initial commit with v2.6.32.60
[linux-2.6.32.60-moxart.git] / net / rds / page.c
blobb442a481a12e65b3c284bf0f1883ce5dd75246e1
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/highmem.h>
35 #include "rds.h"
37 struct rds_page_remainder {
38 struct page *r_page;
39 unsigned long r_offset;
42 DEFINE_PER_CPU_SHARED_ALIGNED(struct rds_page_remainder, rds_page_remainders);
45 * returns 0 on success or -errno on failure.
47 * We don't have to worry about flush_dcache_page() as this only works
48 * with private pages. If, say, we were to do directed receive to pinned
49 * user pages we'd have to worry more about cache coherence. (Though
50 * the flush_dcache_page() in get_user_pages() would probably be enough).
52 int rds_page_copy_user(struct page *page, unsigned long offset,
53 void __user *ptr, unsigned long bytes,
54 int to_user)
56 unsigned long ret;
57 void *addr;
59 addr = kmap(page);
60 if (to_user) {
61 rds_stats_add(s_copy_to_user, bytes);
62 ret = copy_to_user(ptr, addr + offset, bytes);
63 } else {
64 rds_stats_add(s_copy_from_user, bytes);
65 ret = copy_from_user(addr + offset, ptr, bytes);
67 kunmap(page);
69 return ret ? -EFAULT : 0;
71 EXPORT_SYMBOL_GPL(rds_page_copy_user);
74 * Message allocation uses this to build up regions of a message.
76 * @bytes - the number of bytes needed.
77 * @gfp - the waiting behaviour of the allocation
79 * @gfp is always ored with __GFP_HIGHMEM. Callers must be prepared to
80 * kmap the pages, etc.
82 * If @bytes is at least a full page then this just returns a page from
83 * alloc_page().
85 * If @bytes is a partial page then this stores the unused region of the
86 * page in a per-cpu structure. Future partial-page allocations may be
87 * satisfied from that cached region. This lets us waste less memory on
88 * small allocations with minimal complexity. It works because the transmit
89 * path passes read-only page regions down to devices. They hold a page
90 * reference until they are done with the region.
92 int rds_page_remainder_alloc(struct scatterlist *scat, unsigned long bytes,
93 gfp_t gfp)
95 struct rds_page_remainder *rem;
96 unsigned long flags;
97 struct page *page;
98 int ret;
100 gfp |= __GFP_HIGHMEM;
102 /* jump straight to allocation if we're trying for a huge page */
103 if (bytes >= PAGE_SIZE) {
104 page = alloc_page(gfp);
105 if (page == NULL) {
106 ret = -ENOMEM;
107 } else {
108 sg_set_page(scat, page, PAGE_SIZE, 0);
109 ret = 0;
111 goto out;
114 rem = &per_cpu(rds_page_remainders, get_cpu());
115 local_irq_save(flags);
117 while (1) {
118 /* avoid a tiny region getting stuck by tossing it */
119 if (rem->r_page && bytes > (PAGE_SIZE - rem->r_offset)) {
120 rds_stats_inc(s_page_remainder_miss);
121 __free_page(rem->r_page);
122 rem->r_page = NULL;
125 /* hand out a fragment from the cached page */
126 if (rem->r_page && bytes <= (PAGE_SIZE - rem->r_offset)) {
127 sg_set_page(scat, rem->r_page, bytes, rem->r_offset);
128 get_page(sg_page(scat));
130 if (rem->r_offset != 0)
131 rds_stats_inc(s_page_remainder_hit);
133 rem->r_offset += bytes;
134 if (rem->r_offset == PAGE_SIZE) {
135 __free_page(rem->r_page);
136 rem->r_page = NULL;
138 ret = 0;
139 break;
142 /* alloc if there is nothing for us to use */
143 local_irq_restore(flags);
144 put_cpu();
146 page = alloc_page(gfp);
148 rem = &per_cpu(rds_page_remainders, get_cpu());
149 local_irq_save(flags);
151 if (page == NULL) {
152 ret = -ENOMEM;
153 break;
156 /* did someone race to fill the remainder before us? */
157 if (rem->r_page) {
158 __free_page(page);
159 continue;
162 /* otherwise install our page and loop around to alloc */
163 rem->r_page = page;
164 rem->r_offset = 0;
167 local_irq_restore(flags);
168 put_cpu();
169 out:
170 rdsdebug("bytes %lu ret %d %p %u %u\n", bytes, ret,
171 ret ? NULL : sg_page(scat), ret ? 0 : scat->offset,
172 ret ? 0 : scat->length);
173 return ret;
176 static int rds_page_remainder_cpu_notify(struct notifier_block *self,
177 unsigned long action, void *hcpu)
179 struct rds_page_remainder *rem;
180 long cpu = (long)hcpu;
182 rem = &per_cpu(rds_page_remainders, cpu);
184 rdsdebug("cpu %ld action 0x%lx\n", cpu, action);
186 switch (action) {
187 case CPU_DEAD:
188 if (rem->r_page)
189 __free_page(rem->r_page);
190 rem->r_page = NULL;
191 break;
194 return 0;
197 static struct notifier_block rds_page_remainder_nb = {
198 .notifier_call = rds_page_remainder_cpu_notify,
201 void rds_page_exit(void)
203 int i;
205 for_each_possible_cpu(i)
206 rds_page_remainder_cpu_notify(&rds_page_remainder_nb,
207 (unsigned long)CPU_DEAD,
208 (void *)(long)i);