2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include <linux/mpage.h>
42 #include <linux/pagevec.h>
43 #include <linux/writeback.h>
47 * Prime number of hash buckets since address is used as the key.
50 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
51 static wait_queue_head_t xfs_ioend_wq
[NVSYNC
];
58 for (i
= 0; i
< NVSYNC
; i
++)
59 init_waitqueue_head(&xfs_ioend_wq
[i
]);
66 wait_queue_head_t
*wq
= to_ioend_wq(ip
);
68 wait_event(*wq
, (atomic_read(&ip
->i_iocount
) == 0));
75 if (atomic_dec_and_test(&ip
->i_iocount
))
76 wake_up(to_ioend_wq(ip
));
86 struct buffer_head
*bh
, *head
;
88 *delalloc
= *unmapped
= *unwritten
= 0;
90 bh
= head
= page_buffers(page
);
92 if (buffer_uptodate(bh
) && !buffer_mapped(bh
))
94 else if (buffer_unwritten(bh
))
96 else if (buffer_delay(bh
))
98 } while ((bh
= bh
->b_this_page
) != head
);
101 #if defined(XFS_RW_TRACE)
110 loff_t isize
= i_size_read(inode
);
111 loff_t offset
= page_offset(page
);
112 int delalloc
= -1, unmapped
= -1, unwritten
= -1;
114 if (page_has_buffers(page
))
115 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
121 ktrace_enter(ip
->i_rwtrace
,
122 (void *)((unsigned long)tag
),
127 (void *)((unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff)),
128 (void *)((unsigned long)(ip
->i_d
.di_size
& 0xffffffff)),
129 (void *)((unsigned long)((isize
>> 32) & 0xffffffff)),
130 (void *)((unsigned long)(isize
& 0xffffffff)),
131 (void *)((unsigned long)((offset
>> 32) & 0xffffffff)),
132 (void *)((unsigned long)(offset
& 0xffffffff)),
133 (void *)((unsigned long)delalloc
),
134 (void *)((unsigned long)unmapped
),
135 (void *)((unsigned long)unwritten
),
136 (void *)((unsigned long)current_pid()),
140 #define xfs_page_trace(tag, inode, page, pgoff)
143 STATIC
struct block_device
*
144 xfs_find_bdev_for_inode(
145 struct xfs_inode
*ip
)
147 struct xfs_mount
*mp
= ip
->i_mount
;
149 if (XFS_IS_REALTIME_INODE(ip
))
150 return mp
->m_rtdev_targp
->bt_bdev
;
152 return mp
->m_ddev_targp
->bt_bdev
;
156 * We're now finished for good with this ioend structure.
157 * Update the page state via the associated buffer_heads,
158 * release holds on the inode and bio, and finally free
159 * up memory. Do not use the ioend after this.
165 struct buffer_head
*bh
, *next
;
166 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
168 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
169 next
= bh
->b_private
;
170 bh
->b_end_io(bh
, !ioend
->io_error
);
174 * Volume managers supporting multiple paths can send back ENODEV
175 * when the final path disappears. In this case continuing to fill
176 * the page cache with dirty data which cannot be written out is
177 * evil, so prevent that.
179 if (unlikely(ioend
->io_error
== -ENODEV
)) {
180 xfs_do_force_shutdown(ip
->i_mount
, SHUTDOWN_DEVICE_REQ
,
185 mempool_free(ioend
, xfs_ioend_pool
);
189 * If the end of the current ioend is beyond the current EOF,
190 * return the new EOF value, otherwise zero.
196 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
200 bsize
= ioend
->io_offset
+ ioend
->io_size
;
201 isize
= MAX(ip
->i_size
, ip
->i_new_size
);
202 isize
= MIN(isize
, bsize
);
203 return isize
> ip
->i_d
.di_size
? isize
: 0;
207 * Update on-disk file size now that data has been written to disk. The
208 * current in-memory file size is i_size. If a write is beyond eof i_new_size
209 * will be the intended file size until i_size is updated. If this write does
210 * not extend all the way to the valid file size then restrict this update to
211 * the end of the write.
213 * This function does not block as blocking on the inode lock in IO completion
214 * can lead to IO completion order dependency deadlocks.. If it can't get the
215 * inode ilock it will return EAGAIN. Callers must handle this.
221 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
224 ASSERT((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
);
225 ASSERT(ioend
->io_type
!= IOMAP_READ
);
227 if (unlikely(ioend
->io_error
))
230 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
))
233 isize
= xfs_ioend_new_eof(ioend
);
235 ip
->i_d
.di_size
= isize
;
236 xfs_mark_inode_dirty_sync(ip
);
239 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
244 * Schedule IO completion handling on a xfsdatad if this was
245 * the final hold on this ioend. If we are asked to wait,
246 * flush the workqueue.
253 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
254 struct workqueue_struct
*wq
;
256 wq
= (ioend
->io_type
== IOMAP_UNWRITTEN
) ?
257 xfsconvertd_workqueue
: xfsdatad_workqueue
;
258 queue_work(wq
, &ioend
->io_work
);
265 * Buffered IO write completion for delayed allocate extents.
268 xfs_end_bio_delalloc(
269 struct work_struct
*work
)
272 container_of(work
, xfs_ioend_t
, io_work
);
276 * If we didn't complete processing of the ioend, requeue it to the
277 * tail of the workqueue for another attempt later. Otherwise destroy
280 error
= xfs_setfilesize(ioend
);
281 if (error
== EAGAIN
) {
282 atomic_inc(&ioend
->io_remaining
);
283 xfs_finish_ioend(ioend
, 0);
284 /* ensure we don't spin on blocked ioends */
288 xfs_destroy_ioend(ioend
);
293 * Buffered IO write completion for regular, written extents.
297 struct work_struct
*work
)
300 container_of(work
, xfs_ioend_t
, io_work
);
304 * If we didn't complete processing of the ioend, requeue it to the
305 * tail of the workqueue for another attempt later. Otherwise destroy
308 error
= xfs_setfilesize(ioend
);
309 if (error
== EAGAIN
) {
310 atomic_inc(&ioend
->io_remaining
);
311 xfs_finish_ioend(ioend
, 0);
312 /* ensure we don't spin on blocked ioends */
316 xfs_destroy_ioend(ioend
);
321 * IO write completion for unwritten extents.
323 * Issue transactions to convert a buffer range from unwritten
324 * to written extents.
327 xfs_end_bio_unwritten(
328 struct work_struct
*work
)
331 container_of(work
, xfs_ioend_t
, io_work
);
332 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
333 xfs_off_t offset
= ioend
->io_offset
;
334 size_t size
= ioend
->io_size
;
336 if (likely(!ioend
->io_error
)) {
338 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
339 error
= xfs_iomap_write_unwritten(ip
, offset
, size
);
341 ioend
->io_error
= error
;
344 * If we didn't complete processing of the ioend, requeue it to the
345 * tail of the workqueue for another attempt later. Otherwise destroy
348 error
= xfs_setfilesize(ioend
);
349 if (error
== EAGAIN
) {
350 atomic_inc(&ioend
->io_remaining
);
351 xfs_finish_ioend(ioend
, 0);
352 /* ensure we don't spin on blocked ioends */
357 xfs_destroy_ioend(ioend
);
361 * IO read completion for regular, written extents.
365 struct work_struct
*work
)
368 container_of(work
, xfs_ioend_t
, io_work
);
370 xfs_destroy_ioend(ioend
);
374 * Allocate and initialise an IO completion structure.
375 * We need to track unwritten extent write completion here initially.
376 * We'll need to extend this for updating the ondisk inode size later
386 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
389 * Set the count to 1 initially, which will prevent an I/O
390 * completion callback from happening before we have started
391 * all the I/O from calling the completion routine too early.
393 atomic_set(&ioend
->io_remaining
, 1);
395 ioend
->io_list
= NULL
;
396 ioend
->io_type
= type
;
397 ioend
->io_inode
= inode
;
398 ioend
->io_buffer_head
= NULL
;
399 ioend
->io_buffer_tail
= NULL
;
400 atomic_inc(&XFS_I(ioend
->io_inode
)->i_iocount
);
401 ioend
->io_offset
= 0;
404 if (type
== IOMAP_UNWRITTEN
)
405 INIT_WORK(&ioend
->io_work
, xfs_end_bio_unwritten
);
406 else if (type
== IOMAP_DELAY
)
407 INIT_WORK(&ioend
->io_work
, xfs_end_bio_delalloc
);
408 else if (type
== IOMAP_READ
)
409 INIT_WORK(&ioend
->io_work
, xfs_end_bio_read
);
411 INIT_WORK(&ioend
->io_work
, xfs_end_bio_written
);
426 return -xfs_iomap(XFS_I(inode
), offset
, count
, flags
, mapp
, &nmaps
);
434 return offset
>= iomapp
->iomap_offset
&&
435 offset
< iomapp
->iomap_offset
+ iomapp
->iomap_bsize
;
439 * BIO completion handler for buffered IO.
446 xfs_ioend_t
*ioend
= bio
->bi_private
;
448 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
449 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
451 /* Toss bio and pass work off to an xfsdatad thread */
452 bio
->bi_private
= NULL
;
453 bio
->bi_end_io
= NULL
;
456 xfs_finish_ioend(ioend
, 0);
460 xfs_submit_ioend_bio(
464 atomic_inc(&ioend
->io_remaining
);
465 bio
->bi_private
= ioend
;
466 bio
->bi_end_io
= xfs_end_bio
;
469 * If the I/O is beyond EOF we mark the inode dirty immediately
470 * but don't update the inode size until I/O completion.
472 if (xfs_ioend_new_eof(ioend
))
473 xfs_mark_inode_dirty_sync(XFS_I(ioend
->io_inode
));
475 submit_bio(WRITE
, bio
);
476 ASSERT(!bio_flagged(bio
, BIO_EOPNOTSUPP
));
482 struct buffer_head
*bh
)
485 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
488 bio
= bio_alloc(GFP_NOIO
, nvecs
);
492 ASSERT(bio
->bi_private
== NULL
);
493 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
494 bio
->bi_bdev
= bh
->b_bdev
;
500 xfs_start_buffer_writeback(
501 struct buffer_head
*bh
)
503 ASSERT(buffer_mapped(bh
));
504 ASSERT(buffer_locked(bh
));
505 ASSERT(!buffer_delay(bh
));
506 ASSERT(!buffer_unwritten(bh
));
508 mark_buffer_async_write(bh
);
509 set_buffer_uptodate(bh
);
510 clear_buffer_dirty(bh
);
514 xfs_start_page_writeback(
519 ASSERT(PageLocked(page
));
520 ASSERT(!PageWriteback(page
));
522 clear_page_dirty_for_io(page
);
523 set_page_writeback(page
);
525 /* If no buffers on the page are to be written, finish it here */
527 end_page_writeback(page
);
530 static inline int bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
532 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
536 * Submit all of the bios for all of the ioends we have saved up, covering the
537 * initial writepage page and also any probed pages.
539 * Because we may have multiple ioends spanning a page, we need to start
540 * writeback on all the buffers before we submit them for I/O. If we mark the
541 * buffers as we got, then we can end up with a page that only has buffers
542 * marked async write and I/O complete on can occur before we mark the other
543 * buffers async write.
545 * The end result of this is that we trip a bug in end_page_writeback() because
546 * we call it twice for the one page as the code in end_buffer_async_write()
547 * assumes that all buffers on the page are started at the same time.
549 * The fix is two passes across the ioend list - one to start writeback on the
550 * buffer_heads, and then submit them for I/O on the second pass.
556 xfs_ioend_t
*head
= ioend
;
558 struct buffer_head
*bh
;
560 sector_t lastblock
= 0;
562 /* Pass 1 - start writeback */
564 next
= ioend
->io_list
;
565 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
566 xfs_start_buffer_writeback(bh
);
568 } while ((ioend
= next
) != NULL
);
570 /* Pass 2 - submit I/O */
573 next
= ioend
->io_list
;
576 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
580 bio
= xfs_alloc_ioend_bio(bh
);
581 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
582 xfs_submit_ioend_bio(ioend
, bio
);
586 if (bio_add_buffer(bio
, bh
) != bh
->b_size
) {
587 xfs_submit_ioend_bio(ioend
, bio
);
591 lastblock
= bh
->b_blocknr
;
594 xfs_submit_ioend_bio(ioend
, bio
);
595 xfs_finish_ioend(ioend
, 0);
596 } while ((ioend
= next
) != NULL
);
600 * Cancel submission of all buffer_heads so far in this endio.
601 * Toss the endio too. Only ever called for the initial page
602 * in a writepage request, so only ever one page.
609 struct buffer_head
*bh
, *next_bh
;
612 next
= ioend
->io_list
;
613 bh
= ioend
->io_buffer_head
;
615 next_bh
= bh
->b_private
;
616 clear_buffer_async_write(bh
);
618 } while ((bh
= next_bh
) != NULL
);
620 xfs_ioend_wake(XFS_I(ioend
->io_inode
));
621 mempool_free(ioend
, xfs_ioend_pool
);
622 } while ((ioend
= next
) != NULL
);
626 * Test to see if we've been building up a completion structure for
627 * earlier buffers -- if so, we try to append to this ioend if we
628 * can, otherwise we finish off any current ioend and start another.
629 * Return true if we've finished the given ioend.
634 struct buffer_head
*bh
,
637 xfs_ioend_t
**result
,
640 xfs_ioend_t
*ioend
= *result
;
642 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
643 xfs_ioend_t
*previous
= *result
;
645 ioend
= xfs_alloc_ioend(inode
, type
);
646 ioend
->io_offset
= offset
;
647 ioend
->io_buffer_head
= bh
;
648 ioend
->io_buffer_tail
= bh
;
650 previous
->io_list
= ioend
;
653 ioend
->io_buffer_tail
->b_private
= bh
;
654 ioend
->io_buffer_tail
= bh
;
657 bh
->b_private
= NULL
;
658 ioend
->io_size
+= bh
->b_size
;
663 struct buffer_head
*bh
,
670 ASSERT(mp
->iomap_bn
!= IOMAP_DADDR_NULL
);
672 bn
= (mp
->iomap_bn
>> (block_bits
- BBSHIFT
)) +
673 ((offset
- mp
->iomap_offset
) >> block_bits
);
675 ASSERT(bn
|| (mp
->iomap_flags
& IOMAP_REALTIME
));
678 set_buffer_mapped(bh
);
683 struct buffer_head
*bh
,
688 ASSERT(!(iomapp
->iomap_flags
& IOMAP_HOLE
));
689 ASSERT(!(iomapp
->iomap_flags
& IOMAP_DELAY
));
692 xfs_map_buffer(bh
, iomapp
, offset
, block_bits
);
693 bh
->b_bdev
= iomapp
->iomap_target
->bt_bdev
;
694 set_buffer_mapped(bh
);
695 clear_buffer_delay(bh
);
696 clear_buffer_unwritten(bh
);
700 * Look for a page at index that is suitable for clustering.
705 unsigned int pg_offset
,
710 if (PageWriteback(page
))
713 if (page
->mapping
&& PageDirty(page
)) {
714 if (page_has_buffers(page
)) {
715 struct buffer_head
*bh
, *head
;
717 bh
= head
= page_buffers(page
);
719 if (!buffer_uptodate(bh
))
721 if (mapped
!= buffer_mapped(bh
))
724 if (ret
>= pg_offset
)
726 } while ((bh
= bh
->b_this_page
) != head
);
728 ret
= mapped
? 0 : PAGE_CACHE_SIZE
;
737 struct page
*startpage
,
738 struct buffer_head
*bh
,
739 struct buffer_head
*head
,
743 pgoff_t tindex
, tlast
, tloff
;
747 /* First sum forwards in this page */
749 if (!buffer_uptodate(bh
) || (mapped
!= buffer_mapped(bh
)))
752 } while ((bh
= bh
->b_this_page
) != head
);
754 /* if we reached the end of the page, sum forwards in following pages */
755 tlast
= i_size_read(inode
) >> PAGE_CACHE_SHIFT
;
756 tindex
= startpage
->index
+ 1;
758 /* Prune this back to avoid pathological behavior */
759 tloff
= min(tlast
, startpage
->index
+ 64);
761 pagevec_init(&pvec
, 0);
762 while (!done
&& tindex
<= tloff
) {
763 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
765 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
768 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
769 struct page
*page
= pvec
.pages
[i
];
770 size_t pg_offset
, pg_len
= 0;
772 if (tindex
== tlast
) {
774 i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1);
780 pg_offset
= PAGE_CACHE_SIZE
;
782 if (page
->index
== tindex
&& trylock_page(page
)) {
783 pg_len
= xfs_probe_page(page
, pg_offset
, mapped
);
796 pagevec_release(&pvec
);
804 * Test if a given page is suitable for writing as part of an unwritten
805 * or delayed allocate extent.
812 if (PageWriteback(page
))
815 if (page
->mapping
&& page_has_buffers(page
)) {
816 struct buffer_head
*bh
, *head
;
819 bh
= head
= page_buffers(page
);
821 if (buffer_unwritten(bh
))
822 acceptable
= (type
== IOMAP_UNWRITTEN
);
823 else if (buffer_delay(bh
))
824 acceptable
= (type
== IOMAP_DELAY
);
825 else if (buffer_dirty(bh
) && buffer_mapped(bh
))
826 acceptable
= (type
== IOMAP_NEW
);
829 } while ((bh
= bh
->b_this_page
) != head
);
839 * Allocate & map buffers for page given the extent map. Write it out.
840 * except for the original page of a writepage, this is called on
841 * delalloc/unwritten pages only, for the original page it is possible
842 * that the page has no mapping at all.
850 xfs_ioend_t
**ioendp
,
851 struct writeback_control
*wbc
,
855 struct buffer_head
*bh
, *head
;
856 xfs_off_t end_offset
;
857 unsigned long p_offset
;
859 int bbits
= inode
->i_blkbits
;
861 int count
= 0, done
= 0, uptodate
= 1;
862 xfs_off_t offset
= page_offset(page
);
864 if (page
->index
!= tindex
)
866 if (!trylock_page(page
))
868 if (PageWriteback(page
))
869 goto fail_unlock_page
;
870 if (page
->mapping
!= inode
->i_mapping
)
871 goto fail_unlock_page
;
872 if (!xfs_is_delayed_page(page
, (*ioendp
)->io_type
))
873 goto fail_unlock_page
;
876 * page_dirty is initially a count of buffers on the page before
877 * EOF and is decremented as we move each into a cleanable state.
881 * End offset is the highest offset that this page should represent.
882 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
883 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
884 * hence give us the correct page_dirty count. On any other page,
885 * it will be zero and in that case we need page_dirty to be the
886 * count of buffers on the page.
888 end_offset
= min_t(unsigned long long,
889 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
892 len
= 1 << inode
->i_blkbits
;
893 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
895 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
896 page_dirty
= p_offset
/ len
;
898 bh
= head
= page_buffers(page
);
900 if (offset
>= end_offset
)
902 if (!buffer_uptodate(bh
))
904 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
909 if (buffer_unwritten(bh
) || buffer_delay(bh
)) {
910 if (buffer_unwritten(bh
))
911 type
= IOMAP_UNWRITTEN
;
915 if (!xfs_iomap_valid(mp
, offset
)) {
920 ASSERT(!(mp
->iomap_flags
& IOMAP_HOLE
));
921 ASSERT(!(mp
->iomap_flags
& IOMAP_DELAY
));
923 xfs_map_at_offset(bh
, offset
, bbits
, mp
);
925 xfs_add_to_ioend(inode
, bh
, offset
,
928 set_buffer_dirty(bh
);
930 mark_buffer_dirty(bh
);
936 if (buffer_mapped(bh
) && all_bh
&& startio
) {
938 xfs_add_to_ioend(inode
, bh
, offset
,
946 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
948 if (uptodate
&& bh
== head
)
949 SetPageUptodate(page
);
953 struct backing_dev_info
*bdi
;
955 bdi
= inode
->i_mapping
->backing_dev_info
;
957 if (bdi_write_congested(bdi
)) {
958 wbc
->encountered_congestion
= 1;
960 } else if (wbc
->nr_to_write
<= 0) {
964 xfs_start_page_writeback(page
, !page_dirty
, count
);
975 * Convert & write out a cluster of pages in the same extent as defined
976 * by mp and following the start page.
983 xfs_ioend_t
**ioendp
,
984 struct writeback_control
*wbc
,
992 pagevec_init(&pvec
, 0);
993 while (!done
&& tindex
<= tlast
) {
994 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
996 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
999 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
1000 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
1001 iomapp
, ioendp
, wbc
, startio
, all_bh
);
1006 pagevec_release(&pvec
);
1012 * Calling this without startio set means we are being asked to make a dirty
1013 * page ready for freeing it's buffers. When called with startio set then
1014 * we are coming from writepage.
1016 * When called with startio set it is important that we write the WHOLE
1018 * The bh->b_state's cannot know if any of the blocks or which block for
1019 * that matter are dirty due to mmap writes, and therefore bh uptodate is
1020 * only valid if the page itself isn't completely uptodate. Some layers
1021 * may clear the page dirty flag prior to calling write page, under the
1022 * assumption the entire page will be written out; by not writing out the
1023 * whole page the page can be reused before all valid dirty data is
1024 * written out. Note: in the case of a page that has been dirty'd by
1025 * mapwrite and but partially setup by block_prepare_write the
1026 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
1027 * valid state, thus the whole page must be written out thing.
1031 xfs_page_state_convert(
1032 struct inode
*inode
,
1034 struct writeback_control
*wbc
,
1036 int unmapped
) /* also implies page uptodate */
1038 struct buffer_head
*bh
, *head
;
1040 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
1042 unsigned long p_offset
= 0;
1044 __uint64_t end_offset
;
1045 pgoff_t end_index
, last_index
, tlast
;
1047 int flags
, err
, iomap_valid
= 0, uptodate
= 1;
1048 int page_dirty
, count
= 0;
1050 int all_bh
= unmapped
;
1053 if (wbc
->sync_mode
== WB_SYNC_NONE
&& wbc
->nonblocking
)
1054 trylock
|= BMAPI_TRYLOCK
;
1057 /* Is this page beyond the end of the file? */
1058 offset
= i_size_read(inode
);
1059 end_index
= offset
>> PAGE_CACHE_SHIFT
;
1060 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
1061 if (page
->index
>= end_index
) {
1062 if ((page
->index
>= end_index
+ 1) ||
1063 !(i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1))) {
1071 * page_dirty is initially a count of buffers on the page before
1072 * EOF and is decremented as we move each into a cleanable state.
1076 * End offset is the highest offset that this page should represent.
1077 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1078 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1079 * hence give us the correct page_dirty count. On any other page,
1080 * it will be zero and in that case we need page_dirty to be the
1081 * count of buffers on the page.
1083 end_offset
= min_t(unsigned long long,
1084 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
, offset
);
1085 len
= 1 << inode
->i_blkbits
;
1086 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
1088 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
1089 page_dirty
= p_offset
/ len
;
1091 bh
= head
= page_buffers(page
);
1092 offset
= page_offset(page
);
1096 /* TODO: cleanup count and page_dirty */
1099 if (offset
>= end_offset
)
1101 if (!buffer_uptodate(bh
))
1103 if (!(PageUptodate(page
) || buffer_uptodate(bh
)) && !startio
) {
1105 * the iomap is actually still valid, but the ioend
1106 * isn't. shouldn't happen too often.
1113 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1116 * First case, map an unwritten extent and prepare for
1117 * extent state conversion transaction on completion.
1119 * Second case, allocate space for a delalloc buffer.
1120 * We can return EAGAIN here in the release page case.
1122 * Third case, an unmapped buffer was found, and we are
1123 * in a path where we need to write the whole page out.
1125 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
1126 ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
1127 !buffer_mapped(bh
) && (unmapped
|| startio
))) {
1131 * Make sure we don't use a read-only iomap
1133 if (flags
== BMAPI_READ
)
1136 if (buffer_unwritten(bh
)) {
1137 type
= IOMAP_UNWRITTEN
;
1138 flags
= BMAPI_WRITE
| BMAPI_IGNSTATE
;
1139 } else if (buffer_delay(bh
)) {
1141 flags
= BMAPI_ALLOCATE
| trylock
;
1144 flags
= BMAPI_WRITE
| BMAPI_MMAP
;
1149 * if we didn't have a valid mapping then we
1150 * need to ensure that we put the new mapping
1151 * in a new ioend structure. This needs to be
1152 * done to ensure that the ioends correctly
1153 * reflect the block mappings at io completion
1154 * for unwritten extent conversion.
1157 if (type
== IOMAP_NEW
) {
1158 size
= xfs_probe_cluster(inode
,
1164 err
= xfs_map_blocks(inode
, offset
, size
,
1168 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1171 xfs_map_at_offset(bh
, offset
,
1172 inode
->i_blkbits
, &iomap
);
1174 xfs_add_to_ioend(inode
, bh
, offset
,
1178 set_buffer_dirty(bh
);
1180 mark_buffer_dirty(bh
);
1185 } else if (buffer_uptodate(bh
) && startio
) {
1187 * we got here because the buffer is already mapped.
1188 * That means it must already have extents allocated
1189 * underneath it. Map the extent by reading it.
1191 if (!iomap_valid
|| flags
!= BMAPI_READ
) {
1193 size
= xfs_probe_cluster(inode
, page
, bh
,
1195 err
= xfs_map_blocks(inode
, offset
, size
,
1199 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1203 * We set the type to IOMAP_NEW in case we are doing a
1204 * small write at EOF that is extending the file but
1205 * without needing an allocation. We need to update the
1206 * file size on I/O completion in this case so it is
1207 * the same case as having just allocated a new extent
1208 * that we are writing into for the first time.
1211 if (trylock_buffer(bh
)) {
1212 ASSERT(buffer_mapped(bh
));
1215 xfs_add_to_ioend(inode
, bh
, offset
, type
,
1216 &ioend
, !iomap_valid
);
1222 } else if ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
1223 (unmapped
|| startio
)) {
1230 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1232 if (uptodate
&& bh
== head
)
1233 SetPageUptodate(page
);
1236 xfs_start_page_writeback(page
, 1, count
);
1238 if (ioend
&& iomap_valid
) {
1239 offset
= (iomap
.iomap_offset
+ iomap
.iomap_bsize
- 1) >>
1241 tlast
= min_t(pgoff_t
, offset
, last_index
);
1242 xfs_cluster_write(inode
, page
->index
+ 1, &iomap
, &ioend
,
1243 wbc
, startio
, all_bh
, tlast
);
1247 xfs_submit_ioend(iohead
);
1253 xfs_cancel_ioend(iohead
);
1256 * If it's delalloc and we have nowhere to put it,
1257 * throw it away, unless the lower layers told
1260 if (err
!= -EAGAIN
) {
1262 block_invalidatepage(page
, 0);
1263 ClearPageUptodate(page
);
1269 * writepage: Called from one of two places:
1271 * 1. we are flushing a delalloc buffer head.
1273 * 2. we are writing out a dirty page. Typically the page dirty
1274 * state is cleared before we get here. In this case is it
1275 * conceivable we have no buffer heads.
1277 * For delalloc space on the page we need to allocate space and
1278 * flush it. For unmapped buffer heads on the page we should
1279 * allocate space if the page is uptodate. For any other dirty
1280 * buffer heads on the page we should flush them.
1282 * If we detect that a transaction would be required to flush
1283 * the page, we have to check the process flags first, if we
1284 * are already in a transaction or disk I/O during allocations
1285 * is off, we need to fail the writepage and redirty the page.
1291 struct writeback_control
*wbc
)
1295 int delalloc
, unmapped
, unwritten
;
1296 struct inode
*inode
= page
->mapping
->host
;
1298 xfs_page_trace(XFS_WRITEPAGE_ENTER
, inode
, page
, 0);
1301 * We need a transaction if:
1302 * 1. There are delalloc buffers on the page
1303 * 2. The page is uptodate and we have unmapped buffers
1304 * 3. The page is uptodate and we have no buffers
1305 * 4. There are unwritten buffers on the page
1308 if (!page_has_buffers(page
)) {
1312 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1313 if (!PageUptodate(page
))
1315 need_trans
= delalloc
+ unmapped
+ unwritten
;
1319 * If we need a transaction and the process flags say
1320 * we are already in a transaction, or no IO is allowed
1321 * then mark the page dirty again and leave the page
1324 if (current_test_flags(PF_FSTRANS
) && need_trans
)
1328 * Delay hooking up buffer heads until we have
1329 * made our go/no-go decision.
1331 if (!page_has_buffers(page
))
1332 create_empty_buffers(page
, 1 << inode
->i_blkbits
, 0);
1336 * VM calculation for nr_to_write seems off. Bump it way
1337 * up, this gets simple streaming writes zippy again.
1338 * To be reviewed again after Jens' writeback changes.
1340 wbc
->nr_to_write
*= 4;
1343 * Convert delayed allocate, unwritten or unmapped space
1344 * to real space and flush out to disk.
1346 error
= xfs_page_state_convert(inode
, page
, wbc
, 1, unmapped
);
1347 if (error
== -EAGAIN
)
1349 if (unlikely(error
< 0))
1355 redirty_page_for_writepage(wbc
, page
);
1365 struct address_space
*mapping
,
1366 struct writeback_control
*wbc
)
1368 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1369 return generic_writepages(mapping
, wbc
);
1373 * Called to move a page into cleanable state - and from there
1374 * to be released. Possibly the page is already clean. We always
1375 * have buffer heads in this call.
1377 * Returns 0 if the page is ok to release, 1 otherwise.
1379 * Possible scenarios are:
1381 * 1. We are being called to release a page which has been written
1382 * to via regular I/O. buffer heads will be dirty and possibly
1383 * delalloc. If no delalloc buffer heads in this case then we
1384 * can just return zero.
1386 * 2. We are called to release a page which has been written via
1387 * mmap, all we need to do is ensure there is no delalloc
1388 * state in the buffer heads, if not we can let the caller
1389 * free them and we should come back later via writepage.
1396 struct inode
*inode
= page
->mapping
->host
;
1397 int dirty
, delalloc
, unmapped
, unwritten
;
1398 struct writeback_control wbc
= {
1399 .sync_mode
= WB_SYNC_ALL
,
1403 xfs_page_trace(XFS_RELEASEPAGE_ENTER
, inode
, page
, 0);
1405 if (!page_has_buffers(page
))
1408 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1409 if (!delalloc
&& !unwritten
)
1412 if (!(gfp_mask
& __GFP_FS
))
1415 /* If we are already inside a transaction or the thread cannot
1416 * do I/O, we cannot release this page.
1418 if (current_test_flags(PF_FSTRANS
))
1422 * Convert delalloc space to real space, do not flush the
1423 * data out to disk, that will be done by the caller.
1424 * Never need to allocate space here - we will always
1425 * come back to writepage in that case.
1427 dirty
= xfs_page_state_convert(inode
, page
, &wbc
, 0, 0);
1428 if (dirty
== 0 && !unwritten
)
1433 return try_to_free_buffers(page
);
1438 struct inode
*inode
,
1440 struct buffer_head
*bh_result
,
1443 bmapi_flags_t flags
)
1451 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1452 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1453 size
= bh_result
->b_size
;
1455 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1458 error
= xfs_iomap(XFS_I(inode
), offset
, size
,
1459 create
? flags
: BMAPI_READ
, &iomap
, &niomap
);
1465 if (iomap
.iomap_bn
!= IOMAP_DADDR_NULL
) {
1467 * For unwritten extents do not report a disk address on
1468 * the read case (treat as if we're reading into a hole).
1470 if (create
|| !(iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1471 xfs_map_buffer(bh_result
, &iomap
, offset
,
1474 if (create
&& (iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1476 bh_result
->b_private
= inode
;
1477 set_buffer_unwritten(bh_result
);
1482 * If this is a realtime file, data may be on a different device.
1483 * to that pointed to from the buffer_head b_bdev currently.
1485 bh_result
->b_bdev
= iomap
.iomap_target
->bt_bdev
;
1488 * If we previously allocated a block out beyond eof and we are now
1489 * coming back to use it then we will need to flag it as new even if it
1490 * has a disk address.
1492 * With sub-block writes into unwritten extents we also need to mark
1493 * the buffer as new so that the unwritten parts of the buffer gets
1497 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1498 (offset
>= i_size_read(inode
)) ||
1499 (iomap
.iomap_flags
& (IOMAP_NEW
|IOMAP_UNWRITTEN
))))
1500 set_buffer_new(bh_result
);
1502 if (iomap
.iomap_flags
& IOMAP_DELAY
) {
1505 set_buffer_uptodate(bh_result
);
1506 set_buffer_mapped(bh_result
);
1507 set_buffer_delay(bh_result
);
1511 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1512 ASSERT(iomap
.iomap_bsize
- iomap
.iomap_delta
> 0);
1513 offset
= min_t(xfs_off_t
,
1514 iomap
.iomap_bsize
- iomap
.iomap_delta
, size
);
1515 bh_result
->b_size
= (ssize_t
)min_t(xfs_off_t
, LONG_MAX
, offset
);
1523 struct inode
*inode
,
1525 struct buffer_head
*bh_result
,
1528 return __xfs_get_blocks(inode
, iblock
,
1529 bh_result
, create
, 0, BMAPI_WRITE
);
1533 xfs_get_blocks_direct(
1534 struct inode
*inode
,
1536 struct buffer_head
*bh_result
,
1539 return __xfs_get_blocks(inode
, iblock
,
1540 bh_result
, create
, 1, BMAPI_WRITE
|BMAPI_DIRECT
);
1550 xfs_ioend_t
*ioend
= iocb
->private;
1553 * Non-NULL private data means we need to issue a transaction to
1554 * convert a range from unwritten to written extents. This needs
1555 * to happen from process context but aio+dio I/O completion
1556 * happens from irq context so we need to defer it to a workqueue.
1557 * This is not necessary for synchronous direct I/O, but we do
1558 * it anyway to keep the code uniform and simpler.
1560 * Well, if only it were that simple. Because synchronous direct I/O
1561 * requires extent conversion to occur *before* we return to userspace,
1562 * we have to wait for extent conversion to complete. Look at the
1563 * iocb that has been passed to us to determine if this is AIO or
1564 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1565 * workqueue and wait for it to complete.
1567 * The core direct I/O code might be changed to always call the
1568 * completion handler in the future, in which case all this can
1571 ioend
->io_offset
= offset
;
1572 ioend
->io_size
= size
;
1573 if (ioend
->io_type
== IOMAP_READ
) {
1574 xfs_finish_ioend(ioend
, 0);
1575 } else if (private && size
> 0) {
1576 xfs_finish_ioend(ioend
, is_sync_kiocb(iocb
));
1579 * A direct I/O write ioend starts it's life in unwritten
1580 * state in case they map an unwritten extent. This write
1581 * didn't map an unwritten extent so switch it's completion
1584 INIT_WORK(&ioend
->io_work
, xfs_end_bio_written
);
1585 xfs_finish_ioend(ioend
, 0);
1589 * blockdev_direct_IO can return an error even after the I/O
1590 * completion handler was called. Thus we need to protect
1591 * against double-freeing.
1593 iocb
->private = NULL
;
1600 const struct iovec
*iov
,
1602 unsigned long nr_segs
)
1604 struct file
*file
= iocb
->ki_filp
;
1605 struct inode
*inode
= file
->f_mapping
->host
;
1606 struct block_device
*bdev
;
1609 bdev
= xfs_find_bdev_for_inode(XFS_I(inode
));
1612 iocb
->private = xfs_alloc_ioend(inode
, IOMAP_UNWRITTEN
);
1613 ret
= blockdev_direct_IO_own_locking(rw
, iocb
, inode
,
1614 bdev
, iov
, offset
, nr_segs
,
1615 xfs_get_blocks_direct
,
1618 iocb
->private = xfs_alloc_ioend(inode
, IOMAP_READ
);
1619 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
1620 bdev
, iov
, offset
, nr_segs
,
1621 xfs_get_blocks_direct
,
1625 if (unlikely(ret
!= -EIOCBQUEUED
&& iocb
->private))
1626 xfs_destroy_ioend(iocb
->private);
1633 struct address_space
*mapping
,
1637 struct page
**pagep
,
1641 return block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1647 struct address_space
*mapping
,
1650 struct inode
*inode
= (struct inode
*)mapping
->host
;
1651 struct xfs_inode
*ip
= XFS_I(inode
);
1653 xfs_itrace_entry(XFS_I(inode
));
1654 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1655 xfs_flush_pages(ip
, (xfs_off_t
)0, -1, 0, FI_REMAPF
);
1656 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1657 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1662 struct file
*unused
,
1665 return mpage_readpage(page
, xfs_get_blocks
);
1670 struct file
*unused
,
1671 struct address_space
*mapping
,
1672 struct list_head
*pages
,
1675 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1679 xfs_vm_invalidatepage(
1681 unsigned long offset
)
1683 xfs_page_trace(XFS_INVALIDPAGE_ENTER
,
1684 page
->mapping
->host
, page
, offset
);
1685 block_invalidatepage(page
, offset
);
1688 const struct address_space_operations xfs_address_space_operations
= {
1689 .readpage
= xfs_vm_readpage
,
1690 .readpages
= xfs_vm_readpages
,
1691 .writepage
= xfs_vm_writepage
,
1692 .writepages
= xfs_vm_writepages
,
1693 .sync_page
= block_sync_page
,
1694 .releasepage
= xfs_vm_releasepage
,
1695 .invalidatepage
= xfs_vm_invalidatepage
,
1696 .write_begin
= xfs_vm_write_begin
,
1697 .write_end
= generic_write_end
,
1698 .bmap
= xfs_vm_bmap
,
1699 .direct_IO
= xfs_vm_direct_IO
,
1700 .migratepage
= buffer_migrate_page
,
1701 .is_partially_uptodate
= block_is_partially_uptodate
,
1702 .error_remove_page
= generic_error_remove_page
,