2 * Copyright (C) 2001-2004 by David Brownell
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or (at your
7 * option) any later version.
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 /* this file is part of ehci-hcd.c */
21 /*-------------------------------------------------------------------------*/
24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28 * buffers needed for the larger number). We use one QH per endpoint, queue
29 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32 * interrupts) needs careful scheduling. Performance improvements can be
33 * an ongoing challenge. That's in "ehci-sched.c".
35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37 * (b) special fields in qh entries or (c) split iso entries. TTs will
38 * buffer low/full speed data so the host collects it at high speed.
41 /*-------------------------------------------------------------------------*/
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
46 qtd_fill(struct ehci_hcd
*ehci
, struct ehci_qtd
*qtd
, dma_addr_t buf
,
47 size_t len
, int token
, int maxpacket
)
52 /* one buffer entry per 4K ... first might be short or unaligned */
53 qtd
->hw_buf
[0] = cpu_to_hc32(ehci
, (u32
)addr
);
54 qtd
->hw_buf_hi
[0] = cpu_to_hc32(ehci
, (u32
)(addr
>> 32));
55 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
56 if (likely (len
< count
)) /* ... iff needed */
62 /* per-qtd limit: from 16K to 20K (best alignment) */
63 for (i
= 1; count
< len
&& i
< 5; i
++) {
65 qtd
->hw_buf
[i
] = cpu_to_hc32(ehci
, (u32
)addr
);
66 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(ehci
,
69 if ((count
+ 0x1000) < len
)
75 /* short packets may only terminate transfers */
77 count
-= (count
% maxpacket
);
79 qtd
->hw_token
= cpu_to_hc32(ehci
, (count
<< 16) | token
);
85 /*-------------------------------------------------------------------------*/
88 qh_update (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
, struct ehci_qtd
*qtd
)
90 struct ehci_qh_hw
*hw
= qh
->hw
;
92 /* writes to an active overlay are unsafe */
93 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
95 hw
->hw_qtd_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
96 hw
->hw_alt_next
= EHCI_LIST_END(ehci
);
98 /* Except for control endpoints, we make hardware maintain data
99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
103 if (!(hw
->hw_info1
& cpu_to_hc32(ehci
, 1 << 14))) {
104 unsigned is_out
, epnum
;
107 epnum
= (hc32_to_cpup(ehci
, &hw
->hw_info1
) >> 8) & 0x0f;
108 if (unlikely (!usb_gettoggle (qh
->dev
, epnum
, is_out
))) {
109 hw
->hw_token
&= ~cpu_to_hc32(ehci
, QTD_TOGGLE
);
110 usb_settoggle (qh
->dev
, epnum
, is_out
, 1);
114 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
116 hw
->hw_token
&= cpu_to_hc32(ehci
, QTD_TOGGLE
| QTD_STS_PING
);
119 /* if it weren't for a common silicon quirk (writing the dummy into the qh
120 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
121 * recovery (including urb dequeue) would need software changes to a QH...
124 qh_refresh (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
126 struct ehci_qtd
*qtd
;
128 if (list_empty (&qh
->qtd_list
))
131 qtd
= list_entry (qh
->qtd_list
.next
,
132 struct ehci_qtd
, qtd_list
);
133 /* first qtd may already be partially processed */
134 if (cpu_to_hc32(ehci
, qtd
->qtd_dma
) == qh
->hw
->hw_current
)
139 qh_update (ehci
, qh
, qtd
);
142 /*-------------------------------------------------------------------------*/
144 static void qh_link_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
146 static void ehci_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
147 struct usb_host_endpoint
*ep
)
149 struct ehci_hcd
*ehci
= hcd_to_ehci(hcd
);
150 struct ehci_qh
*qh
= ep
->hcpriv
;
153 spin_lock_irqsave(&ehci
->lock
, flags
);
155 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
156 && HC_IS_RUNNING(hcd
->state
))
157 qh_link_async(ehci
, qh
);
158 spin_unlock_irqrestore(&ehci
->lock
, flags
);
161 static void ehci_clear_tt_buffer(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
,
162 struct urb
*urb
, u32 token
)
165 /* If an async split transaction gets an error or is unlinked,
166 * the TT buffer may be left in an indeterminate state. We
167 * have to clear the TT buffer.
169 * Note: this routine is never called for Isochronous transfers.
171 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
173 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
175 "clear tt buffer port %d, a%d ep%d t%08x\n",
176 urb
->dev
->ttport
, urb
->dev
->devnum
,
177 usb_pipeendpoint(urb
->pipe
), token
);
179 if (!ehci_is_TDI(ehci
)
180 || urb
->dev
->tt
->hub
!=
181 ehci_to_hcd(ehci
)->self
.root_hub
) {
182 if (usb_hub_clear_tt_buffer(urb
) == 0)
186 /* REVISIT ARC-derived cores don't clear the root
187 * hub TT buffer in this way...
193 static int qtd_copy_status (
194 struct ehci_hcd
*ehci
,
200 int status
= -EINPROGRESS
;
202 /* count IN/OUT bytes, not SETUP (even short packets) */
203 if (likely (QTD_PID (token
) != 2))
204 urb
->actual_length
+= length
- QTD_LENGTH (token
);
206 /* don't modify error codes */
207 if (unlikely(urb
->unlinked
))
210 /* force cleanup after short read; not always an error */
211 if (unlikely (IS_SHORT_READ (token
)))
214 /* serious "can't proceed" faults reported by the hardware */
215 if (token
& QTD_STS_HALT
) {
216 if (token
& QTD_STS_BABBLE
) {
217 /* FIXME "must" disable babbling device's port too */
219 /* CERR nonzero + halt --> stall */
220 } else if (QTD_CERR(token
)) {
223 /* In theory, more than one of the following bits can be set
224 * since they are sticky and the transaction is retried.
225 * Which to test first is rather arbitrary.
227 } else if (token
& QTD_STS_MMF
) {
228 /* fs/ls interrupt xfer missed the complete-split */
230 } else if (token
& QTD_STS_DBE
) {
231 status
= (QTD_PID (token
) == 1) /* IN ? */
232 ? -ENOSR
/* hc couldn't read data */
233 : -ECOMM
; /* hc couldn't write data */
234 } else if (token
& QTD_STS_XACT
) {
235 /* timeout, bad CRC, wrong PID, etc */
236 ehci_dbg(ehci
, "devpath %s ep%d%s 3strikes\n",
238 usb_pipeendpoint(urb
->pipe
),
239 usb_pipein(urb
->pipe
) ? "in" : "out");
241 } else { /* unknown */
246 "dev%d ep%d%s qtd token %08x --> status %d\n",
247 usb_pipedevice (urb
->pipe
),
248 usb_pipeendpoint (urb
->pipe
),
249 usb_pipein (urb
->pipe
) ? "in" : "out",
257 ehci_urb_done(struct ehci_hcd
*ehci
, struct urb
*urb
, int status
)
258 __releases(ehci
->lock
)
259 __acquires(ehci
->lock
)
261 if (likely (urb
->hcpriv
!= NULL
)) {
262 struct ehci_qh
*qh
= (struct ehci_qh
*) urb
->hcpriv
;
264 /* S-mask in a QH means it's an interrupt urb */
265 if ((qh
->hw
->hw_info2
& cpu_to_hc32(ehci
, QH_SMASK
)) != 0) {
267 /* ... update hc-wide periodic stats (for usbfs) */
268 ehci_to_hcd(ehci
)->self
.bandwidth_int_reqs
--;
273 if (unlikely(urb
->unlinked
)) {
274 COUNT(ehci
->stats
.unlink
);
276 /* report non-error and short read status as zero */
277 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
279 COUNT(ehci
->stats
.complete
);
282 #ifdef EHCI_URB_TRACE
284 "%s %s urb %p ep%d%s status %d len %d/%d\n",
285 __func__
, urb
->dev
->devpath
, urb
,
286 usb_pipeendpoint (urb
->pipe
),
287 usb_pipein (urb
->pipe
) ? "in" : "out",
289 urb
->actual_length
, urb
->transfer_buffer_length
);
292 /* complete() can reenter this HCD */
293 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci
), urb
);
294 spin_unlock (&ehci
->lock
);
295 usb_hcd_giveback_urb(ehci_to_hcd(ehci
), urb
, status
);
296 spin_lock (&ehci
->lock
);
299 static void start_unlink_async (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
300 static void unlink_async (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
302 static int qh_schedule (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
305 * Process and free completed qtds for a qh, returning URBs to drivers.
306 * Chases up to qh->hw_current. Returns number of completions called,
307 * indicating how much "real" work we did.
310 qh_completions (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
312 struct ehci_qtd
*last
, *end
= qh
->dummy
;
313 struct list_head
*entry
, *tmp
;
318 struct ehci_qh_hw
*hw
= qh
->hw
;
320 if (unlikely (list_empty (&qh
->qtd_list
)))
323 /* completions (or tasks on other cpus) must never clobber HALT
324 * till we've gone through and cleaned everything up, even when
325 * they add urbs to this qh's queue or mark them for unlinking.
327 * NOTE: unlinking expects to be done in queue order.
329 * It's a bug for qh->qh_state to be anything other than
330 * QH_STATE_IDLE, unless our caller is scan_async() or
333 state
= qh
->qh_state
;
334 qh
->qh_state
= QH_STATE_COMPLETING
;
335 stopped
= (state
== QH_STATE_IDLE
);
339 last_status
= -EINPROGRESS
;
340 qh
->needs_rescan
= 0;
342 /* remove de-activated QTDs from front of queue.
343 * after faults (including short reads), cleanup this urb
344 * then let the queue advance.
345 * if queue is stopped, handles unlinks.
347 list_for_each_safe (entry
, tmp
, &qh
->qtd_list
) {
348 struct ehci_qtd
*qtd
;
352 qtd
= list_entry (entry
, struct ehci_qtd
, qtd_list
);
355 /* clean up any state from previous QTD ...*/
357 if (likely (last
->urb
!= urb
)) {
358 ehci_urb_done(ehci
, last
->urb
, last_status
);
360 last_status
= -EINPROGRESS
;
362 ehci_qtd_free (ehci
, last
);
366 /* ignore urbs submitted during completions we reported */
370 /* hardware copies qtd out of qh overlay */
372 token
= hc32_to_cpu(ehci
, qtd
->hw_token
);
374 /* always clean up qtds the hc de-activated */
376 if ((token
& QTD_STS_ACTIVE
) == 0) {
378 /* on STALL, error, and short reads this urb must
379 * complete and all its qtds must be recycled.
381 if ((token
& QTD_STS_HALT
) != 0) {
383 /* retry transaction errors until we
384 * reach the software xacterr limit
386 if ((token
& QTD_STS_XACT
) &&
387 QTD_CERR(token
) == 0 &&
388 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
391 "detected XactErr len %zu/%zu retry %d\n",
392 qtd
->length
- QTD_LENGTH(token
), qtd
->length
, qh
->xacterrs
);
394 /* reset the token in the qtd and the
395 * qh overlay (which still contains
396 * the qtd) so that we pick up from
399 token
&= ~QTD_STS_HALT
;
400 token
|= QTD_STS_ACTIVE
|
401 (EHCI_TUNE_CERR
<< 10);
402 qtd
->hw_token
= cpu_to_hc32(ehci
,
405 hw
->hw_token
= cpu_to_hc32(ehci
,
411 /* magic dummy for some short reads; qh won't advance.
412 * that silicon quirk can kick in with this dummy too.
414 * other short reads won't stop the queue, including
415 * control transfers (status stage handles that) or
416 * most other single-qtd reads ... the queue stops if
417 * URB_SHORT_NOT_OK was set so the driver submitting
418 * the urbs could clean it up.
420 } else if (IS_SHORT_READ (token
)
421 && !(qtd
->hw_alt_next
422 & EHCI_LIST_END(ehci
))) {
426 /* stop scanning when we reach qtds the hc is using */
427 } else if (likely (!stopped
428 && HC_IS_RUNNING (ehci_to_hcd(ehci
)->state
))) {
431 /* scan the whole queue for unlinks whenever it stops */
435 /* cancel everything if we halt, suspend, etc */
436 if (!HC_IS_RUNNING(ehci_to_hcd(ehci
)->state
))
437 last_status
= -ESHUTDOWN
;
439 /* this qtd is active; skip it unless a previous qtd
440 * for its urb faulted, or its urb was canceled.
442 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
445 /* qh unlinked; token in overlay may be most current */
446 if (state
== QH_STATE_IDLE
447 && cpu_to_hc32(ehci
, qtd
->qtd_dma
)
449 token
= hc32_to_cpu(ehci
, hw
->hw_token
);
451 /* An unlink may leave an incomplete
452 * async transaction in the TT buffer.
453 * We have to clear it.
455 ehci_clear_tt_buffer(ehci
, qh
, urb
, token
);
459 /* unless we already know the urb's status, collect qtd status
460 * and update count of bytes transferred. in common short read
461 * cases with only one data qtd (including control transfers),
462 * queue processing won't halt. but with two or more qtds (for
463 * example, with a 32 KB transfer), when the first qtd gets a
464 * short read the second must be removed by hand.
466 if (last_status
== -EINPROGRESS
) {
467 last_status
= qtd_copy_status(ehci
, urb
,
469 if (last_status
== -EREMOTEIO
471 & EHCI_LIST_END(ehci
)))
472 last_status
= -EINPROGRESS
;
474 /* As part of low/full-speed endpoint-halt processing
475 * we must clear the TT buffer (11.17.5).
477 if (unlikely(last_status
!= -EINPROGRESS
&&
478 last_status
!= -EREMOTEIO
)) {
479 /* The TT's in some hubs malfunction when they
480 * receive this request following a STALL (they
481 * stop sending isochronous packets). Since a
482 * STALL can't leave the TT buffer in a busy
483 * state (if you believe Figures 11-48 - 11-51
484 * in the USB 2.0 spec), we won't clear the TT
485 * buffer in this case. Strictly speaking this
486 * is a violation of the spec.
488 if (last_status
!= -EPIPE
)
489 ehci_clear_tt_buffer(ehci
, qh
, urb
,
494 /* if we're removing something not at the queue head,
495 * patch the hardware queue pointer.
497 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
498 last
= list_entry (qtd
->qtd_list
.prev
,
499 struct ehci_qtd
, qtd_list
);
500 last
->hw_next
= qtd
->hw_next
;
503 /* remove qtd; it's recycled after possible urb completion */
504 list_del (&qtd
->qtd_list
);
507 /* reinit the xacterr counter for the next qtd */
511 /* last urb's completion might still need calling */
512 if (likely (last
!= NULL
)) {
513 ehci_urb_done(ehci
, last
->urb
, last_status
);
515 ehci_qtd_free (ehci
, last
);
518 /* Do we need to rescan for URBs dequeued during a giveback? */
519 if (unlikely(qh
->needs_rescan
)) {
520 /* If the QH is already unlinked, do the rescan now. */
521 if (state
== QH_STATE_IDLE
)
524 /* Otherwise we have to wait until the QH is fully unlinked.
525 * Our caller will start an unlink if qh->needs_rescan is
526 * set. But if an unlink has already started, nothing needs
529 if (state
!= QH_STATE_LINKED
)
530 qh
->needs_rescan
= 0;
533 /* restore original state; caller must unlink or relink */
534 qh
->qh_state
= state
;
536 /* be sure the hardware's done with the qh before refreshing
537 * it after fault cleanup, or recovering from silicon wrongly
538 * overlaying the dummy qtd (which reduces DMA chatter).
540 if (stopped
!= 0 || hw
->hw_qtd_next
== EHCI_LIST_END(ehci
)) {
543 qh_refresh(ehci
, qh
);
545 case QH_STATE_LINKED
:
546 /* We won't refresh a QH that's linked (after the HC
547 * stopped the queue). That avoids a race:
548 * - HC reads first part of QH;
549 * - CPU updates that first part and the token;
550 * - HC reads rest of that QH, including token
551 * Result: HC gets an inconsistent image, and then
552 * DMAs to/from the wrong memory (corrupting it).
554 * That should be rare for interrupt transfers,
555 * except maybe high bandwidth ...
558 /* Tell the caller to start an unlink */
559 qh
->needs_rescan
= 1;
561 /* otherwise, unlink already started */
568 /*-------------------------------------------------------------------------*/
570 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
571 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
572 // ... and packet size, for any kind of endpoint descriptor
573 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
576 * reverse of qh_urb_transaction: free a list of TDs.
577 * used for cleanup after errors, before HC sees an URB's TDs.
579 static void qtd_list_free (
580 struct ehci_hcd
*ehci
,
582 struct list_head
*qtd_list
584 struct list_head
*entry
, *temp
;
586 list_for_each_safe (entry
, temp
, qtd_list
) {
587 struct ehci_qtd
*qtd
;
589 qtd
= list_entry (entry
, struct ehci_qtd
, qtd_list
);
590 list_del (&qtd
->qtd_list
);
591 ehci_qtd_free (ehci
, qtd
);
596 * create a list of filled qtds for this URB; won't link into qh.
598 static struct list_head
*
600 struct ehci_hcd
*ehci
,
602 struct list_head
*head
,
605 struct ehci_qtd
*qtd
, *qtd_prev
;
612 * URBs map to sequences of QTDs: one logical transaction
614 qtd
= ehci_qtd_alloc (ehci
, flags
);
617 list_add_tail (&qtd
->qtd_list
, head
);
620 token
= QTD_STS_ACTIVE
;
621 token
|= (EHCI_TUNE_CERR
<< 10);
622 /* for split transactions, SplitXState initialized to zero */
624 len
= urb
->transfer_buffer_length
;
625 is_input
= usb_pipein (urb
->pipe
);
626 if (usb_pipecontrol (urb
->pipe
)) {
628 qtd_fill(ehci
, qtd
, urb
->setup_dma
,
629 sizeof (struct usb_ctrlrequest
),
630 token
| (2 /* "setup" */ << 8), 8);
632 /* ... and always at least one more pid */
635 qtd
= ehci_qtd_alloc (ehci
, flags
);
639 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
640 list_add_tail (&qtd
->qtd_list
, head
);
642 /* for zero length DATA stages, STATUS is always IN */
644 token
|= (1 /* "in" */ << 8);
648 * data transfer stage: buffer setup
650 buf
= urb
->transfer_dma
;
653 token
|= (1 /* "in" */ << 8);
654 /* else it's already initted to "out" pid (0 << 8) */
656 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
659 * buffer gets wrapped in one or more qtds;
660 * last one may be "short" (including zero len)
661 * and may serve as a control status ack
666 this_qtd_len
= qtd_fill(ehci
, qtd
, buf
, len
, token
, maxpacket
);
671 * short reads advance to a "magic" dummy instead of the next
672 * qtd ... that forces the queue to stop, for manual cleanup.
673 * (this will usually be overridden later.)
676 qtd
->hw_alt_next
= ehci
->async
->hw
->hw_alt_next
;
678 /* qh makes control packets use qtd toggle; maybe switch it */
679 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
682 if (likely (len
<= 0))
686 qtd
= ehci_qtd_alloc (ehci
, flags
);
690 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
691 list_add_tail (&qtd
->qtd_list
, head
);
695 * unless the caller requires manual cleanup after short reads,
696 * have the alt_next mechanism keep the queue running after the
697 * last data qtd (the only one, for control and most other cases).
699 if (likely ((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0
700 || usb_pipecontrol (urb
->pipe
)))
701 qtd
->hw_alt_next
= EHCI_LIST_END(ehci
);
704 * control requests may need a terminating data "status" ack;
705 * bulk ones may need a terminating short packet (zero length).
707 if (likely (urb
->transfer_buffer_length
!= 0)) {
710 if (usb_pipecontrol (urb
->pipe
)) {
712 token
^= 0x0100; /* "in" <--> "out" */
713 token
|= QTD_TOGGLE
; /* force DATA1 */
714 } else if (usb_pipebulk (urb
->pipe
)
715 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
716 && !(urb
->transfer_buffer_length
% maxpacket
)) {
721 qtd
= ehci_qtd_alloc (ehci
, flags
);
725 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
726 list_add_tail (&qtd
->qtd_list
, head
);
728 /* never any data in such packets */
729 qtd_fill(ehci
, qtd
, 0, 0, token
, 0);
733 /* by default, enable interrupt on urb completion */
734 if (likely (!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
735 qtd
->hw_token
|= cpu_to_hc32(ehci
, QTD_IOC
);
739 qtd_list_free (ehci
, urb
, head
);
743 /*-------------------------------------------------------------------------*/
745 // Would be best to create all qh's from config descriptors,
746 // when each interface/altsetting is established. Unlink
747 // any previous qh and cancel its urbs first; endpoints are
748 // implicitly reset then (data toggle too).
749 // That'd mean updating how usbcore talks to HCDs. (2.7?)
753 * Each QH holds a qtd list; a QH is used for everything except iso.
755 * For interrupt urbs, the scheduler must set the microframe scheduling
756 * mask(s) each time the QH gets scheduled. For highspeed, that's
757 * just one microframe in the s-mask. For split interrupt transactions
758 * there are additional complications: c-mask, maybe FSTNs.
760 static struct ehci_qh
*
762 struct ehci_hcd
*ehci
,
766 struct ehci_qh
*qh
= ehci_qh_alloc (ehci
, flags
);
767 u32 info1
= 0, info2
= 0;
770 struct usb_tt
*tt
= urb
->dev
->tt
;
771 struct ehci_qh_hw
*hw
;
777 * init endpoint/device data for this QH
779 info1
|= usb_pipeendpoint (urb
->pipe
) << 8;
780 info1
|= usb_pipedevice (urb
->pipe
) << 0;
782 is_input
= usb_pipein (urb
->pipe
);
783 type
= usb_pipetype (urb
->pipe
);
784 maxp
= usb_maxpacket (urb
->dev
, urb
->pipe
, !is_input
);
786 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
787 * acts like up to 3KB, but is built from smaller packets.
789 if (max_packet(maxp
) > 1024) {
790 ehci_dbg(ehci
, "bogus qh maxpacket %d\n", max_packet(maxp
));
794 /* Compute interrupt scheduling parameters just once, and save.
795 * - allowing for high bandwidth, how many nsec/uframe are used?
796 * - split transactions need a second CSPLIT uframe; same question
797 * - splits also need a schedule gap (for full/low speed I/O)
798 * - qh has a polling interval
800 * For control/bulk requests, the HC or TT handles these.
802 if (type
== PIPE_INTERRUPT
) {
803 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
805 hb_mult(maxp
) * max_packet(maxp
)));
806 qh
->start
= NO_FRAME
;
808 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
812 qh
->period
= urb
->interval
>> 3;
813 if (qh
->period
== 0 && urb
->interval
!= 1) {
814 /* NOTE interval 2 or 4 uframes could work.
815 * But interval 1 scheduling is simpler, and
816 * includes high bandwidth.
819 } else if (qh
->period
> ehci
->periodic_size
) {
820 qh
->period
= ehci
->periodic_size
;
821 urb
->interval
= qh
->period
<< 3;
826 /* gap is f(FS/LS transfer times) */
827 qh
->gap_uf
= 1 + usb_calc_bus_time (urb
->dev
->speed
,
828 is_input
, 0, maxp
) / (125 * 1000);
830 /* FIXME this just approximates SPLIT/CSPLIT times */
831 if (is_input
) { // SPLIT, gap, CSPLIT+DATA
832 qh
->c_usecs
= qh
->usecs
+ HS_USECS (0);
833 qh
->usecs
= HS_USECS (1);
834 } else { // SPLIT+DATA, gap, CSPLIT
835 qh
->usecs
+= HS_USECS (1);
836 qh
->c_usecs
= HS_USECS (0);
839 think_time
= tt
? tt
->think_time
: 0;
840 qh
->tt_usecs
= NS_TO_US (think_time
+
841 usb_calc_bus_time (urb
->dev
->speed
,
842 is_input
, 0, max_packet (maxp
)));
843 qh
->period
= urb
->interval
;
844 if (qh
->period
> ehci
->periodic_size
) {
845 qh
->period
= ehci
->periodic_size
;
846 urb
->interval
= qh
->period
;
851 /* support for tt scheduling, and access to toggles */
855 switch (urb
->dev
->speed
) {
857 info1
|= (1 << 12); /* EPS "low" */
861 /* EPS 0 means "full" */
862 if (type
!= PIPE_INTERRUPT
)
863 info1
|= (EHCI_TUNE_RL_TT
<< 28);
864 if (type
== PIPE_CONTROL
) {
865 info1
|= (1 << 27); /* for TT */
866 info1
|= 1 << 14; /* toggle from qtd */
870 info2
|= (EHCI_TUNE_MULT_TT
<< 30);
872 /* Some Freescale processors have an erratum in which the
873 * port number in the queue head was 0..N-1 instead of 1..N.
875 if (ehci_has_fsl_portno_bug(ehci
))
876 info2
|= (urb
->dev
->ttport
-1) << 23;
878 info2
|= urb
->dev
->ttport
<< 23;
880 /* set the address of the TT; for TDI's integrated
881 * root hub tt, leave it zeroed.
883 if (tt
&& tt
->hub
!= ehci_to_hcd(ehci
)->self
.root_hub
)
884 info2
|= tt
->hub
->devnum
<< 16;
886 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
890 case USB_SPEED_HIGH
: /* no TT involved */
891 info1
|= (2 << 12); /* EPS "high" */
892 if (type
== PIPE_CONTROL
) {
893 info1
|= (EHCI_TUNE_RL_HS
<< 28);
894 info1
|= 64 << 16; /* usb2 fixed maxpacket */
895 info1
|= 1 << 14; /* toggle from qtd */
896 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
897 } else if (type
== PIPE_BULK
) {
898 info1
|= (EHCI_TUNE_RL_HS
<< 28);
899 /* The USB spec says that high speed bulk endpoints
900 * always use 512 byte maxpacket. But some device
901 * vendors decided to ignore that, and MSFT is happy
902 * to help them do so. So now people expect to use
903 * such nonconformant devices with Linux too; sigh.
905 info1
|= max_packet(maxp
) << 16;
906 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
907 } else { /* PIPE_INTERRUPT */
908 info1
|= max_packet (maxp
) << 16;
909 info2
|= hb_mult (maxp
) << 30;
913 dbg ("bogus dev %p speed %d", urb
->dev
, urb
->dev
->speed
);
919 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
921 /* init as live, toggle clear, advance to dummy */
922 qh
->qh_state
= QH_STATE_IDLE
;
924 hw
->hw_info1
= cpu_to_hc32(ehci
, info1
);
925 hw
->hw_info2
= cpu_to_hc32(ehci
, info2
);
926 qh
->is_out
= !is_input
;
927 usb_settoggle (urb
->dev
, usb_pipeendpoint (urb
->pipe
), !is_input
, 1);
928 qh_refresh (ehci
, qh
);
932 /*-------------------------------------------------------------------------*/
934 /* move qh (and its qtds) onto async queue; maybe enable queue. */
936 static void qh_link_async (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
938 __hc32 dma
= QH_NEXT(ehci
, qh
->qh_dma
);
939 struct ehci_qh
*head
;
941 /* Don't link a QH if there's a Clear-TT-Buffer pending */
942 if (unlikely(qh
->clearing_tt
))
945 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
947 /* (re)start the async schedule? */
949 timer_action_done (ehci
, TIMER_ASYNC_OFF
);
950 if (!head
->qh_next
.qh
) {
951 u32 cmd
= ehci_readl(ehci
, &ehci
->regs
->command
);
953 if (!(cmd
& CMD_ASE
)) {
954 /* in case a clear of CMD_ASE didn't take yet */
955 (void)handshake(ehci
, &ehci
->regs
->status
,
957 cmd
|= CMD_ASE
| CMD_RUN
;
958 ehci_writel(ehci
, cmd
, &ehci
->regs
->command
);
959 ehci_to_hcd(ehci
)->state
= HC_STATE_RUNNING
;
960 /* posted write need not be known to HC yet ... */
964 /* clear halt and/or toggle; and maybe recover from silicon quirk */
965 qh_refresh(ehci
, qh
);
967 /* splice right after start */
968 qh
->qh_next
= head
->qh_next
;
969 qh
->hw
->hw_next
= head
->hw
->hw_next
;
972 head
->qh_next
.qh
= qh
;
973 head
->hw
->hw_next
= dma
;
977 qh
->qh_state
= QH_STATE_LINKED
;
978 /* qtd completions reported later by interrupt */
981 /*-------------------------------------------------------------------------*/
984 * For control/bulk/interrupt, return QH with these TDs appended.
985 * Allocates and initializes the QH if necessary.
986 * Returns null if it can't allocate a QH it needs to.
987 * If the QH has TDs (urbs) already, that's great.
989 static struct ehci_qh
*qh_append_tds (
990 struct ehci_hcd
*ehci
,
992 struct list_head
*qtd_list
,
997 struct ehci_qh
*qh
= NULL
;
998 __hc32 qh_addr_mask
= cpu_to_hc32(ehci
, 0x7f);
1000 qh
= (struct ehci_qh
*) *ptr
;
1001 if (unlikely (qh
== NULL
)) {
1002 /* can't sleep here, we have ehci->lock... */
1003 qh
= qh_make (ehci
, urb
, GFP_ATOMIC
);
1006 if (likely (qh
!= NULL
)) {
1007 struct ehci_qtd
*qtd
;
1009 if (unlikely (list_empty (qtd_list
)))
1012 qtd
= list_entry (qtd_list
->next
, struct ehci_qtd
,
1015 /* control qh may need patching ... */
1016 if (unlikely (epnum
== 0)) {
1018 /* usb_reset_device() briefly reverts to address 0 */
1019 if (usb_pipedevice (urb
->pipe
) == 0)
1020 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
1023 /* just one way to queue requests: swap with the dummy qtd.
1024 * only hc or qh_refresh() ever modify the overlay.
1026 if (likely (qtd
!= NULL
)) {
1027 struct ehci_qtd
*dummy
;
1031 /* to avoid racing the HC, use the dummy td instead of
1032 * the first td of our list (becomes new dummy). both
1033 * tds stay deactivated until we're done, when the
1034 * HC is allowed to fetch the old dummy (4.10.2).
1036 token
= qtd
->hw_token
;
1037 qtd
->hw_token
= HALT_BIT(ehci
);
1041 dma
= dummy
->qtd_dma
;
1043 dummy
->qtd_dma
= dma
;
1045 list_del (&qtd
->qtd_list
);
1046 list_add (&dummy
->qtd_list
, qtd_list
);
1047 list_splice_tail(qtd_list
, &qh
->qtd_list
);
1049 ehci_qtd_init(ehci
, qtd
, qtd
->qtd_dma
);
1052 /* hc must see the new dummy at list end */
1054 qtd
= list_entry (qh
->qtd_list
.prev
,
1055 struct ehci_qtd
, qtd_list
);
1056 qtd
->hw_next
= QTD_NEXT(ehci
, dma
);
1058 /* let the hc process these next qtds */
1060 dummy
->hw_token
= token
;
1062 urb
->hcpriv
= qh_get (qh
);
1068 /*-------------------------------------------------------------------------*/
1072 struct ehci_hcd
*ehci
,
1074 struct list_head
*qtd_list
,
1077 struct ehci_qtd
*qtd
;
1079 unsigned long flags
;
1080 struct ehci_qh
*qh
= NULL
;
1083 qtd
= list_entry (qtd_list
->next
, struct ehci_qtd
, qtd_list
);
1084 epnum
= urb
->ep
->desc
.bEndpointAddress
;
1086 #ifdef EHCI_URB_TRACE
1088 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1089 __func__
, urb
->dev
->devpath
, urb
,
1090 epnum
& 0x0f, (epnum
& USB_DIR_IN
) ? "in" : "out",
1091 urb
->transfer_buffer_length
,
1092 qtd
, urb
->ep
->hcpriv
);
1095 spin_lock_irqsave (&ehci
->lock
, flags
);
1096 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE
,
1097 &ehci_to_hcd(ehci
)->flags
))) {
1101 rc
= usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci
), urb
);
1105 qh
= qh_append_tds(ehci
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
1106 if (unlikely(qh
== NULL
)) {
1107 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci
), urb
);
1112 /* Control/bulk operations through TTs don't need scheduling,
1113 * the HC and TT handle it when the TT has a buffer ready.
1115 if (likely (qh
->qh_state
== QH_STATE_IDLE
))
1116 qh_link_async(ehci
, qh
);
1118 spin_unlock_irqrestore (&ehci
->lock
, flags
);
1119 if (unlikely (qh
== NULL
))
1120 qtd_list_free (ehci
, urb
, qtd_list
);
1124 /*-------------------------------------------------------------------------*/
1126 /* the async qh for the qtds being reclaimed are now unlinked from the HC */
1128 static void end_unlink_async (struct ehci_hcd
*ehci
)
1130 struct ehci_qh
*qh
= ehci
->reclaim
;
1131 struct ehci_qh
*next
;
1133 iaa_watchdog_done(ehci
);
1135 // qh->hw_next = cpu_to_hc32(qh->qh_dma);
1136 qh
->qh_state
= QH_STATE_IDLE
;
1137 qh
->qh_next
.qh
= NULL
;
1138 qh_put (qh
); // refcount from reclaim
1140 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1142 ehci
->reclaim
= next
;
1145 qh_completions (ehci
, qh
);
1147 if (!list_empty (&qh
->qtd_list
)
1148 && HC_IS_RUNNING (ehci_to_hcd(ehci
)->state
))
1149 qh_link_async (ehci
, qh
);
1151 /* it's not free to turn the async schedule on/off; leave it
1152 * active but idle for a while once it empties.
1154 if (HC_IS_RUNNING (ehci_to_hcd(ehci
)->state
)
1155 && ehci
->async
->qh_next
.qh
== NULL
)
1156 timer_action (ehci
, TIMER_ASYNC_OFF
);
1158 qh_put(qh
); /* refcount from async list */
1161 ehci
->reclaim
= NULL
;
1162 start_unlink_async (ehci
, next
);
1166 /* makes sure the async qh will become idle */
1167 /* caller must own ehci->lock */
1169 static void start_unlink_async (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
1171 int cmd
= ehci_readl(ehci
, &ehci
->regs
->command
);
1172 struct ehci_qh
*prev
;
1175 assert_spin_locked(&ehci
->lock
);
1177 || (qh
->qh_state
!= QH_STATE_LINKED
1178 && qh
->qh_state
!= QH_STATE_UNLINK_WAIT
)
1183 /* stop async schedule right now? */
1184 if (unlikely (qh
== ehci
->async
)) {
1185 /* can't get here without STS_ASS set */
1186 if (ehci_to_hcd(ehci
)->state
!= HC_STATE_HALT
1187 && !ehci
->reclaim
) {
1188 /* ... and CMD_IAAD clear */
1189 ehci_writel(ehci
, cmd
& ~CMD_ASE
,
1190 &ehci
->regs
->command
);
1192 // handshake later, if we need to
1193 timer_action_done (ehci
, TIMER_ASYNC_OFF
);
1198 qh
->qh_state
= QH_STATE_UNLINK
;
1199 ehci
->reclaim
= qh
= qh_get (qh
);
1202 while (prev
->qh_next
.qh
!= qh
)
1203 prev
= prev
->qh_next
.qh
;
1205 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
1206 prev
->qh_next
= qh
->qh_next
;
1209 /* If the controller isn't running, we don't have to wait for it */
1210 if (unlikely(!HC_IS_RUNNING(ehci_to_hcd(ehci
)->state
))) {
1211 /* if (unlikely (qh->reclaim != 0))
1212 * this will recurse, probably not much
1214 end_unlink_async (ehci
);
1219 ehci_writel(ehci
, cmd
, &ehci
->regs
->command
);
1220 (void)ehci_readl(ehci
, &ehci
->regs
->command
);
1221 iaa_watchdog_start(ehci
);
1224 /*-------------------------------------------------------------------------*/
1226 static void scan_async (struct ehci_hcd
*ehci
)
1230 enum ehci_timer_action action
= TIMER_IO_WATCHDOG
;
1232 ehci
->stamp
= ehci_readl(ehci
, &ehci
->regs
->frame_index
);
1233 timer_action_done (ehci
, TIMER_ASYNC_SHRINK
);
1235 stopped
= !HC_IS_RUNNING(ehci_to_hcd(ehci
)->state
);
1236 qh
= ehci
->async
->qh_next
.qh
;
1237 if (likely (qh
!= NULL
)) {
1239 /* clean any finished work for this qh */
1240 if (!list_empty(&qh
->qtd_list
) && (stopped
||
1241 qh
->stamp
!= ehci
->stamp
)) {
1244 /* unlinks could happen here; completion
1245 * reporting drops the lock. rescan using
1246 * the latest schedule, but don't rescan
1247 * qhs we already finished (no looping)
1248 * unless the controller is stopped.
1251 qh
->stamp
= ehci
->stamp
;
1252 temp
= qh_completions (ehci
, qh
);
1253 if (qh
->needs_rescan
)
1254 unlink_async(ehci
, qh
);
1261 /* unlink idle entries, reducing DMA usage as well
1262 * as HCD schedule-scanning costs. delay for any qh
1263 * we just scanned, there's a not-unusual case that it
1264 * doesn't stay idle for long.
1265 * (plus, avoids some kind of re-activation race.)
1267 if (list_empty(&qh
->qtd_list
)
1268 && qh
->qh_state
== QH_STATE_LINKED
) {
1269 if (!ehci
->reclaim
&& (stopped
||
1270 ((ehci
->stamp
- qh
->stamp
) & 0x1fff)
1271 >= EHCI_SHRINK_FRAMES
* 8))
1272 start_unlink_async(ehci
, qh
);
1274 action
= TIMER_ASYNC_SHRINK
;
1277 qh
= qh
->qh_next
.qh
;
1280 if (action
== TIMER_ASYNC_SHRINK
)
1281 timer_action (ehci
, TIMER_ASYNC_SHRINK
);