2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
7 #include <linux/sched.h>
8 #include <linux/smp_lock.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
17 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
19 #define SVC_MAX_WAKING 5
21 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_xprt
*xprt
);
22 static int svc_deferred_recv(struct svc_rqst
*rqstp
);
23 static struct cache_deferred_req
*svc_defer(struct cache_req
*req
);
24 static void svc_age_temp_xprts(unsigned long closure
);
26 /* apparently the "standard" is that clients close
27 * idle connections after 5 minutes, servers after
29 * http://www.connectathon.org/talks96/nfstcp.pdf
31 static int svc_conn_age_period
= 6*60;
33 /* List of registered transport classes */
34 static DEFINE_SPINLOCK(svc_xprt_class_lock
);
35 static LIST_HEAD(svc_xprt_class_list
);
37 /* SMP locking strategy:
39 * svc_pool->sp_lock protects most of the fields of that pool.
40 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
41 * when both need to be taken (rare), svc_serv->sv_lock is first.
42 * BKL protects svc_serv->sv_nrthread.
43 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
44 * and the ->sk_info_authunix cache.
46 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
47 * enqueued multiply. During normal transport processing this bit
48 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
49 * Providers should not manipulate this bit directly.
51 * Some flags can be set to certain values at any time
52 * providing that certain rules are followed:
55 * - Can be set or cleared at any time.
56 * - After a set, svc_xprt_enqueue must be called to enqueue
57 * the transport for processing.
58 * - After a clear, the transport must be read/accepted.
59 * If this succeeds, it must be set again.
61 * - Can set at any time. It is never cleared.
63 * - Can only be set while XPT_BUSY is held which ensures
64 * that no other thread will be using the transport or will
65 * try to set XPT_DEAD.
68 int svc_reg_xprt_class(struct svc_xprt_class
*xcl
)
70 struct svc_xprt_class
*cl
;
73 dprintk("svc: Adding svc transport class '%s'\n", xcl
->xcl_name
);
75 INIT_LIST_HEAD(&xcl
->xcl_list
);
76 spin_lock(&svc_xprt_class_lock
);
77 /* Make sure there isn't already a class with the same name */
78 list_for_each_entry(cl
, &svc_xprt_class_list
, xcl_list
) {
79 if (strcmp(xcl
->xcl_name
, cl
->xcl_name
) == 0)
82 list_add_tail(&xcl
->xcl_list
, &svc_xprt_class_list
);
85 spin_unlock(&svc_xprt_class_lock
);
88 EXPORT_SYMBOL_GPL(svc_reg_xprt_class
);
90 void svc_unreg_xprt_class(struct svc_xprt_class
*xcl
)
92 dprintk("svc: Removing svc transport class '%s'\n", xcl
->xcl_name
);
93 spin_lock(&svc_xprt_class_lock
);
94 list_del_init(&xcl
->xcl_list
);
95 spin_unlock(&svc_xprt_class_lock
);
97 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class
);
100 * Format the transport list for printing
102 int svc_print_xprts(char *buf
, int maxlen
)
104 struct list_head
*le
;
109 spin_lock(&svc_xprt_class_lock
);
110 list_for_each(le
, &svc_xprt_class_list
) {
112 struct svc_xprt_class
*xcl
=
113 list_entry(le
, struct svc_xprt_class
, xcl_list
);
115 sprintf(tmpstr
, "%s %d\n", xcl
->xcl_name
, xcl
->xcl_max_payload
);
116 slen
= strlen(tmpstr
);
117 if (len
+ slen
> maxlen
)
122 spin_unlock(&svc_xprt_class_lock
);
127 static void svc_xprt_free(struct kref
*kref
)
129 struct svc_xprt
*xprt
=
130 container_of(kref
, struct svc_xprt
, xpt_ref
);
131 struct module
*owner
= xprt
->xpt_class
->xcl_owner
;
132 if (test_bit(XPT_CACHE_AUTH
, &xprt
->xpt_flags
)
133 && xprt
->xpt_auth_cache
!= NULL
)
134 svcauth_unix_info_release(xprt
->xpt_auth_cache
);
135 xprt
->xpt_ops
->xpo_free(xprt
);
139 void svc_xprt_put(struct svc_xprt
*xprt
)
141 kref_put(&xprt
->xpt_ref
, svc_xprt_free
);
143 EXPORT_SYMBOL_GPL(svc_xprt_put
);
146 * Called by transport drivers to initialize the transport independent
147 * portion of the transport instance.
149 void svc_xprt_init(struct svc_xprt_class
*xcl
, struct svc_xprt
*xprt
,
150 struct svc_serv
*serv
)
152 memset(xprt
, 0, sizeof(*xprt
));
153 xprt
->xpt_class
= xcl
;
154 xprt
->xpt_ops
= xcl
->xcl_ops
;
155 kref_init(&xprt
->xpt_ref
);
156 xprt
->xpt_server
= serv
;
157 INIT_LIST_HEAD(&xprt
->xpt_list
);
158 INIT_LIST_HEAD(&xprt
->xpt_ready
);
159 INIT_LIST_HEAD(&xprt
->xpt_deferred
);
160 mutex_init(&xprt
->xpt_mutex
);
161 spin_lock_init(&xprt
->xpt_lock
);
162 set_bit(XPT_BUSY
, &xprt
->xpt_flags
);
163 rpc_init_wait_queue(&xprt
->xpt_bc_pending
, "xpt_bc_pending");
165 EXPORT_SYMBOL_GPL(svc_xprt_init
);
167 static struct svc_xprt
*__svc_xpo_create(struct svc_xprt_class
*xcl
,
168 struct svc_serv
*serv
,
170 const unsigned short port
,
173 struct sockaddr_in sin
= {
174 .sin_family
= AF_INET
,
175 .sin_addr
.s_addr
= htonl(INADDR_ANY
),
176 .sin_port
= htons(port
),
178 struct sockaddr_in6 sin6
= {
179 .sin6_family
= AF_INET6
,
180 .sin6_addr
= IN6ADDR_ANY_INIT
,
181 .sin6_port
= htons(port
),
183 struct sockaddr
*sap
;
188 sap
= (struct sockaddr
*)&sin
;
192 sap
= (struct sockaddr
*)&sin6
;
196 return ERR_PTR(-EAFNOSUPPORT
);
199 return xcl
->xcl_ops
->xpo_create(serv
, sap
, len
, flags
);
202 int svc_create_xprt(struct svc_serv
*serv
, const char *xprt_name
,
203 const int family
, const unsigned short port
,
206 struct svc_xprt_class
*xcl
;
208 dprintk("svc: creating transport %s[%d]\n", xprt_name
, port
);
209 spin_lock(&svc_xprt_class_lock
);
210 list_for_each_entry(xcl
, &svc_xprt_class_list
, xcl_list
) {
211 struct svc_xprt
*newxprt
;
212 unsigned short newport
;
214 if (strcmp(xprt_name
, xcl
->xcl_name
))
217 if (!try_module_get(xcl
->xcl_owner
))
220 spin_unlock(&svc_xprt_class_lock
);
221 newxprt
= __svc_xpo_create(xcl
, serv
, family
, port
, flags
);
222 if (IS_ERR(newxprt
)) {
223 module_put(xcl
->xcl_owner
);
224 return PTR_ERR(newxprt
);
227 clear_bit(XPT_TEMP
, &newxprt
->xpt_flags
);
228 spin_lock_bh(&serv
->sv_lock
);
229 list_add(&newxprt
->xpt_list
, &serv
->sv_permsocks
);
230 spin_unlock_bh(&serv
->sv_lock
);
231 newport
= svc_xprt_local_port(newxprt
);
232 clear_bit(XPT_BUSY
, &newxprt
->xpt_flags
);
236 spin_unlock(&svc_xprt_class_lock
);
237 dprintk("svc: transport %s not found\n", xprt_name
);
240 EXPORT_SYMBOL_GPL(svc_create_xprt
);
243 * Copy the local and remote xprt addresses to the rqstp structure
245 void svc_xprt_copy_addrs(struct svc_rqst
*rqstp
, struct svc_xprt
*xprt
)
247 struct sockaddr
*sin
;
249 memcpy(&rqstp
->rq_addr
, &xprt
->xpt_remote
, xprt
->xpt_remotelen
);
250 rqstp
->rq_addrlen
= xprt
->xpt_remotelen
;
253 * Destination address in request is needed for binding the
254 * source address in RPC replies/callbacks later.
256 sin
= (struct sockaddr
*)&xprt
->xpt_local
;
257 switch (sin
->sa_family
) {
259 rqstp
->rq_daddr
.addr
= ((struct sockaddr_in
*)sin
)->sin_addr
;
262 rqstp
->rq_daddr
.addr6
= ((struct sockaddr_in6
*)sin
)->sin6_addr
;
266 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs
);
269 * svc_print_addr - Format rq_addr field for printing
270 * @rqstp: svc_rqst struct containing address to print
271 * @buf: target buffer for formatted address
272 * @len: length of target buffer
275 char *svc_print_addr(struct svc_rqst
*rqstp
, char *buf
, size_t len
)
277 return __svc_print_addr(svc_addr(rqstp
), buf
, len
);
279 EXPORT_SYMBOL_GPL(svc_print_addr
);
282 * Queue up an idle server thread. Must have pool->sp_lock held.
283 * Note: this is really a stack rather than a queue, so that we only
284 * use as many different threads as we need, and the rest don't pollute
287 static void svc_thread_enqueue(struct svc_pool
*pool
, struct svc_rqst
*rqstp
)
289 list_add(&rqstp
->rq_list
, &pool
->sp_threads
);
293 * Dequeue an nfsd thread. Must have pool->sp_lock held.
295 static void svc_thread_dequeue(struct svc_pool
*pool
, struct svc_rqst
*rqstp
)
297 list_del(&rqstp
->rq_list
);
301 * Queue up a transport with data pending. If there are idle nfsd
302 * processes, wake 'em up.
305 void svc_xprt_enqueue(struct svc_xprt
*xprt
)
307 struct svc_pool
*pool
;
308 struct svc_rqst
*rqstp
;
312 if (!(xprt
->xpt_flags
&
313 ((1<<XPT_CONN
)|(1<<XPT_DATA
)|(1<<XPT_CLOSE
)|(1<<XPT_DEFERRED
))))
317 pool
= svc_pool_for_cpu(xprt
->xpt_server
, cpu
);
320 spin_lock_bh(&pool
->sp_lock
);
322 if (test_bit(XPT_DEAD
, &xprt
->xpt_flags
)) {
323 /* Don't enqueue dead transports */
324 dprintk("svc: transport %p is dead, not enqueued\n", xprt
);
328 pool
->sp_stats
.packets
++;
330 /* Mark transport as busy. It will remain in this state until
331 * the provider calls svc_xprt_received. We update XPT_BUSY
332 * atomically because it also guards against trying to enqueue
333 * the transport twice.
335 if (test_and_set_bit(XPT_BUSY
, &xprt
->xpt_flags
)) {
336 /* Don't enqueue transport while already enqueued */
337 dprintk("svc: transport %p busy, not enqueued\n", xprt
);
340 BUG_ON(xprt
->xpt_pool
!= NULL
);
341 xprt
->xpt_pool
= pool
;
343 /* Handle pending connection */
344 if (test_bit(XPT_CONN
, &xprt
->xpt_flags
))
347 /* Handle close in-progress */
348 if (test_bit(XPT_CLOSE
, &xprt
->xpt_flags
))
351 /* Check if we have space to reply to a request */
352 if (!xprt
->xpt_ops
->xpo_has_wspace(xprt
)) {
353 /* Don't enqueue while not enough space for reply */
354 dprintk("svc: no write space, transport %p not enqueued\n",
356 xprt
->xpt_pool
= NULL
;
357 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
362 /* Work out whether threads are available */
363 thread_avail
= !list_empty(&pool
->sp_threads
); /* threads are asleep */
364 if (pool
->sp_nwaking
>= SVC_MAX_WAKING
) {
365 /* too many threads are runnable and trying to wake up */
367 pool
->sp_stats
.overloads_avoided
++;
371 rqstp
= list_entry(pool
->sp_threads
.next
,
374 dprintk("svc: transport %p served by daemon %p\n",
376 svc_thread_dequeue(pool
, rqstp
);
379 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
380 rqstp
, rqstp
->rq_xprt
);
381 rqstp
->rq_xprt
= xprt
;
383 rqstp
->rq_waking
= 1;
385 pool
->sp_stats
.threads_woken
++;
386 BUG_ON(xprt
->xpt_pool
!= pool
);
387 wake_up(&rqstp
->rq_wait
);
389 dprintk("svc: transport %p put into queue\n", xprt
);
390 list_add_tail(&xprt
->xpt_ready
, &pool
->sp_sockets
);
391 pool
->sp_stats
.sockets_queued
++;
392 BUG_ON(xprt
->xpt_pool
!= pool
);
396 spin_unlock_bh(&pool
->sp_lock
);
398 EXPORT_SYMBOL_GPL(svc_xprt_enqueue
);
401 * Dequeue the first transport. Must be called with the pool->sp_lock held.
403 static struct svc_xprt
*svc_xprt_dequeue(struct svc_pool
*pool
)
405 struct svc_xprt
*xprt
;
407 if (list_empty(&pool
->sp_sockets
))
410 xprt
= list_entry(pool
->sp_sockets
.next
,
411 struct svc_xprt
, xpt_ready
);
412 list_del_init(&xprt
->xpt_ready
);
414 dprintk("svc: transport %p dequeued, inuse=%d\n",
415 xprt
, atomic_read(&xprt
->xpt_ref
.refcount
));
421 * svc_xprt_received conditionally queues the transport for processing
422 * by another thread. The caller must hold the XPT_BUSY bit and must
423 * not thereafter touch transport data.
425 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
426 * insufficient) data.
428 void svc_xprt_received(struct svc_xprt
*xprt
)
430 BUG_ON(!test_bit(XPT_BUSY
, &xprt
->xpt_flags
));
431 xprt
->xpt_pool
= NULL
;
432 /* As soon as we clear busy, the xprt could be closed and
433 * 'put', so we need a reference to call svc_xprt_enqueue with:
436 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
437 svc_xprt_enqueue(xprt
);
440 EXPORT_SYMBOL_GPL(svc_xprt_received
);
443 * svc_reserve - change the space reserved for the reply to a request.
444 * @rqstp: The request in question
445 * @space: new max space to reserve
447 * Each request reserves some space on the output queue of the transport
448 * to make sure the reply fits. This function reduces that reserved
449 * space to be the amount of space used already, plus @space.
452 void svc_reserve(struct svc_rqst
*rqstp
, int space
)
454 space
+= rqstp
->rq_res
.head
[0].iov_len
;
456 if (space
< rqstp
->rq_reserved
) {
457 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
458 atomic_sub((rqstp
->rq_reserved
- space
), &xprt
->xpt_reserved
);
459 rqstp
->rq_reserved
= space
;
461 svc_xprt_enqueue(xprt
);
464 EXPORT_SYMBOL_GPL(svc_reserve
);
466 static void svc_xprt_release(struct svc_rqst
*rqstp
)
468 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
470 rqstp
->rq_xprt
->xpt_ops
->xpo_release_rqst(rqstp
);
472 kfree(rqstp
->rq_deferred
);
473 rqstp
->rq_deferred
= NULL
;
475 svc_free_res_pages(rqstp
);
476 rqstp
->rq_res
.page_len
= 0;
477 rqstp
->rq_res
.page_base
= 0;
479 /* Reset response buffer and release
481 * But first, check that enough space was reserved
482 * for the reply, otherwise we have a bug!
484 if ((rqstp
->rq_res
.len
) > rqstp
->rq_reserved
)
485 printk(KERN_ERR
"RPC request reserved %d but used %d\n",
489 rqstp
->rq_res
.head
[0].iov_len
= 0;
490 svc_reserve(rqstp
, 0);
491 rqstp
->rq_xprt
= NULL
;
497 * External function to wake up a server waiting for data
498 * This really only makes sense for services like lockd
499 * which have exactly one thread anyway.
501 void svc_wake_up(struct svc_serv
*serv
)
503 struct svc_rqst
*rqstp
;
505 struct svc_pool
*pool
;
507 for (i
= 0; i
< serv
->sv_nrpools
; i
++) {
508 pool
= &serv
->sv_pools
[i
];
510 spin_lock_bh(&pool
->sp_lock
);
511 if (!list_empty(&pool
->sp_threads
)) {
512 rqstp
= list_entry(pool
->sp_threads
.next
,
515 dprintk("svc: daemon %p woken up.\n", rqstp
);
517 svc_thread_dequeue(pool, rqstp);
518 rqstp->rq_xprt = NULL;
520 wake_up(&rqstp
->rq_wait
);
522 spin_unlock_bh(&pool
->sp_lock
);
525 EXPORT_SYMBOL_GPL(svc_wake_up
);
527 int svc_port_is_privileged(struct sockaddr
*sin
)
529 switch (sin
->sa_family
) {
531 return ntohs(((struct sockaddr_in
*)sin
)->sin_port
)
534 return ntohs(((struct sockaddr_in6
*)sin
)->sin6_port
)
542 * Make sure that we don't have too many active connections. If we have,
543 * something must be dropped. It's not clear what will happen if we allow
544 * "too many" connections, but when dealing with network-facing software,
545 * we have to code defensively. Here we do that by imposing hard limits.
547 * There's no point in trying to do random drop here for DoS
548 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
549 * attacker can easily beat that.
551 * The only somewhat efficient mechanism would be if drop old
552 * connections from the same IP first. But right now we don't even
553 * record the client IP in svc_sock.
555 * single-threaded services that expect a lot of clients will probably
556 * need to set sv_maxconn to override the default value which is based
557 * on the number of threads
559 static void svc_check_conn_limits(struct svc_serv
*serv
)
561 unsigned int limit
= serv
->sv_maxconn
? serv
->sv_maxconn
:
562 (serv
->sv_nrthreads
+3) * 20;
564 if (serv
->sv_tmpcnt
> limit
) {
565 struct svc_xprt
*xprt
= NULL
;
566 spin_lock_bh(&serv
->sv_lock
);
567 if (!list_empty(&serv
->sv_tempsocks
)) {
568 if (net_ratelimit()) {
569 /* Try to help the admin */
570 printk(KERN_NOTICE
"%s: too many open "
571 "connections, consider increasing %s\n",
572 serv
->sv_name
, serv
->sv_maxconn
?
573 "the max number of connections." :
574 "the number of threads.");
577 * Always select the oldest connection. It's not fair,
580 xprt
= list_entry(serv
->sv_tempsocks
.prev
,
583 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
586 spin_unlock_bh(&serv
->sv_lock
);
589 svc_xprt_enqueue(xprt
);
596 * Receive the next request on any transport. This code is carefully
597 * organised not to touch any cachelines in the shared svc_serv
598 * structure, only cachelines in the local svc_pool.
600 int svc_recv(struct svc_rqst
*rqstp
, long timeout
)
602 struct svc_xprt
*xprt
= NULL
;
603 struct svc_serv
*serv
= rqstp
->rq_server
;
604 struct svc_pool
*pool
= rqstp
->rq_pool
;
608 DECLARE_WAITQUEUE(wait
, current
);
611 dprintk("svc: server %p waiting for data (to = %ld)\n",
616 "svc_recv: service %p, transport not NULL!\n",
618 if (waitqueue_active(&rqstp
->rq_wait
))
620 "svc_recv: service %p, wait queue active!\n",
623 /* now allocate needed pages. If we get a failure, sleep briefly */
624 pages
= (serv
->sv_max_mesg
+ PAGE_SIZE
) / PAGE_SIZE
;
625 for (i
= 0; i
< pages
; i
++)
626 while (rqstp
->rq_pages
[i
] == NULL
) {
627 struct page
*p
= alloc_page(GFP_KERNEL
);
629 set_current_state(TASK_INTERRUPTIBLE
);
630 if (signalled() || kthread_should_stop()) {
631 set_current_state(TASK_RUNNING
);
634 schedule_timeout(msecs_to_jiffies(500));
636 rqstp
->rq_pages
[i
] = p
;
638 rqstp
->rq_pages
[i
++] = NULL
; /* this might be seen in nfs_read_actor */
639 BUG_ON(pages
>= RPCSVC_MAXPAGES
);
641 /* Make arg->head point to first page and arg->pages point to rest */
642 arg
= &rqstp
->rq_arg
;
643 arg
->head
[0].iov_base
= page_address(rqstp
->rq_pages
[0]);
644 arg
->head
[0].iov_len
= PAGE_SIZE
;
645 arg
->pages
= rqstp
->rq_pages
+ 1;
647 /* save at least one page for response */
648 arg
->page_len
= (pages
-2)*PAGE_SIZE
;
649 arg
->len
= (pages
-1)*PAGE_SIZE
;
650 arg
->tail
[0].iov_len
= 0;
654 if (signalled() || kthread_should_stop())
657 spin_lock_bh(&pool
->sp_lock
);
658 if (rqstp
->rq_waking
) {
659 rqstp
->rq_waking
= 0;
661 BUG_ON(pool
->sp_nwaking
< 0);
663 xprt
= svc_xprt_dequeue(pool
);
665 rqstp
->rq_xprt
= xprt
;
668 /* No data pending. Go to sleep */
669 svc_thread_enqueue(pool
, rqstp
);
672 * We have to be able to interrupt this wait
673 * to bring down the daemons ...
675 set_current_state(TASK_INTERRUPTIBLE
);
678 * checking kthread_should_stop() here allows us to avoid
679 * locking and signalling when stopping kthreads that call
680 * svc_recv. If the thread has already been woken up, then
681 * we can exit here without sleeping. If not, then it
682 * it'll be woken up quickly during the schedule_timeout
684 if (kthread_should_stop()) {
685 set_current_state(TASK_RUNNING
);
686 spin_unlock_bh(&pool
->sp_lock
);
690 add_wait_queue(&rqstp
->rq_wait
, &wait
);
691 spin_unlock_bh(&pool
->sp_lock
);
693 time_left
= schedule_timeout(timeout
);
697 spin_lock_bh(&pool
->sp_lock
);
698 remove_wait_queue(&rqstp
->rq_wait
, &wait
);
700 pool
->sp_stats
.threads_timedout
++;
702 xprt
= rqstp
->rq_xprt
;
704 svc_thread_dequeue(pool
, rqstp
);
705 spin_unlock_bh(&pool
->sp_lock
);
706 dprintk("svc: server %p, no data yet\n", rqstp
);
707 if (signalled() || kthread_should_stop())
713 spin_unlock_bh(&pool
->sp_lock
);
716 if (test_bit(XPT_CLOSE
, &xprt
->xpt_flags
)) {
717 dprintk("svc_recv: found XPT_CLOSE\n");
718 svc_delete_xprt(xprt
);
719 } else if (test_bit(XPT_LISTENER
, &xprt
->xpt_flags
)) {
720 struct svc_xprt
*newxpt
;
721 newxpt
= xprt
->xpt_ops
->xpo_accept(xprt
);
724 * We know this module_get will succeed because the
725 * listener holds a reference too
727 __module_get(newxpt
->xpt_class
->xcl_owner
);
728 svc_check_conn_limits(xprt
->xpt_server
);
729 spin_lock_bh(&serv
->sv_lock
);
730 set_bit(XPT_TEMP
, &newxpt
->xpt_flags
);
731 list_add(&newxpt
->xpt_list
, &serv
->sv_tempsocks
);
733 if (serv
->sv_temptimer
.function
== NULL
) {
734 /* setup timer to age temp transports */
735 setup_timer(&serv
->sv_temptimer
,
737 (unsigned long)serv
);
738 mod_timer(&serv
->sv_temptimer
,
739 jiffies
+ svc_conn_age_period
* HZ
);
741 spin_unlock_bh(&serv
->sv_lock
);
742 svc_xprt_received(newxpt
);
744 svc_xprt_received(xprt
);
746 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
747 rqstp
, pool
->sp_id
, xprt
,
748 atomic_read(&xprt
->xpt_ref
.refcount
));
749 rqstp
->rq_deferred
= svc_deferred_dequeue(xprt
);
750 if (rqstp
->rq_deferred
) {
751 svc_xprt_received(xprt
);
752 len
= svc_deferred_recv(rqstp
);
754 len
= xprt
->xpt_ops
->xpo_recvfrom(rqstp
);
755 dprintk("svc: got len=%d\n", len
);
756 rqstp
->rq_reserved
= serv
->sv_max_mesg
;
757 atomic_add(rqstp
->rq_reserved
, &xprt
->xpt_reserved
);
760 /* No data, incomplete (TCP) read, or accept() */
761 if (len
== 0 || len
== -EAGAIN
) {
762 rqstp
->rq_res
.len
= 0;
763 svc_xprt_release(rqstp
);
766 clear_bit(XPT_OLD
, &xprt
->xpt_flags
);
768 rqstp
->rq_secure
= svc_port_is_privileged(svc_addr(rqstp
));
769 rqstp
->rq_chandle
.defer
= svc_defer
;
772 serv
->sv_stats
->netcnt
++;
775 EXPORT_SYMBOL_GPL(svc_recv
);
780 void svc_drop(struct svc_rqst
*rqstp
)
782 dprintk("svc: xprt %p dropped request\n", rqstp
->rq_xprt
);
783 svc_xprt_release(rqstp
);
785 EXPORT_SYMBOL_GPL(svc_drop
);
788 * Return reply to client.
790 int svc_send(struct svc_rqst
*rqstp
)
792 struct svc_xprt
*xprt
;
796 xprt
= rqstp
->rq_xprt
;
800 /* release the receive skb before sending the reply */
801 rqstp
->rq_xprt
->xpt_ops
->xpo_release_rqst(rqstp
);
803 /* calculate over-all length */
805 xb
->len
= xb
->head
[0].iov_len
+
809 /* Grab mutex to serialize outgoing data. */
810 mutex_lock(&xprt
->xpt_mutex
);
811 if (test_bit(XPT_DEAD
, &xprt
->xpt_flags
)
812 || test_bit(XPT_CLOSE
, &xprt
->xpt_flags
))
815 len
= xprt
->xpt_ops
->xpo_sendto(rqstp
);
816 mutex_unlock(&xprt
->xpt_mutex
);
817 rpc_wake_up(&xprt
->xpt_bc_pending
);
818 svc_xprt_release(rqstp
);
820 if (len
== -ECONNREFUSED
|| len
== -ENOTCONN
|| len
== -EAGAIN
)
826 * Timer function to close old temporary transports, using
827 * a mark-and-sweep algorithm.
829 static void svc_age_temp_xprts(unsigned long closure
)
831 struct svc_serv
*serv
= (struct svc_serv
*)closure
;
832 struct svc_xprt
*xprt
;
833 struct list_head
*le
, *next
;
834 LIST_HEAD(to_be_aged
);
836 dprintk("svc_age_temp_xprts\n");
838 if (!spin_trylock_bh(&serv
->sv_lock
)) {
839 /* busy, try again 1 sec later */
840 dprintk("svc_age_temp_xprts: busy\n");
841 mod_timer(&serv
->sv_temptimer
, jiffies
+ HZ
);
845 list_for_each_safe(le
, next
, &serv
->sv_tempsocks
) {
846 xprt
= list_entry(le
, struct svc_xprt
, xpt_list
);
848 /* First time through, just mark it OLD. Second time
849 * through, close it. */
850 if (!test_and_set_bit(XPT_OLD
, &xprt
->xpt_flags
))
852 if (atomic_read(&xprt
->xpt_ref
.refcount
) > 1
853 || test_bit(XPT_BUSY
, &xprt
->xpt_flags
))
856 list_move(le
, &to_be_aged
);
857 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
858 set_bit(XPT_DETACHED
, &xprt
->xpt_flags
);
860 spin_unlock_bh(&serv
->sv_lock
);
862 while (!list_empty(&to_be_aged
)) {
863 le
= to_be_aged
.next
;
864 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
866 xprt
= list_entry(le
, struct svc_xprt
, xpt_list
);
868 dprintk("queuing xprt %p for closing\n", xprt
);
870 /* a thread will dequeue and close it soon */
871 svc_xprt_enqueue(xprt
);
875 mod_timer(&serv
->sv_temptimer
, jiffies
+ svc_conn_age_period
* HZ
);
879 * Remove a dead transport
881 void svc_delete_xprt(struct svc_xprt
*xprt
)
883 struct svc_serv
*serv
= xprt
->xpt_server
;
884 struct svc_deferred_req
*dr
;
886 /* Only do this once */
887 if (test_and_set_bit(XPT_DEAD
, &xprt
->xpt_flags
))
890 dprintk("svc: svc_delete_xprt(%p)\n", xprt
);
891 xprt
->xpt_ops
->xpo_detach(xprt
);
893 spin_lock_bh(&serv
->sv_lock
);
894 if (!test_and_set_bit(XPT_DETACHED
, &xprt
->xpt_flags
))
895 list_del_init(&xprt
->xpt_list
);
897 * The only time we're called while xpt_ready is still on a list
898 * is while the list itself is about to be destroyed (in
899 * svc_destroy). BUT svc_xprt_enqueue could still be attempting
900 * to add new entries to the sp_sockets list, so we can't leave
901 * a freed xprt on it.
903 list_del_init(&xprt
->xpt_ready
);
904 if (test_bit(XPT_TEMP
, &xprt
->xpt_flags
))
907 while ((dr
= svc_deferred_dequeue(xprt
)) != NULL
)
911 spin_unlock_bh(&serv
->sv_lock
);
914 void svc_close_xprt(struct svc_xprt
*xprt
)
916 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
917 if (test_and_set_bit(XPT_BUSY
, &xprt
->xpt_flags
))
918 /* someone else will have to effect the close */
922 svc_delete_xprt(xprt
);
923 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
926 EXPORT_SYMBOL_GPL(svc_close_xprt
);
928 static void svc_close_list(struct list_head
*xprt_list
)
930 struct svc_xprt
*xprt
;
931 struct svc_xprt
*tmp
;
933 list_for_each_entry_safe(xprt
, tmp
, xprt_list
, xpt_list
) {
934 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
935 if (test_bit(XPT_BUSY
, &xprt
->xpt_flags
)) {
936 /* Waiting to be processed, but no threads left,
937 * So just remove it from the waiting list
939 list_del_init(&xprt
->xpt_ready
);
940 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
942 svc_close_xprt(xprt
);
946 void svc_close_all(struct svc_serv
*serv
)
948 svc_close_list(&serv
->sv_tempsocks
);
949 svc_close_list(&serv
->sv_permsocks
);
950 BUG_ON(!list_empty(&serv
->sv_permsocks
));
951 BUG_ON(!list_empty(&serv
->sv_tempsocks
));
956 * Handle defer and revisit of requests
959 static void svc_revisit(struct cache_deferred_req
*dreq
, int too_many
)
961 struct svc_deferred_req
*dr
=
962 container_of(dreq
, struct svc_deferred_req
, handle
);
963 struct svc_xprt
*xprt
= dr
->xprt
;
965 spin_lock(&xprt
->xpt_lock
);
966 set_bit(XPT_DEFERRED
, &xprt
->xpt_flags
);
967 if (too_many
|| test_bit(XPT_DEAD
, &xprt
->xpt_flags
)) {
968 spin_unlock(&xprt
->xpt_lock
);
969 dprintk("revisit canceled\n");
974 dprintk("revisit queued\n");
976 list_add(&dr
->handle
.recent
, &xprt
->xpt_deferred
);
977 spin_unlock(&xprt
->xpt_lock
);
978 svc_xprt_enqueue(xprt
);
983 * Save the request off for later processing. The request buffer looks
986 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
988 * This code can only handle requests that consist of an xprt-header
991 static struct cache_deferred_req
*svc_defer(struct cache_req
*req
)
993 struct svc_rqst
*rqstp
= container_of(req
, struct svc_rqst
, rq_chandle
);
994 struct svc_deferred_req
*dr
;
996 if (rqstp
->rq_arg
.page_len
|| !rqstp
->rq_usedeferral
)
997 return NULL
; /* if more than a page, give up FIXME */
998 if (rqstp
->rq_deferred
) {
999 dr
= rqstp
->rq_deferred
;
1000 rqstp
->rq_deferred
= NULL
;
1004 /* FIXME maybe discard if size too large */
1005 size
= sizeof(struct svc_deferred_req
) + rqstp
->rq_arg
.len
;
1006 dr
= kmalloc(size
, GFP_KERNEL
);
1010 dr
->handle
.owner
= rqstp
->rq_server
;
1011 dr
->prot
= rqstp
->rq_prot
;
1012 memcpy(&dr
->addr
, &rqstp
->rq_addr
, rqstp
->rq_addrlen
);
1013 dr
->addrlen
= rqstp
->rq_addrlen
;
1014 dr
->daddr
= rqstp
->rq_daddr
;
1015 dr
->argslen
= rqstp
->rq_arg
.len
>> 2;
1016 dr
->xprt_hlen
= rqstp
->rq_xprt_hlen
;
1018 /* back up head to the start of the buffer and copy */
1019 skip
= rqstp
->rq_arg
.len
- rqstp
->rq_arg
.head
[0].iov_len
;
1020 memcpy(dr
->args
, rqstp
->rq_arg
.head
[0].iov_base
- skip
,
1023 svc_xprt_get(rqstp
->rq_xprt
);
1024 dr
->xprt
= rqstp
->rq_xprt
;
1026 dr
->handle
.revisit
= svc_revisit
;
1031 * recv data from a deferred request into an active one
1033 static int svc_deferred_recv(struct svc_rqst
*rqstp
)
1035 struct svc_deferred_req
*dr
= rqstp
->rq_deferred
;
1037 /* setup iov_base past transport header */
1038 rqstp
->rq_arg
.head
[0].iov_base
= dr
->args
+ (dr
->xprt_hlen
>>2);
1039 /* The iov_len does not include the transport header bytes */
1040 rqstp
->rq_arg
.head
[0].iov_len
= (dr
->argslen
<<2) - dr
->xprt_hlen
;
1041 rqstp
->rq_arg
.page_len
= 0;
1042 /* The rq_arg.len includes the transport header bytes */
1043 rqstp
->rq_arg
.len
= dr
->argslen
<<2;
1044 rqstp
->rq_prot
= dr
->prot
;
1045 memcpy(&rqstp
->rq_addr
, &dr
->addr
, dr
->addrlen
);
1046 rqstp
->rq_addrlen
= dr
->addrlen
;
1047 /* Save off transport header len in case we get deferred again */
1048 rqstp
->rq_xprt_hlen
= dr
->xprt_hlen
;
1049 rqstp
->rq_daddr
= dr
->daddr
;
1050 rqstp
->rq_respages
= rqstp
->rq_pages
;
1051 return (dr
->argslen
<<2) - dr
->xprt_hlen
;
1055 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_xprt
*xprt
)
1057 struct svc_deferred_req
*dr
= NULL
;
1059 if (!test_bit(XPT_DEFERRED
, &xprt
->xpt_flags
))
1061 spin_lock(&xprt
->xpt_lock
);
1062 clear_bit(XPT_DEFERRED
, &xprt
->xpt_flags
);
1063 if (!list_empty(&xprt
->xpt_deferred
)) {
1064 dr
= list_entry(xprt
->xpt_deferred
.next
,
1065 struct svc_deferred_req
,
1067 list_del_init(&dr
->handle
.recent
);
1068 set_bit(XPT_DEFERRED
, &xprt
->xpt_flags
);
1070 spin_unlock(&xprt
->xpt_lock
);
1075 * svc_find_xprt - find an RPC transport instance
1076 * @serv: pointer to svc_serv to search
1077 * @xcl_name: C string containing transport's class name
1078 * @af: Address family of transport's local address
1079 * @port: transport's IP port number
1081 * Return the transport instance pointer for the endpoint accepting
1082 * connections/peer traffic from the specified transport class,
1083 * address family and port.
1085 * Specifying 0 for the address family or port is effectively a
1086 * wild-card, and will result in matching the first transport in the
1087 * service's list that has a matching class name.
1089 struct svc_xprt
*svc_find_xprt(struct svc_serv
*serv
, const char *xcl_name
,
1090 const sa_family_t af
, const unsigned short port
)
1092 struct svc_xprt
*xprt
;
1093 struct svc_xprt
*found
= NULL
;
1095 /* Sanity check the args */
1096 if (serv
== NULL
|| xcl_name
== NULL
)
1099 spin_lock_bh(&serv
->sv_lock
);
1100 list_for_each_entry(xprt
, &serv
->sv_permsocks
, xpt_list
) {
1101 if (strcmp(xprt
->xpt_class
->xcl_name
, xcl_name
))
1103 if (af
!= AF_UNSPEC
&& af
!= xprt
->xpt_local
.ss_family
)
1105 if (port
!= 0 && port
!= svc_xprt_local_port(xprt
))
1111 spin_unlock_bh(&serv
->sv_lock
);
1114 EXPORT_SYMBOL_GPL(svc_find_xprt
);
1116 static int svc_one_xprt_name(const struct svc_xprt
*xprt
,
1117 char *pos
, int remaining
)
1121 len
= snprintf(pos
, remaining
, "%s %u\n",
1122 xprt
->xpt_class
->xcl_name
,
1123 svc_xprt_local_port(xprt
));
1124 if (len
>= remaining
)
1125 return -ENAMETOOLONG
;
1130 * svc_xprt_names - format a buffer with a list of transport names
1131 * @serv: pointer to an RPC service
1132 * @buf: pointer to a buffer to be filled in
1133 * @buflen: length of buffer to be filled in
1135 * Fills in @buf with a string containing a list of transport names,
1136 * each name terminated with '\n'.
1138 * Returns positive length of the filled-in string on success; otherwise
1139 * a negative errno value is returned if an error occurs.
1141 int svc_xprt_names(struct svc_serv
*serv
, char *buf
, const int buflen
)
1143 struct svc_xprt
*xprt
;
1147 /* Sanity check args */
1151 spin_lock_bh(&serv
->sv_lock
);
1155 list_for_each_entry(xprt
, &serv
->sv_permsocks
, xpt_list
) {
1156 len
= svc_one_xprt_name(xprt
, pos
, buflen
- totlen
);
1168 spin_unlock_bh(&serv
->sv_lock
);
1171 EXPORT_SYMBOL_GPL(svc_xprt_names
);
1174 /*----------------------------------------------------------------------------*/
1176 static void *svc_pool_stats_start(struct seq_file
*m
, loff_t
*pos
)
1178 unsigned int pidx
= (unsigned int)*pos
;
1179 struct svc_serv
*serv
= m
->private;
1181 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx
);
1184 return SEQ_START_TOKEN
;
1185 return (pidx
> serv
->sv_nrpools
? NULL
: &serv
->sv_pools
[pidx
-1]);
1188 static void *svc_pool_stats_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1190 struct svc_pool
*pool
= p
;
1191 struct svc_serv
*serv
= m
->private;
1193 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos
);
1195 if (p
== SEQ_START_TOKEN
) {
1196 pool
= &serv
->sv_pools
[0];
1198 unsigned int pidx
= (pool
- &serv
->sv_pools
[0]);
1199 if (pidx
< serv
->sv_nrpools
-1)
1200 pool
= &serv
->sv_pools
[pidx
+1];
1208 static void svc_pool_stats_stop(struct seq_file
*m
, void *p
)
1212 static int svc_pool_stats_show(struct seq_file
*m
, void *p
)
1214 struct svc_pool
*pool
= p
;
1216 if (p
== SEQ_START_TOKEN
) {
1217 seq_puts(m
, "# pool packets-arrived sockets-enqueued threads-woken overloads-avoided threads-timedout\n");
1221 seq_printf(m
, "%u %lu %lu %lu %lu %lu\n",
1223 pool
->sp_stats
.packets
,
1224 pool
->sp_stats
.sockets_queued
,
1225 pool
->sp_stats
.threads_woken
,
1226 pool
->sp_stats
.overloads_avoided
,
1227 pool
->sp_stats
.threads_timedout
);
1232 static const struct seq_operations svc_pool_stats_seq_ops
= {
1233 .start
= svc_pool_stats_start
,
1234 .next
= svc_pool_stats_next
,
1235 .stop
= svc_pool_stats_stop
,
1236 .show
= svc_pool_stats_show
,
1239 int svc_pool_stats_open(struct svc_serv
*serv
, struct file
*file
)
1243 err
= seq_open(file
, &svc_pool_stats_seq_ops
);
1245 ((struct seq_file
*) file
->private_data
)->private = serv
;
1248 EXPORT_SYMBOL(svc_pool_stats_open
);
1250 /*----------------------------------------------------------------------------*/