors;
1662 int raid_disks = previous ? conf->previous_raid_disks
1663 : conf->raid_disks;
1664 int data_disks = raid_disks - conf->max_degraded;
1666 /* First compute the information on this sector */
1669 * Compute the chunk number and the sector offset inside the chunk
1671 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1672 chunk_number = r_sector;
1675 * Compute the stripe number
1677 stripe = chunk_number;
1678 *dd_idx = sector_div(stripe, data_disks);
1679 stripe2 = stripe;
1681 * Select the parity disk based on the user selected algorithm.
1683 pd_idx = qd_idx = ~0;
1684 switch(conf->level) {
1685 case 4:
1686 pd_idx = data_disks;
1687 break;
1688 case 5:
1689 switch (algorithm) {
1690 case ALGORITHM_LEFT_ASYMMETRIC:
1691 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1692 if (*dd_idx >= pd_idx)
1693 (*dd_idx)++;
1694 break;
1695 case ALGORITHM_RIGHT_ASYMMETRIC:
1696 pd_idx = sector_div(stripe2, raid_disks);
1697 if (*dd_idx >= pd_idx)
1698 (*dd_idx)++;
1699 break;
1700 case ALGORITHM_LEFT_SYMMETRIC:
1701 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1702 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1703 break;
1704 case ALGORITHM_RIGHT_SYMMETRIC:
1705 pd_idx = sector_div(stripe2, raid_disks);
1706 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1707 break;
1708 case ALGORITHM_PARITY_0:
1709 pd_idx = 0;
1710 (*dd_idx)++;
1711 break;
1712 case ALGORITHM_PARITY_N:
1713 pd_idx = data_disks;
1714 break;
1715 default:
1716 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1717 algorithm);
1718 BUG();
1720 break;
1721 case 6:
1723 switch (algorithm) {
1724 case ALGORITHM_LEFT_ASYMMETRIC:
1725 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1726 qd_idx = pd_idx + 1;
1727 if (pd_idx == raid_disks-1) {
1728 (*dd_idx)++; /* Q D D D P */
1729 qd_idx = 0;
1730 } else if (*dd_idx >= pd_idx)
1731 (*dd_idx) += 2; /* D D P Q D */
1732 break;
1733 case ALGORITHM_RIGHT_ASYMMETRIC:
1734 pd_idx = sector_div(stripe2, raid_disks);
1735 qd_idx = pd_idx + 1;
1736 if (pd_idx == raid_disks-1) {
1737 (*dd_idx)++; /* Q D D D P */
1738 qd_idx = 0;
1739 } else if (*dd_idx >= pd_idx)
1740 (*dd_idx) += 2; /* D D P Q D */
1741 break;
1742 case ALGORITHM_LEFT_SYMMETRIC:
1743 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1744 qd_idx = (pd_idx + 1) % raid_disks;
1745 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1746 break;
1747 case ALGORITHM_RIGHT_SYMMETRIC:
1748 pd_idx = sector_div(stripe2, raid_disks);
1749 qd_idx = (pd_idx + 1) % raid_disks;
1750 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1751 break;
1753 case ALGORITHM_PARITY_0:
1754 pd_idx = 0;
1755 qd_idx = 1;
1756 (*dd_idx) += 2;
1757 break;
1758 case ALGORITHM_PARITY_N:
1759 pd_idx = data_disks;
1760 qd_idx = data_disks + 1;
1761 break;
1763 case ALGORITHM_ROTATING_ZERO_RESTART:
1764 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1765 * of blocks for computing Q is different.
1767 pd_idx = sector_div(stripe2, raid_disks);
1768 qd_idx = pd_idx + 1;
1769 if (pd_idx == raid_disks-1) {
1770 (*dd_idx)++; /* Q D D D P */
1771 qd_idx = 0;
1772 } else if (*dd_idx >= pd_idx)
1773 (*dd_idx) += 2; /* D D P Q D */
1774 ddf_layout = 1;
1775 break;
1777 case ALGORITHM_ROTATING_N_RESTART:
1778 /* Same a left_asymmetric, by first stripe is
1779 * D D D P Q rather than
1780 * Q D D D P
1782 stripe2 += 1;
1783 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1784 qd_idx = pd_idx + 1;
1785 if (pd_idx == raid_disks-1) {
1786 (*dd_idx)++; /* Q D D D P */
1787 qd_idx = 0;
1788 } else if (*dd_idx >= pd_idx)
1789 (*dd_idx) += 2; /* D D P Q D */
1790 ddf_layout = 1;
1791 break;
1793 case ALGORITHM_ROTATING_N_CONTINUE:
1794 /* Same as left_symmetric but Q is before P */
1795 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1796 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1797 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1798 ddf_layout = 1;
1799 break;
1801 case ALGORITHM_LEFT_ASYMMETRIC_6:
1802 /* RAID5 left_asymmetric, with Q on last device */
1803 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1804 if (*dd_idx >= pd_idx)
1805 (*dd_idx)++;
1806 qd_idx = raid_disks - 1;
1807 break;
1809 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1810 pd_idx = sector_div(stripe2, raid_disks-1);
1811 if (*dd_idx >= pd_idx)
1812 (*dd_idx)++;
1813 qd_idx = raid_disks - 1;
1814 break;
1816 case ALGORITHM_LEFT_SYMMETRIC_6:
1817 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1818 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1819 qd_idx = raid_disks - 1;
1820 break;
1822 case ALGORITHM_RIGHT_SYMMETRIC_6:
1823 pd_idx = sector_div(stripe2, raid_disks-1);
1824 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1825 qd_idx = raid_disks - 1;
1826 break;
1828 case ALGORITHM_PARITY_0_6:
1829 pd_idx = 0;
1830 (*dd_idx)++;
1831 qd_idx = raid_disks - 1;
1832 break;
1835 default:
1836 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1837 algorithm);
1838 BUG();
1840 break;
1843 if (sh) {
1844 sh->pd_idx = pd_idx;
1845 sh->qd_idx = qd_idx;
1846 sh->ddf_layout = ddf_layout;
1849 * Finally, compute the new sector number
1851 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1852 return new_sector;
1856 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1858 raid5_conf_t *conf = sh->raid_conf;
1859 int raid_disks = sh->disks;
1860 int data_disks = raid_disks - conf->max_degraded;
1861 sector_t new_sector = sh->sector, check;
1862 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1863 : conf->chunk_sectors;
1864 int algorithm = previous ? conf->prev_algo
1865 : conf->algorithm;
1866 sector_t stripe;
1867 int chunk_offset;
1868 sector_t chunk_number;
1869 int dummy1, dd_idx = i;
1870 sector_t r_sector;
1871 struct stripe_head sh2;
1874 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1875 stripe = new_sector;
1877 if (i == sh->pd_idx)
1878 return 0;
1879 switch(conf->level) {
1880 case 4: break;
1881 case 5:
1882 switch (algorithm) {
1883 case ALGORITHM_LEFT_ASYMMETRIC:
1884 case ALGORITHM_RIGHT_ASYMMETRIC:
1885 if (i > sh->pd_idx)
1886 i--;
1887 break;
1888 case ALGORITHM_LEFT_SYMMETRIC:
1889 case ALGORITHM_RIGHT_SYMMETRIC:
1890 if (i < sh->pd_idx)
1891 i += raid_disks;
1892 i -= (sh->pd_idx + 1);
1893 break;
1894 case ALGORITHM_PARITY_0:
1895 i -= 1;
1896 break;
1897 case ALGORITHM_PARITY_N:
1898 break;
1899 default:
1900 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1901 algorithm);
1902 BUG();
1904 break;
1905 case 6:
1906 if (i == sh->qd_idx)
1907 return 0; /* It is the Q disk */
1908 switch (algorithm) {
1909 case ALGORITHM_LEFT_ASYMMETRIC:
1910 case ALGORITHM_RIGHT_ASYMMETRIC:
1911 case ALGORITHM_ROTATING_ZERO_RESTART:
1912 case ALGORITHM_ROTATING_N_RESTART:
1913 if (sh->pd_idx == raid_disks-1)
1914 i--; /* Q D D D P */
1915 else if (i > sh->pd_idx)
1916 i -= 2; /* D D P Q D */
1917 break;
1918 case ALGORITHM_LEFT_SYMMETRIC:
1919 case ALGORITHM_RIGHT_SYMMETRIC:
1920 if (sh->pd_idx == raid_disks-1)
1921 i--; /* Q D D D P */
1922 else {
1923 /* D D P Q D */
1924 if (i < sh->pd_idx)
1925 i += raid_disks;
1926 i -= (sh->pd_idx + 2);
1928 break;
1929 case ALGORITHM_PARITY_0:
1930 i -= 2;
1931 break;
1932 case ALGORITHM_PARITY_N:
1933 break;
1934 case ALGORITHM_ROTATING_N_CONTINUE:
1935 /* Like left_symmetric, but P is before Q */
1936 if (sh->pd_idx == 0)
1937 i--; /* P D D D Q */
1938 else {
1939 /* D D Q P D */
1940 if (i < sh->pd_idx)
1941 i += raid_disks;
1942 i -= (sh->pd_idx + 1);
1944 break;
1945 case ALGORITHM_LEFT_ASYMMETRIC_6:
1946 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1947 if (i > sh->pd_idx)
1948 i--;
1949 break;
1950 case ALGORITHM_LEFT_SYMMETRIC_6:
1951 case ALGORITHM_RIGHT_SYMMETRIC_6:
1952 if (i < sh->pd_idx)
1953 i += data_disks + 1;
1954 i -= (sh->pd_idx + 1);
1955 break;
1956 case ALGORITHM_PARITY_0_6:
1957 i -= 1;
1958 break;
1959 default:
1960 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1961 algorithm);
1962 BUG();
1964 break;
1967 chunk_number = stripe * data_disks + i;
1968 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1970 check = raid5_compute_sector(conf, r_sector,
1971 previous, &dummy1, &sh2);
1972 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1973 || sh2.qd_idx != sh->qd_idx) {
1974 printk(KERN_ERR "compute_blocknr: map not correct\n");
1975 return 0;
1977 return r_sector;
1981 static void
1982 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1983 int rcw, int expand)
1985 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1986 raid5_conf_t *conf = sh->raid_conf;
1987 int level = conf->level;
1989 if (rcw) {
1990 /* if we are not expanding this is a proper write request, and
1991 * there will be bios with new data to be drained into the
1992 * stripe cache
1994 if (!expand) {
1995 sh->reconstruct_state = reconstruct_state_drain_run;
1996 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1997 } else
1998 sh->reconstruct_state = reconstruct_state_run;
2000 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2002 for (i = disks; i--; ) {
2003 struct r5dev *dev = &sh->dev[i];
2005 if (dev->towrite) {
2006 set_bit(R5_LOCKED, &dev->flags);
2007 set_bit(R5_Wantdrain, &dev->flags);
2008 if (!expand)
2009 clear_bit(R5_UPTODATE, &dev->flags);
2010 s->locked++;
2013 if (s->locked + conf->max_degraded == disks)
2014 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2015 atomic_inc(&conf->pending_full_writes);
2016 } else {
2017 BUG_ON(level == 6);
2018 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2019 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2021 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2022 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2023 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2024 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2026 for (i = disks; i--; ) {
2027 struct r5dev *dev = &sh->dev[i];
2028 if (i == pd_idx)
2029 continue;
2031 if (dev->towrite &&
2032 (test_bit(R5_UPTODATE, &dev->flags) ||
2033 test_bit(R5_Wantcompute, &dev->flags))) {
2034 set_bit(R5_Wantdrain, &dev->flags);
2035 set_bit(R5_LOCKED, &dev->flags);
2036 clear_bit(R5_UPTODATE, &dev->flags);
2037 s->locked++;
2042 /* keep the parity disk(s) locked while asynchronous operations
2043 * are in flight
2045 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2046 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2047 s->locked++;
2049 if (level == 6) {
2050 int qd_idx = sh->qd_idx;
2051 struct r5dev *dev = &sh->dev[qd_idx];
2053 set_bit(R5_LOCKED, &dev->flags);
2054 clear_bit(R5_UPTODATE, &dev->flags);
2055 s->locked++;
2058 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2059 __func__, (unsigned long long)sh->sector,
2060 s->locked, s->ops_request);
2064 * Each stripe/dev can have one or more bion attached.
2065 * toread/towrite point to the first in a chain.
2066 * The bi_next chain must be in order.
2068 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2070 struct bio **bip;
2071 raid5_conf_t *conf = sh->raid_conf;
2072 int firstwrite=0;
2074 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2075 (unsigned long long)bi->bi_sector,
2076 (unsigned long long)sh->sector);
2079 spin_lock(&sh->lock);
2080 spin_lock_irq(&conf->device_lock);
2081 if (forwrite) {
2082 bip = &sh->dev[dd_idx].towrite;
2083 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2084 firstwrite = 1;
2085 } else
2086 bip = &sh->dev[dd_idx].toread;
2087 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2088 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2089 goto overlap;
2090 bip = & (*bip)->bi_next;
2092 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2093 goto overlap;
2095 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2096 if (*bip)
2097 bi->bi_next = *bip;
2098 *bip = bi;
2099 bi->bi_phys_segments++;
2100 spin_unlock_irq(&conf->device_lock);
2101 spin_unlock(&sh->lock);
2103 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2104 (unsigned long long)bi->bi_sector,
2105 (unsigned long long)sh->sector, dd_idx);
2107 if (conf->mddev->bitmap && firstwrite) {
2108 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2109 STRIPE_SECTORS, 0);
2110 sh->bm_seq = conf->seq_flush+1;
2111 set_bit(STRIPE_BIT_DELAY, &sh->state);
2114 if (forwrite) {
2115 /* check if page is covered */
2116 sector_t sector = sh->dev[dd_idx].sector;
2117 for (bi=sh->dev[dd_idx].towrite;
2118 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2119 bi && bi->bi_sector <= sector;
2120 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2121 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2122 sector = bi->bi_sector + (bi->bi_size>>9);
2124 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2125 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2127 return 1;
2129 overlap:
2130 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2131 spin_unlock_irq(&conf->device_lock);
2132 spin_unlock(&sh->lock);
2133 return 0;
2136 static void end_reshape(raid5_conf_t *conf);
2138 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2139 struct stripe_head *sh)
2141 int sectors_per_chunk =
2142 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2143 int dd_idx;
2144 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2145 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2147 raid5_compute_sector(conf,
2148 stripe * (disks - conf->max_degraded)
2149 *sectors_per_chunk + chunk_offset,
2150 previous,
2151 &dd_idx, sh);
2154 static void
2155 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2156 struct stripe_head_state *s, int disks,
2157 struct bio **return_bi)
2159 int i;
2160 for (i = disks; i--; ) {
2161 struct bio *bi;
2162 int bitmap_end = 0;
2164 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2165 mdk_rdev_t *rdev;
2166 rcu_read_lock();
2167 rdev = rcu_dereference(conf->disks[i].rdev);
2168 if (rdev && test_bit(In_sync, &rdev->flags))
2169 /* multiple read failures in one stripe */
2170 md_error(conf->mddev, rdev);
2171 rcu_read_unlock();
2173 spin_lock_irq(&conf->device_lock);
2174 /* fail all writes first */
2175 bi = sh->dev[i].towrite;
2176 sh->dev[i].towrite = NULL;
2177 if (bi) {
2178 s->to_write--;
2179 bitmap_end = 1;
2182 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2183 wake_up(&conf->wait_for_overlap);
2185 while (bi && bi->bi_sector <
2186 sh->dev[i].sector + STRIPE_SECTORS) {
2187 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2188 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2189 if (!raid5_dec_bi_phys_segments(bi)) {
2190 md_write_end(conf->mddev);
2191 bi->bi_next = *return_bi;
2192 *return_bi = bi;
2194 bi = nextbi;
2196 /* and fail all 'written' */
2197 bi = sh->dev[i].written;
2198 sh->dev[i].written = NULL;
2199 if (bi) bitmap_end = 1;
2200 while (bi && bi->bi_sector <
2201 sh->dev[i].sector + STRIPE_SECTORS) {
2202 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2203 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2204 if (!raid5_dec_bi_phys_segments(bi)) {
2205 md_write_end(conf->mddev);
2206 bi->bi_next = *return_bi;
2207 *return_bi = bi;
2209 bi = bi2;
2212 /* fail any reads if this device is non-operational and
2213 * the data has not reached the cache yet.
2215 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2216 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2217 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2218 bi = sh->dev[i].toread;
2219 sh->dev[i].toread = NULL;
2220 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2221 wake_up(&conf->wait_for_overlap);
2222 if (bi) s->to_read--;
2223 while (bi && bi->bi_sector <
2224 sh->dev[i].sector + STRIPE_SECTORS) {
2225 struct bio *nextbi =
2226 r5_next_bio(bi, sh->dev[i].sector);
2227 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2228 if (!raid5_dec_bi_phys_segments(bi)) {
2229 bi->bi_next = *return_bi;
2230 *return_bi = bi;
2232 bi = nextbi;
2235 spin_unlock_irq(&conf->device_lock);
2236 if (bitmap_end)
2237 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2238 STRIPE_SECTORS, 0, 0);
2241 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2242 if (atomic_dec_and_test(&conf->pending_full_writes))
2243 md_wakeup_thread(conf->mddev->thread);
2246 /* fetch_block5 - checks the given member device to see if its data needs
2247 * to be read or computed to satisfy a request.
2249 * Returns 1 when no more member devices need to be checked, otherwise returns
2250 * 0 to tell the loop in handle_stripe_fill5 to continue
2252 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2253 int disk_idx, int disks)
2255 struct r5dev *dev = &sh->dev[disk_idx];
2256 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2258 /* is the data in this block needed, and can we get it? */
2259 if (!test_bit(R5_LOCKED, &dev->flags) &&
2260 !test_bit(R5_UPTODATE, &dev->flags) &&
2261 (dev->toread ||
2262 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2263 s->syncing || s->expanding ||
2264 (s->failed &&
2265 (failed_dev->toread ||
2266 (failed_dev->towrite &&
2267 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2268 /* We would like to get this block, possibly by computing it,
2269 * otherwise read it if the backing disk is insync
2271 if ((s->uptodate == disks - 1) &&
2272 (s->failed && disk_idx == s->failed_num)) {
2273 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2274 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2275 set_bit(R5_Wantcompute, &dev->flags);
2276 sh->ops.target = disk_idx;
2277 sh->ops.target2 = -1;
2278 s->req_compute = 1;
2279 /* Careful: from this point on 'uptodate' is in the eye
2280 * of raid_run_ops which services 'compute' operations
2281 * before writes. R5_Wantcompute flags a block that will
2282 * be R5_UPTODATE by the time it is needed for a
2283 * subsequent operation.
2285 s->uptodate++;
2286 return 1; /* uptodate + compute == disks */
2287 } else if (test_bit(R5_Insync, &dev->flags)) {
2288 set_bit(R5_LOCKED, &dev->flags);
2289 set_bit(R5_Wantread, &dev->flags);
2290 s->locked++;
2291 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2292 s->syncing);
2296 return 0;
2300 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2302 static void handle_stripe_fill5(struct stripe_head *sh,
2303 struct stripe_head_state *s, int disks)
2305 int i;
2307 /* look for blocks to read/compute, skip this if a compute
2308 * is already in flight, or if the stripe contents are in the
2309 * midst of changing due to a write
2311 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2312 !sh->reconstruct_state)
2313 for (i = disks; i--; )
2314 if (fetch_block5(sh, s, i, disks))
2315 break;
2316 set_bit(STRIPE_HANDLE, &sh->state);
2319 /* fetch_block6 - checks the given member device to see if its data needs
2320 * to be read or computed to satisfy a request.
2322 * Returns 1 when no more member devices need to be checked, otherwise returns
2323 * 0 to tell the loop in handle_stripe_fill6 to continue
2325 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2326 struct r6_state *r6s, int disk_idx, int disks)
2328 struct r5dev *dev = &sh->dev[disk_idx];
2329 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2330 &sh->dev[r6s->failed_num[1]] };
2332 if (!test_bit(R5_LOCKED, &dev->flags) &&
2333 !test_bit(R5_UPTODATE, &dev->flags) &&
2334 (dev->toread ||
2335 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2336 s->syncing || s->expanding ||
2337 (s->failed >= 1 &&
2338 (fdev[0]->toread || s->to_write)) ||
2339 (s->failed >= 2 &&
2340 (fdev[1]->toread || s->to_write)))) {
2341 /* we would like to get this block, possibly by computing it,
2342 * otherwise read it if the backing disk is insync
2344 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2345 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2346 if ((s->uptodate == disks - 1) &&
2347 (s->failed && (disk_idx == r6s->failed_num[0] ||
2348 disk_idx == r6s->failed_num[1]))) {
2349 /* have disk failed, and we're requested to fetch it;
2350 * do compute it
2352 pr_debug("Computing stripe %llu block %d\n",
2353 (unsigned long long)sh->sector, disk_idx);
2354 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2355 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2356 set_bit(R5_Wantcompute, &dev->flags);
2357 sh->ops.target = disk_idx;
2358 sh->ops.target2 = -1; /* no 2nd target */
2359 s->req_compute = 1;
2360 s->uptodate++;
2361 return 1;
2362 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2363 /* Computing 2-failure is *very* expensive; only
2364 * do it if failed >= 2
2366 int other;
2367 for (other = disks; other--; ) {
2368 if (other == disk_idx)
2369 continue;
2370 if (!test_bit(R5_UPTODATE,
2371 &sh->dev[other].flags))
2372 break;
2374 BUG_ON(other < 0);
2375 pr_debug("Computing stripe %llu blocks %d,%d\n",
2376 (unsigned long long)sh->sector,
2377 disk_idx, other);
2378 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2379 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2380 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2381 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2382 sh->ops.target = disk_idx;
2383 sh->ops.target2 = other;
2384 s->uptodate += 2;
2385 s->req_compute = 1;
2386 return 1;
2387 } else if (test_bit(R5_Insync, &dev->flags)) {
2388 set_bit(R5_LOCKED, &dev->flags);
2389 set_bit(R5_Wantread, &dev->flags);
2390 s->locked++;
2391 pr_debug("Reading block %d (sync=%d)\n",
2392 disk_idx, s->syncing);
2396 return 0;
2400 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2402 static void handle_stripe_fill6(struct stripe_head *sh,
2403 struct stripe_head_state *s, struct r6_state *r6s,
2404 int disks)
2406 int i;
2408 /* look for blocks to read/compute, skip this if a compute
2409 * is already in flight, or if the stripe contents are in the
2410 * midst of changing due to a write
2412 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2413 !sh->reconstruct_state)
2414 for (i = disks; i--; )
2415 if (fetch_block6(sh, s, r6s, i, disks))
2416 break;
2417 set_bit(STRIPE_HANDLE, &sh->state);
2421 /* handle_stripe_clean_event
2422 * any written block on an uptodate or failed drive can be returned.
2423 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2424 * never LOCKED, so we don't need to test 'failed' directly.
2426 static void handle_stripe_clean_event(raid5_conf_t *conf,
2427 struct stripe_head *sh, int disks, struct bio **return_bi)
2429 int i;
2430 struct r5dev *dev;
2432 for (i = disks; i--; )
2433 if (sh->dev[i].written) {
2434 dev = &sh->dev[i];
2435 if (!test_bit(R5_LOCKED, &dev->flags) &&
2436 test_bit(R5_UPTODATE, &dev->flags)) {
2437 /* We can return any write requests */
2438 struct bio *wbi, *wbi2;
2439 int bitmap_end = 0;
2440 pr_debug("Return write for disc %d\n", i);
2441 spin_lock_irq(&conf->device_lock);
2442 wbi = dev->written;
2443 dev->written = NULL;
2444 while (wbi && wbi->bi_sector <
2445 dev->sector + STRIPE_SECTORS) {
2446 wbi2 = r5_next_bio(wbi, dev->sector);
2447 if (!raid5_dec_bi_phys_segments(wbi)) {
2448 md_write_end(conf->mddev);
2449 wbi->bi_next = *return_bi;
2450 *return_bi = wbi;
2452 wbi = wbi2;
2454 if (dev->towrite == NULL)
2455 bitmap_end = 1;
2456 spin_unlock_irq(&conf->device_lock);
2457 if (bitmap_end)
2458 bitmap_endwrite(conf->mddev->bitmap,
2459 sh->sector,
2460 STRIPE_SECTORS,
2461 !test_bit(STRIPE_DEGRADED, &sh->state),
2466 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2467 if (atomic_dec_and_test(&conf->pending_full_writes))
2468 md_wakeup_thread(conf->mddev->thread);
2471 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2472 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2474 int rmw = 0, rcw = 0, i;
2475 for (i = disks; i--; ) {
2476 /* would I have to read this buffer for read_modify_write */
2477 struct r5dev *dev = &sh->dev[i];
2478 if ((dev->towrite || i == sh->pd_idx) &&
2479 !test_bit(R5_LOCKED, &dev->flags) &&
2480 !(test_bit(R5_UPTODATE, &dev->flags) ||
2481 test_bit(R5_Wantcompute, &dev->flags))) {
2482 if (test_bit(R5_Insync, &dev->flags))
2483 rmw++;
2484 else
2485 rmw += 2*disks; /* cannot read it */
2487 /* Would I have to read this buffer for reconstruct_write */
2488 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2489 !test_bit(R5_LOCKED, &dev->flags) &&
2490 !(test_bit(R5_UPTODATE, &dev->flags) ||
2491 test_bit(R5_Wantcompute, &dev->flags))) {
2492 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2493 else
2494 rcw += 2*disks;
2497 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2498 (unsigned long long)sh->sector, rmw, rcw);
2499 set_bit(STRIPE_HANDLE, &sh->state);
2500 if (rmw < rcw && rmw > 0)
2501 /* prefer read-modify-write, but need to get some data */
2502 for (i = disks; i--; ) {
2503 struct r5dev *dev = &sh->dev[i];
2504 if ((dev->towrite || i == sh->pd_idx) &&
2505 !test_bit(R5_LOCKED, &dev->flags) &&
2506 !(test_bit(R5_UPTODATE, &dev->flags) ||
2507 test_bit(R5_Wantcompute, &dev->flags)) &&
2508 test_bit(R5_Insync, &dev->flags)) {
2509 if (
2510 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2511 pr_debug("Read_old block "
2512 "%d for r-m-w\n", i);
2513 set_bit(R5_LOCKED, &dev->flags);
2514 set_bit(R5_Wantread, &dev->flags);
2515 s->locked++;
2516 } else {
2517 set_bit(STRIPE_DELAYED, &sh->state);
2518 set_bit(STRIPE_HANDLE, &sh->state);
2522 if (rcw <= rmw && rcw > 0)
2523 /* want reconstruct write, but need to get some data */
2524 for (i = disks; i--; ) {
2525 struct r5dev *dev = &sh->dev[i];
2526 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2527 i != sh->pd_idx &&
2528 !test_bit(R5_LOCKED, &dev->flags) &&
2529 !(test_bit(R5_UPTODATE, &dev->flags) ||
2530 test_bit(R5_Wantcompute, &dev->flags)) &&
2531 test_bit(R5_Insync, &dev->flags)) {
2532 if (
2533 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2534 pr_debug("Read_old block "
2535 "%d for Reconstruct\n", i);
2536 set_bit(R5_LOCKED, &dev->flags);
2537 set_bit(R5_Wantread, &dev->flags);
2538 s->locked++;
2539 } else {
2540 set_bit(STRIPE_DELAYED, &sh->state);
2541 set_bit(STRIPE_HANDLE, &sh->state);
2545 /* now if nothing is locked, and if we have enough data,
2546 * we can start a write request
2548 /* since handle_stripe can be called at any time we need to handle the
2549 * case where a compute block operation has been submitted and then a
2550 * subsequent call wants to start a write request. raid_run_ops only
2551 * handles the case where compute block and reconstruct are requested
2552 * simultaneously. If this is not the case then new writes need to be
2553 * held off until the compute completes.
2555 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2556 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2557 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2558 schedule_reconstruction(sh, s, rcw == 0, 0);
2561 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2562 struct stripe_head *sh, struct stripe_head_state *s,
2563 struct r6_state *r6s, int disks)
2565 int rcw = 0, pd_idx = sh->pd_idx, i;
2566 int qd_idx = sh->qd_idx;
2568 set_bit(STRIPE_HANDLE, &sh->state);
2569 for (i = disks; i--; ) {
2570 struct r5dev *dev = &sh->dev[i];
2571 /* check if we haven't enough data */
2572 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2573 i != pd_idx && i != qd_idx &&
2574 !test_bit(R5_LOCKED, &dev->flags) &&
2575 !(test_bit(R5_UPTODATE, &dev->flags) ||
2576 test_bit(R5_Wantcompute, &dev->flags))) {
2577 rcw++;
2578 if (!test_bit(R5_Insync, &dev->flags))
2579 continue; /* it's a failed drive */
2581 if (
2582 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2583 pr_debug("Read_old stripe %llu "
2584 "block %d for Reconstruct\n",
2585 (unsigned long long)sh->sector, i);
2586 set_bit(R5_LOCKED, &dev->flags);
2587 set_bit(R5_Wantread, &dev->flags);
2588 s->locked++;
2589 } else {
2590 pr_debug("Request delayed stripe %llu "
2591 "block %d for Reconstruct\n",
2592 (unsigned long long)sh->sector, i);
2593 set_bit(STRIPE_DELAYED, &sh->state);
2594 set_bit(STRIPE_HANDLE, &sh->state);
2598 /* now if nothing is locked, and if we have enough data, we can start a
2599 * write request
2601 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2602 s->locked == 0 && rcw == 0 &&
2603 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2604 schedule_reconstruction(sh, s, 1, 0);
2608 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2609 struct stripe_head_state *s, int disks)
2611 struct r5dev *dev = NULL;
2613 set_bit(STRIPE_HANDLE, &sh->state);
2615 switch (sh->check_state) {
2616 case check_state_idle:
2617 /* start a new check operation if there are no failures */
2618 if (s->failed == 0) {
2619 BUG_ON(s->uptodate != disks);
2620 sh->check_state = check_state_run;
2621 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2622 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2623 s->uptodate--;
2624 break;
2626 dev = &sh->dev[s->failed_num];
2627 /* fall through */
2628 case check_state_compute_result:
2629 sh->check_state = check_state_idle;
2630 if (!dev)
2631 dev = &sh->dev[sh->pd_idx];
2633 /* check that a write has not made the stripe insync */
2634 if (test_bit(STRIPE_INSYNC, &sh->state))
2635 break;
2637 /* either failed parity check, or recovery is happening */
2638 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2639 BUG_ON(s->uptodate != disks);
2641 set_bit(R5_LOCKED, &dev->flags);
2642 s->locked++;
2643 set_bit(R5_Wantwrite, &dev->flags);
2645 clear_bit(STRIPE_DEGRADED, &sh->state);
2646 set_bit(STRIPE_INSYNC, &sh->state);
2647 break;
2648 case check_state_run:
2649 break; /* we will be called again upon completion */
2650 case check_state_check_result:
2651 sh->check_state = check_state_idle;
2653 /* if a failure occurred during the check operation, leave
2654 * STRIPE_INSYNC not set and let the stripe be handled again
2656 if (s->failed)
2657 break;
2659 /* handle a successful check operation, if parity is correct
2660 * we are done. Otherwise update the mismatch count and repair
2661 * parity if !MD_RECOVERY_CHECK
2663 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2664 /* parity is correct (on disc,
2665 * not in buffer any more)
2667 set_bit(STRIPE_INSYNC, &sh->state);
2668 else {
2669 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2670 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2671 /* don't try to repair!! */
2672 set_bit(STRIPE_INSYNC, &sh->state);
2673 else {
2674 sh->check_state = check_state_compute_run;
2675 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2676 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2677 set_bit(R5_Wantcompute,
2678 &sh->dev[sh->pd_idx].flags);
2679 sh->ops.target = sh->pd_idx;
2680 sh->ops.target2 = -1;
2681 s->uptodate++;
2684 break;
2685 case check_state_compute_run:
2686 break;
2687 default:
2688 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2689 __func__, sh->check_state,
2690 (unsigned long long) sh->sector);
2691 BUG();
2696 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2697 struct stripe_head_state *s,
2698 struct r6_state *r6s, int disks)
2700 int pd_idx = sh->pd_idx;
2701 int qd_idx = sh->qd_idx;
2702 struct r5dev *dev;
2704 set_bit(STRIPE_HANDLE, &sh->state);
2706 BUG_ON(s->failed > 2);
2708 /* Want to check and possibly repair P and Q.
2709 * However there could be one 'failed' device, in which
2710 * case we can only check one of them, possibly using the
2711 * other to generate missing data
2714 switch (sh->check_state) {
2715 case check_state_idle:
2716 /* start a new check operation if there are < 2 failures */
2717 if (s->failed == r6s->q_failed) {
2718 /* The only possible failed device holds Q, so it
2719 * makes sense to check P (If anything else were failed,
2720 * we would have used P to recreate it).
2722 sh->check_state = check_state_run;
2724 if (!r6s->q_failed && s->failed < 2) {
2725 /* Q is not failed, and we didn't use it to generate
2726 * anything, so it makes sense to check it
2728 if (sh->check_state == check_state_run)
2729 sh->check_state = check_state_run_pq;
2730 else
2731 sh->check_state = check_state_run_q;
2734 /* discard potentially stale zero_sum_result */
2735 sh->ops.zero_sum_result = 0;
2737 if (sh->check_state == check_state_run) {
2738 /* async_xor_zero_sum destroys the contents of P */
2739 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2740 s->uptodate--;
2742 if (sh->check_state >= check_state_run &&
2743 sh->check_state <= check_state_run_pq) {
2744 /* async_syndrome_zero_sum preserves P and Q, so
2745 * no need to mark them !uptodate here
2747 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2748 break;
2751 /* we have 2-disk failure */
2752 BUG_ON(s->failed != 2);
2753 /* fall through */
2754 case check_state_compute_result:
2755 sh->check_state = check_state_idle;
2757 /* check that a write has not made the stripe insync */
2758 if (test_bit(STRIPE_INSYNC, &sh->state))
2759 break;
2761 /* now write out any block on a failed drive,
2762 * or P or Q if they were recomputed
2764 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2765 if (s->failed == 2) {
2766 dev = &sh->dev[r6s->failed_num[1]];
2767 s->locked++;
2768 set_bit(R5_LOCKED, &dev->flags);
2769 set_bit(R5_Wantwrite, &dev->flags);
2771 if (s->failed >= 1) {
2772 dev = &sh->dev[r6s->failed_num[0]];
2773 s->locked++;
2774 set_bit(R5_LOCKED, &dev->flags);
2775 set_bit(R5_Wantwrite, &dev->flags);
2777 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2778 dev = &sh->dev[pd_idx];
2779 s->locked++;
2780 set_bit(R5_LOCKED, &dev->flags);
2781 set_bit(R5_Wantwrite, &dev->flags);
2783 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2784 dev = &sh->dev[qd_idx];
2785 s->locked++;
2786 set_bit(R5_LOCKED, &dev->flags);
2787 set_bit(R5_Wantwrite, &dev->flags);
2789 clear_bit(STRIPE_DEGRADED, &sh->state);
2791 set_bit(STRIPE_INSYNC, &sh->state);
2792 break;
2793 case check_state_run:
2794 case check_state_run_q:
2795 case check_state_run_pq:
2796 break; /* we will be called again upon completion */
2797 case check_state_check_result:
2798 sh->check_state = check_state_idle;
2800 /* handle a successful check operation, if parity is correct
2801 * we are done. Otherwise update the mismatch count and repair
2802 * parity if !MD_RECOVERY_CHECK
2804 if (sh->ops.zero_sum_result == 0) {
2805 /* both parities are correct */
2806 if (!s->failed)
2807 set_bit(STRIPE_INSYNC, &sh->state);
2808 else {
2809 /* in contrast to the raid5 case we can validate
2810 * parity, but still have a failure to write
2811 * back
2813 sh->check_state = check_state_compute_result;
2814 /* Returning at this point means that we may go
2815 * off and bring p and/or q uptodate again so
2816 * we make sure to check zero_sum_result again
2817 * to verify if p or q need writeback
2820 } else {
2821 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2822 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2823 /* don't try to repair!! */
2824 set_bit(STRIPE_INSYNC, &sh->state);
2825 else {
2826 int *target = &sh->ops.target;
2828 sh->ops.target = -1;
2829 sh->ops.target2 = -1;
2830 sh->check_state = check_state_compute_run;
2831 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2832 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2833 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2834 set_bit(R5_Wantcompute,
2835 &sh->dev[pd_idx].flags);
2836 *target = pd_idx;
2837 target = &sh->ops.target2;
2838 s->uptodate++;
2840 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2841 set_bit(R5_Wantcompute,
2842 &sh->dev[qd_idx].flags);
2843 *target = qd_idx;
2844 s->uptodate++;
2848 break;
2849 case check_state_compute_run:
2850 break;
2851 default:
2852 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2853 __func__, sh->check_state,
2854 (unsigned long long) sh->sector);
2855 BUG();
2859 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2860 struct r6_state *r6s)
2862 int i;
2864 /* We have read all the blocks in this stripe and now we need to
2865 * copy some of them into a target stripe for expand.
2867 struct dma_async_tx_descriptor *tx = NULL;
2868 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2869 for (i = 0; i < sh->disks; i++)
2870 if (i != sh->pd_idx && i != sh->qd_idx) {
2871 int dd_idx, j;
2872 struct stripe_head *sh2;
2873 struct async_submit_ctl submit;
2875 sector_t bn = compute_blocknr(sh, i, 1);
2876 sector_t s = raid5_compute_sector(conf, bn, 0,
2877 &dd_idx, NULL);
2878 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2879 if (sh2 == NULL)
2880 /* so far only the early blocks of this stripe
2881 * have been requested. When later blocks
2882 * get requested, we will try again
2884 continue;
2885 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2886 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2887 /* must have already done this block */
2888 release_stripe(sh2);
2889 continue;
2892 /* place all the copies on one channel */
2893 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2894 tx = async_memcpy(sh2->dev[dd_idx].page,
2895 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2896 &submit);
2898 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2899 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2900 for (j = 0; j < conf->raid_disks; j++)
2901 if (j != sh2->pd_idx &&
2902 (!r6s || j != sh2->qd_idx) &&
2903 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2904 break;
2905 if (j == conf->raid_disks) {
2906 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2907 set_bit(STRIPE_HANDLE, &sh2->state);
2909 release_stripe(sh2);
2912 /* done submitting copies, wait for them to complete */
2913 if (tx) {
2914 async_tx_ack(tx);
2915 dma_wait_for_async_tx(tx);
2921 * handle_stripe - do things to a stripe.
2923 * We lock the stripe and then examine the state of various bits
2924 * to see what needs to be done.
2925 * Possible results:
2926 * return some read request which now have data
2927 * return some write requests which are safely on disc
2928 * schedule a read on some buffers
2929 * schedule a write of some buffers
2930 * return confirmation of parity correctness
2932 * buffers are taken off read_list or write_list, and bh_cache buffers
2933 * get BH_Lock set before the stripe lock is released.
2937 static void handle_stripe5(struct stripe_head *sh)
2939 raid5_conf_t *conf = sh->raid_conf;
2940 int disks = sh->disks, i;
2941 struct bio *return_bi = NULL;
2942 struct stripe_head_state s;
2943 struct r5dev *dev;
2944 mdk_rdev_t *blocked_rdev = NULL;
2945 int prexor;
2947 memset(&s, 0, sizeof(s));
2948 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2949 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2950 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2951 sh->reconstruct_state);
2953 spin_lock(&sh->lock);
2954 clear_bit(STRIPE_HANDLE, &sh->state);
2955 clear_bit(STRIPE_DELAYED, &sh->state);
2957 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2958 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2959 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2961 /* Now to look around and see what can be done */
2962 rcu_read_lock();
2963 for (i=disks; i--; ) {
2964 mdk_rdev_t *rdev;
2966 dev = &sh->dev[i];
2967 clear_bit(R5_Insync, &dev->flags);
2969 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2970 "written %p\n", i, dev->flags, dev->toread, dev->read,
2971 dev->towrite, dev->written);
2973 /* maybe we can request a biofill operation
2975 * new wantfill requests are only permitted while
2976 * ops_complete_biofill is guaranteed to be inactive
2978 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2979 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2980 set_bit(R5_Wantfill, &dev->flags);
2982 /* now count some things */
2983 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2984 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2985 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2987 if (test_bit(R5_Wantfill, &dev->flags))
2988 s.to_fill++;
2989 else if (dev->toread)
2990 s.to_read++;
2991 if (dev->towrite) {
2992 s.to_write++;
2993 if (!test_bit(R5_OVERWRITE, &dev->flags))
2994 s.non_overwrite++;
2996 if (dev->written)
2997 s.written++;
2998 rdev = rcu_dereference(conf->disks[i].rdev);
2999 if (blocked_rdev == NULL &&
3000 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3001 blocked_rdev = rdev;
3002 atomic_inc(&rdev->nr_pending);
3004 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3005 /* The ReadError flag will just be confusing now */
3006 clear_bit(R5_ReadError, &dev->flags);
3007 clear_bit(R5_ReWrite, &dev->flags);
3009 if (!rdev || !test_bit(In_sync, &rdev->flags)
3010 || test_bit(R5_ReadError, &dev->flags)) {
3011 s.failed++;
3012 s.failed_num = i;
3013 } else
3014 set_bit(R5_Insync, &dev->flags);
3016 rcu_read_unlock();
3018 if (unlikely(blocked_rdev)) {
3019 if (s.syncing || s.expanding || s.expanded ||
3020 s.to_write || s.written) {
3021 set_bit(STRIPE_HANDLE, &sh->state);
3022 goto unlock;
3024 /* There is nothing for the blocked_rdev to block */
3025 rdev_dec_pending(blocked_rdev, conf->mddev);
3026 blocked_rdev = NULL;
3029 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3030 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3031 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3034 pr_debug("locked=%d uptodate=%d to_read=%d"
3035 " to_write=%d failed=%d failed_num=%d\n",
3036 s.locked, s.uptodate, s.to_read, s.to_write,
3037 s.failed, s.failed_num);
3038 /* check if the array has lost two devices and, if so, some requests might
3039 * need to be failed
3041 if (s.failed > 1) {
3042 sh->check_state = 0;
3043 sh->reconstruct_state = 0;
3044 if (s.to_read+s.to_write+s.written)
3045 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3046 if (s.syncing) {
3047 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3048 clear_bit(STRIPE_SYNCING, &sh->state);
3049 s.syncing = 0;
3053 /* might be able to return some write requests if the parity block
3054 * is safe, or on a failed drive
3056 dev = &sh->dev[sh->pd_idx];
3057 if ( s.written &&
3058 ((test_bit(R5_Insync, &dev->flags) &&
3059 !test_bit(R5_LOCKED, &dev->flags) &&
3060 test_bit(R5_UPTODATE, &dev->flags)) ||
3061 (s.failed == 1 && s.failed_num == sh->pd_idx)))
3062 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3064 /* Now we might consider reading some blocks, either to check/generate
3065 * parity, or to satisfy requests
3066 * or to load a block that is being partially written.
3068 if (s.to_read || s.non_overwrite ||
3069 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3070 handle_stripe_fill5(sh, &s, disks);
3072 /* Now we check to see if any write operations have recently
3073 * completed
3075 prexor = 0;
3076 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3077 prexor = 1;
3078 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3079 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3080 sh->reconstruct_state = reconstruct_state_idle;
3082 /* All the 'written' buffers and the parity block are ready to
3083 * be written back to disk
3085 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3086 for (i = disks; i--; ) {
3087 dev = &sh->dev[i];
3088 if (test_bit(R5_LOCKED, &dev->flags) &&
3089 (i == sh->pd_idx || dev->written)) {
3090 pr_debug("Writing block %d\n", i);
3091 set_bit(R5_Wantwrite, &dev->flags);
3092 if (prexor)
3093 continue;
3094 if (!test_bit(R5_Insync, &dev->flags) ||
3095 (i == sh->pd_idx && s.failed == 0))
3096 set_bit(STRIPE_INSYNC, &sh->state);
3099 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3100 atomic_dec(&conf->preread_active_stripes);
3101 if (atomic_read(&conf->preread_active_stripes) <
3102 IO_THRESHOLD)
3103 md_wakeup_thread(conf->mddev->thread);
3107 /* Now to consider new write requests and what else, if anything
3108 * should be read. We do not handle new writes when:
3109 * 1/ A 'write' operation (copy+xor) is already in flight.
3110 * 2/ A 'check' operation is in flight, as it may clobber the parity
3111 * block.
3113 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3114 handle_stripe_dirtying5(conf, sh, &s, disks);
3116 /* maybe we need to check and possibly fix the parity for this stripe
3117 * Any reads will already have been scheduled, so we just see if enough
3118 * data is available. The parity check is held off while parity
3119 * dependent operations are in flight.
3121 if (sh->check_state ||
3122 (s.syncing && s.locked == 0 &&
3123 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3124 !test_bit(STRIPE_INSYNC, &sh->state)))
3125 handle_parity_checks5(conf, sh, &s, disks);
3127 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3128 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3129 clear_bit(STRIPE_SYNCING, &sh->state);
3132 /* If the failed drive is just a ReadError, then we might need to progress
3133 * the repair/check process
3135 if (s.failed == 1 && !conf->mddev->ro &&
3136 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3137 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3138 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3140 dev = &sh->dev[s.failed_num];
3141 if (!test_bit(R5_ReWrite, &dev->flags)) {
3142 set_bit(R5_Wantwrite, &dev->flags);
3143 set_bit(R5_ReWrite, &dev->flags);
3144 set_bit(R5_LOCKED, &dev->flags);
3145 s.locked++;
3146 } else {
3147 /* let's read it back */
3148 set_bit(R5_Wantread, &dev->flags);
3149 set_bit(R5_LOCKED, &dev->flags);
3150 s.locked++;
3154 /* Finish reconstruct operations initiated by the expansion process */
3155 if (sh->reconstruct_state == reconstruct_state_result) {
3156 struct stripe_head *sh2
3157 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3158 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3159 /* sh cannot be written until sh2 has been read.
3160 * so arrange for sh to be delayed a little
3162 set_bit(STRIPE_DELAYED, &sh->state);
3163 set_bit(STRIPE_HANDLE, &sh->state);
3164 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3165 &sh2->state))
3166 atomic_inc(&conf->preread_active_stripes);
3167 release_stripe(sh2);
3168 goto unlock;
3170 if (sh2)
3171 release_stripe(sh2);
3173 sh->reconstruct_state = reconstruct_state_idle;
3174 clear_bit(STRIPE_EXPANDING, &sh->state);
3175 for (i = conf->raid_disks; i--; ) {
3176 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3177 set_bit(R5_LOCKED, &sh->dev[i].flags);
3178 s.locked++;
3182 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3183 !sh->reconstruct_state) {
3184 /* Need to write out all blocks after computing parity */
3185 sh->disks = conf->raid_disks;
3186 stripe_set_idx(sh->sector, conf, 0, sh);
3187 schedule_reconstruction(sh, &s, 1, 1);
3188 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3189 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3190 atomic_dec(&conf->reshape_stripes);
3191 wake_up(&conf->wait_for_overlap);
3192 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3195 if (s.expanding && s.locked == 0 &&
3196 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3197 handle_stripe_expansion(conf, sh, NULL);
3199 unlock:
3200 spin_unlock(&sh->lock);
3202 /* wait for this device to become unblocked */
3203 if (unlikely(blocked_rdev))
3204 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3206 if (s.ops_request)
3207 raid_run_ops(sh, s.ops_request);
3209 ops_run_io(sh, &s);
3211 return_io(return_bi);
3214 static void handle_stripe6(struct stripe_head *sh)
3216 raid5_conf_t *conf = sh->raid_conf;
3217 int disks = sh->disks;
3218 struct bio *return_bi = NULL;
3219 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3220 struct stripe_head_state s;
3221 struct r6_state r6s;
3222 struct r5dev *dev, *pdev, *qdev;
3223 mdk_rdev_t *blocked_rdev = NULL;
3225 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3226 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3227 (unsigned long long)sh->sector, sh->state,
3228 atomic_read(&sh->count), pd_idx, qd_idx,
3229 sh->check_state, sh->reconstruct_state);
3230 memset(&s, 0, sizeof(s));
3232 spin_lock(&sh->lock);
3233 clear_bit(STRIPE_HANDLE, &sh->state);
3234 clear_bit(STRIPE_DELAYED, &sh->state);
3236 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3237 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3238 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3239 /* Now to look around and see what can be done */
3241 rcu_read_lock();
3242 for (i=disks; i--; ) {
3243 mdk_rdev_t *rdev;
3244 dev = &sh->dev[i];
3245 clear_bit(R5_Insync, &dev->flags);
3247 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3248 i, dev->flags, dev->toread, dev->towrite, dev->written);
3249 /* maybe we can reply to a read
3251 * new wantfill requests are only permitted while
3252 * ops_complete_biofill is guaranteed to be inactive
3254 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3255 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3256 set_bit(R5_Wantfill, &dev->flags);
3258 /* now count some things */
3259 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3260 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3261 if (test_bit(R5_Wantcompute, &dev->flags)) {
3262 s.compute++;
3263 BUG_ON(s.compute > 2);
3266 if (test_bit(R5_Wantfill, &dev->flags)) {
3267 s.to_fill++;
3268 } else if (dev->toread)
3269 s.to_read++;
3270 if (dev->towrite) {
3271 s.to_write++;
3272 if (!test_bit(R5_OVERWRITE, &dev->flags))
3273 s.non_overwrite++;
3275 if (dev->written)
3276 s.written++;
3277 rdev = rcu_dereference(conf->disks[i].rdev);
3278 if (blocked_rdev == NULL &&
3279 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3280 blocked_rdev = rdev;
3281 atomic_inc(&rdev->nr_pending);
3283 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3284 /* The ReadError flag will just be confusing now */
3285 clear_bit(R5_ReadError, &dev->flags);
3286 clear_bit(R5_ReWrite, &dev->flags);
3288 if (!rdev || !test_bit(In_sync, &rdev->flags)
3289 || test_bit(R5_ReadError, &dev->flags)) {
3290 if (s.failed < 2)
3291 r6s.failed_num[s.failed] = i;
3292 s.failed++;
3293 } else
3294 set_bit(R5_Insync, &dev->flags);
3296 rcu_read_unlock();
3298 if (unlikely(blocked_rdev)) {
3299 if (s.syncing || s.expanding || s.expanded ||
3300 s.to_write || s.written) {
3301 set_bit(STRIPE_HANDLE, &sh->state);
3302 goto unlock;
3304 /* There is nothing for the blocked_rdev to block */
3305 rdev_dec_pending(blocked_rdev, conf->mddev);
3306 blocked_rdev = NULL;
3309 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3310 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3311 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3314 pr_debug("locked=%d uptodate=%d to_read=%d"
3315 " to_write=%d failed=%d failed_num=%d,%d\n",
3316 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3317 r6s.failed_num[0], r6s.failed_num[1]);
3318 /* check if the array has lost >2 devices and, if so, some requests
3319 * might need to be failed
3321 if (s.failed > 2) {
3322 sh->check_state = 0;
3323 sh->reconstruct_state = 0;
3324 if (s.to_read+s.to_write+s.written)
3325 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3326 if (s.syncing) {
3327 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3328 clear_bit(STRIPE_SYNCING, &sh->state);
3329 s.syncing = 0;
3334 * might be able to return some write requests if the parity blocks
3335 * are safe, or on a failed drive
3337 pdev = &sh->dev[pd_idx];
3338 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3339 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3340 qdev = &sh->dev[qd_idx];
3341 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3342 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3344 if ( s.written &&
3345 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3346 && !test_bit(R5_LOCKED, &pdev->flags)
3347 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3348 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3349 && !test_bit(R5_LOCKED, &qdev->flags)
3350 && test_bit(R5_UPTODATE, &qdev->flags)))))
3351 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3353 /* Now we might consider reading some blocks, either to check/generate
3354 * parity, or to satisfy requests
3355 * or to load a block that is being partially written.
3357 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3358 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3359 handle_stripe_fill6(sh, &s, &r6s, disks);
3361 /* Now we check to see if any write operations have recently
3362 * completed
3364 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3365 int qd_idx = sh->qd_idx;
3367 sh->reconstruct_state = reconstruct_state_idle;
3368 /* All the 'written' buffers and the parity blocks are ready to
3369 * be written back to disk
3371 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3372 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3373 for (i = disks; i--; ) {
3374 dev = &sh->dev[i];
3375 if (test_bit(R5_LOCKED, &dev->flags) &&
3376 (i == sh->pd_idx || i == qd_idx ||
3377 dev->written)) {
3378 pr_debug("Writing block %d\n", i);
3379 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3380 set_bit(R5_Wantwrite, &dev->flags);
3381 if (!test_bit(R5_Insync, &dev->flags) ||
3382 ((i == sh->pd_idx || i == qd_idx) &&
3383 s.failed == 0))
3384 set_bit(STRIPE_INSYNC, &sh->state);
3387 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3388 atomic_dec(&conf->preread_active_stripes);
3389 if (atomic_read(&conf->preread_active_stripes) <
3390 IO_THRESHOLD)
3391 md_wakeup_thread(conf->mddev->thread);
3395 /* Now to consider new write requests and what else, if anything
3396 * should be read. We do not handle new writes when:
3397 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3398 * 2/ A 'check' operation is in flight, as it may clobber the parity
3399 * block.
3401 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3402 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3404 /* maybe we need to check and possibly fix the parity for this stripe
3405 * Any reads will already have been scheduled, so we just see if enough
3406 * data is available. The parity check is held off while parity
3407 * dependent operations are in flight.
3409 if (sh->check_state ||
3410 (s.syncing && s.locked == 0 &&
3411 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3412 !test_bit(STRIPE_INSYNC, &sh->state)))
3413 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3415 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3416 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3417 clear_bit(STRIPE_SYNCING, &sh->state);
3420 /* If the failed drives are just a ReadError, then we might need
3421 * to progress the repair/check process
3423 if (s.failed <= 2 && !conf->mddev->ro)
3424 for (i = 0; i < s.failed; i++) {
3425 dev = &sh->dev[r6s.failed_num[i]];
3426 if (test_bit(R5_ReadError, &dev->flags)
3427 && !test_bit(R5_LOCKED, &dev->flags)
3428 && test_bit(R5_UPTODATE, &dev->flags)
3430 if (!test_bit(R5_ReWrite, &dev->flags)) {
3431 set_bit(R5_Wantwrite, &dev->flags);
3432 set_bit(R5_ReWrite, &dev->flags);
3433 set_bit(R5_LOCKED, &dev->flags);
3434 s.locked++;
3435 } else {
3436 /* let's read it back */
3437 set_bit(R5_Wantread, &dev->flags);
3438 set_bit(R5_LOCKED, &dev->flags);
3439 s.locked++;
3444 /* Finish reconstruct operations initiated by the expansion process */
3445 if (sh->reconstruct_state == reconstruct_state_result) {
3446 sh->reconstruct_state = reconstruct_state_idle;
3447 clear_bit(STRIPE_EXPANDING, &sh->state);
3448 for (i = conf->raid_disks; i--; ) {
3449 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3450 set_bit(R5_LOCKED, &sh->dev[i].flags);
3451 s.locked++;
3455 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3456 !sh->reconstruct_state) {
3457 struct stripe_head *sh2
3458 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3459 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3460 /* sh cannot be written until sh2 has been read.
3461 * so arrange for sh to be delayed a little
3463 set_bit(STRIPE_DELAYED, &sh->state);
3464 set_bit(STRIPE_HANDLE, &sh->state);
3465 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3466 &sh2->state))
3467 atomic_inc(&conf->preread_active_stripes);
3468 release_stripe(sh2);
3469 goto unlock;
3471 if (sh2)
3472 release_stripe(sh2);
3474 /* Need to write out all blocks after computing P&Q */
3475 sh->disks = conf->raid_disks;
3476 stripe_set_idx(sh->sector, conf, 0, sh);
3477 schedule_reconstruction(sh, &s, 1, 1);
3478 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3479 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3480 atomic_dec(&conf->reshape_stripes);
3481 wake_up(&conf->wait_for_overlap);
3482 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3485 if (s.expanding && s.locked == 0 &&
3486 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3487 handle_stripe_expansion(conf, sh, &r6s);
3489 unlock:
3490 spin_unlock(&sh->lock);
3492 /* wait for this device to become unblocked */
3493 if (unlikely(blocked_rdev))
3494 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3496 if (s.ops_request)
3497 raid_run_ops(sh, s.ops_request);
3499 ops_run_io(sh, &s);
3501 return_io(return_bi);
3504 static void handle_stripe(struct stripe_head *sh)
3506 if (sh->raid_conf->level == 6)
3507 handle_stripe6(sh);
3508 else
3509 handle_stripe5(sh);
3512 static void raid5_activate_delayed(raid5_conf_t *conf)
3514 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3515 while (!list_empty(&conf->delayed_list)) {
3516 struct list_head *l = conf->delayed_list.next;
3517 struct stripe_head *sh;
3518 sh = list_entry(l, struct stripe_head, lru);
3519 list_del_init(l);
3520 clear_bit(STRIPE_DELAYED, &sh->state);
3521 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3522 atomic_inc(&conf->preread_active_stripes);
3523 list_add_tail(&sh->lru, &conf->hold_list);
3525 } else
3526 blk_plug_device(conf->mddev->queue);
3529 static void activate_bit_delay(raid5_conf_t *conf)
3531 /* device_lock is held */
3532 struct list_head head;
3533 list_add(&head, &conf->bitmap_list);
3534 list_del_init(&conf->bitmap_list);
3535 while (!list_empty(&head)) {
3536 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3537 list_del_init(&sh->lru);
3538 atomic_inc(&sh->count);
3539 __release_stripe(conf, sh);
3543 static void unplug_slaves(mddev_t *mddev)
3545 raid5_conf_t *conf = mddev->private;
3546 int i;
3547 int devs = max(conf->raid_disks, conf->previous_raid_disks);
3549 rcu_read_lock();
3550 for (i = 0; i < devs; i++) {
3551 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3552 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3553 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3555 atomic_inc(&rdev->nr_pending);
3556 rcu_read_unlock();
3558 blk_unplug(r_queue);
3560 rdev_dec_pending(rdev, mddev);
3561 rcu_read_lock();
3564 rcu_read_unlock();
3567 static void raid5_unplug_device(struct request_queue *q)
3569 mddev_t *mddev = q->queuedata;
3570 raid5_conf_t *conf = mddev->private;
3571 unsigned long flags;
3573 spin_lock_irqsave(&conf->device_lock, flags);
3575 if (blk_remove_plug(q)) {
3576 conf->seq_flush++;
3577 raid5_activate_delayed(conf);
3579 md_wakeup_thread(mddev->thread);
3581 spin_unlock_irqrestore(&conf->device_lock, flags);
3583 unplug_slaves(mddev);
3586 static int raid5_congested(void *data, int bits)
3588 mddev_t *mddev = data;
3589 raid5_conf_t *conf = mddev->private;
3591 /* No difference between reads and writes. Just check
3592 * how busy the stripe_cache is
3595 if (mddev_congested(mddev, bits))
3596 return 1;
3597 if (conf->inactive_blocked)
3598 return 1;
3599 if (conf->quiesce)
3600 return 1;
3601 if (list_empty_careful(&conf->inactive_list))
3602 return 1;
3604 return 0;
3607 /* We want read requests to align with chunks where possible,
3608 * but write requests don't need to.
3610 static int raid5_mergeable_bvec(struct request_queue *q,
3611 struct bvec_merge_data *bvm,
3612 struct bio_vec *biovec)
3614 mddev_t *mddev = q->queuedata;
3615 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3616 int max;
3617 unsigned int chunk_sectors = mddev->chunk_sectors;
3618 unsigned int bio_sectors = bvm->bi_size >> 9;
3620 if ((bvm->bi_rw & 1) == WRITE)
3621 return biovec->bv_len; /* always allow writes to be mergeable */
3623 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3624 chunk_sectors = mddev->new_chunk_sectors;
3625 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3626 if (max < 0) max = 0;
3627 if (max <= biovec->bv_len && bio_sectors == 0)
3628 return biovec->bv_len;
3629 else
3630 return max;
3634 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3636 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3637 unsigned int chunk_sectors = mddev->chunk_sectors;
3638 unsigned int bio_sectors = bio->bi_size >> 9;
3640 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3641 chunk_sectors = mddev->new_chunk_sectors;
3642 return chunk_sectors >=
3643 ((sector & (chunk_sectors - 1)) + bio_sectors);
3647 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3648 * later sampled by raid5d.
3650 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3652 unsigned long flags;
3654 spin_lock_irqsave(&conf->device_lock, flags);
3656 bi->bi_next = conf->retry_read_aligned_list;
3657 conf->retry_read_aligned_list = bi;
3659 spin_unlock_irqrestore(&conf->device_lock, flags);
3660 md_wakeup_thread(conf->mddev->thread);
3664 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3666 struct bio *bi;
3668 bi = conf->retry_read_aligned;
3669 if (bi) {
3670 conf->retry_read_aligned = NULL;
3671 return bi;
3673 bi = conf->retry_read_aligned_list;
3674 if(bi) {
3675 conf->retry_read_aligned_list = bi->bi_next;
3676 bi->bi_next = NULL;
3678 * this sets the active strip count to 1 and the processed
3679 * strip count to zero (upper 8 bits)
3681 bi->bi_phys_segments = 1; /* biased count of active stripes */
3684 return bi;
3689 * The "raid5_align_endio" should check if the read succeeded and if it
3690 * did, call bio_endio on the original bio (having bio_put the new bio
3691 * first).
3692 * If the read failed..
3694 static void raid5_align_endio(struct bio *bi, int error)
3696 struct bio* raid_bi = bi->bi_private;
3697 mddev_t *mddev;
3698 raid5_conf_t *conf;
3699 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3700 mdk_rdev_t *rdev;
3702 bio_put(bi);
3704 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3705 conf = mddev->private;
3706 rdev = (void*)raid_bi->bi_next;
3707 raid_bi->bi_next = NULL;
3709 rdev_dec_pending(rdev, conf->mddev);
3711 if (!error && uptodate) {
3712 bio_endio(raid_bi, 0);
3713 if (atomic_dec_and_test(&conf->active_aligned_reads))
3714 wake_up(&conf->wait_for_stripe);
3715 return;
3719 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3721 add_bio_to_retry(raid_bi, conf);
3724 static int bio_fits_rdev(struct bio *bi)
3726 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3728 if ((bi->bi_size>>9) > queue_max_sectors(q))
3729 return 0;
3730 blk_recount_segments(q, bi);
3731 if (bi->bi_phys_segments > queue_max_phys_segments(q))
3732 return 0;
3734 if (q->merge_bvec_fn)
3735 /* it's too hard to apply the merge_bvec_fn at this stage,
3736 * just just give up
3738 return 0;
3740 return 1;
3744 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3746 mddev_t *mddev = q->queuedata;
3747 raid5_conf_t *conf = mddev->private;
3748 unsigned int dd_idx;
3749 struct bio* align_bi;
3750 mdk_rdev_t *rdev;
3752 if (!in_chunk_boundary(mddev, raid_bio)) {
3753 pr_debug("chunk_aligned_read : non aligned\n");
3754 return 0;
3757 * use bio_clone to make a copy of the bio
3759 align_bi = bio_clone(raid_bio, GFP_NOIO);
3760 if (!align_bi)
3761 return 0;
3763 * set bi_end_io to a new function, and set bi_private to the
3764 * original bio.
3766 align_bi->bi_end_io = raid5_align_endio;
3767 align_bi->bi_private = raid_bio;
3769 * compute position
3771 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3773 &dd_idx, NULL);
3775 rcu_read_lock();
3776 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3777 if (rdev && test_bit(In_sync, &rdev->flags)) {
3778 atomic_inc(&rdev->nr_pending);
3779 rcu_read_unlock();
3780 raid_bio->bi_next = (void*)rdev;
3781 align_bi->bi_bdev = rdev->bdev;
3782 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3783 align_bi->bi_sector += rdev->data_offset;
3785 if (!bio_fits_rdev(align_bi)) {
3786 /* too big in some way */
3787 bio_put(align_bi);
3788 rdev_dec_pending(rdev, mddev);
3789 return 0;
3792 spin_lock_irq(&conf->device_lock);
3793 wait_event_lock_irq(conf->wait_for_stripe,
3794 conf->quiesce == 0,
3795 conf->device_lock, /* nothing */);
3796 atomic_inc(&conf->active_aligned_reads);
3797 spin_unlock_irq(&conf->device_lock);
3799 generic_make_request(align_bi);
3800 return 1;
3801 } else {
3802 rcu_read_unlock();
3803 bio_put(align_bi);
3804 return 0;
3808 /* __get_priority_stripe - get the next stripe to process
3810 * Full stripe writes are allowed to pass preread active stripes up until
3811 * the bypass_threshold is exceeded. In general the bypass_count
3812 * increments when the handle_list is handled before the hold_list; however, it
3813 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3814 * stripe with in flight i/o. The bypass_count will be reset when the
3815 * head of the hold_list has changed, i.e. the head was promoted to the
3816 * handle_list.
3818 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3820 struct stripe_head *sh;
3822 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3823 __func__,
3824 list_empty(&conf->handle_list) ? "empty" : "busy",
3825 list_empty(&conf->hold_list) ? "empty" : "busy",
3826 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3828 if (!list_empty(&conf->handle_list)) {
3829 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3831 if (list_empty(&conf->hold_list))
3832 conf->bypass_count = 0;
3833 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3834 if (conf->hold_list.next == conf->last_hold)
3835 conf->bypass_count++;
3836 else {
3837 conf->last_hold = conf->hold_list.next;
3838 conf->bypass_count -= conf->bypass_threshold;
3839 if (conf->bypass_count < 0)
3840 conf->bypass_count = 0;
3843 } else if (!list_empty(&conf->hold_list) &&
3844 ((conf->bypass_threshold &&
3845 conf->bypass_count > conf->bypass_threshold) ||
3846 atomic_read(&conf->pending_full_writes) == 0)) {
3847 sh = list_entry(conf->hold_list.next,
3848 typeof(*sh), lru);
3849 conf->bypass_count -= conf->bypass_threshold;
3850 if (conf->bypass_count < 0)
3851 conf->bypass_count = 0;
3852 } else
3853 return NULL;
3855 list_del_init(&sh->lru);
3856 atomic_inc(&sh->count);
3857 BUG_ON(atomic_read(&sh->count) != 1);
3858 return sh;
3861 static int make_request(struct request_queue *q, struct bio * bi)
3863 mddev_t *mddev = q->queuedata;
3864 raid5_conf_t *conf = mddev->private;
3865 int dd_idx;
3866 sector_t new_sector;
3867 sector_t logical_sector, last_sector;
3868 struct stripe_head *sh;
3869 const int rw = bio_data_dir(bi);
3870 int cpu, remaining;
3872 if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3873 bio_endio(bi, -EOPNOTSUPP);
3874 return 0;
3877 md_write_start(mddev, bi);
3879 cpu = part_stat_lock();
3880 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3881 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3882 bio_sectors(bi));
3883 part_stat_unlock();
3885 if (rw == READ &&
3886 mddev->reshape_position == MaxSector &&
3887 chunk_aligned_read(q,bi))
3888 return 0;
3890 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3891 last_sector = bi->bi_sector + (bi->bi_size>>9);
3892 bi->bi_next = NULL;
3893 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3895 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3896 DEFINE_WAIT(w);
3897 int disks, data_disks;
3898 int previous;
3900 retry:
3901 previous = 0;
3902 disks = conf->raid_disks;
3903 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3904 if (unlikely(conf->reshape_progress != MaxSector)) {
3905 /* spinlock is needed as reshape_progress may be
3906 * 64bit on a 32bit platform, and so it might be
3907 * possible to see a half-updated value
3908 * Ofcourse reshape_progress could change after
3909 * the lock is dropped, so once we get a reference
3910 * to the stripe that we think it is, we will have
3911 * to check again.
3913 spin_lock_irq(&conf->device_lock);
3914 if (mddev->delta_disks < 0
3915 ? logical_sector < conf->reshape_progress
3916 : logical_sector >= conf->reshape_progress) {
3917 disks = conf->previous_raid_disks;
3918 previous = 1;
3919 } else {
3920 if (mddev->delta_disks < 0
3921 ? logical_sector < conf->reshape_safe
3922 : logical_sector >= conf->reshape_safe) {
3923 spin_unlock_irq(&conf->device_lock);
3924 schedule();
3925 goto retry;
3928 spin_unlock_irq(&conf->device_lock);
3930 data_disks = disks - conf->max_degraded;
3932 new_sector = raid5_compute_sector(conf, logical_sector,
3933 previous,
3934 &dd_idx, NULL);
3935 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3936 (unsigned long long)new_sector,
3937 (unsigned long long)logical_sector);
3939 sh = get_active_stripe(conf, new_sector, previous,
3940 (bi->bi_rw&RWA_MASK), 0);
3941 if (sh) {
3942 if (unlikely(previous)) {
3943 /* expansion might have moved on while waiting for a
3944 * stripe, so we must do the range check again.
3945 * Expansion could still move past after this
3946 * test, but as we are holding a reference to
3947 * 'sh', we know that if that happens,
3948 * STRIPE_EXPANDING will get set and the expansion
3949 * won't proceed until we finish with the stripe.
3951 int must_retry = 0;
3952 spin_lock_irq(&conf->device_lock);
3953 if (mddev->delta_disks < 0
3954 ? logical_sector >= conf->reshape_progress
3955 : logical_sector < conf->reshape_progress)
3956 /* mismatch, need to try again */
3957 must_retry = 1;
3958 spin_unlock_irq(&conf->device_lock);
3959 if (must_retry) {
3960 release_stripe(sh);
3961 schedule();
3962 goto retry;
3966 if (bio_data_dir(bi) == WRITE &&
3967 logical_sector >= mddev->suspend_lo &&
3968 logical_sector < mddev->suspend_hi) {
3969 release_stripe(sh);
3970 /* As the suspend_* range is controlled by
3971 * userspace, we want an interruptible
3972 * wait.
3974 flush_signals(current);
3975 prepare_to_wait(&conf->wait_for_overlap,
3976 &w, TASK_INTERRUPTIBLE);
3977 if (logical_sector >= mddev->suspend_lo &&
3978 logical_sector < mddev->suspend_hi)
3979 schedule();
3980 goto retry;
3983 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3984 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3985 /* Stripe is busy expanding or
3986 * add failed due to overlap. Flush everything
3987 * and wait a while
3989 raid5_unplug_device(mddev->queue);
3990 release_stripe(sh);
3991 schedule();
3992 goto retry;
3994 finish_wait(&conf->wait_for_overlap, &w);
3995 set_bit(STRIPE_HANDLE, &sh->state);
3996 clear_bit(STRIPE_DELAYED, &sh->state);
3997 release_stripe(sh);
3998 } else {
3999 /* cannot get stripe for read-ahead, just give-up */
4000 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4001 finish_wait(&conf->wait_for_overlap, &w);
4002 break;
4006 spin_lock_irq(&conf->device_lock);
4007 remaining = raid5_dec_bi_phys_segments(bi);
4008 spin_unlock_irq(&conf->device_lock);
4009 if (remaining == 0) {
4011 if ( rw == WRITE )
4012 md_write_end(mddev);
4014 bio_endio(bi, 0);
4016 return 0;
4019 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4021 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4023 /* reshaping is quite different to recovery/resync so it is
4024 * handled quite separately ... here.
4026 * On each call to sync_request, we gather one chunk worth of
4027 * destination stripes and flag them as expanding.
4028 * Then we find all the source stripes and request reads.
4029 * As the reads complete, handle_stripe will copy the data
4030 * into the destination stripe and release that stripe.
4032 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4033 struct stripe_head *sh;
4034 sector_t first_sector, last_sector;
4035 int raid_disks = conf->previous_raid_disks;
4036 int data_disks = raid_disks - conf->max_degraded;
4037 int new_data_disks = conf->raid_disks - conf->max_degraded;
4038 int i;
4039 int dd_idx;
4040 sector_t writepos, readpos, safepos;
4041 sector_t stripe_addr;
4042 int reshape_sectors;
4043 struct list_head stripes;
4045 if (sector_nr == 0) {
4046 /* If restarting in the middle, skip the initial sectors */
4047 if (mddev->delta_disks < 0 &&
4048 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4049 sector_nr = raid5_size(mddev, 0, 0)
4050 - conf->reshape_progress;
4051 } else if (mddev->delta_disks >= 0 &&
4052 conf->reshape_progress > 0)
4053 sector_nr = conf->reshape_progress;
4054 sector_div(sector_nr, new_data_disks);
4055 if (sector_nr) {
4056 mddev->curr_resync_completed = sector_nr;
4057 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4058 *skipped = 1;
4059 return sector_nr;
4063 /* We need to process a full chunk at a time.
4064 * If old and new chunk sizes differ, we need to process the
4065 * largest of these
4067 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4068 reshape_sectors = mddev->new_chunk_sectors;
4069 else
4070 reshape_sectors = mddev->chunk_sectors;
4072 /* we update the metadata when there is more than 3Meg
4073 * in the block range (that is rather arbitrary, should
4074 * probably be time based) or when the data about to be
4075 * copied would over-write the source of the data at
4076 * the front of the range.
4077 * i.e. one new_stripe along from reshape_progress new_maps
4078 * to after where reshape_safe old_maps to
4080 writepos = conf->reshape_progress;
4081 sector_div(writepos, new_data_disks);
4082 readpos = conf->reshape_progress;
4083 sector_div(readpos, data_disks);
4084 safepos = conf->reshape_safe;
4085 sector_div(safepos, data_disks);
4086 if (mddev->delta_disks < 0) {
4087 writepos -= min_t(sector_t, reshape_sectors, writepos);
4088 readpos += reshape_sectors;
4089 safepos += reshape_sectors;
4090 } else {
4091 writepos += reshape_sectors;
4092 readpos -= min_t(sector_t, reshape_sectors, readpos);
4093 safepos -= min_t(sector_t, reshape_sectors, safepos);
4096 /* 'writepos' is the most advanced device address we might write.
4097 * 'readpos' is the least advanced device address we might read.
4098 * 'safepos' is the least address recorded in the metadata as having
4099 * been reshaped.
4100 * If 'readpos' is behind 'writepos', then there is no way that we can
4101 * ensure safety in the face of a crash - that must be done by userspace
4102 * making a backup of the data. So in that case there is no particular
4103 * rush to update metadata.
4104 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4105 * update the metadata to advance 'safepos' to match 'readpos' so that
4106 * we can be safe in the event of a crash.
4107 * So we insist on updating metadata if safepos is behind writepos and
4108 * readpos is beyond writepos.
4109 * In any case, update the metadata every 10 seconds.
4110 * Maybe that number should be configurable, but I'm not sure it is
4111 * worth it.... maybe it could be a multiple of safemode_delay???
4113 if ((mddev->delta_disks < 0
4114 ? (safepos > writepos && readpos < writepos)
4115 : (safepos < writepos && readpos > writepos)) ||
4116 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4117 /* Cannot proceed until we've updated the superblock... */
4118 wait_event(conf->wait_for_overlap,
4119 atomic_read(&conf->reshape_stripes)==0);
4120 mddev->reshape_position = conf->reshape_progress;
4121 mddev->curr_resync_completed = mddev->curr_resync;
4122 conf->reshape_checkpoint = jiffies;
4123 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4124 md_wakeup_thread(mddev->thread);
4125 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4126 kthread_should_stop());
4127 spin_lock_irq(&conf->device_lock);
4128 conf->reshape_safe = mddev->reshape_position;
4129 spin_unlock_irq(&conf->device_lock);
4130 wake_up(&conf->wait_for_overlap);
4131 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4134 if (mddev->delta_disks < 0) {
4135 BUG_ON(conf->reshape_progress == 0);
4136 stripe_addr = writepos;
4137 BUG_ON((mddev->dev_sectors &
4138 ~((sector_t)reshape_sectors - 1))
4139 - reshape_sectors - stripe_addr
4140 != sector_nr);
4141 } else {
4142 BUG_ON(writepos != sector_nr + reshape_sectors);
4143 stripe_addr = sector_nr;
4145 INIT_LIST_HEAD(&stripes);
4146 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4147 int j;
4148 int skipped_disk = 0;
4149 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4150 set_bit(STRIPE_EXPANDING, &sh->state);
4151 atomic_inc(&conf->reshape_stripes);
4152 /* If any of this stripe is beyond the end of the old
4153 * array, then we need to zero those blocks
4155 for (j=sh->disks; j--;) {
4156 sector_t s;
4157 if (j == sh->pd_idx)
4158 continue;
4159 if (conf->level == 6 &&
4160 j == sh->qd_idx)
4161 continue;
4162 s = compute_blocknr(sh, j, 0);
4163 if (s < raid5_size(mddev, 0, 0)) {
4164 skipped_disk = 1;
4165 continue;
4167 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4168 set_bit(R5_Expanded, &sh->dev[j].flags);
4169 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4171 if (!skipped_disk) {
4172 set_bit(STRIPE_EXPAND_READY, &sh->state);
4173 set_bit(STRIPE_HANDLE, &sh->state);
4175 list_add(&sh->lru, &stripes);
4177 spin_lock_irq(&conf->device_lock);
4178 if (mddev->delta_disks < 0)
4179 conf->reshape_progress -= reshape_sectors * new_data_disks;
4180 else
4181 conf->reshape_progress += reshape_sectors * new_data_disks;
4182 spin_unlock_irq(&conf->device_lock);
4183 /* Ok, those stripe are ready. We can start scheduling
4184 * reads on the source stripes.
4185 * The source stripes are determined by mapping the first and last
4186 * block on the destination stripes.
4188 first_sector =
4189 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4190 1, &dd_idx, NULL);
4191 last_sector =
4192 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4193 * new_data_disks - 1),
4194 1, &dd_idx, NULL);
4195 if (last_sector >= mddev->dev_sectors)
4196 last_sector = mddev->dev_sectors - 1;
4197 while (first_sector <= last_sector) {
4198 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4199 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4200 set_bit(STRIPE_HANDLE, &sh->state);
4201 release_stripe(sh);
4202 first_sector += STRIPE_SECTORS;
4204 /* Now that the sources are clearly marked, we can release
4205 * the destination stripes
4207 while (!list_empty(&stripes)) {
4208 sh = list_entry(stripes.next, struct stripe_head, lru);
4209 list_del_init(&sh->lru);
4210 release_stripe(sh);
4212 /* If this takes us to the resync_max point where we have to pause,
4213 * then we need to write out the superblock.
4215 sector_nr += reshape_sectors;
4216 if ((sector_nr - mddev->curr_resync_completed) * 2
4217 >= mddev->resync_max - mddev->curr_resync_completed) {
4218 /* Cannot proceed until we've updated the superblock... */
4219 wait_event(conf->wait_for_overlap,
4220 atomic_read(&conf->reshape_stripes) == 0);
4221 mddev->reshape_position = conf->reshape_progress;
4222 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4223 conf->reshape_checkpoint = jiffies;
4224 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4225 md_wakeup_thread(mddev->thread);
4226 wait_event(mddev->sb_wait,
4227 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4228 || kthread_should_stop());
4229 spin_lock_irq(&conf->device_lock);
4230 conf->reshape_safe = mddev->reshape_position;
4231 spin_unlock_irq(&conf->device_lock);
4232 wake_up(&conf->wait_for_overlap);
4233 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4235 return reshape_sectors;
4238 /* FIXME go_faster isn't used */
4239 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4241 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4242 struct stripe_head *sh;
4243 sector_t max_sector = mddev->dev_sectors;
4244 int sync_blocks;
4245 int still_degraded = 0;
4246 int i;
4248 if (sector_nr >= max_sector) {
4249 /* just being told to finish up .. nothing much to do */
4250 unplug_slaves(mddev);
4252 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4253 end_reshape(conf);
4254 return 0;
4257 if (mddev->curr_resync < max_sector) /* aborted */
4258 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4259 &sync_blocks, 1);
4260 else /* completed sync */
4261 conf->fullsync = 0;
4262 bitmap_close_sync(mddev->bitmap);
4264 return 0;
4267 /* Allow raid5_quiesce to complete */
4268 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4270 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4271 return reshape_request(mddev, sector_nr, skipped);
4273 /* No need to check resync_max as we never do more than one
4274 * stripe, and as resync_max will always be on a chunk boundary,
4275 * if the check in md_do_sync didn't fire, there is no chance
4276 * of overstepping resync_max here
4279 /* if there is too many failed drives and we are trying
4280 * to resync, then assert that we are finished, because there is
4281 * nothing we can do.
4283 if (mddev->degraded >= conf->max_degraded &&
4284 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4285 sector_t rv = mddev->dev_sectors - sector_nr;
4286 *skipped = 1;
4287 return rv;
4289 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4290 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4291 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4292 /* we can skip this block, and probably more */
4293 sync_blocks /= STRIPE_SECTORS;
4294 *skipped = 1;
4295 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4299 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4301 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4302 if (sh == NULL) {
4303 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4304 /* make sure we don't swamp the stripe cache if someone else
4305 * is trying to get access
4307 schedule_timeout_uninterruptible(1);
4309 /* Need to check if array will still be degraded after recovery/resync
4310 * We don't need to check the 'failed' flag as when that gets set,
4311 * recovery aborts.
4313 for (i = 0; i < conf->raid_disks; i++)
4314 if (conf->disks[i].rdev == NULL)
4315 still_degraded = 1;
4317 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4319 spin_lock(&sh->lock);
4320 set_bit(STRIPE_SYNCING, &sh->state);
4321 clear_bit(STRIPE_INSYNC, &sh->state);
4322 spin_unlock(&sh->lock);
4324 handle_stripe(sh);
4325 release_stripe(sh);
4327 return STRIPE_SECTORS;
4330 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4332 /* We may not be able to submit a whole bio at once as there
4333 * may not be enough stripe_heads available.
4334 * We cannot pre-allocate enough stripe_heads as we may need
4335 * more than exist in the cache (if we allow ever large chunks).
4336 * So we do one stripe head at a time and record in
4337 * ->bi_hw_segments how many have been done.
4339 * We *know* that this entire raid_bio is in one chunk, so
4340 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4342 struct stripe_head *sh;
4343 int dd_idx;
4344 sector_t sector, logical_sector, last_sector;
4345 int scnt = 0;
4346 int remaining;
4347 int handled = 0;
4349 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4350 sector = raid5_compute_sector(conf, logical_sector,
4351 0, &dd_idx, NULL);
4352 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4354 for (; logical_sector < last_sector;
4355 logical_sector += STRIPE_SECTORS,
4356 sector += STRIPE_SECTORS,
4357 scnt++) {
4359 if (scnt < raid5_bi_hw_segments(raid_bio))
4360 /* already done this stripe */
4361 continue;
4363 sh = get_active_stripe(conf, sector, 0, 1, 0);
4365 if (!sh) {
4366 /* failed to get a stripe - must wait */
4367 raid5_set_bi_hw_segments(raid_bio, scnt);
4368 conf->retry_read_aligned = raid_bio;
4369 return handled;
4372 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4373 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4374 release_stripe(sh);
4375 raid5_set_bi_hw_segments(raid_bio, scnt);
4376 conf->retry_read_aligned = raid_bio;
4377 return handled;
4380 handle_stripe(sh);
4381 release_stripe(sh);
4382 handled++;
4384 spin_lock_irq(&conf->device_lock);
4385 remaining = raid5_dec_bi_phys_segments(raid_bio);
4386 spin_unlock_irq(&conf->device_lock);
4387 if (remaining == 0)
4388 bio_endio(raid_bio, 0);
4389 if (atomic_dec_and_test(&conf->active_aligned_reads))
4390 wake_up(&conf->wait_for_stripe);
4391 return handled;
4396 * This is our raid5 kernel thread.
4398 * We scan the hash table for stripes which can be handled now.
4399 * During the scan, completed stripes are saved for us by the interrupt
4400 * handler, so that they will not have to wait for our next wakeup.
4402 static void raid5d(mddev_t *mddev)
4404 struct stripe_head *sh;
4405 raid5_conf_t *conf = mddev->private;
4406 int handled;
4408 pr_debug("+++ raid5d active\n");
4410 md_check_recovery(mddev);
4412 handled = 0;
4413 spin_lock_irq(&conf->device_lock);
4414 while (1) {
4415 struct bio *bio;
4417 if (conf->seq_flush != conf->seq_write) {
4418 int seq = conf->seq_flush;
4419 spin_unlock_irq(&conf->device_lock);
4420 bitmap_unplug(mddev->bitmap);
4421 spin_lock_irq(&conf->device_lock);
4422 conf->seq_write = seq;
4423 activate_bit_delay(conf);
4426 while ((bio = remove_bio_from_retry(conf))) {
4427 int ok;
4428 spin_unlock_irq(&conf->device_lock);
4429 ok = retry_aligned_read(conf, bio);
4430 spin_lock_irq(&conf->device_lock);
4431 if (!ok)
4432 break;
4433 handled++;
4436 sh = __get_priority_stripe(conf);
4438 if (!sh)
4439 break;
4440 spin_unlock_irq(&conf->device_lock);
4442 handled++;
4443 handle_stripe(sh);
4444 release_stripe(sh);
4445 cond_resched();
4447 spin_lock_irq(&conf->device_lock);
4449 pr_debug("%d stripes handled\n", handled);
4451 spin_unlock_irq(&conf->device_lock);
4453 async_tx_issue_pending_all();
4454 unplug_slaves(mddev);
4456 pr_debug("--- raid5d inactive\n");
4459 static ssize_t
4460 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4462 raid5_conf_t *conf = mddev->private;
4463 if (conf)
4464 return sprintf(page, "%d\n", conf->max_nr_stripes);
4465 else
4466 return 0;
4469 static ssize_t
4470 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4472 raid5_conf_t *conf = mddev->private;
4473 unsigned long new;
4474 int err;
4476 if (len >= PAGE_SIZE)
4477 return -EINVAL;
4478 if (!conf)
4479 return -ENODEV;
4481 if (strict_strtoul(page, 10, &new))
4482 return -EINVAL;
4483 if (new <= 16 || new > 32768)
4484 return -EINVAL;
4485 while (new < conf->max_nr_stripes) {
4486 if (drop_one_stripe(conf))
4487 conf->max_nr_stripes--;
4488 else
4489 break;
4491 err = md_allow_write(mddev);
4492 if (err)
4493 return err;
4494 while (new > conf->max_nr_stripes) {
4495 if (grow_one_stripe(conf))
4496 conf->max_nr_stripes++;
4497 else break;
4499 return len;
4502 static struct md_sysfs_entry
4503 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4504 raid5_show_stripe_cache_size,
4505 raid5_store_stripe_cache_size);
4507 static ssize_t
4508 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4510 raid5_conf_t *conf = mddev->private;
4511 if (conf)
4512 return sprintf(page, "%d\n", conf->bypass_threshold);
4513 else
4514 return 0;
4517 static ssize_t
4518 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4520 raid5_conf_t *conf = mddev->private;
4521 unsigned long new;
4522 if (len >= PAGE_SIZE)
4523 return -EINVAL;
4524 if (!conf)
4525 return -ENODEV;
4527 if (strict_strtoul(page, 10, &new))
4528 return -EINVAL;
4529 if (new > conf->max_nr_stripes)
4530 return -EINVAL;
4531 conf->bypass_threshold = new;
4532 return len;
4535 static struct md_sysfs_entry
4536 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4537 S_IRUGO | S_IWUSR,
4538 raid5_show_preread_threshold,
4539 raid5_store_preread_threshold);
4541 static ssize_t
4542 stripe_cache_active_show(mddev_t *mddev, char *page)
4544 raid5_conf_t *conf = mddev->private;
4545 if (conf)
4546 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4547 else
4548 return 0;
4551 static struct md_sysfs_entry
4552 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4554 static struct attribute *raid5_attrs[] = {
4555 &raid5_stripecache_size.attr,
4556 &raid5_stripecache_active.attr,
4557 &raid5_preread_bypass_threshold.attr,
4558 NULL,
4560 static struct attribute_group raid5_attrs_group = {
4561 .name = NULL,
4562 .attrs = raid5_attrs,
4565 static sector_t
4566 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4568 raid5_conf_t *conf = mddev->private;
4570 if (!sectors)
4571 sectors = mddev->dev_sectors;
4572 if (!raid_disks)
4573 /* size is defined by the smallest of previous and new size */
4574 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4576 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4577 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4578 return sectors * (raid_disks - conf->max_degraded);
4581 static void raid5_free_percpu(raid5_conf_t *conf)
4583 struct raid5_percpu *percpu;
4584 unsigned long cpu;
4586 if (!conf->percpu)
4587 return;
4589 get_online_cpus();
4590 for_each_possible_cpu(cpu) {
4591 percpu = per_cpu_ptr(conf->percpu, cpu);
4592 safe_put_page(percpu->spare_page);
4593 kfree(percpu->scribble);
4595 #ifdef CONFIG_HOTPLUG_CPU
4596 unregister_cpu_notifier(&conf->cpu_notify);
4597 #endif
4598 put_online_cpus();
4600 free_percpu(conf->percpu);
4603 static void free_conf(raid5_conf_t *conf)
4605 shrink_stripes(conf);
4606 raid5_free_percpu(conf);
4607 kfree(conf->disks);
4608 kfree(conf->stripe_hashtbl);
4609 kfree(conf);
4612 #ifdef CONFIG_HOTPLUG_CPU
4613 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4614 void *hcpu)
4616 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4617 long cpu = (long)hcpu;
4618 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4620 switch (action) {
4621 case CPU_UP_PREPARE:
4622 case CPU_UP_PREPARE_FROZEN:
4623 if (conf->level == 6 && !percpu->spare_page)
4624 percpu->spare_page = alloc_page(GFP_KERNEL);
4625 if (!percpu->scribble)
4626 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4628 if (!percpu->scribble ||
4629 (conf->level == 6 && !percpu->spare_page)) {
4630 safe_put_page(percpu->spare_page);
4631 kfree(percpu->scribble);
4632 pr_err("%s: failed memory allocation for cpu%ld\n",
4633 __func__, cpu);
4634 return NOTIFY_BAD;
4636 break;
4637 case CPU_DEAD:
4638 case CPU_DEAD_FROZEN:
4639 safe_put_page(percpu->spare_page);
4640 kfree(percpu->scribble);
4641 percpu->spare_page = NULL;
4642 percpu->scribble = NULL;
4643 break;
4644 default:
4645 break;
4647 return NOTIFY_OK;
4649 #endif
4651 static int raid5_alloc_percpu(raid5_conf_t *conf)
4653 unsigned long cpu;
4654 struct page *spare_page;
4655 struct raid5_percpu *allcpus;
4656 void *scribble;
4657 int err;
4659 allcpus = alloc_percpu(struct raid5_percpu);
4660 if (!allcpus)
4661 return -ENOMEM;
4662 conf->percpu = allcpus;
4664 get_online_cpus();
4665 err = 0;
4666 for_each_present_cpu(cpu) {
4667 if (conf->level == 6) {
4668 spare_page = alloc_page(GFP_KERNEL);
4669 if (!spare_page) {
4670 err = -ENOMEM;
4671 break;
4673 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4675 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4676 if (!scribble) {
4677 err = -ENOMEM;
4678 break;
4680 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4682 #ifdef CONFIG_HOTPLUG_CPU
4683 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4684 conf->cpu_notify.priority = 0;
4685 if (err == 0)
4686 err = register_cpu_notifier(&conf->cpu_notify);
4687 #endif
4688 put_online_cpus();
4690 return err;
4693 static raid5_conf_t *setup_conf(mddev_t *mddev)
4695 raid5_conf_t *conf;
4696 int raid_disk, memory, max_disks;
4697 mdk_rdev_t *rdev;
4698 struct disk_info *disk;
4700 if (mddev->new_level != 5
4701 && mddev->new_level != 4
4702 && mddev->new_level != 6) {
4703 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4704 mdname(mddev), mddev->new_level);
4705 return ERR_PTR(-EIO);
4707 if ((mddev->new_level == 5
4708 && !algorithm_valid_raid5(mddev->new_layout)) ||
4709 (mddev->new_level == 6
4710 && !algorithm_valid_raid6(mddev->new_layout))) {
4711 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4712 mdname(mddev), mddev->new_layout);
4713 return ERR_PTR(-EIO);
4715 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4716 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4717 mdname(mddev), mddev->raid_disks);
4718 return ERR_PTR(-EINVAL);
4721 if (!mddev->new_chunk_sectors ||
4722 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4723 !is_power_of_2(mddev->new_chunk_sectors)) {
4724 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4725 mddev->new_chunk_sectors << 9, mdname(mddev));
4726 return ERR_PTR(-EINVAL);
4729 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4730 if (conf == NULL)
4731 goto abort;
4732 spin_lock_init(&conf->device_lock);
4733 init_waitqueue_head(&conf->wait_for_stripe);
4734 init_waitqueue_head(&conf->wait_for_overlap);
4735 INIT_LIST_HEAD(&conf->handle_list);
4736 INIT_LIST_HEAD(&conf->hold_list);
4737 INIT_LIST_HEAD(&conf->delayed_list);
4738 INIT_LIST_HEAD(&conf->bitmap_list);
4739 INIT_LIST_HEAD(&conf->inactive_list);
4740 atomic_set(&conf->active_stripes, 0);
4741 atomic_set(&conf->preread_active_stripes, 0);
4742 atomic_set(&conf->active_aligned_reads, 0);
4743 conf->bypass_threshold = BYPASS_THRESHOLD;
4745 conf->raid_disks = mddev->raid_disks;
4746 if (mddev->reshape_position == MaxSector)
4747 conf->previous_raid_disks = mddev->raid_disks;
4748 else
4749 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4750 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4751 conf->scribble_len = scribble_len(max_disks);
4753 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4754 GFP_KERNEL);
4755 if (!conf->disks)
4756 goto abort;
4758 conf->mddev = mddev;
4760 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4761 goto abort;
4763 conf->level = mddev->new_level;
4764 if (raid5_alloc_percpu(conf) != 0)
4765 goto abort;
4767 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4769 list_for_each_entry(rdev, &mddev->disks, same_set) {
4770 raid_disk = rdev->raid_disk;
4771 if (raid_disk >= max_disks
4772 || raid_disk < 0)
4773 continue;
4774 disk = conf->disks + raid_disk;
4776 disk->rdev = rdev;
4778 if (test_bit(In_sync, &rdev->flags)) {
4779 char b[BDEVNAME_SIZE];
4780 printk(KERN_INFO "raid5: device %s operational as raid"
4781 " disk %d\n", bdevname(rdev->bdev,b),
4782 raid_disk);
4783 } else
4784 /* Cannot rely on bitmap to complete recovery */
4785 conf->fullsync = 1;
4788 conf->chunk_sectors = mddev->new_chunk_sectors;
4789 conf->level = mddev->new_level;
4790 if (conf->level == 6)
4791 conf->max_degraded = 2;
4792 else
4793 conf->max_degraded = 1;
4794 conf->algorithm = mddev->new_layout;
4795 conf->max_nr_stripes = NR_STRIPES;
4796 conf->reshape_progress = mddev->reshape_position;
4797 if (conf->reshape_progress != MaxSector) {
4798 conf->prev_chunk_sectors = mddev->chunk_sectors;
4799 conf->prev_algo = mddev->layout;
4802 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4803 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4804 if (grow_stripes(conf, conf->max_nr_stripes)) {
4805 printk(KERN_ERR
4806 "raid5: couldn't allocate %dkB for buffers\n", memory);
4807 goto abort;
4808 } else
4809 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4810 memory, mdname(mddev));
4812 conf->thread = md_register_thread(raid5d, mddev, NULL);
4813 if (!conf->thread) {
4814 printk(KERN_ERR
4815 "raid5: couldn't allocate thread for %s\n",
4816 mdname(mddev));
4817 goto abort;
4820 return conf;
4822 abort:
4823 if (conf) {
4824 free_conf(conf);
4825 return ERR_PTR(-EIO);
4826 } else
4827 return ERR_PTR(-ENOMEM);
4831 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4833 switch (algo) {
4834 case ALGORITHM_PARITY_0:
4835 if (raid_disk < max_degraded)
4836 return 1;
4837 break;
4838 case ALGORITHM_PARITY_N:
4839 if (raid_disk >= raid_disks - max_degraded)
4840 return 1;
4841 break;
4842 case ALGORITHM_PARITY_0_6:
4843 if (raid_disk == 0 ||
4844 raid_disk == raid_disks - 1)
4845 return 1;
4846 break;
4847 case ALGORITHM_LEFT_ASYMMETRIC_6:
4848 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4849 case ALGORITHM_LEFT_SYMMETRIC_6:
4850 case ALGORITHM_RIGHT_SYMMETRIC_6:
4851 if (raid_disk == raid_disks - 1)
4852 return 1;
4854 return 0;
4857 static int run(mddev_t *mddev)
4859 raid5_conf_t *conf;
4860 int working_disks = 0, chunk_size;
4861 int dirty_parity_disks = 0;
4862 mdk_rdev_t *rdev;
4863 sector_t reshape_offset = 0;
4865 if (mddev->recovery_cp != MaxSector)
4866 printk(KERN_NOTICE "raid5: %s is not clean"
4867 " -- starting background reconstruction\n",
4868 mdname(mddev));
4869 if (mddev->reshape_position != MaxSector) {
4870 /* Check that we can continue the reshape.
4871 * Currently only disks can change, it must
4872 * increase, and we must be past the point where
4873 * a stripe over-writes itself
4875 sector_t here_new, here_old;
4876 int old_disks;
4877 int max_degraded = (mddev->level == 6 ? 2 : 1);
4879 if (mddev->new_level != mddev->level) {
4880 printk(KERN_ERR "raid5: %s: unsupported reshape "
4881 "required - aborting.\n",
4882 mdname(mddev));
4883 return -EINVAL;
4885 old_disks = mddev->raid_disks - mddev->delta_disks;
4886 /* reshape_position must be on a new-stripe boundary, and one
4887 * further up in new geometry must map after here in old
4888 * geometry.
4890 here_new = mddev->reshape_position;
4891 if (sector_div(here_new, mddev->new_chunk_sectors *
4892 (mddev->raid_disks - max_degraded))) {
4893 printk(KERN_ERR "raid5: reshape_position not "
4894 "on a stripe boundary\n");
4895 return -EINVAL;
4897 reshape_offset = here_new * mddev->new_chunk_sectors;
4898 /* here_new is the stripe we will write to */
4899 here_old = mddev->reshape_position;
4900 sector_div(here_old, mddev->chunk_sectors *
4901 (old_disks-max_degraded));
4902 /* here_old is the first stripe that we might need to read
4903 * from */
4904 if (mddev->delta_disks == 0) {
4905 /* We cannot be sure it is safe to start an in-place
4906 * reshape. It is only safe if user-space if monitoring
4907 * and taking constant backups.
4908 * mdadm always starts a situation like this in
4909 * readonly mode so it can take control before
4910 * allowing any writes. So just check for that.
4912 if ((here_new * mddev->new_chunk_sectors !=
4913 here_old * mddev->chunk_sectors) ||
4914 mddev->ro == 0) {
4915 printk(KERN_ERR "raid5: in-place reshape must be started"
4916 " in read-only mode - aborting\n");
4917 return -EINVAL;
4919 } else if (mddev->delta_disks < 0
4920 ? (here_new * mddev->new_chunk_sectors <=
4921 here_old * mddev->chunk_sectors)
4922 : (here_new * mddev->new_chunk_sectors >=
4923 here_old * mddev->chunk_sectors)) {
4924 /* Reading from the same stripe as writing to - bad */
4925 printk(KERN_ERR "raid5: reshape_position too early for "
4926 "auto-recovery - aborting.\n");
4927 return -EINVAL;
4929 printk(KERN_INFO "raid5: reshape will continue\n");
4930 /* OK, we should be able to continue; */
4931 } else {
4932 BUG_ON(mddev->level != mddev->new_level);
4933 BUG_ON(mddev->layout != mddev->new_layout);
4934 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4935 BUG_ON(mddev->delta_disks != 0);
4938 if (mddev->private == NULL)
4939 conf = setup_conf(mddev);
4940 else
4941 conf = mddev->private;
4943 if (IS_ERR(conf))
4944 return PTR_ERR(conf);
4946 mddev->thread = conf->thread;
4947 conf->thread = NULL;
4948 mddev->private = conf;
4951 * 0 for a fully functional array, 1 or 2 for a degraded array.
4953 list_for_each_entry(rdev, &mddev->disks, same_set) {
4954 if (rdev->raid_disk < 0)
4955 continue;
4956 if (test_bit(In_sync, &rdev->flags))
4957 working_disks++;
4958 /* This disc is not fully in-sync. However if it
4959 * just stored parity (beyond the recovery_offset),
4960 * when we don't need to be concerned about the
4961 * array being dirty.
4962 * When reshape goes 'backwards', we never have
4963 * partially completed devices, so we only need
4964 * to worry about reshape going forwards.
4966 /* Hack because v0.91 doesn't store recovery_offset properly. */
4967 if (mddev->major_version == 0 &&
4968 mddev->minor_version > 90)
4969 rdev->recovery_offset = reshape_offset;
4971 printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
4972 rdev->raid_disk, working_disks, conf->prev_algo,
4973 conf->previous_raid_disks, conf->max_degraded,
4974 conf->algorithm, conf->raid_disks,
4975 only_parity(rdev->raid_disk,
4976 conf->prev_algo,
4977 conf->previous_raid_disks,
4978 conf->max_degraded),
4979 only_parity(rdev->raid_disk,
4980 conf->algorithm,
4981 conf->raid_disks,
4982 conf->max_degraded));
4983 if (rdev->recovery_offset < reshape_offset) {
4984 /* We need to check old and new layout */
4985 if (!only_parity(rdev->raid_disk,
4986 conf->algorithm,
4987 conf->raid_disks,
4988 conf->max_degraded))
4989 continue;
4991 if (!only_parity(rdev->raid_disk,
4992 conf->prev_algo,
4993 conf->previous_raid_disks,
4994 conf->max_degraded))
4995 continue;
4996 dirty_parity_disks++;
4999 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5000 - working_disks);
5002 if (mddev->degraded > conf->max_degraded) {
5003 printk(KERN_ERR "raid5: not enough operational devices for %s"
5004 " (%d/%d failed)\n",
5005 mdname(mddev), mddev->degraded, conf->raid_disks);
5006 goto abort;
5009 /* device size must be a multiple of chunk size */
5010 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5011 mddev->resync_max_sectors = mddev->dev_sectors;
5013 if (mddev->degraded > dirty_parity_disks &&
5014 mddev->recovery_cp != MaxSector) {
5015 if (mddev->ok_start_degraded)
5016 printk(KERN_WARNING
5017 "raid5: starting dirty degraded array: %s"
5018 "- data corruption possible.\n",
5019 mdname(mddev));
5020 else {
5021 printk(KERN_ERR
5022 "raid5: cannot start dirty degraded array for %s\n",
5023 mdname(mddev));
5024 goto abort;
5028 if (mddev->degraded == 0)
5029 printk("raid5: raid level %d set %s active with %d out of %d"
5030 " devices, algorithm %d\n", conf->level, mdname(mddev),
5031 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5032 mddev->new_layout);
5033 else
5034 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
5035 " out of %d devices, algorithm %d\n", conf->level,
5036 mdname(mddev), mddev->raid_disks - mddev->degraded,
5037 mddev->raid_disks, mddev->new_layout);
5039 print_raid5_conf(conf);
5041 if (conf->reshape_progress != MaxSector) {
5042 printk("...ok start reshape thread\n");
5043 conf->reshape_safe = conf->reshape_progress;
5044 atomic_set(&conf->reshape_stripes, 0);
5045 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5046 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5047 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5048 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5049 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5050 "reshape");
5053 /* read-ahead size must cover two whole stripes, which is
5054 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5057 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5058 int stripe = data_disks *
5059 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5060 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5061 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5064 /* Ok, everything is just fine now */
5065 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5066 printk(KERN_WARNING
5067 "raid5: failed to create sysfs attributes for %s\n",
5068 mdname(mddev));
5070 mddev->queue->queue_lock = &conf->device_lock;
5072 mddev->queue->unplug_fn = raid5_unplug_device;
5073 mddev->queue->backing_dev_info.congested_data = mddev;
5074 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5076 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5078 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5079 chunk_size = mddev->chunk_sectors << 9;
5080 blk_queue_io_min(mddev->queue, chunk_size);
5081 blk_queue_io_opt(mddev->queue, chunk_size *
5082 (conf->raid_disks - conf->max_degraded));
5084 list_for_each_entry(rdev, &mddev->disks, same_set)
5085 disk_stack_limits(mddev->gendisk, rdev->bdev,
5086 rdev->data_offset << 9);
5088 return 0;
5089 abort:
5090 md_unregister_thread(mddev->thread);
5091 mddev->thread = NULL;
5092 if (conf) {
5093 print_raid5_conf(conf);
5094 free_conf(conf);
5096 mddev->private = NULL;
5097 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5098 return -EIO;
5103 static int stop(mddev_t *mddev)
5105 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5107 md_unregister_thread(mddev->thread);
5108 mddev->thread = NULL;
5109 mddev->queue->backing_dev_info.congested_fn = NULL;
5110 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5111 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5112 free_conf(conf);
5113 mddev->private = NULL;
5114 return 0;
5117 #ifdef DEBUG
5118 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5120 int i;
5122 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5123 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5124 seq_printf(seq, "sh %llu, count %d.\n",
5125 (unsigned long long)sh->sector, atomic_read(&sh->count));
5126 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5127 for (i = 0; i < sh->disks; i++) {
5128 seq_printf(seq, "(cache%d: %p %ld) ",
5129 i, sh->dev[i].page, sh->dev[i].flags);
5131 seq_printf(seq, "\n");
5134 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5136 struct stripe_head *sh;
5137 struct hlist_node *hn;
5138 int i;
5140 spin_lock_irq(&conf->device_lock);
5141 for (i = 0; i < NR_HASH; i++) {
5142 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5143 if (sh->raid_conf != conf)
5144 continue;
5145 print_sh(seq, sh);
5148 spin_unlock_irq(&conf->device_lock);
5150 #endif
5152 static void status(struct seq_file *seq, mddev_t *mddev)
5154 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5155 int i;
5157 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5158 mddev->chunk_sectors / 2, mddev->layout);
5159 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5160 for (i = 0; i < conf->raid_disks; i++)
5161 seq_printf (seq, "%s",
5162 conf->disks[i].rdev &&
5163 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5164 seq_printf (seq, "]");
5165 #ifdef DEBUG
5166 seq_printf (seq, "\n");
5167 printall(seq, conf);
5168 #endif
5171 static void print_raid5_conf (raid5_conf_t *conf)
5173 int i;
5174 struct disk_info *tmp;
5176 printk("RAID5 conf printout:\n");
5177 if (!conf) {
5178 printk("(conf==NULL)\n");
5179 return;
5181 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5182 conf->raid_disks - conf->mddev->degraded);
5184 for (i = 0; i < conf->raid_disks; i++) {
5185 char b[BDEVNAME_SIZE];
5186 tmp = conf->disks + i;
5187 if (tmp->rdev)
5188 printk(" disk %d, o:%d, dev:%s\n",
5189 i, !test_bit(Faulty, &tmp->rdev->flags),
5190 bdevname(tmp->rdev->bdev,b));
5194 static int raid5_spare_active(mddev_t *mddev)
5196 int i;
5197 raid5_conf_t *conf = mddev->private;
5198 struct disk_info *tmp;
5200 for (i = 0; i < conf->raid_disks; i++) {
5201 tmp = conf->disks + i;
5202 if (tmp->rdev
5203 && !test_bit(Faulty, &tmp->rdev->flags)
5204 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5205 unsigned long flags;
5206 spin_lock_irqsave(&conf->device_lock, flags);
5207 mddev->degraded--;
5208 spin_unlock_irqrestore(&conf->device_lock, flags);
5211 print_raid5_conf(conf);
5212 return 0;
5215 static int raid5_remove_disk(mddev_t *mddev, int number)
5217 raid5_conf_t *conf = mddev->private;
5218 int err = 0;
5219 mdk_rdev_t *rdev;
5220 struct disk_info *p = conf->disks + number;
5222 print_raid5_conf(conf);
5223 rdev = p->rdev;
5224 if (rdev) {
5225 if (number >= conf->raid_disks &&
5226 conf->reshape_progress == MaxSector)
5227 clear_bit(In_sync, &rdev->flags);
5229 if (test_bit(In_sync, &rdev->flags) ||
5230 atomic_read(&rdev->nr_pending)) {
5231 err = -EBUSY;
5232 goto abort;
5234 /* Only remove non-faulty devices if recovery
5235 * isn't possible.
5237 if (!test_bit(Faulty, &rdev->flags) &&
5238 mddev->degraded <= conf->max_degraded &&
5239 number < conf->raid_disks) {
5240 err = -EBUSY;
5241 goto abort;
5243 p->rdev = NULL;
5244 synchronize_rcu();
5245 if (atomic_read(&rdev->nr_pending)) {
5246 /* lost the race, try later */
5247 err = -EBUSY;
5248 p->rdev = rdev;
5251 abort:
5253 print_raid5_conf(conf);
5254 return err;
5257 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5259 raid5_conf_t *conf = mddev->private;
5260 int err = -EEXIST;
5261 int disk;
5262 struct disk_info *p;
5263 int first = 0;
5264 int last = conf->raid_disks - 1;
5266 if (mddev->degraded > conf->max_degraded)
5267 /* no point adding a device */
5268 return -EINVAL;
5270 if (rdev->raid_disk >= 0)
5271 first = last = rdev->raid_disk;
5274 * find the disk ... but prefer rdev->saved_raid_disk
5275 * if possible.
5277 if (rdev->saved_raid_disk >= 0 &&
5278 rdev->saved_raid_disk >= first &&
5279 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5280 disk = rdev->saved_raid_disk;
5281 else
5282 disk = first;
5283 for ( ; disk <= last ; disk++)
5284 if ((p=conf->disks + disk)->rdev == NULL) {
5285 clear_bit(In_sync, &rdev->flags);
5286 rdev->raid_disk = disk;
5287 err = 0;
5288 if (rdev->saved_raid_disk != disk)
5289 conf->fullsync = 1;
5290 rcu_assign_pointer(p->rdev, rdev);
5291 break;
5293 print_raid5_conf(conf);
5294 return err;
5297 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5299 /* no resync is happening, and there is enough space
5300 * on all devices, so we can resize.
5301 * We need to make sure resync covers any new space.
5302 * If the array is shrinking we should possibly wait until
5303 * any io in the removed space completes, but it hardly seems
5304 * worth it.
5306 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5307 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5308 mddev->raid_disks));
5309 if (mddev->array_sectors >
5310 raid5_size(mddev, sectors, mddev->raid_disks))
5311 return -EINVAL;
5312 set_capacity(mddev->gendisk, mddev->array_sectors);
5313 mddev->changed = 1;
5314 revalidate_disk(mddev->gendisk);
5315 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5316 mddev->recovery_cp = mddev->dev_sectors;
5317 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5319 mddev->dev_sectors = sectors;
5320 mddev->resync_max_sectors = sectors;
5321 return 0;
5324 static int check_stripe_cache(mddev_t *mddev)
5326 /* Can only proceed if there are plenty of stripe_heads.
5327 * We need a minimum of one full stripe,, and for sensible progress
5328 * it is best to have about 4 times that.
5329 * If we require 4 times, then the default 256 4K stripe_heads will
5330 * allow for chunk sizes up to 256K, which is probably OK.
5331 * If the chunk size is greater, user-space should request more
5332 * stripe_heads first.
5334 raid5_conf_t *conf = mddev->private;
5335 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5336 > conf->max_nr_stripes ||
5337 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5338 > conf->max_nr_stripes) {
5339 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
5340 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5341 / STRIPE_SIZE)*4);
5342 return 0;
5344 return 1;
5347 static int check_reshape(mddev_t *mddev)
5349 raid5_conf_t *conf = mddev->private;
5351 if (mddev->delta_disks == 0 &&
5352 mddev->new_layout == mddev->layout &&
5353 mddev->new_chunk_sectors == mddev->chunk_sectors)
5354 return 0; /* nothing to do */
5355 if (mddev->bitmap)
5356 /* Cannot grow a bitmap yet */
5357 return -EBUSY;
5358 if (mddev->degraded > conf->max_degraded)
5359 return -EINVAL;
5360 if (mddev->delta_disks < 0) {
5361 /* We might be able to shrink, but the devices must
5362 * be made bigger first.
5363 * For raid6, 4 is the minimum size.
5364 * Otherwise 2 is the minimum
5366 int min = 2;
5367 if (mddev->level == 6)
5368 min = 4;
5369 if (mddev->raid_disks + mddev->delta_disks < min)
5370 return -EINVAL;
5373 if (!check_stripe_cache(mddev))
5374 return -ENOSPC;
5376 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5379 static int raid5_start_reshape(mddev_t *mddev)
5381 raid5_conf_t *conf = mddev->private;
5382 mdk_rdev_t *rdev;
5383 int spares = 0;
5384 int added_devices = 0;
5385 unsigned long flags;
5387 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5388 return -EBUSY;
5390 if (!check_stripe_cache(mddev))
5391 return -ENOSPC;
5393 list_for_each_entry(rdev, &mddev->disks, same_set)
5394 if (rdev->raid_disk < 0 &&
5395 !test_bit(Faulty, &rdev->flags))
5396 spares++;
5398 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5399 /* Not enough devices even to make a degraded array
5400 * of that size
5402 return -EINVAL;
5404 /* Refuse to reduce size of the array. Any reductions in
5405 * array size must be through explicit setting of array_size
5406 * attribute.
5408 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5409 < mddev->array_sectors) {
5410 printk(KERN_ERR "md: %s: array size must be reduced "
5411 "before number of disks\n", mdname(mddev));
5412 return -EINVAL;
5415 atomic_set(&conf->reshape_stripes, 0);
5416 spin_lock_irq(&conf->device_lock);
5417 conf->previous_raid_disks = conf->raid_disks;
5418 conf->raid_disks += mddev->delta_disks;
5419 conf->prev_chunk_sectors = conf->chunk_sectors;
5420 conf->chunk_sectors = mddev->new_chunk_sectors;
5421 conf->prev_algo = conf->algorithm;
5422 conf->algorithm = mddev->new_layout;
5423 if (mddev->delta_disks < 0)
5424 conf->reshape_progress = raid5_size(mddev, 0, 0);
5425 else
5426 conf->reshape_progress = 0;
5427 conf->reshape_safe = conf->reshape_progress;
5428 conf->generation++;
5429 spin_unlock_irq(&conf->device_lock);
5431 /* Add some new drives, as many as will fit.
5432 * We know there are enough to make the newly sized array work.
5434 list_for_each_entry(rdev, &mddev->disks, same_set)
5435 if (rdev->raid_disk < 0 &&
5436 !test_bit(Faulty, &rdev->flags)) {
5437 if (raid5_add_disk(mddev, rdev) == 0) {
5438 char nm[20];
5439 if (rdev->raid_disk >= conf->previous_raid_disks) {
5440 set_bit(In_sync, &rdev->flags);
5441 added_devices++;
5442 } else
5443 rdev->recovery_offset = 0;
5444 sprintf(nm, "rd%d", rdev->raid_disk);
5445 if (sysfs_create_link(&mddev->kobj,
5446 &rdev->kobj, nm))
5447 printk(KERN_WARNING
5448 "raid5: failed to create "
5449 " link %s for %s\n",
5450 nm, mdname(mddev));
5451 } else
5452 break;
5455 /* When a reshape changes the number of devices, ->degraded
5456 * is measured against the large of the pre and post number of
5457 * devices.*/
5458 if (mddev->delta_disks > 0) {
5459 spin_lock_irqsave(&conf->device_lock, flags);
5460 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5461 - added_devices;
5462 spin_unlock_irqrestore(&conf->device_lock, flags);
5464 mddev->raid_disks = conf->raid_disks;
5465 mddev->reshape_position = conf->reshape_progress;
5466 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5468 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5469 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5470 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5471 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5472 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5473 "reshape");
5474 if (!mddev->sync_thread) {
5475 mddev->recovery = 0;
5476 spin_lock_irq(&conf->device_lock);
5477 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5478 conf->reshape_progress = MaxSector;
5479 spin_unlock_irq(&conf->device_lock);
5480 return -EAGAIN;
5482 conf->reshape_checkpoint = jiffies;
5483 md_wakeup_thread(mddev->sync_thread);
5484 md_new_event(mddev);
5485 return 0;
5488 /* This is called from the reshape thread and should make any
5489 * changes needed in 'conf'
5491 static void end_reshape(raid5_conf_t *conf)
5494 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5496 spin_lock_irq(&conf->device_lock);
5497 conf->previous_raid_disks = conf->raid_disks;
5498 conf->reshape_progress = MaxSector;
5499 spin_unlock_irq(&conf->device_lock);
5500 wake_up(&conf->wait_for_overlap);
5502 /* read-ahead size must cover two whole stripes, which is
5503 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5506 int data_disks = conf->raid_disks - conf->max_degraded;
5507 int stripe = data_disks * ((conf->chunk_sectors << 9)
5508 / PAGE_SIZE);
5509 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5510 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5515 /* This is called from the raid5d thread with mddev_lock held.
5516 * It makes config changes to the device.
5518 static void raid5_finish_reshape(mddev_t *mddev)
5520 raid5_conf_t *conf = mddev->private;
5522 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5524 if (mddev->delta_disks > 0) {
5525 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5526 set_capacity(mddev->gendisk, mddev->array_sectors);
5527 mddev->changed = 1;
5528 revalidate_disk(mddev->gendisk);
5529 } else {
5530 int d;
5531 mddev->degraded = conf->raid_disks;
5532 for (d = 0; d < conf->raid_disks ; d++)
5533 if (conf->disks[d].rdev &&
5534 test_bit(In_sync,
5535 &conf->disks[d].rdev->flags))
5536 mddev->degraded--;
5537 for (d = conf->raid_disks ;
5538 d < conf->raid_disks - mddev->delta_disks;
5539 d++) {
5540 mdk_rdev_t *rdev = conf->disks[d].rdev;
5541 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5542 char nm[20];
5543 sprintf(nm, "rd%d", rdev->raid_disk);
5544 sysfs_remove_link(&mddev->kobj, nm);
5545 rdev->raid_disk = -1;
5549 mddev->layout = conf->algorithm;
5550 mddev->chunk_sectors = conf->chunk_sectors;
5551 mddev->reshape_position = MaxSector;
5552 mddev->delta_disks = 0;
5556 static void raid5_quiesce(mddev_t *mddev, int state)
5558 raid5_conf_t *conf = mddev->private;
5560 switch(state) {
5561 case 2: /* resume for a suspend */
5562 wake_up(&conf->wait_for_overlap);
5563 break;
5565 case 1: /* stop all writes */
5566 spin_lock_irq(&conf->device_lock);
5567 /* '2' tells resync/reshape to pause so that all
5568 * active stripes can drain
5570 conf->quiesce = 2;
5571 wait_event_lock_irq(conf->wait_for_stripe,
5572 atomic_read(&conf->active_stripes) == 0 &&
5573 atomic_read(&conf->active_aligned_reads) == 0,
5574 conf->device_lock, /* nothing */);
5575 conf->quiesce = 1;
5576 spin_unlock_irq(&conf->device_lock);
5577 /* allow reshape to continue */
5578 wake_up(&conf->wait_for_overlap);
5579 break;
5581 case 0: /* re-enable writes */
5582 spin_lock_irq(&conf->device_lock);
5583 conf->quiesce = 0;
5584 wake_up(&conf->wait_for_stripe);
5585 wake_up(&conf->wait_for_overlap);
5586 spin_unlock_irq(&conf->device_lock);
5587 break;
5592 static void *raid5_takeover_raid1(mddev_t *mddev)
5594 int chunksect;
5596 if (mddev->raid_disks != 2 ||
5597 mddev->degraded > 1)
5598 return ERR_PTR(-EINVAL);
5600 /* Should check if there are write-behind devices? */
5602 chunksect = 64*2; /* 64K by default */
5604 /* The array must be an exact multiple of chunksize */
5605 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5606 chunksect >>= 1;
5608 if ((chunksect<<9) < STRIPE_SIZE)
5609 /* array size does not allow a suitable chunk size */
5610 return ERR_PTR(-EINVAL);
5612 mddev->new_level = 5;
5613 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5614 mddev->new_chunk_sectors = chunksect;
5616 return setup_conf(mddev);
5619 static void *raid5_takeover_raid6(mddev_t *mddev)
5621 int new_layout;
5623 switch (mddev->layout) {
5624 case ALGORITHM_LEFT_ASYMMETRIC_6:
5625 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5626 break;
5627 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5628 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5629 break;
5630 case ALGORITHM_LEFT_SYMMETRIC_6:
5631 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5632 break;
5633 case ALGORITHM_RIGHT_SYMMETRIC_6:
5634 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5635 break;
5636 case ALGORITHM_PARITY_0_6:
5637 new_layout = ALGORITHM_PARITY_0;
5638 break;
5639 case ALGORITHM_PARITY_N:
5640 new_layout = ALGORITHM_PARITY_N;
5641 break;
5642 default:
5643 return ERR_PTR(-EINVAL);
5645 mddev->new_level = 5;
5646 mddev->new_layout = new_layout;
5647 mddev->delta_disks = -1;
5648 mddev->raid_disks -= 1;
5649 return setup_conf(mddev);
5653 static int raid5_check_reshape(mddev_t *mddev)
5655 /* For a 2-drive array, the layout and chunk size can be changed
5656 * immediately as not restriping is needed.
5657 * For larger arrays we record the new value - after validation
5658 * to be used by a reshape pass.
5660 raid5_conf_t *conf = mddev->private;
5661 int new_chunk = mddev->new_chunk_sectors;
5663 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5664 return -EINVAL;
5665 if (new_chunk > 0) {
5666 if (!is_power_of_2(new_chunk))
5667 return -EINVAL;
5668 if (new_chunk < (PAGE_SIZE>>9))
5669 return -EINVAL;
5670 if (mddev->array_sectors & (new_chunk-1))
5671 /* not factor of array size */
5672 return -EINVAL;
5675 /* They look valid */
5677 if (mddev->raid_disks == 2) {
5678 /* can make the change immediately */
5679 if (mddev->new_layout >= 0) {
5680 conf->algorithm = mddev->new_layout;
5681 mddev->layout = mddev->new_layout;
5683 if (new_chunk > 0) {
5684 conf->chunk_sectors = new_chunk ;
5685 mddev->chunk_sectors = new_chunk;
5687 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5688 md_wakeup_thread(mddev->thread);
5690 return check_reshape(mddev);
5693 static int raid6_check_reshape(mddev_t *mddev)
5695 int new_chunk = mddev->new_chunk_sectors;
5697 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5698 return -EINVAL;
5699 if (new_chunk > 0) {
5700 if (!is_power_of_2(new_chunk))
5701 return -EINVAL;
5702 if (new_chunk < (PAGE_SIZE >> 9))
5703 return -EINVAL;
5704 if (mddev->array_sectors & (new_chunk-1))
5705 /* not factor of array size */
5706 return -EINVAL;
5709 /* They look valid */
5710 return check_reshape(mddev);
5713 static void *raid5_takeover(mddev_t *mddev)
5715 /* raid5 can take over:
5716 * raid0 - if all devices are the same - make it a raid4 layout
5717 * raid1 - if there are two drives. We need to know the chunk size
5718 * raid4 - trivial - just use a raid4 layout.
5719 * raid6 - Providing it is a *_6 layout
5722 if (mddev->level == 1)
5723 return raid5_takeover_raid1(mddev);
5724 if (mddev->level == 4) {
5725 mddev->new_layout = ALGORITHM_PARITY_N;
5726 mddev->new_level = 5;
5727 return setup_conf(mddev);
5729 if (mddev->level == 6)
5730 return raid5_takeover_raid6(mddev);
5732 return ERR_PTR(-EINVAL);
5736 static struct mdk_personality raid5_personality;
5738 static void *raid6_takeover(mddev_t *mddev)
5740 /* Currently can only take over a raid5. We map the
5741 * personality to an equivalent raid6 personality
5742 * with the Q block at the end.
5744 int new_layout;
5746 if (mddev->pers != &raid5_personality)
5747 return ERR_PTR(-EINVAL);
5748 if (mddev->degraded > 1)
5749 return ERR_PTR(-EINVAL);
5750 if (mddev->raid_disks > 253)
5751 return ERR_PTR(-EINVAL);
5752 if (mddev->raid_disks < 3)
5753 return ERR_PTR(-EINVAL);
5755 switch (mddev->layout) {
5756 case ALGORITHM_LEFT_ASYMMETRIC:
5757 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5758 break;
5759 case ALGORITHM_RIGHT_ASYMMETRIC:
5760 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5761 break;
5762 case ALGORITHM_LEFT_SYMMETRIC:
5763 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5764 break;
5765 case ALGORITHM_RIGHT_SYMMETRIC:
5766 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5767 break;
5768 case ALGORITHM_PARITY_0:
5769 new_layout = ALGORITHM_PARITY_0_6;
5770 break;
5771 case ALGORITHM_PARITY_N:
5772 new_layout = ALGORITHM_PARITY_N;
5773 break;
5774 default:
5775 return ERR_PTR(-EINVAL);
5777 mddev->new_level = 6;
5778 mddev->new_layout = new_layout;
5779 mddev->delta_disks = 1;
5780 mddev->raid_disks += 1;
5781 return setup_conf(mddev);
5785 static struct mdk_personality raid6_personality =
5787 .name = "raid6",
5788 .level = 6,
5789 .owner = THIS_MODULE,
5790 .make_request = make_request,
5791 .run = run,
5792 .stop = stop,
5793 .status = status,
5794 .error_handler = error,
5795 .hot_add_disk = raid5_add_disk,
5796 .hot_remove_disk= raid5_remove_disk,
5797 .spare_active = raid5_spare_active,
5798 .sync_request = sync_request,
5799 .resize = raid5_resize,
5800 .size = raid5_size,
5801 .check_reshape = raid6_check_reshape,
5802 .start_reshape = raid5_start_reshape,
5803 .finish_reshape = raid5_finish_reshape,
5804 .quiesce = raid5_quiesce,
5805 .takeover = raid6_takeover,
5807 static struct mdk_personality raid5_personality =
5809 .name = "raid5",
5810 .level = 5,
5811 .owner = THIS_MODULE,
5812 .make_request = make_request,
5813 .run = run,
5814 .stop = stop,
5815 .status = status,
5816 .error_handler = error,
5817 .hot_add_disk = raid5_add_disk,
5818 .hot_remove_disk= raid5_remove_disk,
5819 .spare_active = raid5_spare_active,
5820 .sync_request = sync_request,
5821 .resize = raid5_resize,
5822 .size = raid5_size,
5823 .check_reshape = raid5_check_reshape,
5824 .start_reshape = raid5_start_reshape,
5825 .finish_reshape = raid5_finish_reshape,
5826 .quiesce = raid5_quiesce,
5827 .takeover = raid5_takeover,
5830 static struct mdk_personality raid4_personality =
5832 .name = "raid4",
5833 .level = 4,
5834 .owner = THIS_MODULE,
5835 .make_request = make_request,
5836 .run = run,
5837 .stop = stop,
5838 .status = status,
5839 .error_handler = error,
5840 .hot_add_disk = raid5_add_disk,
5841 .hot_remove_disk= raid5_remove_disk,
5842 .spare_active = raid5_spare_active,
5843 .sync_request = sync_request,
5844 .resize = raid5_resize,
5845 .size = raid5_size,
5846 .check_reshape = raid5_check_reshape,
5847 .start_reshape = raid5_start_reshape,
5848 .finish_reshape = raid5_finish_reshape,
5849 .quiesce = raid5_quiesce,
5852 static int __init raid5_init(void)
5854 register_md_personality(&raid6_personality);
5855 register_md_personality(&raid5_personality);
5856 register_md_personality(&raid4_personality);
5857 return 0;
5860 static void raid5_exit(void)
5862 unregister_md_personality(&raid6_personality);
5863 unregister_md_personality(&raid5_personality);
5864 unregister_md_personality(&raid4_personality);
5867 module_init(raid5_init);
5868 module_exit(raid5_exit);
5869 MODULE_LICENSE("GPL");
5870 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5871 MODULE_ALIAS("md-raid5");
5872 MODULE_ALIAS("md-raid4");
5873 MODULE_ALIAS("md-level-5");
5874 MODULE_ALIAS("md-level-4");
5875 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5876 MODULE_ALIAS("md-raid6");
5877 MODULE_ALIAS("md-level-6");
5879 /* This used to be two separate modules, they were: */
5880 MODULE_ALIAS("raid5");
5881 MODULE_ALIAS("raid6");