initial commit with v2.6.32.60
[linux-2.6.32.60-moxart.git] / fs / xfs / linux-2.6 / xfs_aops.c
blob7263002fac643f6da9df6ea561ac3cb36054908a
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_dir2.h"
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
38 #include "xfs_rw.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include <linux/mpage.h>
42 #include <linux/pagevec.h>
43 #include <linux/writeback.h>
47 * Prime number of hash buckets since address is used as the key.
49 #define NVSYNC 37
50 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
51 static wait_queue_head_t xfs_ioend_wq[NVSYNC];
53 void __init
54 xfs_ioend_init(void)
56 int i;
58 for (i = 0; i < NVSYNC; i++)
59 init_waitqueue_head(&xfs_ioend_wq[i]);
62 void
63 xfs_ioend_wait(
64 xfs_inode_t *ip)
66 wait_queue_head_t *wq = to_ioend_wq(ip);
68 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
71 STATIC void
72 xfs_ioend_wake(
73 xfs_inode_t *ip)
75 if (atomic_dec_and_test(&ip->i_iocount))
76 wake_up(to_ioend_wq(ip));
79 STATIC void
80 xfs_count_page_state(
81 struct page *page,
82 int *delalloc,
83 int *unmapped,
84 int *unwritten)
86 struct buffer_head *bh, *head;
88 *delalloc = *unmapped = *unwritten = 0;
90 bh = head = page_buffers(page);
91 do {
92 if (buffer_uptodate(bh) && !buffer_mapped(bh))
93 (*unmapped) = 1;
94 else if (buffer_unwritten(bh))
95 (*unwritten) = 1;
96 else if (buffer_delay(bh))
97 (*delalloc) = 1;
98 } while ((bh = bh->b_this_page) != head);
101 #if defined(XFS_RW_TRACE)
102 void
103 xfs_page_trace(
104 int tag,
105 struct inode *inode,
106 struct page *page,
107 unsigned long pgoff)
109 xfs_inode_t *ip;
110 loff_t isize = i_size_read(inode);
111 loff_t offset = page_offset(page);
112 int delalloc = -1, unmapped = -1, unwritten = -1;
114 if (page_has_buffers(page))
115 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
117 ip = XFS_I(inode);
118 if (!ip->i_rwtrace)
119 return;
121 ktrace_enter(ip->i_rwtrace,
122 (void *)((unsigned long)tag),
123 (void *)ip,
124 (void *)inode,
125 (void *)page,
126 (void *)pgoff,
127 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
128 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
129 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
130 (void *)((unsigned long)(isize & 0xffffffff)),
131 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
132 (void *)((unsigned long)(offset & 0xffffffff)),
133 (void *)((unsigned long)delalloc),
134 (void *)((unsigned long)unmapped),
135 (void *)((unsigned long)unwritten),
136 (void *)((unsigned long)current_pid()),
137 (void *)NULL);
139 #else
140 #define xfs_page_trace(tag, inode, page, pgoff)
141 #endif
143 STATIC struct block_device *
144 xfs_find_bdev_for_inode(
145 struct xfs_inode *ip)
147 struct xfs_mount *mp = ip->i_mount;
149 if (XFS_IS_REALTIME_INODE(ip))
150 return mp->m_rtdev_targp->bt_bdev;
151 else
152 return mp->m_ddev_targp->bt_bdev;
156 * We're now finished for good with this ioend structure.
157 * Update the page state via the associated buffer_heads,
158 * release holds on the inode and bio, and finally free
159 * up memory. Do not use the ioend after this.
161 STATIC void
162 xfs_destroy_ioend(
163 xfs_ioend_t *ioend)
165 struct buffer_head *bh, *next;
166 struct xfs_inode *ip = XFS_I(ioend->io_inode);
168 for (bh = ioend->io_buffer_head; bh; bh = next) {
169 next = bh->b_private;
170 bh->b_end_io(bh, !ioend->io_error);
174 * Volume managers supporting multiple paths can send back ENODEV
175 * when the final path disappears. In this case continuing to fill
176 * the page cache with dirty data which cannot be written out is
177 * evil, so prevent that.
179 if (unlikely(ioend->io_error == -ENODEV)) {
180 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
181 __FILE__, __LINE__);
184 xfs_ioend_wake(ip);
185 mempool_free(ioend, xfs_ioend_pool);
189 * If the end of the current ioend is beyond the current EOF,
190 * return the new EOF value, otherwise zero.
192 STATIC xfs_fsize_t
193 xfs_ioend_new_eof(
194 xfs_ioend_t *ioend)
196 xfs_inode_t *ip = XFS_I(ioend->io_inode);
197 xfs_fsize_t isize;
198 xfs_fsize_t bsize;
200 bsize = ioend->io_offset + ioend->io_size;
201 isize = MAX(ip->i_size, ip->i_new_size);
202 isize = MIN(isize, bsize);
203 return isize > ip->i_d.di_size ? isize : 0;
207 * Update on-disk file size now that data has been written to disk. The
208 * current in-memory file size is i_size. If a write is beyond eof i_new_size
209 * will be the intended file size until i_size is updated. If this write does
210 * not extend all the way to the valid file size then restrict this update to
211 * the end of the write.
213 * This function does not block as blocking on the inode lock in IO completion
214 * can lead to IO completion order dependency deadlocks.. If it can't get the
215 * inode ilock it will return EAGAIN. Callers must handle this.
217 STATIC int
218 xfs_setfilesize(
219 xfs_ioend_t *ioend)
221 xfs_inode_t *ip = XFS_I(ioend->io_inode);
222 xfs_fsize_t isize;
224 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
225 ASSERT(ioend->io_type != IOMAP_READ);
227 if (unlikely(ioend->io_error))
228 return 0;
230 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
231 return EAGAIN;
233 isize = xfs_ioend_new_eof(ioend);
234 if (isize) {
235 ip->i_d.di_size = isize;
236 xfs_mark_inode_dirty_sync(ip);
239 xfs_iunlock(ip, XFS_ILOCK_EXCL);
240 return 0;
244 * Schedule IO completion handling on a xfsdatad if this was
245 * the final hold on this ioend. If we are asked to wait,
246 * flush the workqueue.
248 STATIC void
249 xfs_finish_ioend(
250 xfs_ioend_t *ioend,
251 int wait)
253 if (atomic_dec_and_test(&ioend->io_remaining)) {
254 struct workqueue_struct *wq;
256 wq = (ioend->io_type == IOMAP_UNWRITTEN) ?
257 xfsconvertd_workqueue : xfsdatad_workqueue;
258 queue_work(wq, &ioend->io_work);
259 if (wait)
260 flush_workqueue(wq);
265 * Buffered IO write completion for delayed allocate extents.
267 STATIC void
268 xfs_end_bio_delalloc(
269 struct work_struct *work)
271 xfs_ioend_t *ioend =
272 container_of(work, xfs_ioend_t, io_work);
273 int error;
276 * If we didn't complete processing of the ioend, requeue it to the
277 * tail of the workqueue for another attempt later. Otherwise destroy
278 * it.
280 error = xfs_setfilesize(ioend);
281 if (error == EAGAIN) {
282 atomic_inc(&ioend->io_remaining);
283 xfs_finish_ioend(ioend, 0);
284 /* ensure we don't spin on blocked ioends */
285 delay(1);
286 } else {
287 ASSERT(!error);
288 xfs_destroy_ioend(ioend);
293 * Buffered IO write completion for regular, written extents.
295 STATIC void
296 xfs_end_bio_written(
297 struct work_struct *work)
299 xfs_ioend_t *ioend =
300 container_of(work, xfs_ioend_t, io_work);
301 int error;
304 * If we didn't complete processing of the ioend, requeue it to the
305 * tail of the workqueue for another attempt later. Otherwise destroy
306 * it.
308 error = xfs_setfilesize(ioend);
309 if (error == EAGAIN) {
310 atomic_inc(&ioend->io_remaining);
311 xfs_finish_ioend(ioend, 0);
312 /* ensure we don't spin on blocked ioends */
313 delay(1);
314 } else {
315 ASSERT(!error);
316 xfs_destroy_ioend(ioend);
321 * IO write completion for unwritten extents.
323 * Issue transactions to convert a buffer range from unwritten
324 * to written extents.
326 STATIC void
327 xfs_end_bio_unwritten(
328 struct work_struct *work)
330 xfs_ioend_t *ioend =
331 container_of(work, xfs_ioend_t, io_work);
332 struct xfs_inode *ip = XFS_I(ioend->io_inode);
333 xfs_off_t offset = ioend->io_offset;
334 size_t size = ioend->io_size;
336 if (likely(!ioend->io_error)) {
337 int error;
338 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
339 error = xfs_iomap_write_unwritten(ip, offset, size);
340 if (error)
341 ioend->io_error = error;
344 * If we didn't complete processing of the ioend, requeue it to the
345 * tail of the workqueue for another attempt later. Otherwise destroy
346 * it.
348 error = xfs_setfilesize(ioend);
349 if (error == EAGAIN) {
350 atomic_inc(&ioend->io_remaining);
351 xfs_finish_ioend(ioend, 0);
352 /* ensure we don't spin on blocked ioends */
353 delay(1);
354 return;
357 xfs_destroy_ioend(ioend);
361 * IO read completion for regular, written extents.
363 STATIC void
364 xfs_end_bio_read(
365 struct work_struct *work)
367 xfs_ioend_t *ioend =
368 container_of(work, xfs_ioend_t, io_work);
370 xfs_destroy_ioend(ioend);
374 * Allocate and initialise an IO completion structure.
375 * We need to track unwritten extent write completion here initially.
376 * We'll need to extend this for updating the ondisk inode size later
377 * (vs. incore size).
379 STATIC xfs_ioend_t *
380 xfs_alloc_ioend(
381 struct inode *inode,
382 unsigned int type)
384 xfs_ioend_t *ioend;
386 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
389 * Set the count to 1 initially, which will prevent an I/O
390 * completion callback from happening before we have started
391 * all the I/O from calling the completion routine too early.
393 atomic_set(&ioend->io_remaining, 1);
394 ioend->io_error = 0;
395 ioend->io_list = NULL;
396 ioend->io_type = type;
397 ioend->io_inode = inode;
398 ioend->io_buffer_head = NULL;
399 ioend->io_buffer_tail = NULL;
400 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
401 ioend->io_offset = 0;
402 ioend->io_size = 0;
404 if (type == IOMAP_UNWRITTEN)
405 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
406 else if (type == IOMAP_DELAY)
407 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
408 else if (type == IOMAP_READ)
409 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
410 else
411 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
413 return ioend;
416 STATIC int
417 xfs_map_blocks(
418 struct inode *inode,
419 loff_t offset,
420 ssize_t count,
421 xfs_iomap_t *mapp,
422 int flags)
424 int nmaps = 1;
426 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
429 STATIC_INLINE int
430 xfs_iomap_valid(
431 xfs_iomap_t *iomapp,
432 loff_t offset)
434 return offset >= iomapp->iomap_offset &&
435 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
439 * BIO completion handler for buffered IO.
441 STATIC void
442 xfs_end_bio(
443 struct bio *bio,
444 int error)
446 xfs_ioend_t *ioend = bio->bi_private;
448 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
449 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
451 /* Toss bio and pass work off to an xfsdatad thread */
452 bio->bi_private = NULL;
453 bio->bi_end_io = NULL;
454 bio_put(bio);
456 xfs_finish_ioend(ioend, 0);
459 STATIC void
460 xfs_submit_ioend_bio(
461 xfs_ioend_t *ioend,
462 struct bio *bio)
464 atomic_inc(&ioend->io_remaining);
465 bio->bi_private = ioend;
466 bio->bi_end_io = xfs_end_bio;
469 * If the I/O is beyond EOF we mark the inode dirty immediately
470 * but don't update the inode size until I/O completion.
472 if (xfs_ioend_new_eof(ioend))
473 xfs_mark_inode_dirty_sync(XFS_I(ioend->io_inode));
475 submit_bio(WRITE, bio);
476 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
477 bio_put(bio);
480 STATIC struct bio *
481 xfs_alloc_ioend_bio(
482 struct buffer_head *bh)
484 struct bio *bio;
485 int nvecs = bio_get_nr_vecs(bh->b_bdev);
487 do {
488 bio = bio_alloc(GFP_NOIO, nvecs);
489 nvecs >>= 1;
490 } while (!bio);
492 ASSERT(bio->bi_private == NULL);
493 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
494 bio->bi_bdev = bh->b_bdev;
495 bio_get(bio);
496 return bio;
499 STATIC void
500 xfs_start_buffer_writeback(
501 struct buffer_head *bh)
503 ASSERT(buffer_mapped(bh));
504 ASSERT(buffer_locked(bh));
505 ASSERT(!buffer_delay(bh));
506 ASSERT(!buffer_unwritten(bh));
508 mark_buffer_async_write(bh);
509 set_buffer_uptodate(bh);
510 clear_buffer_dirty(bh);
513 STATIC void
514 xfs_start_page_writeback(
515 struct page *page,
516 int clear_dirty,
517 int buffers)
519 ASSERT(PageLocked(page));
520 ASSERT(!PageWriteback(page));
521 if (clear_dirty)
522 clear_page_dirty_for_io(page);
523 set_page_writeback(page);
524 unlock_page(page);
525 /* If no buffers on the page are to be written, finish it here */
526 if (!buffers)
527 end_page_writeback(page);
530 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
532 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
536 * Submit all of the bios for all of the ioends we have saved up, covering the
537 * initial writepage page and also any probed pages.
539 * Because we may have multiple ioends spanning a page, we need to start
540 * writeback on all the buffers before we submit them for I/O. If we mark the
541 * buffers as we got, then we can end up with a page that only has buffers
542 * marked async write and I/O complete on can occur before we mark the other
543 * buffers async write.
545 * The end result of this is that we trip a bug in end_page_writeback() because
546 * we call it twice for the one page as the code in end_buffer_async_write()
547 * assumes that all buffers on the page are started at the same time.
549 * The fix is two passes across the ioend list - one to start writeback on the
550 * buffer_heads, and then submit them for I/O on the second pass.
552 STATIC void
553 xfs_submit_ioend(
554 xfs_ioend_t *ioend)
556 xfs_ioend_t *head = ioend;
557 xfs_ioend_t *next;
558 struct buffer_head *bh;
559 struct bio *bio;
560 sector_t lastblock = 0;
562 /* Pass 1 - start writeback */
563 do {
564 next = ioend->io_list;
565 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
566 xfs_start_buffer_writeback(bh);
568 } while ((ioend = next) != NULL);
570 /* Pass 2 - submit I/O */
571 ioend = head;
572 do {
573 next = ioend->io_list;
574 bio = NULL;
576 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
578 if (!bio) {
579 retry:
580 bio = xfs_alloc_ioend_bio(bh);
581 } else if (bh->b_blocknr != lastblock + 1) {
582 xfs_submit_ioend_bio(ioend, bio);
583 goto retry;
586 if (bio_add_buffer(bio, bh) != bh->b_size) {
587 xfs_submit_ioend_bio(ioend, bio);
588 goto retry;
591 lastblock = bh->b_blocknr;
593 if (bio)
594 xfs_submit_ioend_bio(ioend, bio);
595 xfs_finish_ioend(ioend, 0);
596 } while ((ioend = next) != NULL);
600 * Cancel submission of all buffer_heads so far in this endio.
601 * Toss the endio too. Only ever called for the initial page
602 * in a writepage request, so only ever one page.
604 STATIC void
605 xfs_cancel_ioend(
606 xfs_ioend_t *ioend)
608 xfs_ioend_t *next;
609 struct buffer_head *bh, *next_bh;
611 do {
612 next = ioend->io_list;
613 bh = ioend->io_buffer_head;
614 do {
615 next_bh = bh->b_private;
616 clear_buffer_async_write(bh);
617 unlock_buffer(bh);
618 } while ((bh = next_bh) != NULL);
620 xfs_ioend_wake(XFS_I(ioend->io_inode));
621 mempool_free(ioend, xfs_ioend_pool);
622 } while ((ioend = next) != NULL);
626 * Test to see if we've been building up a completion structure for
627 * earlier buffers -- if so, we try to append to this ioend if we
628 * can, otherwise we finish off any current ioend and start another.
629 * Return true if we've finished the given ioend.
631 STATIC void
632 xfs_add_to_ioend(
633 struct inode *inode,
634 struct buffer_head *bh,
635 xfs_off_t offset,
636 unsigned int type,
637 xfs_ioend_t **result,
638 int need_ioend)
640 xfs_ioend_t *ioend = *result;
642 if (!ioend || need_ioend || type != ioend->io_type) {
643 xfs_ioend_t *previous = *result;
645 ioend = xfs_alloc_ioend(inode, type);
646 ioend->io_offset = offset;
647 ioend->io_buffer_head = bh;
648 ioend->io_buffer_tail = bh;
649 if (previous)
650 previous->io_list = ioend;
651 *result = ioend;
652 } else {
653 ioend->io_buffer_tail->b_private = bh;
654 ioend->io_buffer_tail = bh;
657 bh->b_private = NULL;
658 ioend->io_size += bh->b_size;
661 STATIC void
662 xfs_map_buffer(
663 struct buffer_head *bh,
664 xfs_iomap_t *mp,
665 xfs_off_t offset,
666 uint block_bits)
668 sector_t bn;
670 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
672 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
673 ((offset - mp->iomap_offset) >> block_bits);
675 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
677 bh->b_blocknr = bn;
678 set_buffer_mapped(bh);
681 STATIC void
682 xfs_map_at_offset(
683 struct buffer_head *bh,
684 loff_t offset,
685 int block_bits,
686 xfs_iomap_t *iomapp)
688 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
689 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
691 lock_buffer(bh);
692 xfs_map_buffer(bh, iomapp, offset, block_bits);
693 bh->b_bdev = iomapp->iomap_target->bt_bdev;
694 set_buffer_mapped(bh);
695 clear_buffer_delay(bh);
696 clear_buffer_unwritten(bh);
700 * Look for a page at index that is suitable for clustering.
702 STATIC unsigned int
703 xfs_probe_page(
704 struct page *page,
705 unsigned int pg_offset,
706 int mapped)
708 int ret = 0;
710 if (PageWriteback(page))
711 return 0;
713 if (page->mapping && PageDirty(page)) {
714 if (page_has_buffers(page)) {
715 struct buffer_head *bh, *head;
717 bh = head = page_buffers(page);
718 do {
719 if (!buffer_uptodate(bh))
720 break;
721 if (mapped != buffer_mapped(bh))
722 break;
723 ret += bh->b_size;
724 if (ret >= pg_offset)
725 break;
726 } while ((bh = bh->b_this_page) != head);
727 } else
728 ret = mapped ? 0 : PAGE_CACHE_SIZE;
731 return ret;
734 STATIC size_t
735 xfs_probe_cluster(
736 struct inode *inode,
737 struct page *startpage,
738 struct buffer_head *bh,
739 struct buffer_head *head,
740 int mapped)
742 struct pagevec pvec;
743 pgoff_t tindex, tlast, tloff;
744 size_t total = 0;
745 int done = 0, i;
747 /* First sum forwards in this page */
748 do {
749 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
750 return total;
751 total += bh->b_size;
752 } while ((bh = bh->b_this_page) != head);
754 /* if we reached the end of the page, sum forwards in following pages */
755 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
756 tindex = startpage->index + 1;
758 /* Prune this back to avoid pathological behavior */
759 tloff = min(tlast, startpage->index + 64);
761 pagevec_init(&pvec, 0);
762 while (!done && tindex <= tloff) {
763 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
765 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
766 break;
768 for (i = 0; i < pagevec_count(&pvec); i++) {
769 struct page *page = pvec.pages[i];
770 size_t pg_offset, pg_len = 0;
772 if (tindex == tlast) {
773 pg_offset =
774 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
775 if (!pg_offset) {
776 done = 1;
777 break;
779 } else
780 pg_offset = PAGE_CACHE_SIZE;
782 if (page->index == tindex && trylock_page(page)) {
783 pg_len = xfs_probe_page(page, pg_offset, mapped);
784 unlock_page(page);
787 if (!pg_len) {
788 done = 1;
789 break;
792 total += pg_len;
793 tindex++;
796 pagevec_release(&pvec);
797 cond_resched();
800 return total;
804 * Test if a given page is suitable for writing as part of an unwritten
805 * or delayed allocate extent.
807 STATIC int
808 xfs_is_delayed_page(
809 struct page *page,
810 unsigned int type)
812 if (PageWriteback(page))
813 return 0;
815 if (page->mapping && page_has_buffers(page)) {
816 struct buffer_head *bh, *head;
817 int acceptable = 0;
819 bh = head = page_buffers(page);
820 do {
821 if (buffer_unwritten(bh))
822 acceptable = (type == IOMAP_UNWRITTEN);
823 else if (buffer_delay(bh))
824 acceptable = (type == IOMAP_DELAY);
825 else if (buffer_dirty(bh) && buffer_mapped(bh))
826 acceptable = (type == IOMAP_NEW);
827 else
828 break;
829 } while ((bh = bh->b_this_page) != head);
831 if (acceptable)
832 return 1;
835 return 0;
839 * Allocate & map buffers for page given the extent map. Write it out.
840 * except for the original page of a writepage, this is called on
841 * delalloc/unwritten pages only, for the original page it is possible
842 * that the page has no mapping at all.
844 STATIC int
845 xfs_convert_page(
846 struct inode *inode,
847 struct page *page,
848 loff_t tindex,
849 xfs_iomap_t *mp,
850 xfs_ioend_t **ioendp,
851 struct writeback_control *wbc,
852 int startio,
853 int all_bh)
855 struct buffer_head *bh, *head;
856 xfs_off_t end_offset;
857 unsigned long p_offset;
858 unsigned int type;
859 int bbits = inode->i_blkbits;
860 int len, page_dirty;
861 int count = 0, done = 0, uptodate = 1;
862 xfs_off_t offset = page_offset(page);
864 if (page->index != tindex)
865 goto fail;
866 if (!trylock_page(page))
867 goto fail;
868 if (PageWriteback(page))
869 goto fail_unlock_page;
870 if (page->mapping != inode->i_mapping)
871 goto fail_unlock_page;
872 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
873 goto fail_unlock_page;
876 * page_dirty is initially a count of buffers on the page before
877 * EOF and is decremented as we move each into a cleanable state.
879 * Derivation:
881 * End offset is the highest offset that this page should represent.
882 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
883 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
884 * hence give us the correct page_dirty count. On any other page,
885 * it will be zero and in that case we need page_dirty to be the
886 * count of buffers on the page.
888 end_offset = min_t(unsigned long long,
889 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
890 i_size_read(inode));
892 len = 1 << inode->i_blkbits;
893 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
894 PAGE_CACHE_SIZE);
895 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
896 page_dirty = p_offset / len;
898 bh = head = page_buffers(page);
899 do {
900 if (offset >= end_offset)
901 break;
902 if (!buffer_uptodate(bh))
903 uptodate = 0;
904 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
905 done = 1;
906 continue;
909 if (buffer_unwritten(bh) || buffer_delay(bh)) {
910 if (buffer_unwritten(bh))
911 type = IOMAP_UNWRITTEN;
912 else
913 type = IOMAP_DELAY;
915 if (!xfs_iomap_valid(mp, offset)) {
916 done = 1;
917 continue;
920 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
921 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
923 xfs_map_at_offset(bh, offset, bbits, mp);
924 if (startio) {
925 xfs_add_to_ioend(inode, bh, offset,
926 type, ioendp, done);
927 } else {
928 set_buffer_dirty(bh);
929 unlock_buffer(bh);
930 mark_buffer_dirty(bh);
932 page_dirty--;
933 count++;
934 } else {
935 type = IOMAP_NEW;
936 if (buffer_mapped(bh) && all_bh && startio) {
937 lock_buffer(bh);
938 xfs_add_to_ioend(inode, bh, offset,
939 type, ioendp, done);
940 count++;
941 page_dirty--;
942 } else {
943 done = 1;
946 } while (offset += len, (bh = bh->b_this_page) != head);
948 if (uptodate && bh == head)
949 SetPageUptodate(page);
951 if (startio) {
952 if (count) {
953 struct backing_dev_info *bdi;
955 bdi = inode->i_mapping->backing_dev_info;
956 wbc->nr_to_write--;
957 if (bdi_write_congested(bdi)) {
958 wbc->encountered_congestion = 1;
959 done = 1;
960 } else if (wbc->nr_to_write <= 0) {
961 done = 1;
964 xfs_start_page_writeback(page, !page_dirty, count);
967 return done;
968 fail_unlock_page:
969 unlock_page(page);
970 fail:
971 return 1;
975 * Convert & write out a cluster of pages in the same extent as defined
976 * by mp and following the start page.
978 STATIC void
979 xfs_cluster_write(
980 struct inode *inode,
981 pgoff_t tindex,
982 xfs_iomap_t *iomapp,
983 xfs_ioend_t **ioendp,
984 struct writeback_control *wbc,
985 int startio,
986 int all_bh,
987 pgoff_t tlast)
989 struct pagevec pvec;
990 int done = 0, i;
992 pagevec_init(&pvec, 0);
993 while (!done && tindex <= tlast) {
994 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
996 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
997 break;
999 for (i = 0; i < pagevec_count(&pvec); i++) {
1000 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
1001 iomapp, ioendp, wbc, startio, all_bh);
1002 if (done)
1003 break;
1006 pagevec_release(&pvec);
1007 cond_resched();
1012 * Calling this without startio set means we are being asked to make a dirty
1013 * page ready for freeing it's buffers. When called with startio set then
1014 * we are coming from writepage.
1016 * When called with startio set it is important that we write the WHOLE
1017 * page if possible.
1018 * The bh->b_state's cannot know if any of the blocks or which block for
1019 * that matter are dirty due to mmap writes, and therefore bh uptodate is
1020 * only valid if the page itself isn't completely uptodate. Some layers
1021 * may clear the page dirty flag prior to calling write page, under the
1022 * assumption the entire page will be written out; by not writing out the
1023 * whole page the page can be reused before all valid dirty data is
1024 * written out. Note: in the case of a page that has been dirty'd by
1025 * mapwrite and but partially setup by block_prepare_write the
1026 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
1027 * valid state, thus the whole page must be written out thing.
1030 STATIC int
1031 xfs_page_state_convert(
1032 struct inode *inode,
1033 struct page *page,
1034 struct writeback_control *wbc,
1035 int startio,
1036 int unmapped) /* also implies page uptodate */
1038 struct buffer_head *bh, *head;
1039 xfs_iomap_t iomap;
1040 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1041 loff_t offset;
1042 unsigned long p_offset = 0;
1043 unsigned int type;
1044 __uint64_t end_offset;
1045 pgoff_t end_index, last_index, tlast;
1046 ssize_t size, len;
1047 int flags, err, iomap_valid = 0, uptodate = 1;
1048 int page_dirty, count = 0;
1049 int trylock = 0;
1050 int all_bh = unmapped;
1052 if (startio) {
1053 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
1054 trylock |= BMAPI_TRYLOCK;
1057 /* Is this page beyond the end of the file? */
1058 offset = i_size_read(inode);
1059 end_index = offset >> PAGE_CACHE_SHIFT;
1060 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1061 if (page->index >= end_index) {
1062 if ((page->index >= end_index + 1) ||
1063 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
1064 if (startio)
1065 unlock_page(page);
1066 return 0;
1071 * page_dirty is initially a count of buffers on the page before
1072 * EOF and is decremented as we move each into a cleanable state.
1074 * Derivation:
1076 * End offset is the highest offset that this page should represent.
1077 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1078 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1079 * hence give us the correct page_dirty count. On any other page,
1080 * it will be zero and in that case we need page_dirty to be the
1081 * count of buffers on the page.
1083 end_offset = min_t(unsigned long long,
1084 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
1085 len = 1 << inode->i_blkbits;
1086 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1087 PAGE_CACHE_SIZE);
1088 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
1089 page_dirty = p_offset / len;
1091 bh = head = page_buffers(page);
1092 offset = page_offset(page);
1093 flags = BMAPI_READ;
1094 type = IOMAP_NEW;
1096 /* TODO: cleanup count and page_dirty */
1098 do {
1099 if (offset >= end_offset)
1100 break;
1101 if (!buffer_uptodate(bh))
1102 uptodate = 0;
1103 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1105 * the iomap is actually still valid, but the ioend
1106 * isn't. shouldn't happen too often.
1108 iomap_valid = 0;
1109 continue;
1112 if (iomap_valid)
1113 iomap_valid = xfs_iomap_valid(&iomap, offset);
1116 * First case, map an unwritten extent and prepare for
1117 * extent state conversion transaction on completion.
1119 * Second case, allocate space for a delalloc buffer.
1120 * We can return EAGAIN here in the release page case.
1122 * Third case, an unmapped buffer was found, and we are
1123 * in a path where we need to write the whole page out.
1125 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1126 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1127 !buffer_mapped(bh) && (unmapped || startio))) {
1128 int new_ioend = 0;
1131 * Make sure we don't use a read-only iomap
1133 if (flags == BMAPI_READ)
1134 iomap_valid = 0;
1136 if (buffer_unwritten(bh)) {
1137 type = IOMAP_UNWRITTEN;
1138 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1139 } else if (buffer_delay(bh)) {
1140 type = IOMAP_DELAY;
1141 flags = BMAPI_ALLOCATE | trylock;
1142 } else {
1143 type = IOMAP_NEW;
1144 flags = BMAPI_WRITE | BMAPI_MMAP;
1147 if (!iomap_valid) {
1149 * if we didn't have a valid mapping then we
1150 * need to ensure that we put the new mapping
1151 * in a new ioend structure. This needs to be
1152 * done to ensure that the ioends correctly
1153 * reflect the block mappings at io completion
1154 * for unwritten extent conversion.
1156 new_ioend = 1;
1157 if (type == IOMAP_NEW) {
1158 size = xfs_probe_cluster(inode,
1159 page, bh, head, 0);
1160 } else {
1161 size = len;
1164 err = xfs_map_blocks(inode, offset, size,
1165 &iomap, flags);
1166 if (err)
1167 goto error;
1168 iomap_valid = xfs_iomap_valid(&iomap, offset);
1170 if (iomap_valid) {
1171 xfs_map_at_offset(bh, offset,
1172 inode->i_blkbits, &iomap);
1173 if (startio) {
1174 xfs_add_to_ioend(inode, bh, offset,
1175 type, &ioend,
1176 new_ioend);
1177 } else {
1178 set_buffer_dirty(bh);
1179 unlock_buffer(bh);
1180 mark_buffer_dirty(bh);
1182 page_dirty--;
1183 count++;
1185 } else if (buffer_uptodate(bh) && startio) {
1187 * we got here because the buffer is already mapped.
1188 * That means it must already have extents allocated
1189 * underneath it. Map the extent by reading it.
1191 if (!iomap_valid || flags != BMAPI_READ) {
1192 flags = BMAPI_READ;
1193 size = xfs_probe_cluster(inode, page, bh,
1194 head, 1);
1195 err = xfs_map_blocks(inode, offset, size,
1196 &iomap, flags);
1197 if (err)
1198 goto error;
1199 iomap_valid = xfs_iomap_valid(&iomap, offset);
1203 * We set the type to IOMAP_NEW in case we are doing a
1204 * small write at EOF that is extending the file but
1205 * without needing an allocation. We need to update the
1206 * file size on I/O completion in this case so it is
1207 * the same case as having just allocated a new extent
1208 * that we are writing into for the first time.
1210 type = IOMAP_NEW;
1211 if (trylock_buffer(bh)) {
1212 ASSERT(buffer_mapped(bh));
1213 if (iomap_valid)
1214 all_bh = 1;
1215 xfs_add_to_ioend(inode, bh, offset, type,
1216 &ioend, !iomap_valid);
1217 page_dirty--;
1218 count++;
1219 } else {
1220 iomap_valid = 0;
1222 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1223 (unmapped || startio)) {
1224 iomap_valid = 0;
1227 if (!iohead)
1228 iohead = ioend;
1230 } while (offset += len, ((bh = bh->b_this_page) != head));
1232 if (uptodate && bh == head)
1233 SetPageUptodate(page);
1235 if (startio)
1236 xfs_start_page_writeback(page, 1, count);
1238 if (ioend && iomap_valid) {
1239 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1240 PAGE_CACHE_SHIFT;
1241 tlast = min_t(pgoff_t, offset, last_index);
1242 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
1243 wbc, startio, all_bh, tlast);
1246 if (iohead)
1247 xfs_submit_ioend(iohead);
1249 return page_dirty;
1251 error:
1252 if (iohead)
1253 xfs_cancel_ioend(iohead);
1256 * If it's delalloc and we have nowhere to put it,
1257 * throw it away, unless the lower layers told
1258 * us to try again.
1260 if (err != -EAGAIN) {
1261 if (!unmapped)
1262 block_invalidatepage(page, 0);
1263 ClearPageUptodate(page);
1265 return err;
1269 * writepage: Called from one of two places:
1271 * 1. we are flushing a delalloc buffer head.
1273 * 2. we are writing out a dirty page. Typically the page dirty
1274 * state is cleared before we get here. In this case is it
1275 * conceivable we have no buffer heads.
1277 * For delalloc space on the page we need to allocate space and
1278 * flush it. For unmapped buffer heads on the page we should
1279 * allocate space if the page is uptodate. For any other dirty
1280 * buffer heads on the page we should flush them.
1282 * If we detect that a transaction would be required to flush
1283 * the page, we have to check the process flags first, if we
1284 * are already in a transaction or disk I/O during allocations
1285 * is off, we need to fail the writepage and redirty the page.
1288 STATIC int
1289 xfs_vm_writepage(
1290 struct page *page,
1291 struct writeback_control *wbc)
1293 int error;
1294 int need_trans;
1295 int delalloc, unmapped, unwritten;
1296 struct inode *inode = page->mapping->host;
1298 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1301 * We need a transaction if:
1302 * 1. There are delalloc buffers on the page
1303 * 2. The page is uptodate and we have unmapped buffers
1304 * 3. The page is uptodate and we have no buffers
1305 * 4. There are unwritten buffers on the page
1308 if (!page_has_buffers(page)) {
1309 unmapped = 1;
1310 need_trans = 1;
1311 } else {
1312 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1313 if (!PageUptodate(page))
1314 unmapped = 0;
1315 need_trans = delalloc + unmapped + unwritten;
1319 * If we need a transaction and the process flags say
1320 * we are already in a transaction, or no IO is allowed
1321 * then mark the page dirty again and leave the page
1322 * as is.
1324 if (current_test_flags(PF_FSTRANS) && need_trans)
1325 goto out_fail;
1328 * Delay hooking up buffer heads until we have
1329 * made our go/no-go decision.
1331 if (!page_has_buffers(page))
1332 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1336 * VM calculation for nr_to_write seems off. Bump it way
1337 * up, this gets simple streaming writes zippy again.
1338 * To be reviewed again after Jens' writeback changes.
1340 wbc->nr_to_write *= 4;
1343 * Convert delayed allocate, unwritten or unmapped space
1344 * to real space and flush out to disk.
1346 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1347 if (error == -EAGAIN)
1348 goto out_fail;
1349 if (unlikely(error < 0))
1350 goto out_unlock;
1352 return 0;
1354 out_fail:
1355 redirty_page_for_writepage(wbc, page);
1356 unlock_page(page);
1357 return 0;
1358 out_unlock:
1359 unlock_page(page);
1360 return error;
1363 STATIC int
1364 xfs_vm_writepages(
1365 struct address_space *mapping,
1366 struct writeback_control *wbc)
1368 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1369 return generic_writepages(mapping, wbc);
1373 * Called to move a page into cleanable state - and from there
1374 * to be released. Possibly the page is already clean. We always
1375 * have buffer heads in this call.
1377 * Returns 0 if the page is ok to release, 1 otherwise.
1379 * Possible scenarios are:
1381 * 1. We are being called to release a page which has been written
1382 * to via regular I/O. buffer heads will be dirty and possibly
1383 * delalloc. If no delalloc buffer heads in this case then we
1384 * can just return zero.
1386 * 2. We are called to release a page which has been written via
1387 * mmap, all we need to do is ensure there is no delalloc
1388 * state in the buffer heads, if not we can let the caller
1389 * free them and we should come back later via writepage.
1391 STATIC int
1392 xfs_vm_releasepage(
1393 struct page *page,
1394 gfp_t gfp_mask)
1396 struct inode *inode = page->mapping->host;
1397 int dirty, delalloc, unmapped, unwritten;
1398 struct writeback_control wbc = {
1399 .sync_mode = WB_SYNC_ALL,
1400 .nr_to_write = 1,
1403 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
1405 if (!page_has_buffers(page))
1406 return 0;
1408 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1409 if (!delalloc && !unwritten)
1410 goto free_buffers;
1412 if (!(gfp_mask & __GFP_FS))
1413 return 0;
1415 /* If we are already inside a transaction or the thread cannot
1416 * do I/O, we cannot release this page.
1418 if (current_test_flags(PF_FSTRANS))
1419 return 0;
1422 * Convert delalloc space to real space, do not flush the
1423 * data out to disk, that will be done by the caller.
1424 * Never need to allocate space here - we will always
1425 * come back to writepage in that case.
1427 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1428 if (dirty == 0 && !unwritten)
1429 goto free_buffers;
1430 return 0;
1432 free_buffers:
1433 return try_to_free_buffers(page);
1436 STATIC int
1437 __xfs_get_blocks(
1438 struct inode *inode,
1439 sector_t iblock,
1440 struct buffer_head *bh_result,
1441 int create,
1442 int direct,
1443 bmapi_flags_t flags)
1445 xfs_iomap_t iomap;
1446 xfs_off_t offset;
1447 ssize_t size;
1448 int niomap = 1;
1449 int error;
1451 offset = (xfs_off_t)iblock << inode->i_blkbits;
1452 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1453 size = bh_result->b_size;
1455 if (!create && direct && offset >= i_size_read(inode))
1456 return 0;
1458 error = xfs_iomap(XFS_I(inode), offset, size,
1459 create ? flags : BMAPI_READ, &iomap, &niomap);
1460 if (error)
1461 return -error;
1462 if (niomap == 0)
1463 return 0;
1465 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1467 * For unwritten extents do not report a disk address on
1468 * the read case (treat as if we're reading into a hole).
1470 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1471 xfs_map_buffer(bh_result, &iomap, offset,
1472 inode->i_blkbits);
1474 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1475 if (direct)
1476 bh_result->b_private = inode;
1477 set_buffer_unwritten(bh_result);
1482 * If this is a realtime file, data may be on a different device.
1483 * to that pointed to from the buffer_head b_bdev currently.
1485 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1488 * If we previously allocated a block out beyond eof and we are now
1489 * coming back to use it then we will need to flag it as new even if it
1490 * has a disk address.
1492 * With sub-block writes into unwritten extents we also need to mark
1493 * the buffer as new so that the unwritten parts of the buffer gets
1494 * correctly zeroed.
1496 if (create &&
1497 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1498 (offset >= i_size_read(inode)) ||
1499 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1500 set_buffer_new(bh_result);
1502 if (iomap.iomap_flags & IOMAP_DELAY) {
1503 BUG_ON(direct);
1504 if (create) {
1505 set_buffer_uptodate(bh_result);
1506 set_buffer_mapped(bh_result);
1507 set_buffer_delay(bh_result);
1511 if (direct || size > (1 << inode->i_blkbits)) {
1512 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1513 offset = min_t(xfs_off_t,
1514 iomap.iomap_bsize - iomap.iomap_delta, size);
1515 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1518 return 0;
1522 xfs_get_blocks(
1523 struct inode *inode,
1524 sector_t iblock,
1525 struct buffer_head *bh_result,
1526 int create)
1528 return __xfs_get_blocks(inode, iblock,
1529 bh_result, create, 0, BMAPI_WRITE);
1532 STATIC int
1533 xfs_get_blocks_direct(
1534 struct inode *inode,
1535 sector_t iblock,
1536 struct buffer_head *bh_result,
1537 int create)
1539 return __xfs_get_blocks(inode, iblock,
1540 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1543 STATIC void
1544 xfs_end_io_direct(
1545 struct kiocb *iocb,
1546 loff_t offset,
1547 ssize_t size,
1548 void *private)
1550 xfs_ioend_t *ioend = iocb->private;
1553 * Non-NULL private data means we need to issue a transaction to
1554 * convert a range from unwritten to written extents. This needs
1555 * to happen from process context but aio+dio I/O completion
1556 * happens from irq context so we need to defer it to a workqueue.
1557 * This is not necessary for synchronous direct I/O, but we do
1558 * it anyway to keep the code uniform and simpler.
1560 * Well, if only it were that simple. Because synchronous direct I/O
1561 * requires extent conversion to occur *before* we return to userspace,
1562 * we have to wait for extent conversion to complete. Look at the
1563 * iocb that has been passed to us to determine if this is AIO or
1564 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1565 * workqueue and wait for it to complete.
1567 * The core direct I/O code might be changed to always call the
1568 * completion handler in the future, in which case all this can
1569 * go away.
1571 ioend->io_offset = offset;
1572 ioend->io_size = size;
1573 if (ioend->io_type == IOMAP_READ) {
1574 xfs_finish_ioend(ioend, 0);
1575 } else if (private && size > 0) {
1576 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
1577 } else {
1579 * A direct I/O write ioend starts it's life in unwritten
1580 * state in case they map an unwritten extent. This write
1581 * didn't map an unwritten extent so switch it's completion
1582 * handler.
1584 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
1585 xfs_finish_ioend(ioend, 0);
1589 * blockdev_direct_IO can return an error even after the I/O
1590 * completion handler was called. Thus we need to protect
1591 * against double-freeing.
1593 iocb->private = NULL;
1596 STATIC ssize_t
1597 xfs_vm_direct_IO(
1598 int rw,
1599 struct kiocb *iocb,
1600 const struct iovec *iov,
1601 loff_t offset,
1602 unsigned long nr_segs)
1604 struct file *file = iocb->ki_filp;
1605 struct inode *inode = file->f_mapping->host;
1606 struct block_device *bdev;
1607 ssize_t ret;
1609 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1611 if (rw == WRITE) {
1612 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
1613 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1614 bdev, iov, offset, nr_segs,
1615 xfs_get_blocks_direct,
1616 xfs_end_io_direct);
1617 } else {
1618 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
1619 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1620 bdev, iov, offset, nr_segs,
1621 xfs_get_blocks_direct,
1622 xfs_end_io_direct);
1625 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1626 xfs_destroy_ioend(iocb->private);
1627 return ret;
1630 STATIC int
1631 xfs_vm_write_begin(
1632 struct file *file,
1633 struct address_space *mapping,
1634 loff_t pos,
1635 unsigned len,
1636 unsigned flags,
1637 struct page **pagep,
1638 void **fsdata)
1640 *pagep = NULL;
1641 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1642 xfs_get_blocks);
1645 STATIC sector_t
1646 xfs_vm_bmap(
1647 struct address_space *mapping,
1648 sector_t block)
1650 struct inode *inode = (struct inode *)mapping->host;
1651 struct xfs_inode *ip = XFS_I(inode);
1653 xfs_itrace_entry(XFS_I(inode));
1654 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1655 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1656 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1657 return generic_block_bmap(mapping, block, xfs_get_blocks);
1660 STATIC int
1661 xfs_vm_readpage(
1662 struct file *unused,
1663 struct page *page)
1665 return mpage_readpage(page, xfs_get_blocks);
1668 STATIC int
1669 xfs_vm_readpages(
1670 struct file *unused,
1671 struct address_space *mapping,
1672 struct list_head *pages,
1673 unsigned nr_pages)
1675 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1678 STATIC void
1679 xfs_vm_invalidatepage(
1680 struct page *page,
1681 unsigned long offset)
1683 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1684 page->mapping->host, page, offset);
1685 block_invalidatepage(page, offset);
1688 const struct address_space_operations xfs_address_space_operations = {
1689 .readpage = xfs_vm_readpage,
1690 .readpages = xfs_vm_readpages,
1691 .writepage = xfs_vm_writepage,
1692 .writepages = xfs_vm_writepages,
1693 .sync_page = block_sync_page,
1694 .releasepage = xfs_vm_releasepage,
1695 .invalidatepage = xfs_vm_invalidatepage,
1696 .write_begin = xfs_vm_write_begin,
1697 .write_end = generic_write_end,
1698 .bmap = xfs_vm_bmap,
1699 .direct_IO = xfs_vm_direct_IO,
1700 .migratepage = buffer_migrate_page,
1701 .is_partially_uptodate = block_is_partially_uptodate,
1702 .error_remove_page = generic_error_remove_page,