1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
39 static s32
igb_get_invariants_82575(struct e1000_hw
*);
40 static s32
igb_acquire_phy_82575(struct e1000_hw
*);
41 static void igb_release_phy_82575(struct e1000_hw
*);
42 static s32
igb_acquire_nvm_82575(struct e1000_hw
*);
43 static void igb_release_nvm_82575(struct e1000_hw
*);
44 static s32
igb_check_for_link_82575(struct e1000_hw
*);
45 static s32
igb_get_cfg_done_82575(struct e1000_hw
*);
46 static s32
igb_init_hw_82575(struct e1000_hw
*);
47 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*);
48 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
*);
49 static s32
igb_reset_hw_82575(struct e1000_hw
*);
50 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*, bool);
51 static s32
igb_setup_copper_link_82575(struct e1000_hw
*);
52 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*);
53 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*);
55 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*, u16
);
56 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*, u16
*,
58 static s32
igb_get_phy_id_82575(struct e1000_hw
*);
59 static void igb_release_swfw_sync_82575(struct e1000_hw
*, u16
);
60 static bool igb_sgmii_active_82575(struct e1000_hw
*);
61 static s32
igb_reset_init_script_82575(struct e1000_hw
*);
62 static s32
igb_read_mac_addr_82575(struct e1000_hw
*);
63 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
);
65 static s32
igb_get_invariants_82575(struct e1000_hw
*hw
)
67 struct e1000_phy_info
*phy
= &hw
->phy
;
68 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
69 struct e1000_mac_info
*mac
= &hw
->mac
;
70 struct e1000_dev_spec_82575
* dev_spec
= &hw
->dev_spec
._82575
;
76 switch (hw
->device_id
) {
77 case E1000_DEV_ID_82575EB_COPPER
:
78 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
79 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
80 mac
->type
= e1000_82575
;
82 case E1000_DEV_ID_82576
:
83 case E1000_DEV_ID_82576_NS
:
84 case E1000_DEV_ID_82576_NS_SERDES
:
85 case E1000_DEV_ID_82576_FIBER
:
86 case E1000_DEV_ID_82576_SERDES
:
87 case E1000_DEV_ID_82576_QUAD_COPPER
:
88 case E1000_DEV_ID_82576_SERDES_QUAD
:
89 mac
->type
= e1000_82576
;
92 return -E1000_ERR_MAC_INIT
;
98 * The 82575 uses bits 22:23 for link mode. The mode can be changed
99 * based on the EEPROM. We cannot rely upon device ID. There
100 * is no distinguishable difference between fiber and internal
101 * SerDes mode on the 82575. There can be an external PHY attached
102 * on the SGMII interface. For this, we'll set sgmii_active to true.
104 phy
->media_type
= e1000_media_type_copper
;
105 dev_spec
->sgmii_active
= false;
107 ctrl_ext
= rd32(E1000_CTRL_EXT
);
108 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
109 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
110 dev_spec
->sgmii_active
= true;
111 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
113 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
:
114 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
115 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
118 ctrl_ext
&= ~E1000_CTRL_I2C_ENA
;
122 wr32(E1000_CTRL_EXT
, ctrl_ext
);
124 /* Set mta register count */
125 mac
->mta_reg_count
= 128;
126 /* Set rar entry count */
127 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82575
;
128 if (mac
->type
== e1000_82576
)
129 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82576
;
130 /* Set if part includes ASF firmware */
131 mac
->asf_firmware_present
= true;
132 /* Set if manageability features are enabled. */
133 mac
->arc_subsystem_valid
=
134 (rd32(E1000_FWSM
) & E1000_FWSM_MODE_MASK
)
137 /* physical interface link setup */
138 mac
->ops
.setup_physical_interface
=
139 (hw
->phy
.media_type
== e1000_media_type_copper
)
140 ? igb_setup_copper_link_82575
141 : igb_setup_serdes_link_82575
;
143 /* NVM initialization */
144 eecd
= rd32(E1000_EECD
);
146 nvm
->opcode_bits
= 8;
148 switch (nvm
->override
) {
149 case e1000_nvm_override_spi_large
:
151 nvm
->address_bits
= 16;
153 case e1000_nvm_override_spi_small
:
155 nvm
->address_bits
= 8;
158 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
159 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
163 nvm
->type
= e1000_nvm_eeprom_spi
;
165 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
166 E1000_EECD_SIZE_EX_SHIFT
);
169 * Added to a constant, "size" becomes the left-shift value
170 * for setting word_size.
172 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
174 /* EEPROM access above 16k is unsupported */
177 nvm
->word_size
= 1 << size
;
179 /* if 82576 then initialize mailbox parameters */
180 if (mac
->type
== e1000_82576
)
181 igb_init_mbx_params_pf(hw
);
183 /* setup PHY parameters */
184 if (phy
->media_type
!= e1000_media_type_copper
) {
185 phy
->type
= e1000_phy_none
;
189 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
190 phy
->reset_delay_us
= 100;
192 /* PHY function pointers */
193 if (igb_sgmii_active_82575(hw
)) {
194 phy
->ops
.reset
= igb_phy_hw_reset_sgmii_82575
;
195 phy
->ops
.read_reg
= igb_read_phy_reg_sgmii_82575
;
196 phy
->ops
.write_reg
= igb_write_phy_reg_sgmii_82575
;
198 phy
->ops
.reset
= igb_phy_hw_reset
;
199 phy
->ops
.read_reg
= igb_read_phy_reg_igp
;
200 phy
->ops
.write_reg
= igb_write_phy_reg_igp
;
204 hw
->bus
.func
= (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) >>
205 E1000_STATUS_FUNC_SHIFT
;
207 /* Set phy->phy_addr and phy->id. */
208 ret_val
= igb_get_phy_id_82575(hw
);
212 /* Verify phy id and set remaining function pointers */
214 case M88E1111_I_PHY_ID
:
215 phy
->type
= e1000_phy_m88
;
216 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
217 phy
->ops
.get_cable_length
= igb_get_cable_length_m88
;
218 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
220 case IGP03E1000_E_PHY_ID
:
221 phy
->type
= e1000_phy_igp_3
;
222 phy
->ops
.get_phy_info
= igb_get_phy_info_igp
;
223 phy
->ops
.get_cable_length
= igb_get_cable_length_igp_2
;
224 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_igp
;
225 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82575
;
226 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state
;
229 return -E1000_ERR_PHY
;
236 * igb_acquire_phy_82575 - Acquire rights to access PHY
237 * @hw: pointer to the HW structure
239 * Acquire access rights to the correct PHY. This is a
240 * function pointer entry point called by the api module.
242 static s32
igb_acquire_phy_82575(struct e1000_hw
*hw
)
246 mask
= hw
->bus
.func
? E1000_SWFW_PHY1_SM
: E1000_SWFW_PHY0_SM
;
248 return igb_acquire_swfw_sync_82575(hw
, mask
);
252 * igb_release_phy_82575 - Release rights to access PHY
253 * @hw: pointer to the HW structure
255 * A wrapper to release access rights to the correct PHY. This is a
256 * function pointer entry point called by the api module.
258 static void igb_release_phy_82575(struct e1000_hw
*hw
)
262 mask
= hw
->bus
.func
? E1000_SWFW_PHY1_SM
: E1000_SWFW_PHY0_SM
;
263 igb_release_swfw_sync_82575(hw
, mask
);
267 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
268 * @hw: pointer to the HW structure
269 * @offset: register offset to be read
270 * @data: pointer to the read data
272 * Reads the PHY register at offset using the serial gigabit media independent
273 * interface and stores the retrieved information in data.
275 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
278 struct e1000_phy_info
*phy
= &hw
->phy
;
281 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
282 hw_dbg("PHY Address %u is out of range\n", offset
);
283 return -E1000_ERR_PARAM
;
287 * Set up Op-code, Phy Address, and register address in the I2CCMD
288 * register. The MAC will take care of interfacing with the
289 * PHY to retrieve the desired data.
291 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
292 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
293 (E1000_I2CCMD_OPCODE_READ
));
295 wr32(E1000_I2CCMD
, i2ccmd
);
297 /* Poll the ready bit to see if the I2C read completed */
298 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
300 i2ccmd
= rd32(E1000_I2CCMD
);
301 if (i2ccmd
& E1000_I2CCMD_READY
)
304 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
305 hw_dbg("I2CCMD Read did not complete\n");
306 return -E1000_ERR_PHY
;
308 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
309 hw_dbg("I2CCMD Error bit set\n");
310 return -E1000_ERR_PHY
;
313 /* Need to byte-swap the 16-bit value. */
314 *data
= ((i2ccmd
>> 8) & 0x00FF) | ((i2ccmd
<< 8) & 0xFF00);
320 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
321 * @hw: pointer to the HW structure
322 * @offset: register offset to write to
323 * @data: data to write at register offset
325 * Writes the data to PHY register at the offset using the serial gigabit
326 * media independent interface.
328 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
331 struct e1000_phy_info
*phy
= &hw
->phy
;
333 u16 phy_data_swapped
;
335 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
336 hw_dbg("PHY Address %d is out of range\n", offset
);
337 return -E1000_ERR_PARAM
;
340 /* Swap the data bytes for the I2C interface */
341 phy_data_swapped
= ((data
>> 8) & 0x00FF) | ((data
<< 8) & 0xFF00);
344 * Set up Op-code, Phy Address, and register address in the I2CCMD
345 * register. The MAC will take care of interfacing with the
346 * PHY to retrieve the desired data.
348 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
349 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
350 E1000_I2CCMD_OPCODE_WRITE
|
353 wr32(E1000_I2CCMD
, i2ccmd
);
355 /* Poll the ready bit to see if the I2C read completed */
356 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
358 i2ccmd
= rd32(E1000_I2CCMD
);
359 if (i2ccmd
& E1000_I2CCMD_READY
)
362 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
363 hw_dbg("I2CCMD Write did not complete\n");
364 return -E1000_ERR_PHY
;
366 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
367 hw_dbg("I2CCMD Error bit set\n");
368 return -E1000_ERR_PHY
;
375 * igb_get_phy_id_82575 - Retrieve PHY addr and id
376 * @hw: pointer to the HW structure
378 * Retrieves the PHY address and ID for both PHY's which do and do not use
381 static s32
igb_get_phy_id_82575(struct e1000_hw
*hw
)
383 struct e1000_phy_info
*phy
= &hw
->phy
;
389 * For SGMII PHYs, we try the list of possible addresses until
390 * we find one that works. For non-SGMII PHYs
391 * (e.g. integrated copper PHYs), an address of 1 should
392 * work. The result of this function should mean phy->phy_addr
393 * and phy->id are set correctly.
395 if (!(igb_sgmii_active_82575(hw
))) {
397 ret_val
= igb_get_phy_id(hw
);
401 /* Power on sgmii phy if it is disabled */
402 ctrl_ext
= rd32(E1000_CTRL_EXT
);
403 wr32(E1000_CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_SDP3_DATA
);
408 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
409 * Therefore, we need to test 1-7
411 for (phy
->addr
= 1; phy
->addr
< 8; phy
->addr
++) {
412 ret_val
= igb_read_phy_reg_sgmii_82575(hw
, PHY_ID1
, &phy_id
);
414 hw_dbg("Vendor ID 0x%08X read at address %u\n",
417 * At the time of this writing, The M88 part is
418 * the only supported SGMII PHY product.
420 if (phy_id
== M88_VENDOR
)
423 hw_dbg("PHY address %u was unreadable\n", phy
->addr
);
427 /* A valid PHY type couldn't be found. */
428 if (phy
->addr
== 8) {
430 ret_val
= -E1000_ERR_PHY
;
433 ret_val
= igb_get_phy_id(hw
);
436 /* restore previous sfp cage power state */
437 wr32(E1000_CTRL_EXT
, ctrl_ext
);
444 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
445 * @hw: pointer to the HW structure
447 * Resets the PHY using the serial gigabit media independent interface.
449 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*hw
)
454 * This isn't a true "hard" reset, but is the only reset
455 * available to us at this time.
458 hw_dbg("Soft resetting SGMII attached PHY...\n");
461 * SFP documentation requires the following to configure the SPF module
462 * to work on SGMII. No further documentation is given.
464 ret_val
= hw
->phy
.ops
.write_reg(hw
, 0x1B, 0x8084);
468 ret_val
= igb_phy_sw_reset(hw
);
475 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
476 * @hw: pointer to the HW structure
477 * @active: true to enable LPLU, false to disable
479 * Sets the LPLU D0 state according to the active flag. When
480 * activating LPLU this function also disables smart speed
481 * and vice versa. LPLU will not be activated unless the
482 * device autonegotiation advertisement meets standards of
483 * either 10 or 10/100 or 10/100/1000 at all duplexes.
484 * This is a function pointer entry point only called by
485 * PHY setup routines.
487 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*hw
, bool active
)
489 struct e1000_phy_info
*phy
= &hw
->phy
;
493 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
498 data
|= IGP02E1000_PM_D0_LPLU
;
499 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
504 /* When LPLU is enabled, we should disable SmartSpeed */
505 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
507 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
508 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
513 data
&= ~IGP02E1000_PM_D0_LPLU
;
514 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
517 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
518 * during Dx states where the power conservation is most
519 * important. During driver activity we should enable
520 * SmartSpeed, so performance is maintained.
522 if (phy
->smart_speed
== e1000_smart_speed_on
) {
523 ret_val
= phy
->ops
.read_reg(hw
,
524 IGP01E1000_PHY_PORT_CONFIG
, &data
);
528 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
529 ret_val
= phy
->ops
.write_reg(hw
,
530 IGP01E1000_PHY_PORT_CONFIG
, data
);
533 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
534 ret_val
= phy
->ops
.read_reg(hw
,
535 IGP01E1000_PHY_PORT_CONFIG
, &data
);
539 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
540 ret_val
= phy
->ops
.write_reg(hw
,
541 IGP01E1000_PHY_PORT_CONFIG
, data
);
552 * igb_acquire_nvm_82575 - Request for access to EEPROM
553 * @hw: pointer to the HW structure
555 * Acquire the necessary semaphores for exclusive access to the EEPROM.
556 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
557 * Return successful if access grant bit set, else clear the request for
558 * EEPROM access and return -E1000_ERR_NVM (-1).
560 static s32
igb_acquire_nvm_82575(struct e1000_hw
*hw
)
564 ret_val
= igb_acquire_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
568 ret_val
= igb_acquire_nvm(hw
);
571 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
578 * igb_release_nvm_82575 - Release exclusive access to EEPROM
579 * @hw: pointer to the HW structure
581 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
582 * then release the semaphores acquired.
584 static void igb_release_nvm_82575(struct e1000_hw
*hw
)
587 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
591 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
592 * @hw: pointer to the HW structure
593 * @mask: specifies which semaphore to acquire
595 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
596 * will also specify which port we're acquiring the lock for.
598 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
602 u32 fwmask
= mask
<< 16;
604 s32 i
= 0, timeout
= 200; /* FIXME: find real value to use here */
606 while (i
< timeout
) {
607 if (igb_get_hw_semaphore(hw
)) {
608 ret_val
= -E1000_ERR_SWFW_SYNC
;
612 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
613 if (!(swfw_sync
& (fwmask
| swmask
)))
617 * Firmware currently using resource (fwmask)
618 * or other software thread using resource (swmask)
620 igb_put_hw_semaphore(hw
);
626 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
627 ret_val
= -E1000_ERR_SWFW_SYNC
;
632 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
634 igb_put_hw_semaphore(hw
);
641 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
642 * @hw: pointer to the HW structure
643 * @mask: specifies which semaphore to acquire
645 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
646 * will also specify which port we're releasing the lock for.
648 static void igb_release_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
652 while (igb_get_hw_semaphore(hw
) != 0);
655 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
657 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
659 igb_put_hw_semaphore(hw
);
663 * igb_get_cfg_done_82575 - Read config done bit
664 * @hw: pointer to the HW structure
666 * Read the management control register for the config done bit for
667 * completion status. NOTE: silicon which is EEPROM-less will fail trying
668 * to read the config done bit, so an error is *ONLY* logged and returns
669 * 0. If we were to return with error, EEPROM-less silicon
670 * would not be able to be reset or change link.
672 static s32
igb_get_cfg_done_82575(struct e1000_hw
*hw
)
674 s32 timeout
= PHY_CFG_TIMEOUT
;
676 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
678 if (hw
->bus
.func
== 1)
679 mask
= E1000_NVM_CFG_DONE_PORT_1
;
682 if (rd32(E1000_EEMNGCTL
) & mask
)
688 hw_dbg("MNG configuration cycle has not completed.\n");
690 /* If EEPROM is not marked present, init the PHY manually */
691 if (((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0) &&
692 (hw
->phy
.type
== e1000_phy_igp_3
))
693 igb_phy_init_script_igp3(hw
);
699 * igb_check_for_link_82575 - Check for link
700 * @hw: pointer to the HW structure
702 * If sgmii is enabled, then use the pcs register to determine link, otherwise
703 * use the generic interface for determining link.
705 static s32
igb_check_for_link_82575(struct e1000_hw
*hw
)
710 /* SGMII link check is done through the PCS register. */
711 if ((hw
->phy
.media_type
!= e1000_media_type_copper
) ||
712 (igb_sgmii_active_82575(hw
))) {
713 ret_val
= igb_get_pcs_speed_and_duplex_82575(hw
, &speed
,
716 * Use this flag to determine if link needs to be checked or
717 * not. If we have link clear the flag so that we do not
718 * continue to check for link.
720 hw
->mac
.get_link_status
= !hw
->mac
.serdes_has_link
;
722 ret_val
= igb_check_for_copper_link(hw
);
728 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
729 * @hw: pointer to the HW structure
730 * @speed: stores the current speed
731 * @duplex: stores the current duplex
733 * Using the physical coding sub-layer (PCS), retrieve the current speed and
734 * duplex, then store the values in the pointers provided.
736 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*hw
, u16
*speed
,
739 struct e1000_mac_info
*mac
= &hw
->mac
;
742 /* Set up defaults for the return values of this function */
743 mac
->serdes_has_link
= false;
748 * Read the PCS Status register for link state. For non-copper mode,
749 * the status register is not accurate. The PCS status register is
752 pcs
= rd32(E1000_PCS_LSTAT
);
755 * The link up bit determines when link is up on autoneg. The sync ok
756 * gets set once both sides sync up and agree upon link. Stable link
757 * can be determined by checking for both link up and link sync ok
759 if ((pcs
& E1000_PCS_LSTS_LINK_OK
) && (pcs
& E1000_PCS_LSTS_SYNK_OK
)) {
760 mac
->serdes_has_link
= true;
762 /* Detect and store PCS speed */
763 if (pcs
& E1000_PCS_LSTS_SPEED_1000
) {
765 } else if (pcs
& E1000_PCS_LSTS_SPEED_100
) {
771 /* Detect and store PCS duplex */
772 if (pcs
& E1000_PCS_LSTS_DUPLEX_FULL
) {
773 *duplex
= FULL_DUPLEX
;
775 *duplex
= HALF_DUPLEX
;
783 * igb_shutdown_serdes_link_82575 - Remove link during power down
784 * @hw: pointer to the HW structure
786 * In the case of fiber serdes, shut down optics and PCS on driver unload
787 * when management pass thru is not enabled.
789 void igb_shutdown_serdes_link_82575(struct e1000_hw
*hw
)
793 if (hw
->phy
.media_type
!= e1000_media_type_internal_serdes
||
794 igb_sgmii_active_82575(hw
))
797 /* if the management interface is not enabled, then power down */
798 if (!igb_enable_mng_pass_thru(hw
)) {
799 /* Disable PCS to turn off link */
800 reg
= rd32(E1000_PCS_CFG0
);
801 reg
&= ~E1000_PCS_CFG_PCS_EN
;
802 wr32(E1000_PCS_CFG0
, reg
);
804 /* shutdown the laser */
805 reg
= rd32(E1000_CTRL_EXT
);
806 reg
|= E1000_CTRL_EXT_SDP3_DATA
;
807 wr32(E1000_CTRL_EXT
, reg
);
809 /* flush the write to verify completion */
818 * igb_reset_hw_82575 - Reset hardware
819 * @hw: pointer to the HW structure
821 * This resets the hardware into a known state. This is a
822 * function pointer entry point called by the api module.
824 static s32
igb_reset_hw_82575(struct e1000_hw
*hw
)
830 * Prevent the PCI-E bus from sticking if there is no TLP connection
831 * on the last TLP read/write transaction when MAC is reset.
833 ret_val
= igb_disable_pcie_master(hw
);
835 hw_dbg("PCI-E Master disable polling has failed.\n");
837 /* set the completion timeout for interface */
838 ret_val
= igb_set_pcie_completion_timeout(hw
);
840 hw_dbg("PCI-E Set completion timeout has failed.\n");
843 hw_dbg("Masking off all interrupts\n");
844 wr32(E1000_IMC
, 0xffffffff);
847 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
852 ctrl
= rd32(E1000_CTRL
);
854 hw_dbg("Issuing a global reset to MAC\n");
855 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_RST
);
857 ret_val
= igb_get_auto_rd_done(hw
);
860 * When auto config read does not complete, do not
861 * return with an error. This can happen in situations
862 * where there is no eeprom and prevents getting link.
864 hw_dbg("Auto Read Done did not complete\n");
867 /* If EEPROM is not present, run manual init scripts */
868 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
869 igb_reset_init_script_82575(hw
);
871 /* Clear any pending interrupt events. */
872 wr32(E1000_IMC
, 0xffffffff);
873 icr
= rd32(E1000_ICR
);
875 /* Install any alternate MAC address into RAR0 */
876 ret_val
= igb_check_alt_mac_addr(hw
);
882 * igb_init_hw_82575 - Initialize hardware
883 * @hw: pointer to the HW structure
885 * This inits the hardware readying it for operation.
887 static s32
igb_init_hw_82575(struct e1000_hw
*hw
)
889 struct e1000_mac_info
*mac
= &hw
->mac
;
891 u16 i
, rar_count
= mac
->rar_entry_count
;
893 /* Initialize identification LED */
894 ret_val
= igb_id_led_init(hw
);
896 hw_dbg("Error initializing identification LED\n");
897 /* This is not fatal and we should not stop init due to this */
900 /* Disabling VLAN filtering */
901 hw_dbg("Initializing the IEEE VLAN\n");
904 /* Setup the receive address */
905 igb_init_rx_addrs(hw
, rar_count
);
907 /* Zero out the Multicast HASH table */
908 hw_dbg("Zeroing the MTA\n");
909 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
910 array_wr32(E1000_MTA
, i
, 0);
912 /* Setup link and flow control */
913 ret_val
= igb_setup_link(hw
);
916 * Clear all of the statistics registers (clear on read). It is
917 * important that we do this after we have tried to establish link
918 * because the symbol error count will increment wildly if there
921 igb_clear_hw_cntrs_82575(hw
);
927 * igb_setup_copper_link_82575 - Configure copper link settings
928 * @hw: pointer to the HW structure
930 * Configures the link for auto-neg or forced speed and duplex. Then we check
931 * for link, once link is established calls to configure collision distance
932 * and flow control are called.
934 static s32
igb_setup_copper_link_82575(struct e1000_hw
*hw
)
940 ctrl
= rd32(E1000_CTRL
);
941 ctrl
|= E1000_CTRL_SLU
;
942 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
943 wr32(E1000_CTRL
, ctrl
);
946 ret_val
= igb_setup_serdes_link_82575(hw
);
950 if (igb_sgmii_active_82575(hw
) && !hw
->phy
.reset_disable
) {
951 ret_val
= hw
->phy
.ops
.reset(hw
);
953 hw_dbg("Error resetting the PHY.\n");
957 switch (hw
->phy
.type
) {
959 ret_val
= igb_copper_link_setup_m88(hw
);
961 case e1000_phy_igp_3
:
962 ret_val
= igb_copper_link_setup_igp(hw
);
965 ret_val
= -E1000_ERR_PHY
;
972 if (hw
->mac
.autoneg
) {
974 * Setup autoneg and flow control advertisement
975 * and perform autonegotiation.
977 ret_val
= igb_copper_link_autoneg(hw
);
982 * PHY will be set to 10H, 10F, 100H or 100F
983 * depending on user settings.
985 hw_dbg("Forcing Speed and Duplex\n");
986 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
988 hw_dbg("Error Forcing Speed and Duplex\n");
994 * Check link status. Wait up to 100 microseconds for link to become
997 ret_val
= igb_phy_has_link(hw
, COPPER_LINK_UP_LIMIT
, 10, &link
);
1002 hw_dbg("Valid link established!!!\n");
1003 /* Config the MAC and PHY after link is up */
1004 igb_config_collision_dist(hw
);
1005 ret_val
= igb_config_fc_after_link_up(hw
);
1007 hw_dbg("Unable to establish link!!!\n");
1015 * igb_setup_serdes_link_82575 - Setup link for fiber/serdes
1016 * @hw: pointer to the HW structure
1018 * Configures speed and duplex for fiber and serdes links.
1020 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*hw
)
1024 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
1025 !igb_sgmii_active_82575(hw
))
1029 * On the 82575, SerDes loopback mode persists until it is
1030 * explicitly turned off or a power cycle is performed. A read to
1031 * the register does not indicate its status. Therefore, we ensure
1032 * loopback mode is disabled during initialization.
1034 wr32(E1000_SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1036 /* power on the sfp cage if present */
1037 reg
= rd32(E1000_CTRL_EXT
);
1038 reg
&= ~E1000_CTRL_EXT_SDP3_DATA
;
1039 wr32(E1000_CTRL_EXT
, reg
);
1041 ctrl_reg
= rd32(E1000_CTRL
);
1042 ctrl_reg
|= E1000_CTRL_SLU
;
1044 if (hw
->mac
.type
== e1000_82575
|| hw
->mac
.type
== e1000_82576
) {
1045 /* set both sw defined pins */
1046 ctrl_reg
|= E1000_CTRL_SWDPIN0
| E1000_CTRL_SWDPIN1
;
1048 /* Set switch control to serdes energy detect */
1049 reg
= rd32(E1000_CONNSW
);
1050 reg
|= E1000_CONNSW_ENRGSRC
;
1051 wr32(E1000_CONNSW
, reg
);
1054 reg
= rd32(E1000_PCS_LCTL
);
1056 if (igb_sgmii_active_82575(hw
)) {
1057 /* allow time for SFP cage to power up phy */
1060 /* AN time out should be disabled for SGMII mode */
1061 reg
&= ~(E1000_PCS_LCTL_AN_TIMEOUT
);
1063 ctrl_reg
|= E1000_CTRL_SPD_1000
| E1000_CTRL_FRCSPD
|
1064 E1000_CTRL_FD
| E1000_CTRL_FRCDPX
;
1067 wr32(E1000_CTRL
, ctrl_reg
);
1070 * New SerDes mode allows for forcing speed or autonegotiating speed
1071 * at 1gb. Autoneg should be default set by most drivers. This is the
1072 * mode that will be compatible with older link partners and switches.
1073 * However, both are supported by the hardware and some drivers/tools.
1076 reg
&= ~(E1000_PCS_LCTL_AN_ENABLE
| E1000_PCS_LCTL_FLV_LINK_UP
|
1077 E1000_PCS_LCTL_FSD
| E1000_PCS_LCTL_FORCE_LINK
);
1080 * We force flow control to prevent the CTRL register values from being
1081 * overwritten by the autonegotiated flow control values
1083 reg
|= E1000_PCS_LCTL_FORCE_FCTRL
;
1086 * we always set sgmii to autoneg since it is the phy that will be
1087 * forcing the link and the serdes is just a go-between
1089 if (hw
->mac
.autoneg
|| igb_sgmii_active_82575(hw
)) {
1090 /* Set PCS register for autoneg */
1091 reg
|= E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1092 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1093 E1000_PCS_LCTL_AN_ENABLE
| /* Enable Autoneg */
1094 E1000_PCS_LCTL_AN_RESTART
; /* Restart autoneg */
1095 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg
);
1097 /* Set PCS register for forced speed */
1098 reg
|= E1000_PCS_LCTL_FLV_LINK_UP
| /* Force link up */
1099 E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1100 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1101 E1000_PCS_LCTL_FSD
| /* Force Speed */
1102 E1000_PCS_LCTL_FORCE_LINK
; /* Force Link */
1103 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg
);
1106 wr32(E1000_PCS_LCTL
, reg
);
1108 if (!igb_sgmii_active_82575(hw
))
1109 igb_force_mac_fc(hw
);
1115 * igb_sgmii_active_82575 - Return sgmii state
1116 * @hw: pointer to the HW structure
1118 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1119 * which can be enabled for use in the embedded applications. Simply
1120 * return the current state of the sgmii interface.
1122 static bool igb_sgmii_active_82575(struct e1000_hw
*hw
)
1124 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
1125 return dev_spec
->sgmii_active
;
1129 * igb_reset_init_script_82575 - Inits HW defaults after reset
1130 * @hw: pointer to the HW structure
1132 * Inits recommended HW defaults after a reset when there is no EEPROM
1133 * detected. This is only for the 82575.
1135 static s32
igb_reset_init_script_82575(struct e1000_hw
*hw
)
1137 if (hw
->mac
.type
== e1000_82575
) {
1138 hw_dbg("Running reset init script for 82575\n");
1139 /* SerDes configuration via SERDESCTRL */
1140 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x00, 0x0C);
1141 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x01, 0x78);
1142 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x1B, 0x23);
1143 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x23, 0x15);
1145 /* CCM configuration via CCMCTL register */
1146 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x14, 0x00);
1147 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x10, 0x00);
1149 /* PCIe lanes configuration */
1150 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x00, 0xEC);
1151 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x61, 0xDF);
1152 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x34, 0x05);
1153 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x2F, 0x81);
1155 /* PCIe PLL Configuration */
1156 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x02, 0x47);
1157 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x14, 0x00);
1158 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x10, 0x00);
1165 * igb_read_mac_addr_82575 - Read device MAC address
1166 * @hw: pointer to the HW structure
1168 static s32
igb_read_mac_addr_82575(struct e1000_hw
*hw
)
1173 * If there's an alternate MAC address place it in RAR0
1174 * so that it will override the Si installed default perm
1177 ret_val
= igb_check_alt_mac_addr(hw
);
1181 ret_val
= igb_read_mac_addr(hw
);
1188 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1189 * @hw: pointer to the HW structure
1191 * Clears the hardware counters by reading the counter registers.
1193 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*hw
)
1197 igb_clear_hw_cntrs_base(hw
);
1199 temp
= rd32(E1000_PRC64
);
1200 temp
= rd32(E1000_PRC127
);
1201 temp
= rd32(E1000_PRC255
);
1202 temp
= rd32(E1000_PRC511
);
1203 temp
= rd32(E1000_PRC1023
);
1204 temp
= rd32(E1000_PRC1522
);
1205 temp
= rd32(E1000_PTC64
);
1206 temp
= rd32(E1000_PTC127
);
1207 temp
= rd32(E1000_PTC255
);
1208 temp
= rd32(E1000_PTC511
);
1209 temp
= rd32(E1000_PTC1023
);
1210 temp
= rd32(E1000_PTC1522
);
1212 temp
= rd32(E1000_ALGNERRC
);
1213 temp
= rd32(E1000_RXERRC
);
1214 temp
= rd32(E1000_TNCRS
);
1215 temp
= rd32(E1000_CEXTERR
);
1216 temp
= rd32(E1000_TSCTC
);
1217 temp
= rd32(E1000_TSCTFC
);
1219 temp
= rd32(E1000_MGTPRC
);
1220 temp
= rd32(E1000_MGTPDC
);
1221 temp
= rd32(E1000_MGTPTC
);
1223 temp
= rd32(E1000_IAC
);
1224 temp
= rd32(E1000_ICRXOC
);
1226 temp
= rd32(E1000_ICRXPTC
);
1227 temp
= rd32(E1000_ICRXATC
);
1228 temp
= rd32(E1000_ICTXPTC
);
1229 temp
= rd32(E1000_ICTXATC
);
1230 temp
= rd32(E1000_ICTXQEC
);
1231 temp
= rd32(E1000_ICTXQMTC
);
1232 temp
= rd32(E1000_ICRXDMTC
);
1234 temp
= rd32(E1000_CBTMPC
);
1235 temp
= rd32(E1000_HTDPMC
);
1236 temp
= rd32(E1000_CBRMPC
);
1237 temp
= rd32(E1000_RPTHC
);
1238 temp
= rd32(E1000_HGPTC
);
1239 temp
= rd32(E1000_HTCBDPC
);
1240 temp
= rd32(E1000_HGORCL
);
1241 temp
= rd32(E1000_HGORCH
);
1242 temp
= rd32(E1000_HGOTCL
);
1243 temp
= rd32(E1000_HGOTCH
);
1244 temp
= rd32(E1000_LENERRS
);
1246 /* This register should not be read in copper configurations */
1247 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
1248 igb_sgmii_active_82575(hw
))
1249 temp
= rd32(E1000_SCVPC
);
1253 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1254 * @hw: pointer to the HW structure
1256 * After rx enable if managability is enabled then there is likely some
1257 * bad data at the start of the fifo and possibly in the DMA fifo. This
1258 * function clears the fifos and flushes any packets that came in as rx was
1261 void igb_rx_fifo_flush_82575(struct e1000_hw
*hw
)
1263 u32 rctl
, rlpml
, rxdctl
[4], rfctl
, temp_rctl
, rx_enabled
;
1266 if (hw
->mac
.type
!= e1000_82575
||
1267 !(rd32(E1000_MANC
) & E1000_MANC_RCV_TCO_EN
))
1270 /* Disable all RX queues */
1271 for (i
= 0; i
< 4; i
++) {
1272 rxdctl
[i
] = rd32(E1000_RXDCTL(i
));
1273 wr32(E1000_RXDCTL(i
),
1274 rxdctl
[i
] & ~E1000_RXDCTL_QUEUE_ENABLE
);
1276 /* Poll all queues to verify they have shut down */
1277 for (ms_wait
= 0; ms_wait
< 10; ms_wait
++) {
1280 for (i
= 0; i
< 4; i
++)
1281 rx_enabled
|= rd32(E1000_RXDCTL(i
));
1282 if (!(rx_enabled
& E1000_RXDCTL_QUEUE_ENABLE
))
1287 hw_dbg("Queue disable timed out after 10ms\n");
1289 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1290 * incoming packets are rejected. Set enable and wait 2ms so that
1291 * any packet that was coming in as RCTL.EN was set is flushed
1293 rfctl
= rd32(E1000_RFCTL
);
1294 wr32(E1000_RFCTL
, rfctl
& ~E1000_RFCTL_LEF
);
1296 rlpml
= rd32(E1000_RLPML
);
1297 wr32(E1000_RLPML
, 0);
1299 rctl
= rd32(E1000_RCTL
);
1300 temp_rctl
= rctl
& ~(E1000_RCTL_EN
| E1000_RCTL_SBP
);
1301 temp_rctl
|= E1000_RCTL_LPE
;
1303 wr32(E1000_RCTL
, temp_rctl
);
1304 wr32(E1000_RCTL
, temp_rctl
| E1000_RCTL_EN
);
1308 /* Enable RX queues that were previously enabled and restore our
1311 for (i
= 0; i
< 4; i
++)
1312 wr32(E1000_RXDCTL(i
), rxdctl
[i
]);
1313 wr32(E1000_RCTL
, rctl
);
1316 wr32(E1000_RLPML
, rlpml
);
1317 wr32(E1000_RFCTL
, rfctl
);
1319 /* Flush receive errors generated by workaround */
1326 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1327 * @hw: pointer to the HW structure
1329 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1330 * however the hardware default for these parts is 500us to 1ms which is less
1331 * than the 10ms recommended by the pci-e spec. To address this we need to
1332 * increase the value to either 10ms to 200ms for capability version 1 config,
1333 * or 16ms to 55ms for version 2.
1335 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
)
1337 u32 gcr
= rd32(E1000_GCR
);
1341 /* only take action if timeout value is defaulted to 0 */
1342 if (gcr
& E1000_GCR_CMPL_TMOUT_MASK
)
1346 * if capababilities version is type 1 we can write the
1347 * timeout of 10ms to 200ms through the GCR register
1349 if (!(gcr
& E1000_GCR_CAP_VER2
)) {
1350 gcr
|= E1000_GCR_CMPL_TMOUT_10ms
;
1355 * for version 2 capabilities we need to write the config space
1356 * directly in order to set the completion timeout value for
1359 ret_val
= igb_read_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1364 pcie_devctl2
|= PCIE_DEVICE_CONTROL2_16ms
;
1366 ret_val
= igb_write_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1369 /* disable completion timeout resend */
1370 gcr
&= ~E1000_GCR_CMPL_TMOUT_RESEND
;
1372 wr32(E1000_GCR
, gcr
);
1377 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1378 * @hw: pointer to the hardware struct
1379 * @enable: state to enter, either enabled or disabled
1381 * enables/disables L2 switch loopback functionality.
1383 void igb_vmdq_set_loopback_pf(struct e1000_hw
*hw
, bool enable
)
1385 u32 dtxswc
= rd32(E1000_DTXSWC
);
1388 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1390 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1392 wr32(E1000_DTXSWC
, dtxswc
);
1396 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1397 * @hw: pointer to the hardware struct
1398 * @enable: state to enter, either enabled or disabled
1400 * enables/disables replication of packets across multiple pools.
1402 void igb_vmdq_set_replication_pf(struct e1000_hw
*hw
, bool enable
)
1404 u32 vt_ctl
= rd32(E1000_VT_CTL
);
1407 vt_ctl
|= E1000_VT_CTL_VM_REPL_EN
;
1409 vt_ctl
&= ~E1000_VT_CTL_VM_REPL_EN
;
1411 wr32(E1000_VT_CTL
, vt_ctl
);
1414 static struct e1000_mac_operations e1000_mac_ops_82575
= {
1415 .reset_hw
= igb_reset_hw_82575
,
1416 .init_hw
= igb_init_hw_82575
,
1417 .check_for_link
= igb_check_for_link_82575
,
1418 .rar_set
= igb_rar_set
,
1419 .read_mac_addr
= igb_read_mac_addr_82575
,
1420 .get_speed_and_duplex
= igb_get_speed_and_duplex_copper
,
1423 static struct e1000_phy_operations e1000_phy_ops_82575
= {
1424 .acquire
= igb_acquire_phy_82575
,
1425 .get_cfg_done
= igb_get_cfg_done_82575
,
1426 .release
= igb_release_phy_82575
,
1429 static struct e1000_nvm_operations e1000_nvm_ops_82575
= {
1430 .acquire
= igb_acquire_nvm_82575
,
1431 .read
= igb_read_nvm_eerd
,
1432 .release
= igb_release_nvm_82575
,
1433 .write
= igb_write_nvm_spi
,
1436 const struct e1000_info e1000_82575_info
= {
1437 .get_invariants
= igb_get_invariants_82575
,
1438 .mac_ops
= &e1000_mac_ops_82575
,
1439 .phy_ops
= &e1000_phy_ops_82575
,
1440 .nvm_ops
= &e1000_nvm_ops_82575
,