2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/gfp.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/writeback.h>
23 #include <linux/pagevec.h>
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "extent_io.h"
29 static u64
entry_end(struct btrfs_ordered_extent
*entry
)
31 if (entry
->file_offset
+ entry
->len
< entry
->file_offset
)
33 return entry
->file_offset
+ entry
->len
;
36 /* returns NULL if the insertion worked, or it returns the node it did find
39 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 file_offset
,
42 struct rb_node
**p
= &root
->rb_node
;
43 struct rb_node
*parent
= NULL
;
44 struct btrfs_ordered_extent
*entry
;
48 entry
= rb_entry(parent
, struct btrfs_ordered_extent
, rb_node
);
50 if (file_offset
< entry
->file_offset
)
52 else if (file_offset
>= entry_end(entry
))
58 rb_link_node(node
, parent
, p
);
59 rb_insert_color(node
, root
);
64 * look for a given offset in the tree, and if it can't be found return the
67 static struct rb_node
*__tree_search(struct rb_root
*root
, u64 file_offset
,
68 struct rb_node
**prev_ret
)
70 struct rb_node
*n
= root
->rb_node
;
71 struct rb_node
*prev
= NULL
;
73 struct btrfs_ordered_extent
*entry
;
74 struct btrfs_ordered_extent
*prev_entry
= NULL
;
77 entry
= rb_entry(n
, struct btrfs_ordered_extent
, rb_node
);
81 if (file_offset
< entry
->file_offset
)
83 else if (file_offset
>= entry_end(entry
))
91 while (prev
&& file_offset
>= entry_end(prev_entry
)) {
95 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
97 if (file_offset
< entry_end(prev_entry
))
103 prev_entry
= rb_entry(prev
, struct btrfs_ordered_extent
,
105 while (prev
&& file_offset
< entry_end(prev_entry
)) {
106 test
= rb_prev(prev
);
109 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
118 * helper to check if a given offset is inside a given entry
120 static int offset_in_entry(struct btrfs_ordered_extent
*entry
, u64 file_offset
)
122 if (file_offset
< entry
->file_offset
||
123 entry
->file_offset
+ entry
->len
<= file_offset
)
129 * look find the first ordered struct that has this offset, otherwise
130 * the first one less than this offset
132 static inline struct rb_node
*tree_search(struct btrfs_ordered_inode_tree
*tree
,
135 struct rb_root
*root
= &tree
->tree
;
136 struct rb_node
*prev
;
138 struct btrfs_ordered_extent
*entry
;
141 entry
= rb_entry(tree
->last
, struct btrfs_ordered_extent
,
143 if (offset_in_entry(entry
, file_offset
))
146 ret
= __tree_search(root
, file_offset
, &prev
);
154 /* allocate and add a new ordered_extent into the per-inode tree.
155 * file_offset is the logical offset in the file
157 * start is the disk block number of an extent already reserved in the
158 * extent allocation tree
160 * len is the length of the extent
162 * The tree is given a single reference on the ordered extent that was
165 int btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
166 u64 start
, u64 len
, u64 disk_len
, int type
)
168 struct btrfs_ordered_inode_tree
*tree
;
169 struct rb_node
*node
;
170 struct btrfs_ordered_extent
*entry
;
172 tree
= &BTRFS_I(inode
)->ordered_tree
;
173 entry
= kzalloc(sizeof(*entry
), GFP_NOFS
);
177 mutex_lock(&tree
->mutex
);
178 entry
->file_offset
= file_offset
;
179 entry
->start
= start
;
181 entry
->disk_len
= disk_len
;
182 entry
->bytes_left
= len
;
183 entry
->inode
= inode
;
184 if (type
!= BTRFS_ORDERED_IO_DONE
&& type
!= BTRFS_ORDERED_COMPLETE
)
185 set_bit(type
, &entry
->flags
);
187 /* one ref for the tree */
188 atomic_set(&entry
->refs
, 1);
189 init_waitqueue_head(&entry
->wait
);
190 INIT_LIST_HEAD(&entry
->list
);
191 INIT_LIST_HEAD(&entry
->root_extent_list
);
193 node
= tree_insert(&tree
->tree
, file_offset
,
197 spin_lock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
198 list_add_tail(&entry
->root_extent_list
,
199 &BTRFS_I(inode
)->root
->fs_info
->ordered_extents
);
200 spin_unlock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
202 mutex_unlock(&tree
->mutex
);
208 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
209 * when an ordered extent is finished. If the list covers more than one
210 * ordered extent, it is split across multiples.
212 int btrfs_add_ordered_sum(struct inode
*inode
,
213 struct btrfs_ordered_extent
*entry
,
214 struct btrfs_ordered_sum
*sum
)
216 struct btrfs_ordered_inode_tree
*tree
;
218 tree
= &BTRFS_I(inode
)->ordered_tree
;
219 mutex_lock(&tree
->mutex
);
220 list_add_tail(&sum
->list
, &entry
->list
);
221 mutex_unlock(&tree
->mutex
);
226 * this is used to account for finished IO across a given range
227 * of the file. The IO should not span ordered extents. If
228 * a given ordered_extent is completely done, 1 is returned, otherwise
231 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
232 * to make sure this function only returns 1 once for a given ordered extent.
234 int btrfs_dec_test_ordered_pending(struct inode
*inode
,
235 u64 file_offset
, u64 io_size
)
237 struct btrfs_ordered_inode_tree
*tree
;
238 struct rb_node
*node
;
239 struct btrfs_ordered_extent
*entry
;
242 tree
= &BTRFS_I(inode
)->ordered_tree
;
243 mutex_lock(&tree
->mutex
);
244 node
= tree_search(tree
, file_offset
);
250 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
251 if (!offset_in_entry(entry
, file_offset
)) {
256 if (io_size
> entry
->bytes_left
) {
257 printk(KERN_CRIT
"bad ordered accounting left %llu size %llu\n",
258 (unsigned long long)entry
->bytes_left
,
259 (unsigned long long)io_size
);
261 entry
->bytes_left
-= io_size
;
262 if (entry
->bytes_left
== 0)
263 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
267 mutex_unlock(&tree
->mutex
);
272 * used to drop a reference on an ordered extent. This will free
273 * the extent if the last reference is dropped
275 int btrfs_put_ordered_extent(struct btrfs_ordered_extent
*entry
)
277 struct list_head
*cur
;
278 struct btrfs_ordered_sum
*sum
;
280 if (atomic_dec_and_test(&entry
->refs
)) {
281 while (!list_empty(&entry
->list
)) {
282 cur
= entry
->list
.next
;
283 sum
= list_entry(cur
, struct btrfs_ordered_sum
, list
);
284 list_del(&sum
->list
);
293 * remove an ordered extent from the tree. No references are dropped
294 * and you must wake_up entry->wait. You must hold the tree mutex
295 * while you call this function.
297 static int __btrfs_remove_ordered_extent(struct inode
*inode
,
298 struct btrfs_ordered_extent
*entry
)
300 struct btrfs_ordered_inode_tree
*tree
;
301 struct rb_node
*node
;
303 tree
= &BTRFS_I(inode
)->ordered_tree
;
304 node
= &entry
->rb_node
;
305 rb_erase(node
, &tree
->tree
);
307 set_bit(BTRFS_ORDERED_COMPLETE
, &entry
->flags
);
309 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
310 BTRFS_I(inode
)->outstanding_extents
--;
311 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
312 btrfs_unreserve_metadata_for_delalloc(BTRFS_I(inode
)->root
,
315 spin_lock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
316 list_del_init(&entry
->root_extent_list
);
319 * we have no more ordered extents for this inode and
320 * no dirty pages. We can safely remove it from the
321 * list of ordered extents
323 if (RB_EMPTY_ROOT(&tree
->tree
) &&
324 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
325 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
327 spin_unlock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
333 * remove an ordered extent from the tree. No references are dropped
334 * but any waiters are woken.
336 int btrfs_remove_ordered_extent(struct inode
*inode
,
337 struct btrfs_ordered_extent
*entry
)
339 struct btrfs_ordered_inode_tree
*tree
;
342 tree
= &BTRFS_I(inode
)->ordered_tree
;
343 mutex_lock(&tree
->mutex
);
344 ret
= __btrfs_remove_ordered_extent(inode
, entry
);
345 mutex_unlock(&tree
->mutex
);
346 wake_up(&entry
->wait
);
352 * wait for all the ordered extents in a root. This is done when balancing
353 * space between drives.
355 int btrfs_wait_ordered_extents(struct btrfs_root
*root
,
356 int nocow_only
, int delay_iput
)
358 struct list_head splice
;
359 struct list_head
*cur
;
360 struct btrfs_ordered_extent
*ordered
;
363 INIT_LIST_HEAD(&splice
);
365 spin_lock(&root
->fs_info
->ordered_extent_lock
);
366 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
367 while (!list_empty(&splice
)) {
369 ordered
= list_entry(cur
, struct btrfs_ordered_extent
,
372 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
) &&
373 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
374 list_move(&ordered
->root_extent_list
,
375 &root
->fs_info
->ordered_extents
);
376 cond_resched_lock(&root
->fs_info
->ordered_extent_lock
);
380 list_del_init(&ordered
->root_extent_list
);
381 atomic_inc(&ordered
->refs
);
384 * the inode may be getting freed (in sys_unlink path).
386 inode
= igrab(ordered
->inode
);
388 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
391 btrfs_start_ordered_extent(inode
, ordered
, 1);
392 btrfs_put_ordered_extent(ordered
);
394 btrfs_add_delayed_iput(inode
);
398 btrfs_put_ordered_extent(ordered
);
401 spin_lock(&root
->fs_info
->ordered_extent_lock
);
403 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
408 * this is used during transaction commit to write all the inodes
409 * added to the ordered operation list. These files must be fully on
410 * disk before the transaction commits.
412 * we have two modes here, one is to just start the IO via filemap_flush
413 * and the other is to wait for all the io. When we wait, we have an
414 * extra check to make sure the ordered operation list really is empty
417 int btrfs_run_ordered_operations(struct btrfs_root
*root
, int wait
)
419 struct btrfs_inode
*btrfs_inode
;
421 struct list_head splice
;
423 INIT_LIST_HEAD(&splice
);
425 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
426 spin_lock(&root
->fs_info
->ordered_extent_lock
);
428 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
430 while (!list_empty(&splice
)) {
431 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
434 inode
= &btrfs_inode
->vfs_inode
;
436 list_del_init(&btrfs_inode
->ordered_operations
);
439 * the inode may be getting freed (in sys_unlink path).
441 inode
= igrab(inode
);
443 if (!wait
&& inode
) {
444 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
445 &root
->fs_info
->ordered_operations
);
447 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
451 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
453 filemap_flush(inode
->i_mapping
);
454 btrfs_add_delayed_iput(inode
);
458 spin_lock(&root
->fs_info
->ordered_extent_lock
);
460 if (wait
&& !list_empty(&root
->fs_info
->ordered_operations
))
463 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
464 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
470 * Used to start IO or wait for a given ordered extent to finish.
472 * If wait is one, this effectively waits on page writeback for all the pages
473 * in the extent, and it waits on the io completion code to insert
474 * metadata into the btree corresponding to the extent
476 void btrfs_start_ordered_extent(struct inode
*inode
,
477 struct btrfs_ordered_extent
*entry
,
480 u64 start
= entry
->file_offset
;
481 u64 end
= start
+ entry
->len
- 1;
484 * pages in the range can be dirty, clean or writeback. We
485 * start IO on any dirty ones so the wait doesn't stall waiting
486 * for pdflush to find them
488 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
490 wait_event(entry
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
496 * Used to wait on ordered extents across a large range of bytes.
498 int btrfs_wait_ordered_range(struct inode
*inode
, u64 start
, u64 len
)
503 struct btrfs_ordered_extent
*ordered
;
506 if (start
+ len
< start
) {
507 orig_end
= INT_LIMIT(loff_t
);
509 orig_end
= start
+ len
- 1;
510 if (orig_end
> INT_LIMIT(loff_t
))
511 orig_end
= INT_LIMIT(loff_t
);
515 /* start IO across the range first to instantiate any delalloc
518 filemap_fdatawrite_range(inode
->i_mapping
, start
, orig_end
);
520 /* The compression code will leave pages locked but return from
521 * writepage without setting the page writeback. Starting again
522 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
524 filemap_fdatawrite_range(inode
->i_mapping
, start
, orig_end
);
526 filemap_fdatawait_range(inode
->i_mapping
, start
, orig_end
);
531 ordered
= btrfs_lookup_first_ordered_extent(inode
, end
);
534 if (ordered
->file_offset
> orig_end
) {
535 btrfs_put_ordered_extent(ordered
);
538 if (ordered
->file_offset
+ ordered
->len
< start
) {
539 btrfs_put_ordered_extent(ordered
);
543 btrfs_start_ordered_extent(inode
, ordered
, 1);
544 end
= ordered
->file_offset
;
545 btrfs_put_ordered_extent(ordered
);
546 if (end
== 0 || end
== start
)
550 if (found
|| test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, orig_end
,
551 EXTENT_DELALLOC
, 0, NULL
)) {
559 * find an ordered extent corresponding to file_offset. return NULL if
560 * nothing is found, otherwise take a reference on the extent and return it
562 struct btrfs_ordered_extent
*btrfs_lookup_ordered_extent(struct inode
*inode
,
565 struct btrfs_ordered_inode_tree
*tree
;
566 struct rb_node
*node
;
567 struct btrfs_ordered_extent
*entry
= NULL
;
569 tree
= &BTRFS_I(inode
)->ordered_tree
;
570 mutex_lock(&tree
->mutex
);
571 node
= tree_search(tree
, file_offset
);
575 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
576 if (!offset_in_entry(entry
, file_offset
))
579 atomic_inc(&entry
->refs
);
581 mutex_unlock(&tree
->mutex
);
586 * lookup and return any extent before 'file_offset'. NULL is returned
589 struct btrfs_ordered_extent
*
590 btrfs_lookup_first_ordered_extent(struct inode
*inode
, u64 file_offset
)
592 struct btrfs_ordered_inode_tree
*tree
;
593 struct rb_node
*node
;
594 struct btrfs_ordered_extent
*entry
= NULL
;
596 tree
= &BTRFS_I(inode
)->ordered_tree
;
597 mutex_lock(&tree
->mutex
);
598 node
= tree_search(tree
, file_offset
);
602 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
603 atomic_inc(&entry
->refs
);
605 mutex_unlock(&tree
->mutex
);
610 * After an extent is done, call this to conditionally update the on disk
611 * i_size. i_size is updated to cover any fully written part of the file.
613 int btrfs_ordered_update_i_size(struct inode
*inode
, u64 offset
,
614 struct btrfs_ordered_extent
*ordered
)
616 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
617 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
621 u64 i_size
= i_size_read(inode
);
622 struct rb_node
*node
;
623 struct rb_node
*prev
= NULL
;
624 struct btrfs_ordered_extent
*test
;
628 offset
= entry_end(ordered
);
630 offset
= ALIGN(offset
, BTRFS_I(inode
)->root
->sectorsize
);
632 mutex_lock(&tree
->mutex
);
633 disk_i_size
= BTRFS_I(inode
)->disk_i_size
;
636 if (disk_i_size
> i_size
) {
637 BTRFS_I(inode
)->disk_i_size
= i_size
;
643 * if the disk i_size is already at the inode->i_size, or
644 * this ordered extent is inside the disk i_size, we're done
646 if (disk_i_size
== i_size
|| offset
<= disk_i_size
) {
651 * we can't update the disk_isize if there are delalloc bytes
652 * between disk_i_size and this ordered extent
654 if (test_range_bit(io_tree
, disk_i_size
, offset
- 1,
655 EXTENT_DELALLOC
, 0, NULL
)) {
659 * walk backward from this ordered extent to disk_i_size.
660 * if we find an ordered extent then we can't update disk i_size
664 node
= rb_prev(&ordered
->rb_node
);
666 prev
= tree_search(tree
, offset
);
668 * we insert file extents without involving ordered struct,
669 * so there should be no ordered struct cover this offset
672 test
= rb_entry(prev
, struct btrfs_ordered_extent
,
674 BUG_ON(offset_in_entry(test
, offset
));
679 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
680 if (test
->file_offset
+ test
->len
<= disk_i_size
)
682 if (test
->file_offset
>= i_size
)
684 if (test
->file_offset
>= disk_i_size
)
686 node
= rb_prev(node
);
688 new_i_size
= min_t(u64
, offset
, i_size
);
691 * at this point, we know we can safely update i_size to at least
692 * the offset from this ordered extent. But, we need to
693 * walk forward and see if ios from higher up in the file have
697 node
= rb_next(&ordered
->rb_node
);
700 node
= rb_next(prev
);
702 node
= rb_first(&tree
->tree
);
707 * do we have an area where IO might have finished
708 * between our ordered extent and the next one.
710 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
711 if (test
->file_offset
> offset
)
712 i_size_test
= test
->file_offset
;
714 i_size_test
= i_size
;
718 * i_size_test is the end of a region after this ordered
719 * extent where there are no ordered extents. As long as there
720 * are no delalloc bytes in this area, it is safe to update
721 * disk_i_size to the end of the region.
723 if (i_size_test
> offset
&&
724 !test_range_bit(io_tree
, offset
, i_size_test
- 1,
725 EXTENT_DELALLOC
, 0, NULL
)) {
726 new_i_size
= min_t(u64
, i_size_test
, i_size
);
728 BTRFS_I(inode
)->disk_i_size
= new_i_size
;
732 * we need to remove the ordered extent with the tree lock held
733 * so that other people calling this function don't find our fully
734 * processed ordered entry and skip updating the i_size
737 __btrfs_remove_ordered_extent(inode
, ordered
);
738 mutex_unlock(&tree
->mutex
);
740 wake_up(&ordered
->wait
);
745 * search the ordered extents for one corresponding to 'offset' and
746 * try to find a checksum. This is used because we allow pages to
747 * be reclaimed before their checksum is actually put into the btree
749 int btrfs_find_ordered_sum(struct inode
*inode
, u64 offset
, u64 disk_bytenr
,
752 struct btrfs_ordered_sum
*ordered_sum
;
753 struct btrfs_sector_sum
*sector_sums
;
754 struct btrfs_ordered_extent
*ordered
;
755 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
756 unsigned long num_sectors
;
758 u32 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
761 ordered
= btrfs_lookup_ordered_extent(inode
, offset
);
765 mutex_lock(&tree
->mutex
);
766 list_for_each_entry_reverse(ordered_sum
, &ordered
->list
, list
) {
767 if (disk_bytenr
>= ordered_sum
->bytenr
) {
768 num_sectors
= ordered_sum
->len
/ sectorsize
;
769 sector_sums
= ordered_sum
->sums
;
770 for (i
= 0; i
< num_sectors
; i
++) {
771 if (sector_sums
[i
].bytenr
== disk_bytenr
) {
772 *sum
= sector_sums
[i
].sum
;
780 mutex_unlock(&tree
->mutex
);
781 btrfs_put_ordered_extent(ordered
);
787 * add a given inode to the list of inodes that must be fully on
788 * disk before a transaction commit finishes.
790 * This basically gives us the ext3 style data=ordered mode, and it is mostly
791 * used to make sure renamed files are fully on disk.
793 * It is a noop if the inode is already fully on disk.
795 * If trans is not null, we'll do a friendly check for a transaction that
796 * is already flushing things and force the IO down ourselves.
798 int btrfs_add_ordered_operation(struct btrfs_trans_handle
*trans
,
799 struct btrfs_root
*root
,
804 last_mod
= max(BTRFS_I(inode
)->generation
, BTRFS_I(inode
)->last_trans
);
807 * if this file hasn't been changed since the last transaction
808 * commit, we can safely return without doing anything
810 if (last_mod
< root
->fs_info
->last_trans_committed
)
814 * the transaction is already committing. Just start the IO and
815 * don't bother with all of this list nonsense
817 if (trans
&& root
->fs_info
->running_transaction
->blocked
) {
818 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
822 spin_lock(&root
->fs_info
->ordered_extent_lock
);
823 if (list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
824 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
825 &root
->fs_info
->ordered_operations
);
827 spin_unlock(&root
->fs_info
->ordered_extent_lock
);