initial commit with v2.6.32.60
[linux-2.6.32.60-moxart.git] / net / ipv4 / tcp_ipv4.c
blob6a4e832fc5413d8521fa0b2c042e4fdccf188974
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
64 #include <net/net_namespace.h>
65 #include <net/icmp.h>
66 #include <net/inet_hashtables.h>
67 #include <net/tcp.h>
68 #include <net/transp_v6.h>
69 #include <net/ipv6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
72 #include <net/xfrm.h>
73 #include <net/netdma.h>
74 #include <net/secure_seq.h>
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
89 #ifdef CONFIG_TCP_MD5SIG
90 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
91 __be32 addr);
92 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
93 __be32 daddr, __be32 saddr, struct tcphdr *th);
94 #else
95 static inline
96 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
98 return NULL;
100 #endif
102 struct inet_hashinfo tcp_hashinfo;
104 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
106 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
107 ip_hdr(skb)->saddr,
108 tcp_hdr(skb)->dest,
109 tcp_hdr(skb)->source);
112 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
114 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 struct tcp_sock *tp = tcp_sk(sk);
117 /* With PAWS, it is safe from the viewpoint
118 of data integrity. Even without PAWS it is safe provided sequence
119 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
121 Actually, the idea is close to VJ's one, only timestamp cache is
122 held not per host, but per port pair and TW bucket is used as state
123 holder.
125 If TW bucket has been already destroyed we fall back to VJ's scheme
126 and use initial timestamp retrieved from peer table.
128 if (tcptw->tw_ts_recent_stamp &&
129 (twp == NULL || (sysctl_tcp_tw_reuse &&
130 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
131 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
132 if (tp->write_seq == 0)
133 tp->write_seq = 1;
134 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
135 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
136 sock_hold(sktw);
137 return 1;
140 return 0;
143 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
145 /* This will initiate an outgoing connection. */
146 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
148 struct inet_sock *inet = inet_sk(sk);
149 struct tcp_sock *tp = tcp_sk(sk);
150 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151 struct rtable *rt;
152 __be32 daddr, nexthop;
153 int tmp;
154 int err;
156 if (addr_len < sizeof(struct sockaddr_in))
157 return -EINVAL;
159 if (usin->sin_family != AF_INET)
160 return -EAFNOSUPPORT;
162 nexthop = daddr = usin->sin_addr.s_addr;
163 if (inet->opt && inet->opt->srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet->opt->faddr;
169 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
170 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
171 IPPROTO_TCP,
172 inet->sport, usin->sin_port, sk, 1);
173 if (tmp < 0) {
174 if (tmp == -ENETUNREACH)
175 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
176 return tmp;
179 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
180 ip_rt_put(rt);
181 return -ENETUNREACH;
184 if (!inet->opt || !inet->opt->srr)
185 daddr = rt->rt_dst;
187 if (!inet->saddr)
188 inet->saddr = rt->rt_src;
189 inet->rcv_saddr = inet->saddr;
191 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
192 /* Reset inherited state */
193 tp->rx_opt.ts_recent = 0;
194 tp->rx_opt.ts_recent_stamp = 0;
195 tp->write_seq = 0;
198 if (tcp_death_row.sysctl_tw_recycle &&
199 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
200 struct inet_peer *peer = rt_get_peer(rt);
202 * VJ's idea. We save last timestamp seen from
203 * the destination in peer table, when entering state
204 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
205 * when trying new connection.
207 if (peer != NULL &&
208 peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
209 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
210 tp->rx_opt.ts_recent = peer->tcp_ts;
214 inet->dport = usin->sin_port;
215 inet->daddr = daddr;
217 inet_csk(sk)->icsk_ext_hdr_len = 0;
218 if (inet->opt)
219 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
221 tp->rx_opt.mss_clamp = 536;
223 /* Socket identity is still unknown (sport may be zero).
224 * However we set state to SYN-SENT and not releasing socket
225 * lock select source port, enter ourselves into the hash tables and
226 * complete initialization after this.
228 tcp_set_state(sk, TCP_SYN_SENT);
229 err = inet_hash_connect(&tcp_death_row, sk);
230 if (err)
231 goto failure;
233 err = ip_route_newports(&rt, IPPROTO_TCP,
234 inet->sport, inet->dport, sk);
235 if (err)
236 goto failure;
238 /* OK, now commit destination to socket. */
239 sk->sk_gso_type = SKB_GSO_TCPV4;
240 sk_setup_caps(sk, &rt->u.dst);
242 if (!tp->write_seq)
243 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
244 inet->daddr,
245 inet->sport,
246 usin->sin_port);
248 inet->id = tp->write_seq ^ jiffies;
250 err = tcp_connect(sk);
251 rt = NULL;
252 if (err)
253 goto failure;
255 return 0;
257 failure:
259 * This unhashes the socket and releases the local port,
260 * if necessary.
262 tcp_set_state(sk, TCP_CLOSE);
263 ip_rt_put(rt);
264 sk->sk_route_caps = 0;
265 inet->dport = 0;
266 return err;
270 * This routine does path mtu discovery as defined in RFC1191.
272 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
277 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278 * send out by Linux are always <576bytes so they should go through
279 * unfragmented).
281 if (sk->sk_state == TCP_LISTEN)
282 return;
284 /* We don't check in the destentry if pmtu discovery is forbidden
285 * on this route. We just assume that no packet_to_big packets
286 * are send back when pmtu discovery is not active.
287 * There is a small race when the user changes this flag in the
288 * route, but I think that's acceptable.
290 if ((dst = __sk_dst_check(sk, 0)) == NULL)
291 return;
293 dst->ops->update_pmtu(dst, mtu);
295 /* Something is about to be wrong... Remember soft error
296 * for the case, if this connection will not able to recover.
298 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
299 sk->sk_err_soft = EMSGSIZE;
301 mtu = dst_mtu(dst);
303 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
304 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
305 tcp_sync_mss(sk, mtu);
307 /* Resend the TCP packet because it's
308 * clear that the old packet has been
309 * dropped. This is the new "fast" path mtu
310 * discovery.
312 tcp_simple_retransmit(sk);
313 } /* else let the usual retransmit timer handle it */
317 * This routine is called by the ICMP module when it gets some
318 * sort of error condition. If err < 0 then the socket should
319 * be closed and the error returned to the user. If err > 0
320 * it's just the icmp type << 8 | icmp code. After adjustment
321 * header points to the first 8 bytes of the tcp header. We need
322 * to find the appropriate port.
324 * The locking strategy used here is very "optimistic". When
325 * someone else accesses the socket the ICMP is just dropped
326 * and for some paths there is no check at all.
327 * A more general error queue to queue errors for later handling
328 * is probably better.
332 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 struct iphdr *iph = (struct iphdr *)icmp_skb->data;
335 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
336 struct inet_connection_sock *icsk;
337 struct tcp_sock *tp;
338 struct inet_sock *inet;
339 const int type = icmp_hdr(icmp_skb)->type;
340 const int code = icmp_hdr(icmp_skb)->code;
341 struct sock *sk;
342 struct sk_buff *skb;
343 __u32 seq;
344 __u32 remaining;
345 int err;
346 struct net *net = dev_net(icmp_skb->dev);
348 if (icmp_skb->len < (iph->ihl << 2) + 8) {
349 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
350 return;
353 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
354 iph->saddr, th->source, inet_iif(icmp_skb));
355 if (!sk) {
356 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
357 return;
359 if (sk->sk_state == TCP_TIME_WAIT) {
360 inet_twsk_put(inet_twsk(sk));
361 return;
364 bh_lock_sock(sk);
365 /* If too many ICMPs get dropped on busy
366 * servers this needs to be solved differently.
368 if (sock_owned_by_user(sk))
369 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
371 if (sk->sk_state == TCP_CLOSE)
372 goto out;
374 icsk = inet_csk(sk);
375 tp = tcp_sk(sk);
376 seq = ntohl(th->seq);
377 if (sk->sk_state != TCP_LISTEN &&
378 !between(seq, tp->snd_una, tp->snd_nxt)) {
379 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
380 goto out;
383 switch (type) {
384 case ICMP_SOURCE_QUENCH:
385 /* Just silently ignore these. */
386 goto out;
387 case ICMP_PARAMETERPROB:
388 err = EPROTO;
389 break;
390 case ICMP_DEST_UNREACH:
391 if (code > NR_ICMP_UNREACH)
392 goto out;
394 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
395 if (!sock_owned_by_user(sk))
396 do_pmtu_discovery(sk, iph, info);
397 goto out;
400 err = icmp_err_convert[code].errno;
401 /* check if icmp_skb allows revert of backoff
402 * (see draft-zimmermann-tcp-lcd) */
403 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
404 break;
405 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
406 !icsk->icsk_backoff)
407 break;
409 if (sock_owned_by_user(sk))
410 break;
412 icsk->icsk_backoff--;
413 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
414 icsk->icsk_backoff;
415 tcp_bound_rto(sk);
417 skb = tcp_write_queue_head(sk);
418 BUG_ON(!skb);
420 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
421 tcp_time_stamp - TCP_SKB_CB(skb)->when);
423 if (remaining) {
424 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
425 remaining, TCP_RTO_MAX);
426 } else {
427 /* RTO revert clocked out retransmission.
428 * Will retransmit now */
429 tcp_retransmit_timer(sk);
432 break;
433 case ICMP_TIME_EXCEEDED:
434 err = EHOSTUNREACH;
435 break;
436 default:
437 goto out;
440 switch (sk->sk_state) {
441 struct request_sock *req, **prev;
442 case TCP_LISTEN:
443 if (sock_owned_by_user(sk))
444 goto out;
446 req = inet_csk_search_req(sk, &prev, th->dest,
447 iph->daddr, iph->saddr);
448 if (!req)
449 goto out;
451 /* ICMPs are not backlogged, hence we cannot get
452 an established socket here.
454 WARN_ON(req->sk);
456 if (seq != tcp_rsk(req)->snt_isn) {
457 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
458 goto out;
462 * Still in SYN_RECV, just remove it silently.
463 * There is no good way to pass the error to the newly
464 * created socket, and POSIX does not want network
465 * errors returned from accept().
467 inet_csk_reqsk_queue_drop(sk, req, prev);
468 goto out;
470 case TCP_SYN_SENT:
471 case TCP_SYN_RECV: /* Cannot happen.
472 It can f.e. if SYNs crossed.
474 if (!sock_owned_by_user(sk)) {
475 sk->sk_err = err;
477 sk->sk_error_report(sk);
479 tcp_done(sk);
480 } else {
481 sk->sk_err_soft = err;
483 goto out;
486 /* If we've already connected we will keep trying
487 * until we time out, or the user gives up.
489 * rfc1122 4.2.3.9 allows to consider as hard errors
490 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
491 * but it is obsoleted by pmtu discovery).
493 * Note, that in modern internet, where routing is unreliable
494 * and in each dark corner broken firewalls sit, sending random
495 * errors ordered by their masters even this two messages finally lose
496 * their original sense (even Linux sends invalid PORT_UNREACHs)
498 * Now we are in compliance with RFCs.
499 * --ANK (980905)
502 inet = inet_sk(sk);
503 if (!sock_owned_by_user(sk) && inet->recverr) {
504 sk->sk_err = err;
505 sk->sk_error_report(sk);
506 } else { /* Only an error on timeout */
507 sk->sk_err_soft = err;
510 out:
511 bh_unlock_sock(sk);
512 sock_put(sk);
515 /* This routine computes an IPv4 TCP checksum. */
516 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
518 struct inet_sock *inet = inet_sk(sk);
519 struct tcphdr *th = tcp_hdr(skb);
521 if (skb->ip_summed == CHECKSUM_PARTIAL) {
522 th->check = ~tcp_v4_check(len, inet->saddr,
523 inet->daddr, 0);
524 skb->csum_start = skb_transport_header(skb) - skb->head;
525 skb->csum_offset = offsetof(struct tcphdr, check);
526 } else {
527 th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
528 csum_partial(th,
529 th->doff << 2,
530 skb->csum));
534 int tcp_v4_gso_send_check(struct sk_buff *skb)
536 const struct iphdr *iph;
537 struct tcphdr *th;
539 if (!pskb_may_pull(skb, sizeof(*th)))
540 return -EINVAL;
542 iph = ip_hdr(skb);
543 th = tcp_hdr(skb);
545 th->check = 0;
546 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
547 skb->csum_start = skb_transport_header(skb) - skb->head;
548 skb->csum_offset = offsetof(struct tcphdr, check);
549 skb->ip_summed = CHECKSUM_PARTIAL;
550 return 0;
554 * This routine will send an RST to the other tcp.
556 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
557 * for reset.
558 * Answer: if a packet caused RST, it is not for a socket
559 * existing in our system, if it is matched to a socket,
560 * it is just duplicate segment or bug in other side's TCP.
561 * So that we build reply only basing on parameters
562 * arrived with segment.
563 * Exception: precedence violation. We do not implement it in any case.
566 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
568 struct tcphdr *th = tcp_hdr(skb);
569 struct {
570 struct tcphdr th;
571 #ifdef CONFIG_TCP_MD5SIG
572 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
573 #endif
574 } rep;
575 struct ip_reply_arg arg;
576 #ifdef CONFIG_TCP_MD5SIG
577 struct tcp_md5sig_key *key;
578 #endif
579 struct net *net;
581 /* Never send a reset in response to a reset. */
582 if (th->rst)
583 return;
585 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
586 return;
588 /* Swap the send and the receive. */
589 memset(&rep, 0, sizeof(rep));
590 rep.th.dest = th->source;
591 rep.th.source = th->dest;
592 rep.th.doff = sizeof(struct tcphdr) / 4;
593 rep.th.rst = 1;
595 if (th->ack) {
596 rep.th.seq = th->ack_seq;
597 } else {
598 rep.th.ack = 1;
599 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
600 skb->len - (th->doff << 2));
603 memset(&arg, 0, sizeof(arg));
604 arg.iov[0].iov_base = (unsigned char *)&rep;
605 arg.iov[0].iov_len = sizeof(rep.th);
607 #ifdef CONFIG_TCP_MD5SIG
608 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
609 if (key) {
610 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
611 (TCPOPT_NOP << 16) |
612 (TCPOPT_MD5SIG << 8) |
613 TCPOLEN_MD5SIG);
614 /* Update length and the length the header thinks exists */
615 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
616 rep.th.doff = arg.iov[0].iov_len / 4;
618 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
619 key, ip_hdr(skb)->saddr,
620 ip_hdr(skb)->daddr, &rep.th);
622 #endif
623 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
624 ip_hdr(skb)->saddr, /* XXX */
625 arg.iov[0].iov_len, IPPROTO_TCP, 0);
626 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
627 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
629 net = dev_net(skb_dst(skb)->dev);
630 ip_send_reply(net->ipv4.tcp_sock, skb,
631 &arg, arg.iov[0].iov_len);
633 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
634 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
637 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
638 outside socket context is ugly, certainly. What can I do?
641 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
642 u32 win, u32 ts, int oif,
643 struct tcp_md5sig_key *key,
644 int reply_flags)
646 struct tcphdr *th = tcp_hdr(skb);
647 struct {
648 struct tcphdr th;
649 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
650 #ifdef CONFIG_TCP_MD5SIG
651 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
652 #endif
654 } rep;
655 struct ip_reply_arg arg;
656 struct net *net = dev_net(skb_dst(skb)->dev);
658 memset(&rep.th, 0, sizeof(struct tcphdr));
659 memset(&arg, 0, sizeof(arg));
661 arg.iov[0].iov_base = (unsigned char *)&rep;
662 arg.iov[0].iov_len = sizeof(rep.th);
663 if (ts) {
664 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
665 (TCPOPT_TIMESTAMP << 8) |
666 TCPOLEN_TIMESTAMP);
667 rep.opt[1] = htonl(tcp_time_stamp);
668 rep.opt[2] = htonl(ts);
669 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
672 /* Swap the send and the receive. */
673 rep.th.dest = th->source;
674 rep.th.source = th->dest;
675 rep.th.doff = arg.iov[0].iov_len / 4;
676 rep.th.seq = htonl(seq);
677 rep.th.ack_seq = htonl(ack);
678 rep.th.ack = 1;
679 rep.th.window = htons(win);
681 #ifdef CONFIG_TCP_MD5SIG
682 if (key) {
683 int offset = (ts) ? 3 : 0;
685 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
686 (TCPOPT_NOP << 16) |
687 (TCPOPT_MD5SIG << 8) |
688 TCPOLEN_MD5SIG);
689 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
690 rep.th.doff = arg.iov[0].iov_len/4;
692 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
693 key, ip_hdr(skb)->saddr,
694 ip_hdr(skb)->daddr, &rep.th);
696 #endif
697 arg.flags = reply_flags;
698 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
699 ip_hdr(skb)->saddr, /* XXX */
700 arg.iov[0].iov_len, IPPROTO_TCP, 0);
701 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
702 if (oif)
703 arg.bound_dev_if = oif;
705 ip_send_reply(net->ipv4.tcp_sock, skb,
706 &arg, arg.iov[0].iov_len);
708 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
711 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
713 struct inet_timewait_sock *tw = inet_twsk(sk);
714 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
716 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
717 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
718 tcptw->tw_ts_recent,
719 tw->tw_bound_dev_if,
720 tcp_twsk_md5_key(tcptw),
721 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
724 inet_twsk_put(tw);
727 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
728 struct request_sock *req)
730 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
731 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
732 req->ts_recent,
734 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
735 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
739 * Send a SYN-ACK after having received a SYN.
740 * This still operates on a request_sock only, not on a big
741 * socket.
743 static int __tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
744 struct dst_entry *dst)
746 const struct inet_request_sock *ireq = inet_rsk(req);
747 int err = -1;
748 struct sk_buff * skb;
750 /* First, grab a route. */
751 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
752 return -1;
754 skb = tcp_make_synack(sk, dst, req);
756 if (skb) {
757 struct tcphdr *th = tcp_hdr(skb);
759 th->check = tcp_v4_check(skb->len,
760 ireq->loc_addr,
761 ireq->rmt_addr,
762 csum_partial(th, skb->len,
763 skb->csum));
765 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
766 ireq->rmt_addr,
767 ireq->opt);
768 err = net_xmit_eval(err);
771 dst_release(dst);
772 return err;
775 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req)
777 return __tcp_v4_send_synack(sk, req, NULL);
781 * IPv4 request_sock destructor.
783 static void tcp_v4_reqsk_destructor(struct request_sock *req)
785 kfree(inet_rsk(req)->opt);
788 #ifdef CONFIG_SYN_COOKIES
789 static void syn_flood_warning(struct sk_buff *skb)
791 static unsigned long warntime;
793 if (time_after(jiffies, (warntime + HZ * 60))) {
794 warntime = jiffies;
795 printk(KERN_INFO
796 "possible SYN flooding on port %d. Sending cookies.\n",
797 ntohs(tcp_hdr(skb)->dest));
800 #endif
803 * Save and compile IPv4 options into the request_sock if needed.
805 static struct ip_options *tcp_v4_save_options(struct sock *sk,
806 struct sk_buff *skb)
808 struct ip_options *opt = &(IPCB(skb)->opt);
809 struct ip_options *dopt = NULL;
811 if (opt && opt->optlen) {
812 int opt_size = optlength(opt);
813 dopt = kmalloc(opt_size, GFP_ATOMIC);
814 if (dopt) {
815 if (ip_options_echo(dopt, skb)) {
816 kfree(dopt);
817 dopt = NULL;
821 return dopt;
824 #ifdef CONFIG_TCP_MD5SIG
826 * RFC2385 MD5 checksumming requires a mapping of
827 * IP address->MD5 Key.
828 * We need to maintain these in the sk structure.
831 /* Find the Key structure for an address. */
832 static struct tcp_md5sig_key *
833 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
835 struct tcp_sock *tp = tcp_sk(sk);
836 int i;
838 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
839 return NULL;
840 for (i = 0; i < tp->md5sig_info->entries4; i++) {
841 if (tp->md5sig_info->keys4[i].addr == addr)
842 return &tp->md5sig_info->keys4[i].base;
844 return NULL;
847 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
848 struct sock *addr_sk)
850 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
853 EXPORT_SYMBOL(tcp_v4_md5_lookup);
855 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
856 struct request_sock *req)
858 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
861 /* This can be called on a newly created socket, from other files */
862 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
863 u8 *newkey, u8 newkeylen)
865 /* Add Key to the list */
866 struct tcp_md5sig_key *key;
867 struct tcp_sock *tp = tcp_sk(sk);
868 struct tcp4_md5sig_key *keys;
870 key = tcp_v4_md5_do_lookup(sk, addr);
871 if (key) {
872 /* Pre-existing entry - just update that one. */
873 kfree(key->key);
874 key->key = newkey;
875 key->keylen = newkeylen;
876 } else {
877 struct tcp_md5sig_info *md5sig;
879 if (!tp->md5sig_info) {
880 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
881 GFP_ATOMIC);
882 if (!tp->md5sig_info) {
883 kfree(newkey);
884 return -ENOMEM;
886 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
888 if (tcp_alloc_md5sig_pool(sk) == NULL) {
889 kfree(newkey);
890 return -ENOMEM;
892 md5sig = tp->md5sig_info;
894 if (md5sig->alloced4 == md5sig->entries4) {
895 keys = kmalloc((sizeof(*keys) *
896 (md5sig->entries4 + 1)), GFP_ATOMIC);
897 if (!keys) {
898 kfree(newkey);
899 tcp_free_md5sig_pool();
900 return -ENOMEM;
903 if (md5sig->entries4)
904 memcpy(keys, md5sig->keys4,
905 sizeof(*keys) * md5sig->entries4);
907 /* Free old key list, and reference new one */
908 kfree(md5sig->keys4);
909 md5sig->keys4 = keys;
910 md5sig->alloced4++;
912 md5sig->entries4++;
913 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
914 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
915 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
917 return 0;
920 EXPORT_SYMBOL(tcp_v4_md5_do_add);
922 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
923 u8 *newkey, u8 newkeylen)
925 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
926 newkey, newkeylen);
929 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
931 struct tcp_sock *tp = tcp_sk(sk);
932 int i;
934 for (i = 0; i < tp->md5sig_info->entries4; i++) {
935 if (tp->md5sig_info->keys4[i].addr == addr) {
936 /* Free the key */
937 kfree(tp->md5sig_info->keys4[i].base.key);
938 tp->md5sig_info->entries4--;
940 if (tp->md5sig_info->entries4 == 0) {
941 kfree(tp->md5sig_info->keys4);
942 tp->md5sig_info->keys4 = NULL;
943 tp->md5sig_info->alloced4 = 0;
944 } else if (tp->md5sig_info->entries4 != i) {
945 /* Need to do some manipulation */
946 memmove(&tp->md5sig_info->keys4[i],
947 &tp->md5sig_info->keys4[i+1],
948 (tp->md5sig_info->entries4 - i) *
949 sizeof(struct tcp4_md5sig_key));
951 tcp_free_md5sig_pool();
952 return 0;
955 return -ENOENT;
958 EXPORT_SYMBOL(tcp_v4_md5_do_del);
960 static void tcp_v4_clear_md5_list(struct sock *sk)
962 struct tcp_sock *tp = tcp_sk(sk);
964 /* Free each key, then the set of key keys,
965 * the crypto element, and then decrement our
966 * hold on the last resort crypto.
968 if (tp->md5sig_info->entries4) {
969 int i;
970 for (i = 0; i < tp->md5sig_info->entries4; i++)
971 kfree(tp->md5sig_info->keys4[i].base.key);
972 tp->md5sig_info->entries4 = 0;
973 tcp_free_md5sig_pool();
975 if (tp->md5sig_info->keys4) {
976 kfree(tp->md5sig_info->keys4);
977 tp->md5sig_info->keys4 = NULL;
978 tp->md5sig_info->alloced4 = 0;
982 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
983 int optlen)
985 struct tcp_md5sig cmd;
986 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
987 u8 *newkey;
989 if (optlen < sizeof(cmd))
990 return -EINVAL;
992 if (copy_from_user(&cmd, optval, sizeof(cmd)))
993 return -EFAULT;
995 if (sin->sin_family != AF_INET)
996 return -EINVAL;
998 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
999 if (!tcp_sk(sk)->md5sig_info)
1000 return -ENOENT;
1001 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1004 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1005 return -EINVAL;
1007 if (!tcp_sk(sk)->md5sig_info) {
1008 struct tcp_sock *tp = tcp_sk(sk);
1009 struct tcp_md5sig_info *p;
1011 p = kzalloc(sizeof(*p), sk->sk_allocation);
1012 if (!p)
1013 return -EINVAL;
1015 tp->md5sig_info = p;
1016 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1019 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1020 if (!newkey)
1021 return -ENOMEM;
1022 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1023 newkey, cmd.tcpm_keylen);
1026 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1027 __be32 daddr, __be32 saddr, int nbytes)
1029 struct tcp4_pseudohdr *bp;
1030 struct scatterlist sg;
1032 bp = &hp->md5_blk.ip4;
1035 * 1. the TCP pseudo-header (in the order: source IP address,
1036 * destination IP address, zero-padded protocol number, and
1037 * segment length)
1039 bp->saddr = saddr;
1040 bp->daddr = daddr;
1041 bp->pad = 0;
1042 bp->protocol = IPPROTO_TCP;
1043 bp->len = cpu_to_be16(nbytes);
1045 sg_init_one(&sg, bp, sizeof(*bp));
1046 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1049 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1050 __be32 daddr, __be32 saddr, struct tcphdr *th)
1052 struct tcp_md5sig_pool *hp;
1053 struct hash_desc *desc;
1055 hp = tcp_get_md5sig_pool();
1056 if (!hp)
1057 goto clear_hash_noput;
1058 desc = &hp->md5_desc;
1060 if (crypto_hash_init(desc))
1061 goto clear_hash;
1062 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1063 goto clear_hash;
1064 if (tcp_md5_hash_header(hp, th))
1065 goto clear_hash;
1066 if (tcp_md5_hash_key(hp, key))
1067 goto clear_hash;
1068 if (crypto_hash_final(desc, md5_hash))
1069 goto clear_hash;
1071 tcp_put_md5sig_pool();
1072 return 0;
1074 clear_hash:
1075 tcp_put_md5sig_pool();
1076 clear_hash_noput:
1077 memset(md5_hash, 0, 16);
1078 return 1;
1081 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1082 struct sock *sk, struct request_sock *req,
1083 struct sk_buff *skb)
1085 struct tcp_md5sig_pool *hp;
1086 struct hash_desc *desc;
1087 struct tcphdr *th = tcp_hdr(skb);
1088 __be32 saddr, daddr;
1090 if (sk) {
1091 saddr = inet_sk(sk)->saddr;
1092 daddr = inet_sk(sk)->daddr;
1093 } else if (req) {
1094 saddr = inet_rsk(req)->loc_addr;
1095 daddr = inet_rsk(req)->rmt_addr;
1096 } else {
1097 const struct iphdr *iph = ip_hdr(skb);
1098 saddr = iph->saddr;
1099 daddr = iph->daddr;
1102 hp = tcp_get_md5sig_pool();
1103 if (!hp)
1104 goto clear_hash_noput;
1105 desc = &hp->md5_desc;
1107 if (crypto_hash_init(desc))
1108 goto clear_hash;
1110 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1111 goto clear_hash;
1112 if (tcp_md5_hash_header(hp, th))
1113 goto clear_hash;
1114 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1115 goto clear_hash;
1116 if (tcp_md5_hash_key(hp, key))
1117 goto clear_hash;
1118 if (crypto_hash_final(desc, md5_hash))
1119 goto clear_hash;
1121 tcp_put_md5sig_pool();
1122 return 0;
1124 clear_hash:
1125 tcp_put_md5sig_pool();
1126 clear_hash_noput:
1127 memset(md5_hash, 0, 16);
1128 return 1;
1131 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1133 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1136 * This gets called for each TCP segment that arrives
1137 * so we want to be efficient.
1138 * We have 3 drop cases:
1139 * o No MD5 hash and one expected.
1140 * o MD5 hash and we're not expecting one.
1141 * o MD5 hash and its wrong.
1143 __u8 *hash_location = NULL;
1144 struct tcp_md5sig_key *hash_expected;
1145 const struct iphdr *iph = ip_hdr(skb);
1146 struct tcphdr *th = tcp_hdr(skb);
1147 int genhash;
1148 unsigned char newhash[16];
1150 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1151 hash_location = tcp_parse_md5sig_option(th);
1153 /* We've parsed the options - do we have a hash? */
1154 if (!hash_expected && !hash_location)
1155 return 0;
1157 if (hash_expected && !hash_location) {
1158 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1159 return 1;
1162 if (!hash_expected && hash_location) {
1163 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1164 return 1;
1167 /* Okay, so this is hash_expected and hash_location -
1168 * so we need to calculate the checksum.
1170 genhash = tcp_v4_md5_hash_skb(newhash,
1171 hash_expected,
1172 NULL, NULL, skb);
1174 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1175 if (net_ratelimit()) {
1176 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1177 &iph->saddr, ntohs(th->source),
1178 &iph->daddr, ntohs(th->dest),
1179 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1181 return 1;
1183 return 0;
1186 #endif
1188 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1189 .family = PF_INET,
1190 .obj_size = sizeof(struct tcp_request_sock),
1191 .rtx_syn_ack = tcp_v4_send_synack,
1192 .send_ack = tcp_v4_reqsk_send_ack,
1193 .destructor = tcp_v4_reqsk_destructor,
1194 .send_reset = tcp_v4_send_reset,
1197 #ifdef CONFIG_TCP_MD5SIG
1198 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1199 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1200 .calc_md5_hash = tcp_v4_md5_hash_skb,
1202 #endif
1204 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1205 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1206 .twsk_unique = tcp_twsk_unique,
1207 .twsk_destructor= tcp_twsk_destructor,
1210 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1212 struct inet_request_sock *ireq;
1213 struct tcp_options_received tmp_opt;
1214 struct request_sock *req;
1215 __be32 saddr = ip_hdr(skb)->saddr;
1216 __be32 daddr = ip_hdr(skb)->daddr;
1217 __u32 isn = TCP_SKB_CB(skb)->when;
1218 struct dst_entry *dst = NULL;
1219 #ifdef CONFIG_SYN_COOKIES
1220 int want_cookie = 0;
1221 #else
1222 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1223 #endif
1225 /* Never answer to SYNs send to broadcast or multicast */
1226 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1227 goto drop;
1229 /* TW buckets are converted to open requests without
1230 * limitations, they conserve resources and peer is
1231 * evidently real one.
1233 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1234 #ifdef CONFIG_SYN_COOKIES
1235 if (sysctl_tcp_syncookies) {
1236 want_cookie = 1;
1237 } else
1238 #endif
1239 goto drop;
1242 /* Accept backlog is full. If we have already queued enough
1243 * of warm entries in syn queue, drop request. It is better than
1244 * clogging syn queue with openreqs with exponentially increasing
1245 * timeout.
1247 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1248 goto drop;
1250 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1251 if (!req)
1252 goto drop;
1254 #ifdef CONFIG_TCP_MD5SIG
1255 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1256 #endif
1258 tcp_clear_options(&tmp_opt);
1259 tmp_opt.mss_clamp = 536;
1260 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
1262 tcp_parse_options(skb, &tmp_opt, 0);
1264 if (want_cookie && !tmp_opt.saw_tstamp)
1265 tcp_clear_options(&tmp_opt);
1267 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1269 tcp_openreq_init(req, &tmp_opt, skb);
1271 ireq = inet_rsk(req);
1272 ireq->loc_addr = daddr;
1273 ireq->rmt_addr = saddr;
1274 ireq->no_srccheck = inet_sk(sk)->transparent;
1275 ireq->opt = tcp_v4_save_options(sk, skb);
1277 if (security_inet_conn_request(sk, skb, req))
1278 goto drop_and_free;
1280 if (!want_cookie)
1281 TCP_ECN_create_request(req, tcp_hdr(skb));
1283 if (want_cookie) {
1284 #ifdef CONFIG_SYN_COOKIES
1285 syn_flood_warning(skb);
1286 req->cookie_ts = tmp_opt.tstamp_ok;
1287 #endif
1288 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1289 } else if (!isn) {
1290 struct inet_peer *peer = NULL;
1292 /* VJ's idea. We save last timestamp seen
1293 * from the destination in peer table, when entering
1294 * state TIME-WAIT, and check against it before
1295 * accepting new connection request.
1297 * If "isn" is not zero, this request hit alive
1298 * timewait bucket, so that all the necessary checks
1299 * are made in the function processing timewait state.
1301 if (tmp_opt.saw_tstamp &&
1302 tcp_death_row.sysctl_tw_recycle &&
1303 (dst = inet_csk_route_req(sk, req)) != NULL &&
1304 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1305 peer->v4daddr == saddr) {
1306 if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1307 (s32)(peer->tcp_ts - req->ts_recent) >
1308 TCP_PAWS_WINDOW) {
1309 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1310 goto drop_and_release;
1313 /* Kill the following clause, if you dislike this way. */
1314 else if (!sysctl_tcp_syncookies &&
1315 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1316 (sysctl_max_syn_backlog >> 2)) &&
1317 (!peer || !peer->tcp_ts_stamp) &&
1318 (!dst || !dst_metric(dst, RTAX_RTT))) {
1319 /* Without syncookies last quarter of
1320 * backlog is filled with destinations,
1321 * proven to be alive.
1322 * It means that we continue to communicate
1323 * to destinations, already remembered
1324 * to the moment of synflood.
1326 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1327 &saddr, ntohs(tcp_hdr(skb)->source));
1328 goto drop_and_release;
1331 isn = tcp_v4_init_sequence(skb);
1333 tcp_rsk(req)->snt_isn = isn;
1335 if (__tcp_v4_send_synack(sk, req, dst) || want_cookie)
1336 goto drop_and_free;
1338 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1339 return 0;
1341 drop_and_release:
1342 dst_release(dst);
1343 drop_and_free:
1344 reqsk_free(req);
1345 drop:
1346 return 0;
1351 * The three way handshake has completed - we got a valid synack -
1352 * now create the new socket.
1354 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1355 struct request_sock *req,
1356 struct dst_entry *dst)
1358 struct inet_request_sock *ireq;
1359 struct inet_sock *newinet;
1360 struct tcp_sock *newtp;
1361 struct sock *newsk;
1362 #ifdef CONFIG_TCP_MD5SIG
1363 struct tcp_md5sig_key *key;
1364 #endif
1366 if (sk_acceptq_is_full(sk))
1367 goto exit_overflow;
1369 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1370 goto exit;
1372 newsk = tcp_create_openreq_child(sk, req, skb);
1373 if (!newsk)
1374 goto exit;
1376 newsk->sk_gso_type = SKB_GSO_TCPV4;
1377 sk_setup_caps(newsk, dst);
1379 newtp = tcp_sk(newsk);
1380 newinet = inet_sk(newsk);
1381 ireq = inet_rsk(req);
1382 newinet->daddr = ireq->rmt_addr;
1383 newinet->rcv_saddr = ireq->loc_addr;
1384 newinet->saddr = ireq->loc_addr;
1385 newinet->opt = ireq->opt;
1386 ireq->opt = NULL;
1387 newinet->mc_index = inet_iif(skb);
1388 newinet->mc_ttl = ip_hdr(skb)->ttl;
1389 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1390 if (newinet->opt)
1391 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1392 newinet->id = newtp->write_seq ^ jiffies;
1394 tcp_mtup_init(newsk);
1395 tcp_sync_mss(newsk, dst_mtu(dst));
1396 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1397 if (tcp_sk(sk)->rx_opt.user_mss &&
1398 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1399 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1401 tcp_initialize_rcv_mss(newsk);
1403 #ifdef CONFIG_TCP_MD5SIG
1404 /* Copy over the MD5 key from the original socket */
1405 if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1407 * We're using one, so create a matching key
1408 * on the newsk structure. If we fail to get
1409 * memory, then we end up not copying the key
1410 * across. Shucks.
1412 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1413 if (newkey != NULL)
1414 tcp_v4_md5_do_add(newsk, newinet->daddr,
1415 newkey, key->keylen);
1416 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1418 #endif
1420 __inet_hash_nolisten(newsk);
1421 __inet_inherit_port(sk, newsk);
1423 return newsk;
1425 exit_overflow:
1426 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1427 exit:
1428 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1429 dst_release(dst);
1430 return NULL;
1433 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1435 struct tcphdr *th = tcp_hdr(skb);
1436 const struct iphdr *iph = ip_hdr(skb);
1437 struct sock *nsk;
1438 struct request_sock **prev;
1439 /* Find possible connection requests. */
1440 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1441 iph->saddr, iph->daddr);
1442 if (req)
1443 return tcp_check_req(sk, skb, req, prev);
1445 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1446 th->source, iph->daddr, th->dest, inet_iif(skb));
1448 if (nsk) {
1449 if (nsk->sk_state != TCP_TIME_WAIT) {
1450 bh_lock_sock(nsk);
1451 return nsk;
1453 inet_twsk_put(inet_twsk(nsk));
1454 return NULL;
1457 #ifdef CONFIG_SYN_COOKIES
1458 if (!th->rst && !th->syn && th->ack)
1459 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1460 #endif
1461 return sk;
1464 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1466 const struct iphdr *iph = ip_hdr(skb);
1468 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1469 if (!tcp_v4_check(skb->len, iph->saddr,
1470 iph->daddr, skb->csum)) {
1471 skb->ip_summed = CHECKSUM_UNNECESSARY;
1472 return 0;
1476 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1477 skb->len, IPPROTO_TCP, 0);
1479 if (skb->len <= 76) {
1480 return __skb_checksum_complete(skb);
1482 return 0;
1486 /* The socket must have it's spinlock held when we get
1487 * here.
1489 * We have a potential double-lock case here, so even when
1490 * doing backlog processing we use the BH locking scheme.
1491 * This is because we cannot sleep with the original spinlock
1492 * held.
1494 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1496 struct sock *rsk;
1497 #ifdef CONFIG_TCP_MD5SIG
1499 * We really want to reject the packet as early as possible
1500 * if:
1501 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1502 * o There is an MD5 option and we're not expecting one
1504 if (tcp_v4_inbound_md5_hash(sk, skb))
1505 goto discard;
1506 #endif
1508 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1509 TCP_CHECK_TIMER(sk);
1510 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1511 rsk = sk;
1512 goto reset;
1514 TCP_CHECK_TIMER(sk);
1515 return 0;
1518 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1519 goto csum_err;
1521 if (sk->sk_state == TCP_LISTEN) {
1522 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1523 if (!nsk)
1524 goto discard;
1526 if (nsk != sk) {
1527 if (tcp_child_process(sk, nsk, skb)) {
1528 rsk = nsk;
1529 goto reset;
1531 return 0;
1535 TCP_CHECK_TIMER(sk);
1536 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1537 rsk = sk;
1538 goto reset;
1540 TCP_CHECK_TIMER(sk);
1541 return 0;
1543 reset:
1544 tcp_v4_send_reset(rsk, skb);
1545 discard:
1546 kfree_skb(skb);
1547 /* Be careful here. If this function gets more complicated and
1548 * gcc suffers from register pressure on the x86, sk (in %ebx)
1549 * might be destroyed here. This current version compiles correctly,
1550 * but you have been warned.
1552 return 0;
1554 csum_err:
1555 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1556 goto discard;
1560 * From tcp_input.c
1563 int tcp_v4_rcv(struct sk_buff *skb)
1565 const struct iphdr *iph;
1566 struct tcphdr *th;
1567 struct sock *sk;
1568 int ret;
1569 struct net *net = dev_net(skb->dev);
1571 if (skb->pkt_type != PACKET_HOST)
1572 goto discard_it;
1574 /* Count it even if it's bad */
1575 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1577 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1578 goto discard_it;
1580 th = tcp_hdr(skb);
1582 if (th->doff < sizeof(struct tcphdr) / 4)
1583 goto bad_packet;
1584 if (!pskb_may_pull(skb, th->doff * 4))
1585 goto discard_it;
1587 /* An explanation is required here, I think.
1588 * Packet length and doff are validated by header prediction,
1589 * provided case of th->doff==0 is eliminated.
1590 * So, we defer the checks. */
1591 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1592 goto bad_packet;
1594 th = tcp_hdr(skb);
1595 iph = ip_hdr(skb);
1596 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1597 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1598 skb->len - th->doff * 4);
1599 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1600 TCP_SKB_CB(skb)->when = 0;
1601 TCP_SKB_CB(skb)->flags = iph->tos;
1602 TCP_SKB_CB(skb)->sacked = 0;
1604 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1605 if (!sk)
1606 goto no_tcp_socket;
1608 process:
1609 if (sk->sk_state == TCP_TIME_WAIT)
1610 goto do_time_wait;
1612 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1613 goto discard_and_relse;
1614 nf_reset(skb);
1616 if (sk_filter(sk, skb))
1617 goto discard_and_relse;
1619 skb->dev = NULL;
1621 bh_lock_sock_nested(sk);
1622 ret = 0;
1623 if (!sock_owned_by_user(sk)) {
1624 #ifdef CONFIG_NET_DMA
1625 struct tcp_sock *tp = tcp_sk(sk);
1626 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1627 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1628 if (tp->ucopy.dma_chan)
1629 ret = tcp_v4_do_rcv(sk, skb);
1630 else
1631 #endif
1633 if (!tcp_prequeue(sk, skb))
1634 ret = tcp_v4_do_rcv(sk, skb);
1636 } else
1637 sk_add_backlog(sk, skb);
1638 bh_unlock_sock(sk);
1640 sock_put(sk);
1642 return ret;
1644 no_tcp_socket:
1645 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1646 goto discard_it;
1648 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1649 bad_packet:
1650 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1651 } else {
1652 tcp_v4_send_reset(NULL, skb);
1655 discard_it:
1656 /* Discard frame. */
1657 kfree_skb(skb);
1658 return 0;
1660 discard_and_relse:
1661 sock_put(sk);
1662 goto discard_it;
1664 do_time_wait:
1665 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1666 inet_twsk_put(inet_twsk(sk));
1667 goto discard_it;
1670 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1671 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1672 inet_twsk_put(inet_twsk(sk));
1673 goto discard_it;
1675 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1676 case TCP_TW_SYN: {
1677 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1678 &tcp_hashinfo,
1679 iph->daddr, th->dest,
1680 inet_iif(skb));
1681 if (sk2) {
1682 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1683 inet_twsk_put(inet_twsk(sk));
1684 sk = sk2;
1685 goto process;
1687 /* Fall through to ACK */
1689 case TCP_TW_ACK:
1690 tcp_v4_timewait_ack(sk, skb);
1691 break;
1692 case TCP_TW_RST:
1693 goto no_tcp_socket;
1694 case TCP_TW_SUCCESS:;
1696 goto discard_it;
1699 /* VJ's idea. Save last timestamp seen from this destination
1700 * and hold it at least for normal timewait interval to use for duplicate
1701 * segment detection in subsequent connections, before they enter synchronized
1702 * state.
1705 int tcp_v4_remember_stamp(struct sock *sk)
1707 struct inet_sock *inet = inet_sk(sk);
1708 struct tcp_sock *tp = tcp_sk(sk);
1709 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1710 struct inet_peer *peer = NULL;
1711 int release_it = 0;
1713 if (!rt || rt->rt_dst != inet->daddr) {
1714 peer = inet_getpeer(inet->daddr, 1);
1715 release_it = 1;
1716 } else {
1717 if (!rt->peer)
1718 rt_bind_peer(rt, 1);
1719 peer = rt->peer;
1722 if (peer) {
1723 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1724 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1725 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1726 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1727 peer->tcp_ts = tp->rx_opt.ts_recent;
1729 if (release_it)
1730 inet_putpeer(peer);
1731 return 1;
1734 return 0;
1737 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1739 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1741 if (peer) {
1742 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1744 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1745 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1746 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1747 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1748 peer->tcp_ts = tcptw->tw_ts_recent;
1750 inet_putpeer(peer);
1751 return 1;
1754 return 0;
1757 const struct inet_connection_sock_af_ops ipv4_specific = {
1758 .queue_xmit = ip_queue_xmit,
1759 .send_check = tcp_v4_send_check,
1760 .rebuild_header = inet_sk_rebuild_header,
1761 .conn_request = tcp_v4_conn_request,
1762 .syn_recv_sock = tcp_v4_syn_recv_sock,
1763 .remember_stamp = tcp_v4_remember_stamp,
1764 .net_header_len = sizeof(struct iphdr),
1765 .setsockopt = ip_setsockopt,
1766 .getsockopt = ip_getsockopt,
1767 .addr2sockaddr = inet_csk_addr2sockaddr,
1768 .sockaddr_len = sizeof(struct sockaddr_in),
1769 .bind_conflict = inet_csk_bind_conflict,
1770 #ifdef CONFIG_COMPAT
1771 .compat_setsockopt = compat_ip_setsockopt,
1772 .compat_getsockopt = compat_ip_getsockopt,
1773 #endif
1776 #ifdef CONFIG_TCP_MD5SIG
1777 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1778 .md5_lookup = tcp_v4_md5_lookup,
1779 .calc_md5_hash = tcp_v4_md5_hash_skb,
1780 .md5_add = tcp_v4_md5_add_func,
1781 .md5_parse = tcp_v4_parse_md5_keys,
1783 #endif
1785 /* NOTE: A lot of things set to zero explicitly by call to
1786 * sk_alloc() so need not be done here.
1788 static int tcp_v4_init_sock(struct sock *sk)
1790 struct inet_connection_sock *icsk = inet_csk(sk);
1791 struct tcp_sock *tp = tcp_sk(sk);
1793 skb_queue_head_init(&tp->out_of_order_queue);
1794 tcp_init_xmit_timers(sk);
1795 tcp_prequeue_init(tp);
1797 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1798 tp->mdev = TCP_TIMEOUT_INIT;
1800 /* So many TCP implementations out there (incorrectly) count the
1801 * initial SYN frame in their delayed-ACK and congestion control
1802 * algorithms that we must have the following bandaid to talk
1803 * efficiently to them. -DaveM
1805 tp->snd_cwnd = 2;
1807 /* See draft-stevens-tcpca-spec-01 for discussion of the
1808 * initialization of these values.
1810 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1811 tp->snd_cwnd_clamp = ~0;
1812 tp->mss_cache = 536;
1814 tp->reordering = sysctl_tcp_reordering;
1815 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1817 sk->sk_state = TCP_CLOSE;
1819 sk->sk_write_space = sk_stream_write_space;
1820 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1822 icsk->icsk_af_ops = &ipv4_specific;
1823 icsk->icsk_sync_mss = tcp_sync_mss;
1824 #ifdef CONFIG_TCP_MD5SIG
1825 tp->af_specific = &tcp_sock_ipv4_specific;
1826 #endif
1828 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1829 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1831 local_bh_disable();
1832 percpu_counter_inc(&tcp_sockets_allocated);
1833 local_bh_enable();
1835 return 0;
1838 void tcp_v4_destroy_sock(struct sock *sk)
1840 struct tcp_sock *tp = tcp_sk(sk);
1842 tcp_clear_xmit_timers(sk);
1844 tcp_cleanup_congestion_control(sk);
1846 /* Cleanup up the write buffer. */
1847 tcp_write_queue_purge(sk);
1849 /* Cleans up our, hopefully empty, out_of_order_queue. */
1850 __skb_queue_purge(&tp->out_of_order_queue);
1852 #ifdef CONFIG_TCP_MD5SIG
1853 /* Clean up the MD5 key list, if any */
1854 if (tp->md5sig_info) {
1855 tcp_v4_clear_md5_list(sk);
1856 kfree(tp->md5sig_info);
1857 tp->md5sig_info = NULL;
1859 #endif
1861 #ifdef CONFIG_NET_DMA
1862 /* Cleans up our sk_async_wait_queue */
1863 __skb_queue_purge(&sk->sk_async_wait_queue);
1864 #endif
1866 /* Clean prequeue, it must be empty really */
1867 __skb_queue_purge(&tp->ucopy.prequeue);
1869 /* Clean up a referenced TCP bind bucket. */
1870 if (inet_csk(sk)->icsk_bind_hash)
1871 inet_put_port(sk);
1874 * If sendmsg cached page exists, toss it.
1876 if (sk->sk_sndmsg_page) {
1877 __free_page(sk->sk_sndmsg_page);
1878 sk->sk_sndmsg_page = NULL;
1881 percpu_counter_dec(&tcp_sockets_allocated);
1884 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1886 #ifdef CONFIG_PROC_FS
1887 /* Proc filesystem TCP sock list dumping. */
1889 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1891 return hlist_nulls_empty(head) ? NULL :
1892 list_entry(head->first, struct inet_timewait_sock, tw_node);
1895 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1897 return !is_a_nulls(tw->tw_node.next) ?
1898 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1901 static void *listening_get_next(struct seq_file *seq, void *cur)
1903 struct inet_connection_sock *icsk;
1904 struct hlist_nulls_node *node;
1905 struct sock *sk = cur;
1906 struct inet_listen_hashbucket *ilb;
1907 struct tcp_iter_state *st = seq->private;
1908 struct net *net = seq_file_net(seq);
1910 if (!sk) {
1911 st->bucket = 0;
1912 ilb = &tcp_hashinfo.listening_hash[0];
1913 spin_lock_bh(&ilb->lock);
1914 sk = sk_nulls_head(&ilb->head);
1915 goto get_sk;
1917 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1918 ++st->num;
1920 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1921 struct request_sock *req = cur;
1923 icsk = inet_csk(st->syn_wait_sk);
1924 req = req->dl_next;
1925 while (1) {
1926 while (req) {
1927 if (req->rsk_ops->family == st->family) {
1928 cur = req;
1929 goto out;
1931 req = req->dl_next;
1933 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1934 break;
1935 get_req:
1936 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1938 sk = sk_next(st->syn_wait_sk);
1939 st->state = TCP_SEQ_STATE_LISTENING;
1940 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1941 } else {
1942 icsk = inet_csk(sk);
1943 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1944 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1945 goto start_req;
1946 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1947 sk = sk_next(sk);
1949 get_sk:
1950 sk_nulls_for_each_from(sk, node) {
1951 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
1952 cur = sk;
1953 goto out;
1955 icsk = inet_csk(sk);
1956 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1957 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1958 start_req:
1959 st->uid = sock_i_uid(sk);
1960 st->syn_wait_sk = sk;
1961 st->state = TCP_SEQ_STATE_OPENREQ;
1962 st->sbucket = 0;
1963 goto get_req;
1965 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1967 spin_unlock_bh(&ilb->lock);
1968 if (++st->bucket < INET_LHTABLE_SIZE) {
1969 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1970 spin_lock_bh(&ilb->lock);
1971 sk = sk_nulls_head(&ilb->head);
1972 goto get_sk;
1974 cur = NULL;
1975 out:
1976 return cur;
1979 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1981 void *rc = listening_get_next(seq, NULL);
1983 while (rc && *pos) {
1984 rc = listening_get_next(seq, rc);
1985 --*pos;
1987 return rc;
1990 static inline int empty_bucket(struct tcp_iter_state *st)
1992 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
1993 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
1996 static void *established_get_first(struct seq_file *seq)
1998 struct tcp_iter_state *st = seq->private;
1999 struct net *net = seq_file_net(seq);
2000 void *rc = NULL;
2002 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
2003 struct sock *sk;
2004 struct hlist_nulls_node *node;
2005 struct inet_timewait_sock *tw;
2006 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2008 /* Lockless fast path for the common case of empty buckets */
2009 if (empty_bucket(st))
2010 continue;
2012 spin_lock_bh(lock);
2013 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2014 if (sk->sk_family != st->family ||
2015 !net_eq(sock_net(sk), net)) {
2016 continue;
2018 rc = sk;
2019 goto out;
2021 st->state = TCP_SEQ_STATE_TIME_WAIT;
2022 inet_twsk_for_each(tw, node,
2023 &tcp_hashinfo.ehash[st->bucket].twchain) {
2024 if (tw->tw_family != st->family ||
2025 !net_eq(twsk_net(tw), net)) {
2026 continue;
2028 rc = tw;
2029 goto out;
2031 spin_unlock_bh(lock);
2032 st->state = TCP_SEQ_STATE_ESTABLISHED;
2034 out:
2035 return rc;
2038 static void *established_get_next(struct seq_file *seq, void *cur)
2040 struct sock *sk = cur;
2041 struct inet_timewait_sock *tw;
2042 struct hlist_nulls_node *node;
2043 struct tcp_iter_state *st = seq->private;
2044 struct net *net = seq_file_net(seq);
2046 ++st->num;
2048 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2049 tw = cur;
2050 tw = tw_next(tw);
2051 get_tw:
2052 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2053 tw = tw_next(tw);
2055 if (tw) {
2056 cur = tw;
2057 goto out;
2059 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2060 st->state = TCP_SEQ_STATE_ESTABLISHED;
2062 /* Look for next non empty bucket */
2063 while (++st->bucket < tcp_hashinfo.ehash_size &&
2064 empty_bucket(st))
2066 if (st->bucket >= tcp_hashinfo.ehash_size)
2067 return NULL;
2069 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2070 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2071 } else
2072 sk = sk_nulls_next(sk);
2074 sk_nulls_for_each_from(sk, node) {
2075 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2076 goto found;
2079 st->state = TCP_SEQ_STATE_TIME_WAIT;
2080 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2081 goto get_tw;
2082 found:
2083 cur = sk;
2084 out:
2085 return cur;
2088 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2090 void *rc = established_get_first(seq);
2092 while (rc && pos) {
2093 rc = established_get_next(seq, rc);
2094 --pos;
2096 return rc;
2099 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2101 void *rc;
2102 struct tcp_iter_state *st = seq->private;
2104 st->state = TCP_SEQ_STATE_LISTENING;
2105 rc = listening_get_idx(seq, &pos);
2107 if (!rc) {
2108 st->state = TCP_SEQ_STATE_ESTABLISHED;
2109 rc = established_get_idx(seq, pos);
2112 return rc;
2115 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2117 struct tcp_iter_state *st = seq->private;
2118 st->state = TCP_SEQ_STATE_LISTENING;
2119 st->num = 0;
2120 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2123 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2125 void *rc = NULL;
2126 struct tcp_iter_state *st;
2128 if (v == SEQ_START_TOKEN) {
2129 rc = tcp_get_idx(seq, 0);
2130 goto out;
2132 st = seq->private;
2134 switch (st->state) {
2135 case TCP_SEQ_STATE_OPENREQ:
2136 case TCP_SEQ_STATE_LISTENING:
2137 rc = listening_get_next(seq, v);
2138 if (!rc) {
2139 st->state = TCP_SEQ_STATE_ESTABLISHED;
2140 rc = established_get_first(seq);
2142 break;
2143 case TCP_SEQ_STATE_ESTABLISHED:
2144 case TCP_SEQ_STATE_TIME_WAIT:
2145 rc = established_get_next(seq, v);
2146 break;
2148 out:
2149 ++*pos;
2150 return rc;
2153 static void tcp_seq_stop(struct seq_file *seq, void *v)
2155 struct tcp_iter_state *st = seq->private;
2157 switch (st->state) {
2158 case TCP_SEQ_STATE_OPENREQ:
2159 if (v) {
2160 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2161 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2163 case TCP_SEQ_STATE_LISTENING:
2164 if (v != SEQ_START_TOKEN)
2165 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2166 break;
2167 case TCP_SEQ_STATE_TIME_WAIT:
2168 case TCP_SEQ_STATE_ESTABLISHED:
2169 if (v)
2170 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2171 break;
2175 static int tcp_seq_open(struct inode *inode, struct file *file)
2177 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2178 struct tcp_iter_state *s;
2179 int err;
2181 err = seq_open_net(inode, file, &afinfo->seq_ops,
2182 sizeof(struct tcp_iter_state));
2183 if (err < 0)
2184 return err;
2186 s = ((struct seq_file *)file->private_data)->private;
2187 s->family = afinfo->family;
2188 return 0;
2191 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2193 int rc = 0;
2194 struct proc_dir_entry *p;
2196 afinfo->seq_fops.open = tcp_seq_open;
2197 afinfo->seq_fops.read = seq_read;
2198 afinfo->seq_fops.llseek = seq_lseek;
2199 afinfo->seq_fops.release = seq_release_net;
2201 afinfo->seq_ops.start = tcp_seq_start;
2202 afinfo->seq_ops.next = tcp_seq_next;
2203 afinfo->seq_ops.stop = tcp_seq_stop;
2205 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2206 &afinfo->seq_fops, afinfo);
2207 if (!p)
2208 rc = -ENOMEM;
2209 return rc;
2212 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2214 proc_net_remove(net, afinfo->name);
2217 static void get_openreq4(struct sock *sk, struct request_sock *req,
2218 struct seq_file *f, int i, int uid, int *len)
2220 const struct inet_request_sock *ireq = inet_rsk(req);
2221 int ttd = req->expires - jiffies;
2223 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2224 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2226 ireq->loc_addr,
2227 ntohs(inet_sk(sk)->sport),
2228 ireq->rmt_addr,
2229 ntohs(ireq->rmt_port),
2230 TCP_SYN_RECV,
2231 0, 0, /* could print option size, but that is af dependent. */
2232 1, /* timers active (only the expire timer) */
2233 jiffies_to_clock_t(ttd),
2234 req->retrans,
2235 uid,
2236 0, /* non standard timer */
2237 0, /* open_requests have no inode */
2238 atomic_read(&sk->sk_refcnt),
2239 req,
2240 len);
2243 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2245 int timer_active;
2246 unsigned long timer_expires;
2247 struct tcp_sock *tp = tcp_sk(sk);
2248 const struct inet_connection_sock *icsk = inet_csk(sk);
2249 struct inet_sock *inet = inet_sk(sk);
2250 __be32 dest = inet->daddr;
2251 __be32 src = inet->rcv_saddr;
2252 __u16 destp = ntohs(inet->dport);
2253 __u16 srcp = ntohs(inet->sport);
2255 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2256 timer_active = 1;
2257 timer_expires = icsk->icsk_timeout;
2258 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2259 timer_active = 4;
2260 timer_expires = icsk->icsk_timeout;
2261 } else if (timer_pending(&sk->sk_timer)) {
2262 timer_active = 2;
2263 timer_expires = sk->sk_timer.expires;
2264 } else {
2265 timer_active = 0;
2266 timer_expires = jiffies;
2269 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2270 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2271 i, src, srcp, dest, destp, sk->sk_state,
2272 tp->write_seq - tp->snd_una,
2273 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2274 (tp->rcv_nxt - tp->copied_seq),
2275 timer_active,
2276 jiffies_to_clock_t(timer_expires - jiffies),
2277 icsk->icsk_retransmits,
2278 sock_i_uid(sk),
2279 icsk->icsk_probes_out,
2280 sock_i_ino(sk),
2281 atomic_read(&sk->sk_refcnt), sk,
2282 jiffies_to_clock_t(icsk->icsk_rto),
2283 jiffies_to_clock_t(icsk->icsk_ack.ato),
2284 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2285 tp->snd_cwnd,
2286 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2287 len);
2290 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2291 struct seq_file *f, int i, int *len)
2293 __be32 dest, src;
2294 __u16 destp, srcp;
2295 int ttd = tw->tw_ttd - jiffies;
2297 if (ttd < 0)
2298 ttd = 0;
2300 dest = tw->tw_daddr;
2301 src = tw->tw_rcv_saddr;
2302 destp = ntohs(tw->tw_dport);
2303 srcp = ntohs(tw->tw_sport);
2305 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2306 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2307 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2308 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2309 atomic_read(&tw->tw_refcnt), tw, len);
2312 #define TMPSZ 150
2314 static int tcp4_seq_show(struct seq_file *seq, void *v)
2316 struct tcp_iter_state *st;
2317 int len;
2319 if (v == SEQ_START_TOKEN) {
2320 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2321 " sl local_address rem_address st tx_queue "
2322 "rx_queue tr tm->when retrnsmt uid timeout "
2323 "inode");
2324 goto out;
2326 st = seq->private;
2328 switch (st->state) {
2329 case TCP_SEQ_STATE_LISTENING:
2330 case TCP_SEQ_STATE_ESTABLISHED:
2331 get_tcp4_sock(v, seq, st->num, &len);
2332 break;
2333 case TCP_SEQ_STATE_OPENREQ:
2334 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2335 break;
2336 case TCP_SEQ_STATE_TIME_WAIT:
2337 get_timewait4_sock(v, seq, st->num, &len);
2338 break;
2340 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2341 out:
2342 return 0;
2345 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2346 .name = "tcp",
2347 .family = AF_INET,
2348 .seq_fops = {
2349 .owner = THIS_MODULE,
2351 .seq_ops = {
2352 .show = tcp4_seq_show,
2356 static int tcp4_proc_init_net(struct net *net)
2358 return tcp_proc_register(net, &tcp4_seq_afinfo);
2361 static void tcp4_proc_exit_net(struct net *net)
2363 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2366 static struct pernet_operations tcp4_net_ops = {
2367 .init = tcp4_proc_init_net,
2368 .exit = tcp4_proc_exit_net,
2371 int __init tcp4_proc_init(void)
2373 return register_pernet_subsys(&tcp4_net_ops);
2376 void tcp4_proc_exit(void)
2378 unregister_pernet_subsys(&tcp4_net_ops);
2380 #endif /* CONFIG_PROC_FS */
2382 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2384 struct iphdr *iph = skb_gro_network_header(skb);
2386 switch (skb->ip_summed) {
2387 case CHECKSUM_COMPLETE:
2388 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2389 skb->csum)) {
2390 skb->ip_summed = CHECKSUM_UNNECESSARY;
2391 break;
2394 /* fall through */
2395 case CHECKSUM_NONE:
2396 NAPI_GRO_CB(skb)->flush = 1;
2397 return NULL;
2400 return tcp_gro_receive(head, skb);
2402 EXPORT_SYMBOL(tcp4_gro_receive);
2404 int tcp4_gro_complete(struct sk_buff *skb)
2406 struct iphdr *iph = ip_hdr(skb);
2407 struct tcphdr *th = tcp_hdr(skb);
2409 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2410 iph->saddr, iph->daddr, 0);
2411 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2413 return tcp_gro_complete(skb);
2415 EXPORT_SYMBOL(tcp4_gro_complete);
2417 struct proto tcp_prot = {
2418 .name = "TCP",
2419 .owner = THIS_MODULE,
2420 .close = tcp_close,
2421 .connect = tcp_v4_connect,
2422 .disconnect = tcp_disconnect,
2423 .accept = inet_csk_accept,
2424 .ioctl = tcp_ioctl,
2425 .init = tcp_v4_init_sock,
2426 .destroy = tcp_v4_destroy_sock,
2427 .shutdown = tcp_shutdown,
2428 .setsockopt = tcp_setsockopt,
2429 .getsockopt = tcp_getsockopt,
2430 .recvmsg = tcp_recvmsg,
2431 .backlog_rcv = tcp_v4_do_rcv,
2432 .hash = inet_hash,
2433 .unhash = inet_unhash,
2434 .get_port = inet_csk_get_port,
2435 .enter_memory_pressure = tcp_enter_memory_pressure,
2436 .sockets_allocated = &tcp_sockets_allocated,
2437 .orphan_count = &tcp_orphan_count,
2438 .memory_allocated = &tcp_memory_allocated,
2439 .memory_pressure = &tcp_memory_pressure,
2440 .sysctl_mem = sysctl_tcp_mem,
2441 .sysctl_wmem = sysctl_tcp_wmem,
2442 .sysctl_rmem = sysctl_tcp_rmem,
2443 .max_header = MAX_TCP_HEADER,
2444 .obj_size = sizeof(struct tcp_sock),
2445 .slab_flags = SLAB_DESTROY_BY_RCU,
2446 .twsk_prot = &tcp_timewait_sock_ops,
2447 .rsk_prot = &tcp_request_sock_ops,
2448 .h.hashinfo = &tcp_hashinfo,
2449 #ifdef CONFIG_COMPAT
2450 .compat_setsockopt = compat_tcp_setsockopt,
2451 .compat_getsockopt = compat_tcp_getsockopt,
2452 #endif
2456 static int __net_init tcp_sk_init(struct net *net)
2458 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2459 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2462 static void __net_exit tcp_sk_exit(struct net *net)
2464 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2465 inet_twsk_purge(net, &tcp_hashinfo, &tcp_death_row, AF_INET);
2468 static struct pernet_operations __net_initdata tcp_sk_ops = {
2469 .init = tcp_sk_init,
2470 .exit = tcp_sk_exit,
2473 void __init tcp_v4_init(void)
2475 inet_hashinfo_init(&tcp_hashinfo);
2476 if (register_pernet_subsys(&tcp_sk_ops))
2477 panic("Failed to create the TCP control socket.\n");
2480 EXPORT_SYMBOL(ipv4_specific);
2481 EXPORT_SYMBOL(tcp_hashinfo);
2482 EXPORT_SYMBOL(tcp_prot);
2483 EXPORT_SYMBOL(tcp_v4_conn_request);
2484 EXPORT_SYMBOL(tcp_v4_connect);
2485 EXPORT_SYMBOL(tcp_v4_do_rcv);
2486 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2487 EXPORT_SYMBOL(tcp_v4_send_check);
2488 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2490 #ifdef CONFIG_PROC_FS
2491 EXPORT_SYMBOL(tcp_proc_register);
2492 EXPORT_SYMBOL(tcp_proc_unregister);
2493 #endif
2494 EXPORT_SYMBOL(sysctl_tcp_low_latency);