initial commit with v2.6.32.60
[linux-2.6.32.60-moxart.git] / drivers / net / wireless / ath / ath5k / eeprom.c
blobcaed62b0f35bf20b6868b78057d4240b9d4e09ea
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #include "ath5k.h"
25 #include "reg.h"
26 #include "debug.h"
27 #include "base.h"
30 * Read from eeprom
32 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
34 u32 status, timeout;
36 ATH5K_TRACE(ah->ah_sc);
38 * Initialize EEPROM access
40 if (ah->ah_version == AR5K_AR5210) {
41 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
42 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
43 } else {
44 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
45 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
46 AR5K_EEPROM_CMD_READ);
49 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
50 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
51 if (status & AR5K_EEPROM_STAT_RDDONE) {
52 if (status & AR5K_EEPROM_STAT_RDERR)
53 return -EIO;
54 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
55 0xffff);
56 return 0;
58 udelay(15);
61 return -ETIMEDOUT;
65 * Translate binary channel representation in EEPROM to frequency
67 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
68 unsigned int mode)
70 u16 val;
72 if (bin == AR5K_EEPROM_CHANNEL_DIS)
73 return bin;
75 if (mode == AR5K_EEPROM_MODE_11A) {
76 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
77 val = (5 * bin) + 4800;
78 else
79 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
80 (bin * 10) + 5100;
81 } else {
82 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
83 val = bin + 2300;
84 else
85 val = bin + 2400;
88 return val;
92 * Initialize eeprom & capabilities structs
94 static int
95 ath5k_eeprom_init_header(struct ath5k_hw *ah)
97 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
98 int ret;
99 u16 val;
100 u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
103 * Read values from EEPROM and store them in the capability structure
105 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
106 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
107 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
108 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
109 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
111 /* Return if we have an old EEPROM */
112 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
113 return 0;
116 * Validate the checksum of the EEPROM date. There are some
117 * devices with invalid EEPROMs.
119 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
120 if (val) {
121 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
122 AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
123 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
124 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
127 * Fail safe check to prevent stupid loops due
128 * to busted EEPROMs. XXX: This value is likely too
129 * big still, waiting on a better value.
131 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
132 ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
133 "%d (0x%04x) max expected: %d (0x%04x)\n",
134 eep_max, eep_max,
135 3 * AR5K_EEPROM_INFO_MAX,
136 3 * AR5K_EEPROM_INFO_MAX);
137 return -EIO;
141 for (cksum = 0, offset = 0; offset < eep_max; offset++) {
142 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
143 cksum ^= val;
145 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
146 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
147 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
148 cksum, eep_max,
149 eep_max == AR5K_EEPROM_INFO_MAX ?
150 "default size" : "custom size");
151 return -EIO;
154 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
155 ee_ant_gain);
157 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
158 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
159 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
161 /* XXX: Don't know which versions include these two */
162 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
164 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
165 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
167 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
168 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
169 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
170 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
174 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
175 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
176 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
177 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
179 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
180 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
181 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
184 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
186 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
187 ee->ee_is_hb63 = true;
188 else
189 ee->ee_is_hb63 = false;
191 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
192 ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
193 ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
195 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
196 * and enable serdes programming if needed.
198 * XXX: Serdes values seem to be fixed so
199 * no need to read them here, we write them
200 * during ath5k_hw_attach */
201 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
202 ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
203 true : false;
205 return 0;
210 * Read antenna infos from eeprom
212 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
213 unsigned int mode)
215 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
216 u32 o = *offset;
217 u16 val;
218 int ret, i = 0;
220 AR5K_EEPROM_READ(o++, val);
221 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
222 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
223 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
225 AR5K_EEPROM_READ(o++, val);
226 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
227 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
228 ee->ee_ant_control[mode][i++] = val & 0x3f;
230 AR5K_EEPROM_READ(o++, val);
231 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
232 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
233 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
235 AR5K_EEPROM_READ(o++, val);
236 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
237 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
238 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
239 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
241 AR5K_EEPROM_READ(o++, val);
242 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
243 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
244 ee->ee_ant_control[mode][i++] = val & 0x3f;
246 /* Get antenna switch tables */
247 ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
248 (ee->ee_ant_control[mode][0] << 4);
249 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
250 ee->ee_ant_control[mode][1] |
251 (ee->ee_ant_control[mode][2] << 6) |
252 (ee->ee_ant_control[mode][3] << 12) |
253 (ee->ee_ant_control[mode][4] << 18) |
254 (ee->ee_ant_control[mode][5] << 24);
255 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
256 ee->ee_ant_control[mode][6] |
257 (ee->ee_ant_control[mode][7] << 6) |
258 (ee->ee_ant_control[mode][8] << 12) |
259 (ee->ee_ant_control[mode][9] << 18) |
260 (ee->ee_ant_control[mode][10] << 24);
262 /* return new offset */
263 *offset = o;
265 return 0;
269 * Read supported modes and some mode-specific calibration data
270 * from eeprom
272 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
273 unsigned int mode)
275 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
276 u32 o = *offset;
277 u16 val;
278 int ret;
280 ee->ee_n_piers[mode] = 0;
281 AR5K_EEPROM_READ(o++, val);
282 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
283 switch(mode) {
284 case AR5K_EEPROM_MODE_11A:
285 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
286 ee->ee_db[mode][3] = (val >> 2) & 0x7;
287 ee->ee_ob[mode][2] = (val << 1) & 0x7;
289 AR5K_EEPROM_READ(o++, val);
290 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
291 ee->ee_db[mode][2] = (val >> 12) & 0x7;
292 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
293 ee->ee_db[mode][1] = (val >> 6) & 0x7;
294 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
295 ee->ee_db[mode][0] = val & 0x7;
296 break;
297 case AR5K_EEPROM_MODE_11G:
298 case AR5K_EEPROM_MODE_11B:
299 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
300 ee->ee_db[mode][1] = val & 0x7;
301 break;
304 AR5K_EEPROM_READ(o++, val);
305 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
306 ee->ee_thr_62[mode] = val & 0xff;
308 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
309 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
311 AR5K_EEPROM_READ(o++, val);
312 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
313 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
315 AR5K_EEPROM_READ(o++, val);
316 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
318 if ((val & 0xff) & 0x80)
319 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
320 else
321 ee->ee_noise_floor_thr[mode] = val & 0xff;
323 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
324 ee->ee_noise_floor_thr[mode] =
325 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
327 AR5K_EEPROM_READ(o++, val);
328 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
329 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
330 ee->ee_xpd[mode] = val & 0x1;
332 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
333 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
335 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
336 AR5K_EEPROM_READ(o++, val);
337 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
339 if (mode == AR5K_EEPROM_MODE_11A)
340 ee->ee_xr_power[mode] = val & 0x3f;
341 else {
342 ee->ee_ob[mode][0] = val & 0x7;
343 ee->ee_db[mode][0] = (val >> 3) & 0x7;
347 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
348 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
349 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
350 } else {
351 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
353 AR5K_EEPROM_READ(o++, val);
354 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
356 if (mode == AR5K_EEPROM_MODE_11G) {
357 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
358 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
359 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
363 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
364 mode == AR5K_EEPROM_MODE_11A) {
365 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
366 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
369 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
370 goto done;
372 /* Note: >= v5 have bg freq piers on another location
373 * so these freq piers are ignored for >= v5 (should be 0xff
374 * anyway) */
375 switch(mode) {
376 case AR5K_EEPROM_MODE_11A:
377 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
378 break;
380 AR5K_EEPROM_READ(o++, val);
381 ee->ee_margin_tx_rx[mode] = val & 0x3f;
382 break;
383 case AR5K_EEPROM_MODE_11B:
384 AR5K_EEPROM_READ(o++, val);
386 ee->ee_pwr_cal_b[0].freq =
387 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
388 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
389 ee->ee_n_piers[mode]++;
391 ee->ee_pwr_cal_b[1].freq =
392 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
393 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
394 ee->ee_n_piers[mode]++;
396 AR5K_EEPROM_READ(o++, val);
397 ee->ee_pwr_cal_b[2].freq =
398 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
399 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
400 ee->ee_n_piers[mode]++;
402 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
403 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
404 break;
405 case AR5K_EEPROM_MODE_11G:
406 AR5K_EEPROM_READ(o++, val);
408 ee->ee_pwr_cal_g[0].freq =
409 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
410 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
411 ee->ee_n_piers[mode]++;
413 ee->ee_pwr_cal_g[1].freq =
414 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
415 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
416 ee->ee_n_piers[mode]++;
418 AR5K_EEPROM_READ(o++, val);
419 ee->ee_turbo_max_power[mode] = val & 0x7f;
420 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
422 AR5K_EEPROM_READ(o++, val);
423 ee->ee_pwr_cal_g[2].freq =
424 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
425 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
426 ee->ee_n_piers[mode]++;
428 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
429 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
431 AR5K_EEPROM_READ(o++, val);
432 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
433 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
435 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
436 AR5K_EEPROM_READ(o++, val);
437 ee->ee_cck_ofdm_gain_delta = val & 0xff;
439 break;
443 * Read turbo mode information on newer EEPROM versions
445 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
446 goto done;
448 switch (mode){
449 case AR5K_EEPROM_MODE_11A:
450 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
452 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
453 AR5K_EEPROM_READ(o++, val);
454 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
455 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
457 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
458 AR5K_EEPROM_READ(o++, val);
459 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
460 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
462 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
463 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
464 break;
465 case AR5K_EEPROM_MODE_11G:
466 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
468 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
469 AR5K_EEPROM_READ(o++, val);
470 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
471 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
473 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
474 AR5K_EEPROM_READ(o++, val);
475 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
476 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
477 break;
480 done:
481 /* return new offset */
482 *offset = o;
484 return 0;
487 /* Read mode-specific data (except power calibration data) */
488 static int
489 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
491 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
492 u32 mode_offset[3];
493 unsigned int mode;
494 u32 offset;
495 int ret;
498 * Get values for all modes
500 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
501 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
502 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
504 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
505 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
507 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
508 offset = mode_offset[mode];
510 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
511 if (ret)
512 return ret;
514 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
515 if (ret)
516 return ret;
519 /* override for older eeprom versions for better performance */
520 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
521 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
522 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
523 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
526 return 0;
529 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
530 * frequency mask) */
531 static inline int
532 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
533 struct ath5k_chan_pcal_info *pc, unsigned int mode)
535 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
536 int o = *offset;
537 int i = 0;
538 u8 freq1, freq2;
539 int ret;
540 u16 val;
542 ee->ee_n_piers[mode] = 0;
543 while(i < max) {
544 AR5K_EEPROM_READ(o++, val);
546 freq1 = val & 0xff;
547 if (!freq1)
548 break;
550 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
551 freq1, mode);
552 ee->ee_n_piers[mode]++;
554 freq2 = (val >> 8) & 0xff;
555 if (!freq2)
556 break;
558 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
559 freq2, mode);
560 ee->ee_n_piers[mode]++;
563 /* return new offset */
564 *offset = o;
566 return 0;
569 /* Read frequency piers for 802.11a */
570 static int
571 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
573 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
574 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
575 int i, ret;
576 u16 val;
577 u8 mask;
579 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
580 ath5k_eeprom_read_freq_list(ah, &offset,
581 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
582 AR5K_EEPROM_MODE_11A);
583 } else {
584 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
586 AR5K_EEPROM_READ(offset++, val);
587 pcal[0].freq = (val >> 9) & mask;
588 pcal[1].freq = (val >> 2) & mask;
589 pcal[2].freq = (val << 5) & mask;
591 AR5K_EEPROM_READ(offset++, val);
592 pcal[2].freq |= (val >> 11) & 0x1f;
593 pcal[3].freq = (val >> 4) & mask;
594 pcal[4].freq = (val << 3) & mask;
596 AR5K_EEPROM_READ(offset++, val);
597 pcal[4].freq |= (val >> 13) & 0x7;
598 pcal[5].freq = (val >> 6) & mask;
599 pcal[6].freq = (val << 1) & mask;
601 AR5K_EEPROM_READ(offset++, val);
602 pcal[6].freq |= (val >> 15) & 0x1;
603 pcal[7].freq = (val >> 8) & mask;
604 pcal[8].freq = (val >> 1) & mask;
605 pcal[9].freq = (val << 6) & mask;
607 AR5K_EEPROM_READ(offset++, val);
608 pcal[9].freq |= (val >> 10) & 0x3f;
610 /* Fixed number of piers */
611 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
613 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
614 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
615 pcal[i].freq, AR5K_EEPROM_MODE_11A);
619 return 0;
622 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
623 static inline int
624 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
626 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
627 struct ath5k_chan_pcal_info *pcal;
629 switch(mode) {
630 case AR5K_EEPROM_MODE_11B:
631 pcal = ee->ee_pwr_cal_b;
632 break;
633 case AR5K_EEPROM_MODE_11G:
634 pcal = ee->ee_pwr_cal_g;
635 break;
636 default:
637 return -EINVAL;
640 ath5k_eeprom_read_freq_list(ah, &offset,
641 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
642 mode);
644 return 0;
648 * Read power calibration for RF5111 chips
650 * For RF5111 we have an XPD -eXternal Power Detector- curve
651 * for each calibrated channel. Each curve has 0,5dB Power steps
652 * on x axis and PCDAC steps (offsets) on y axis and looks like an
653 * exponential function. To recreate the curve we read 11 points
654 * here and interpolate later.
657 /* Used to match PCDAC steps with power values on RF5111 chips
658 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
659 * steps that match with the power values we read from eeprom. On
660 * older eeprom versions (< 3.2) these steps are equaly spaced at
661 * 10% of the pcdac curve -until the curve reaches it's maximum-
662 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
663 * these 11 steps are spaced in a different way. This function returns
664 * the pcdac steps based on eeprom version and curve min/max so that we
665 * can have pcdac/pwr points.
667 static inline void
668 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
670 static const u16 intercepts3[] =
671 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
672 static const u16 intercepts3_2[] =
673 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
674 const u16 *ip;
675 int i;
677 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
678 ip = intercepts3_2;
679 else
680 ip = intercepts3;
682 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
683 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
686 /* Convert RF5111 specific data to generic raw data
687 * used by interpolation code */
688 static int
689 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
690 struct ath5k_chan_pcal_info *chinfo)
692 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
693 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
694 struct ath5k_pdgain_info *pd;
695 u8 pier, point, idx;
696 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
698 /* Fill raw data for each calibration pier */
699 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
701 pcinfo = &chinfo[pier].rf5111_info;
703 /* Allocate pd_curves for this cal pier */
704 chinfo[pier].pd_curves =
705 kcalloc(AR5K_EEPROM_N_PD_CURVES,
706 sizeof(struct ath5k_pdgain_info),
707 GFP_KERNEL);
709 if (!chinfo[pier].pd_curves)
710 return -ENOMEM;
712 /* Only one curve for RF5111
713 * find out which one and place
714 * in in pd_curves.
715 * Note: ee_x_gain is reversed here */
716 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
718 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
719 pdgain_idx[0] = idx;
720 break;
724 ee->ee_pd_gains[mode] = 1;
726 pd = &chinfo[pier].pd_curves[idx];
728 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
730 /* Allocate pd points for this curve */
731 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
732 sizeof(u8), GFP_KERNEL);
733 if (!pd->pd_step)
734 return -ENOMEM;
736 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
737 sizeof(s16), GFP_KERNEL);
738 if (!pd->pd_pwr)
739 return -ENOMEM;
741 /* Fill raw dataset
742 * (convert power to 0.25dB units
743 * for RF5112 combatibility) */
744 for (point = 0; point < pd->pd_points; point++) {
746 /* Absolute values */
747 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
749 /* Already sorted */
750 pd->pd_step[point] = pcinfo->pcdac[point];
753 /* Set min/max pwr */
754 chinfo[pier].min_pwr = pd->pd_pwr[0];
755 chinfo[pier].max_pwr = pd->pd_pwr[10];
759 return 0;
762 /* Parse EEPROM data */
763 static int
764 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
766 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
767 struct ath5k_chan_pcal_info *pcal;
768 int offset, ret;
769 int i;
770 u16 val;
772 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
773 switch(mode) {
774 case AR5K_EEPROM_MODE_11A:
775 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
776 return 0;
778 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
779 offset + AR5K_EEPROM_GROUP1_OFFSET);
780 if (ret < 0)
781 return ret;
783 offset += AR5K_EEPROM_GROUP2_OFFSET;
784 pcal = ee->ee_pwr_cal_a;
785 break;
786 case AR5K_EEPROM_MODE_11B:
787 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
788 !AR5K_EEPROM_HDR_11G(ee->ee_header))
789 return 0;
791 pcal = ee->ee_pwr_cal_b;
792 offset += AR5K_EEPROM_GROUP3_OFFSET;
794 /* fixed piers */
795 pcal[0].freq = 2412;
796 pcal[1].freq = 2447;
797 pcal[2].freq = 2484;
798 ee->ee_n_piers[mode] = 3;
799 break;
800 case AR5K_EEPROM_MODE_11G:
801 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
802 return 0;
804 pcal = ee->ee_pwr_cal_g;
805 offset += AR5K_EEPROM_GROUP4_OFFSET;
807 /* fixed piers */
808 pcal[0].freq = 2312;
809 pcal[1].freq = 2412;
810 pcal[2].freq = 2484;
811 ee->ee_n_piers[mode] = 3;
812 break;
813 default:
814 return -EINVAL;
817 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
818 struct ath5k_chan_pcal_info_rf5111 *cdata =
819 &pcal[i].rf5111_info;
821 AR5K_EEPROM_READ(offset++, val);
822 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
823 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
824 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
826 AR5K_EEPROM_READ(offset++, val);
827 cdata->pwr[0] |= ((val >> 14) & 0x3);
828 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
829 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
830 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
832 AR5K_EEPROM_READ(offset++, val);
833 cdata->pwr[3] |= ((val >> 12) & 0xf);
834 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
835 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
837 AR5K_EEPROM_READ(offset++, val);
838 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
839 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
840 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
842 AR5K_EEPROM_READ(offset++, val);
843 cdata->pwr[8] |= ((val >> 14) & 0x3);
844 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
845 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
847 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
848 cdata->pcdac_max, cdata->pcdac);
851 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
856 * Read power calibration for RF5112 chips
858 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
859 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
860 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
861 * power steps on x axis and PCDAC steps on y axis and looks like a
862 * linear function. To recreate the curve and pass the power values
863 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
864 * and 3 points for xpd 3 (higher gain -> lower power) here and
865 * interpolate later.
867 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
870 /* Convert RF5112 specific data to generic raw data
871 * used by interpolation code */
872 static int
873 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
874 struct ath5k_chan_pcal_info *chinfo)
876 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
877 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
878 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
879 unsigned int pier, pdg, point;
881 /* Fill raw data for each calibration pier */
882 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
884 pcinfo = &chinfo[pier].rf5112_info;
886 /* Allocate pd_curves for this cal pier */
887 chinfo[pier].pd_curves =
888 kcalloc(AR5K_EEPROM_N_PD_CURVES,
889 sizeof(struct ath5k_pdgain_info),
890 GFP_KERNEL);
892 if (!chinfo[pier].pd_curves)
893 return -ENOMEM;
895 /* Fill pd_curves */
896 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
898 u8 idx = pdgain_idx[pdg];
899 struct ath5k_pdgain_info *pd =
900 &chinfo[pier].pd_curves[idx];
902 /* Lowest gain curve (max power) */
903 if (pdg == 0) {
904 /* One more point for better accuracy */
905 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
907 /* Allocate pd points for this curve */
908 pd->pd_step = kcalloc(pd->pd_points,
909 sizeof(u8), GFP_KERNEL);
911 if (!pd->pd_step)
912 return -ENOMEM;
914 pd->pd_pwr = kcalloc(pd->pd_points,
915 sizeof(s16), GFP_KERNEL);
917 if (!pd->pd_pwr)
918 return -ENOMEM;
921 /* Fill raw dataset
922 * (all power levels are in 0.25dB units) */
923 pd->pd_step[0] = pcinfo->pcdac_x0[0];
924 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
926 for (point = 1; point < pd->pd_points;
927 point++) {
928 /* Absolute values */
929 pd->pd_pwr[point] =
930 pcinfo->pwr_x0[point];
932 /* Deltas */
933 pd->pd_step[point] =
934 pd->pd_step[point - 1] +
935 pcinfo->pcdac_x0[point];
938 /* Set min power for this frequency */
939 chinfo[pier].min_pwr = pd->pd_pwr[0];
941 /* Highest gain curve (min power) */
942 } else if (pdg == 1) {
944 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
946 /* Allocate pd points for this curve */
947 pd->pd_step = kcalloc(pd->pd_points,
948 sizeof(u8), GFP_KERNEL);
950 if (!pd->pd_step)
951 return -ENOMEM;
953 pd->pd_pwr = kcalloc(pd->pd_points,
954 sizeof(s16), GFP_KERNEL);
956 if (!pd->pd_pwr)
957 return -ENOMEM;
959 /* Fill raw dataset
960 * (all power levels are in 0.25dB units) */
961 for (point = 0; point < pd->pd_points;
962 point++) {
963 /* Absolute values */
964 pd->pd_pwr[point] =
965 pcinfo->pwr_x3[point];
967 /* Fixed points */
968 pd->pd_step[point] =
969 pcinfo->pcdac_x3[point];
972 /* Since we have a higher gain curve
973 * override min power */
974 chinfo[pier].min_pwr = pd->pd_pwr[0];
979 return 0;
982 /* Parse EEPROM data */
983 static int
984 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
986 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
987 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
988 struct ath5k_chan_pcal_info *gen_chan_info;
989 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
990 u32 offset;
991 u8 i, c;
992 u16 val;
993 int ret;
994 u8 pd_gains = 0;
996 /* Count how many curves we have and
997 * identify them (which one of the 4
998 * available curves we have on each count).
999 * Curves are stored from lower (x0) to
1000 * higher (x3) gain */
1001 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1002 /* ee_x_gain[mode] is x gain mask */
1003 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1004 pdgain_idx[pd_gains++] = i;
1006 ee->ee_pd_gains[mode] = pd_gains;
1008 if (pd_gains == 0 || pd_gains > 2)
1009 return -EINVAL;
1011 switch (mode) {
1012 case AR5K_EEPROM_MODE_11A:
1014 * Read 5GHz EEPROM channels
1016 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1017 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1019 offset += AR5K_EEPROM_GROUP2_OFFSET;
1020 gen_chan_info = ee->ee_pwr_cal_a;
1021 break;
1022 case AR5K_EEPROM_MODE_11B:
1023 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1024 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1025 offset += AR5K_EEPROM_GROUP3_OFFSET;
1027 /* NB: frequency piers parsed during mode init */
1028 gen_chan_info = ee->ee_pwr_cal_b;
1029 break;
1030 case AR5K_EEPROM_MODE_11G:
1031 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1032 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1033 offset += AR5K_EEPROM_GROUP4_OFFSET;
1034 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1035 offset += AR5K_EEPROM_GROUP2_OFFSET;
1037 /* NB: frequency piers parsed during mode init */
1038 gen_chan_info = ee->ee_pwr_cal_g;
1039 break;
1040 default:
1041 return -EINVAL;
1044 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1045 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1047 /* Power values in quarter dB
1048 * for the lower xpd gain curve
1049 * (0 dBm -> higher output power) */
1050 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1051 AR5K_EEPROM_READ(offset++, val);
1052 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1053 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1056 /* PCDAC steps
1057 * corresponding to the above power
1058 * measurements */
1059 AR5K_EEPROM_READ(offset++, val);
1060 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1061 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1062 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1064 /* Power values in quarter dB
1065 * for the higher xpd gain curve
1066 * (18 dBm -> lower output power) */
1067 AR5K_EEPROM_READ(offset++, val);
1068 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1069 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1071 AR5K_EEPROM_READ(offset++, val);
1072 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1074 /* PCDAC steps
1075 * corresponding to the above power
1076 * measurements (fixed) */
1077 chan_pcal_info->pcdac_x3[0] = 20;
1078 chan_pcal_info->pcdac_x3[1] = 35;
1079 chan_pcal_info->pcdac_x3[2] = 63;
1081 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1082 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1084 /* Last xpd0 power level is also channel maximum */
1085 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1086 } else {
1087 chan_pcal_info->pcdac_x0[0] = 1;
1088 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1093 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1098 * Read power calibration for RF2413 chips
1100 * For RF2413 we have a Power to PDDAC table (Power Detector)
1101 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1102 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1103 * axis and looks like an exponential function like the RF5111 curve.
1105 * To recreate the curves we read here the points and interpolate
1106 * later. Note that in most cases only 2 (higher and lower) curves are
1107 * used (like RF5112) but vendors have the oportunity to include all
1108 * 4 curves on eeprom. The final curve (higher power) has an extra
1109 * point for better accuracy like RF5112.
1112 /* For RF2413 power calibration data doesn't start on a fixed location and
1113 * if a mode is not supported, it's section is missing -not zeroed-.
1114 * So we need to calculate the starting offset for each section by using
1115 * these two functions */
1117 /* Return the size of each section based on the mode and the number of pd
1118 * gains available (maximum 4). */
1119 static inline unsigned int
1120 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1122 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1123 unsigned int sz;
1125 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1126 sz *= ee->ee_n_piers[mode];
1128 return sz;
1131 /* Return the starting offset for a section based on the modes supported
1132 * and each section's size. */
1133 static unsigned int
1134 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1136 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1138 switch(mode) {
1139 case AR5K_EEPROM_MODE_11G:
1140 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1141 offset += ath5k_pdgains_size_2413(ee,
1142 AR5K_EEPROM_MODE_11B) +
1143 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1144 /* fall through */
1145 case AR5K_EEPROM_MODE_11B:
1146 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1147 offset += ath5k_pdgains_size_2413(ee,
1148 AR5K_EEPROM_MODE_11A) +
1149 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1150 /* fall through */
1151 case AR5K_EEPROM_MODE_11A:
1152 break;
1153 default:
1154 break;
1157 return offset;
1160 /* Convert RF2413 specific data to generic raw data
1161 * used by interpolation code */
1162 static int
1163 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1164 struct ath5k_chan_pcal_info *chinfo)
1166 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1167 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1168 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1169 unsigned int pier, pdg, point;
1171 /* Fill raw data for each calibration pier */
1172 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1174 pcinfo = &chinfo[pier].rf2413_info;
1176 /* Allocate pd_curves for this cal pier */
1177 chinfo[pier].pd_curves =
1178 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1179 sizeof(struct ath5k_pdgain_info),
1180 GFP_KERNEL);
1182 if (!chinfo[pier].pd_curves)
1183 return -ENOMEM;
1185 /* Fill pd_curves */
1186 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1188 u8 idx = pdgain_idx[pdg];
1189 struct ath5k_pdgain_info *pd =
1190 &chinfo[pier].pd_curves[idx];
1192 /* One more point for the highest power
1193 * curve (lowest gain) */
1194 if (pdg == ee->ee_pd_gains[mode] - 1)
1195 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1196 else
1197 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1199 /* Allocate pd points for this curve */
1200 pd->pd_step = kcalloc(pd->pd_points,
1201 sizeof(u8), GFP_KERNEL);
1203 if (!pd->pd_step)
1204 return -ENOMEM;
1206 pd->pd_pwr = kcalloc(pd->pd_points,
1207 sizeof(s16), GFP_KERNEL);
1209 if (!pd->pd_pwr)
1210 return -ENOMEM;
1212 /* Fill raw dataset
1213 * convert all pwr levels to
1214 * quarter dB for RF5112 combatibility */
1215 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1216 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1218 for (point = 1; point < pd->pd_points; point++) {
1220 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1221 2 * pcinfo->pwr[pdg][point - 1];
1223 pd->pd_step[point] = pd->pd_step[point - 1] +
1224 pcinfo->pddac[pdg][point - 1];
1228 /* Highest gain curve -> min power */
1229 if (pdg == 0)
1230 chinfo[pier].min_pwr = pd->pd_pwr[0];
1232 /* Lowest gain curve -> max power */
1233 if (pdg == ee->ee_pd_gains[mode] - 1)
1234 chinfo[pier].max_pwr =
1235 pd->pd_pwr[pd->pd_points - 1];
1239 return 0;
1242 /* Parse EEPROM data */
1243 static int
1244 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1246 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1247 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1248 struct ath5k_chan_pcal_info *chinfo;
1249 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1250 u32 offset;
1251 int idx, i, ret;
1252 u16 val;
1253 u8 pd_gains = 0;
1255 /* Count how many curves we have and
1256 * identify them (which one of the 4
1257 * available curves we have on each count).
1258 * Curves are stored from higher to
1259 * lower gain so we go backwards */
1260 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1261 /* ee_x_gain[mode] is x gain mask */
1262 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1263 pdgain_idx[pd_gains++] = idx;
1266 ee->ee_pd_gains[mode] = pd_gains;
1268 if (pd_gains == 0)
1269 return -EINVAL;
1271 offset = ath5k_cal_data_offset_2413(ee, mode);
1272 switch (mode) {
1273 case AR5K_EEPROM_MODE_11A:
1274 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1275 return 0;
1277 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1278 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1279 chinfo = ee->ee_pwr_cal_a;
1280 break;
1281 case AR5K_EEPROM_MODE_11B:
1282 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1283 return 0;
1285 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1286 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1287 chinfo = ee->ee_pwr_cal_b;
1288 break;
1289 case AR5K_EEPROM_MODE_11G:
1290 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1291 return 0;
1293 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1294 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1295 chinfo = ee->ee_pwr_cal_g;
1296 break;
1297 default:
1298 return -EINVAL;
1301 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1302 pcinfo = &chinfo[i].rf2413_info;
1305 * Read pwr_i, pddac_i and the first
1306 * 2 pd points (pwr, pddac)
1308 AR5K_EEPROM_READ(offset++, val);
1309 pcinfo->pwr_i[0] = val & 0x1f;
1310 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1311 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1313 AR5K_EEPROM_READ(offset++, val);
1314 pcinfo->pddac[0][0] = val & 0x3f;
1315 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1316 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1318 AR5K_EEPROM_READ(offset++, val);
1319 pcinfo->pwr[0][2] = val & 0xf;
1320 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1322 pcinfo->pwr[0][3] = 0;
1323 pcinfo->pddac[0][3] = 0;
1325 if (pd_gains > 1) {
1327 * Pd gain 0 is not the last pd gain
1328 * so it only has 2 pd points.
1329 * Continue wih pd gain 1.
1331 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1333 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1334 AR5K_EEPROM_READ(offset++, val);
1335 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1337 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1338 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1340 AR5K_EEPROM_READ(offset++, val);
1341 pcinfo->pwr[1][1] = val & 0xf;
1342 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1343 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1345 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1346 AR5K_EEPROM_READ(offset++, val);
1347 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1349 pcinfo->pwr[1][3] = 0;
1350 pcinfo->pddac[1][3] = 0;
1351 } else if (pd_gains == 1) {
1353 * Pd gain 0 is the last one so
1354 * read the extra point.
1356 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1358 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1359 AR5K_EEPROM_READ(offset++, val);
1360 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1364 * Proceed with the other pd_gains
1365 * as above.
1367 if (pd_gains > 2) {
1368 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1369 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1371 AR5K_EEPROM_READ(offset++, val);
1372 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1373 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1374 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1376 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1377 AR5K_EEPROM_READ(offset++, val);
1378 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1380 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1381 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1383 pcinfo->pwr[2][3] = 0;
1384 pcinfo->pddac[2][3] = 0;
1385 } else if (pd_gains == 2) {
1386 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1387 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1390 if (pd_gains > 3) {
1391 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1392 AR5K_EEPROM_READ(offset++, val);
1393 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1395 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1396 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1397 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1399 AR5K_EEPROM_READ(offset++, val);
1400 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1401 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1402 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1404 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1405 AR5K_EEPROM_READ(offset++, val);
1406 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1408 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1409 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1411 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1412 AR5K_EEPROM_READ(offset++, val);
1413 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1414 } else if (pd_gains == 3) {
1415 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1416 AR5K_EEPROM_READ(offset++, val);
1417 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1419 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1423 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1428 * Read per rate target power (this is the maximum tx power
1429 * supported by the card). This info is used when setting
1430 * tx power, no matter the channel.
1432 * This also works for v5 EEPROMs.
1434 static int
1435 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1437 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1438 struct ath5k_rate_pcal_info *rate_pcal_info;
1439 u8 *rate_target_pwr_num;
1440 u32 offset;
1441 u16 val;
1442 int ret, i;
1444 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1445 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1446 switch (mode) {
1447 case AR5K_EEPROM_MODE_11A:
1448 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1449 rate_pcal_info = ee->ee_rate_tpwr_a;
1450 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1451 break;
1452 case AR5K_EEPROM_MODE_11B:
1453 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1454 rate_pcal_info = ee->ee_rate_tpwr_b;
1455 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1456 break;
1457 case AR5K_EEPROM_MODE_11G:
1458 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1459 rate_pcal_info = ee->ee_rate_tpwr_g;
1460 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1461 break;
1462 default:
1463 return -EINVAL;
1466 /* Different freq mask for older eeproms (<= v3.2) */
1467 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1468 for (i = 0; i < (*rate_target_pwr_num); i++) {
1469 AR5K_EEPROM_READ(offset++, val);
1470 rate_pcal_info[i].freq =
1471 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1473 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1474 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1476 AR5K_EEPROM_READ(offset++, val);
1478 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1479 val == 0) {
1480 (*rate_target_pwr_num) = i;
1481 break;
1484 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1485 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1486 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1488 } else {
1489 for (i = 0; i < (*rate_target_pwr_num); i++) {
1490 AR5K_EEPROM_READ(offset++, val);
1491 rate_pcal_info[i].freq =
1492 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1494 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1495 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1497 AR5K_EEPROM_READ(offset++, val);
1499 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1500 val == 0) {
1501 (*rate_target_pwr_num) = i;
1502 break;
1505 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1506 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1507 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1511 return 0;
1515 * Read per channel calibration info from EEPROM
1517 * This info is used to calibrate the baseband power table. Imagine
1518 * that for each channel there is a power curve that's hw specific
1519 * (depends on amplifier etc) and we try to "correct" this curve using
1520 * offests we pass on to phy chip (baseband -> before amplifier) so that
1521 * it can use accurate power values when setting tx power (takes amplifier's
1522 * performance on each channel into account).
1524 * EEPROM provides us with the offsets for some pre-calibrated channels
1525 * and we have to interpolate to create the full table for these channels and
1526 * also the table for any channel.
1528 static int
1529 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1531 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1532 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1533 int mode;
1534 int err;
1536 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1537 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1538 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1539 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1540 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1541 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1542 else
1543 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1546 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1547 mode++) {
1548 err = read_pcal(ah, mode);
1549 if (err)
1550 return err;
1552 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1553 if (err < 0)
1554 return err;
1557 return 0;
1560 static int
1561 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1563 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1564 struct ath5k_chan_pcal_info *chinfo;
1565 u8 pier, pdg;
1567 switch (mode) {
1568 case AR5K_EEPROM_MODE_11A:
1569 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1570 return 0;
1571 chinfo = ee->ee_pwr_cal_a;
1572 break;
1573 case AR5K_EEPROM_MODE_11B:
1574 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1575 return 0;
1576 chinfo = ee->ee_pwr_cal_b;
1577 break;
1578 case AR5K_EEPROM_MODE_11G:
1579 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1580 return 0;
1581 chinfo = ee->ee_pwr_cal_g;
1582 break;
1583 default:
1584 return -EINVAL;
1587 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1588 if (!chinfo[pier].pd_curves)
1589 continue;
1591 for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
1592 struct ath5k_pdgain_info *pd =
1593 &chinfo[pier].pd_curves[pdg];
1595 kfree(pd->pd_step);
1596 kfree(pd->pd_pwr);
1599 kfree(chinfo[pier].pd_curves);
1602 return 0;
1605 void
1606 ath5k_eeprom_detach(struct ath5k_hw *ah)
1608 u8 mode;
1610 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1611 ath5k_eeprom_free_pcal_info(ah, mode);
1614 /* Read conformance test limits used for regulatory control */
1615 static int
1616 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1618 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1619 struct ath5k_edge_power *rep;
1620 unsigned int fmask, pmask;
1621 unsigned int ctl_mode;
1622 int ret, i, j;
1623 u32 offset;
1624 u16 val;
1626 pmask = AR5K_EEPROM_POWER_M;
1627 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1628 offset = AR5K_EEPROM_CTL(ee->ee_version);
1629 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1630 for (i = 0; i < ee->ee_ctls; i += 2) {
1631 AR5K_EEPROM_READ(offset++, val);
1632 ee->ee_ctl[i] = (val >> 8) & 0xff;
1633 ee->ee_ctl[i + 1] = val & 0xff;
1636 offset = AR5K_EEPROM_GROUP8_OFFSET;
1637 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1638 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1639 AR5K_EEPROM_GROUP5_OFFSET;
1640 else
1641 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1643 rep = ee->ee_ctl_pwr;
1644 for(i = 0; i < ee->ee_ctls; i++) {
1645 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1646 case AR5K_CTL_11A:
1647 case AR5K_CTL_TURBO:
1648 ctl_mode = AR5K_EEPROM_MODE_11A;
1649 break;
1650 default:
1651 ctl_mode = AR5K_EEPROM_MODE_11G;
1652 break;
1654 if (ee->ee_ctl[i] == 0) {
1655 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1656 offset += 8;
1657 else
1658 offset += 7;
1659 rep += AR5K_EEPROM_N_EDGES;
1660 continue;
1662 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1663 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1664 AR5K_EEPROM_READ(offset++, val);
1665 rep[j].freq = (val >> 8) & fmask;
1666 rep[j + 1].freq = val & fmask;
1668 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1669 AR5K_EEPROM_READ(offset++, val);
1670 rep[j].edge = (val >> 8) & pmask;
1671 rep[j].flag = (val >> 14) & 1;
1672 rep[j + 1].edge = val & pmask;
1673 rep[j + 1].flag = (val >> 6) & 1;
1675 } else {
1676 AR5K_EEPROM_READ(offset++, val);
1677 rep[0].freq = (val >> 9) & fmask;
1678 rep[1].freq = (val >> 2) & fmask;
1679 rep[2].freq = (val << 5) & fmask;
1681 AR5K_EEPROM_READ(offset++, val);
1682 rep[2].freq |= (val >> 11) & 0x1f;
1683 rep[3].freq = (val >> 4) & fmask;
1684 rep[4].freq = (val << 3) & fmask;
1686 AR5K_EEPROM_READ(offset++, val);
1687 rep[4].freq |= (val >> 13) & 0x7;
1688 rep[5].freq = (val >> 6) & fmask;
1689 rep[6].freq = (val << 1) & fmask;
1691 AR5K_EEPROM_READ(offset++, val);
1692 rep[6].freq |= (val >> 15) & 0x1;
1693 rep[7].freq = (val >> 8) & fmask;
1695 rep[0].edge = (val >> 2) & pmask;
1696 rep[1].edge = (val << 4) & pmask;
1698 AR5K_EEPROM_READ(offset++, val);
1699 rep[1].edge |= (val >> 12) & 0xf;
1700 rep[2].edge = (val >> 6) & pmask;
1701 rep[3].edge = val & pmask;
1703 AR5K_EEPROM_READ(offset++, val);
1704 rep[4].edge = (val >> 10) & pmask;
1705 rep[5].edge = (val >> 4) & pmask;
1706 rep[6].edge = (val << 2) & pmask;
1708 AR5K_EEPROM_READ(offset++, val);
1709 rep[6].edge |= (val >> 14) & 0x3;
1710 rep[7].edge = (val >> 8) & pmask;
1712 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1713 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1714 rep[j].freq, ctl_mode);
1716 rep += AR5K_EEPROM_N_EDGES;
1719 return 0;
1722 static int
1723 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1725 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1726 u32 offset;
1727 u16 val;
1728 int ret = 0, i;
1730 offset = AR5K_EEPROM_CTL(ee->ee_version) +
1731 AR5K_EEPROM_N_CTLS(ee->ee_version);
1733 if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1734 /* No spur info for 5GHz */
1735 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1736 /* 2 channels for 2GHz (2464/2420) */
1737 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1738 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1739 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1740 } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1741 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1742 AR5K_EEPROM_READ(offset, val);
1743 ee->ee_spur_chans[i][0] = val;
1744 AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1745 val);
1746 ee->ee_spur_chans[i][1] = val;
1747 offset++;
1751 return ret;
1755 * Initialize eeprom data structure
1758 ath5k_eeprom_init(struct ath5k_hw *ah)
1760 int err;
1762 err = ath5k_eeprom_init_header(ah);
1763 if (err < 0)
1764 return err;
1766 err = ath5k_eeprom_init_modes(ah);
1767 if (err < 0)
1768 return err;
1770 err = ath5k_eeprom_read_pcal_info(ah);
1771 if (err < 0)
1772 return err;
1774 err = ath5k_eeprom_read_ctl_info(ah);
1775 if (err < 0)
1776 return err;
1778 err = ath5k_eeprom_read_spur_chans(ah);
1779 if (err < 0)
1780 return err;
1782 return 0;
1786 * Read the MAC address from eeprom
1788 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1790 u8 mac_d[ETH_ALEN] = {};
1791 u32 total, offset;
1792 u16 data;
1793 int octet, ret;
1795 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1796 if (ret)
1797 return ret;
1799 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1800 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1801 if (ret)
1802 return ret;
1804 total += data;
1805 mac_d[octet + 1] = data & 0xff;
1806 mac_d[octet] = data >> 8;
1807 octet += 2;
1810 if (!total || total == 3 * 0xffff)
1811 return -EINVAL;
1813 memcpy(mac, mac_d, ETH_ALEN);
1815 return 0;