initial commit with v2.6.32.60
[linux-2.6.32.60-moxart.git] / net / sunrpc / svc_xprt.c
blob8d72660a6bd9e7ed4a315c79ce8ddf2a5971e483
1 /*
2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
7 #include <linux/sched.h>
8 #include <linux/smp_lock.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
17 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
19 #define SVC_MAX_WAKING 5
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
26 /* apparently the "standard" is that clients close
27 * idle connections after 5 minutes, servers after
28 * 6 minutes
29 * http://www.connectathon.org/talks96/nfstcp.pdf
31 static int svc_conn_age_period = 6*60;
33 /* List of registered transport classes */
34 static DEFINE_SPINLOCK(svc_xprt_class_lock);
35 static LIST_HEAD(svc_xprt_class_list);
37 /* SMP locking strategy:
39 * svc_pool->sp_lock protects most of the fields of that pool.
40 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
41 * when both need to be taken (rare), svc_serv->sv_lock is first.
42 * BKL protects svc_serv->sv_nrthread.
43 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
44 * and the ->sk_info_authunix cache.
46 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
47 * enqueued multiply. During normal transport processing this bit
48 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
49 * Providers should not manipulate this bit directly.
51 * Some flags can be set to certain values at any time
52 * providing that certain rules are followed:
54 * XPT_CONN, XPT_DATA:
55 * - Can be set or cleared at any time.
56 * - After a set, svc_xprt_enqueue must be called to enqueue
57 * the transport for processing.
58 * - After a clear, the transport must be read/accepted.
59 * If this succeeds, it must be set again.
60 * XPT_CLOSE:
61 * - Can set at any time. It is never cleared.
62 * XPT_DEAD:
63 * - Can only be set while XPT_BUSY is held which ensures
64 * that no other thread will be using the transport or will
65 * try to set XPT_DEAD.
68 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
70 struct svc_xprt_class *cl;
71 int res = -EEXIST;
73 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
75 INIT_LIST_HEAD(&xcl->xcl_list);
76 spin_lock(&svc_xprt_class_lock);
77 /* Make sure there isn't already a class with the same name */
78 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
79 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
80 goto out;
82 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
83 res = 0;
84 out:
85 spin_unlock(&svc_xprt_class_lock);
86 return res;
88 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
90 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
92 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
93 spin_lock(&svc_xprt_class_lock);
94 list_del_init(&xcl->xcl_list);
95 spin_unlock(&svc_xprt_class_lock);
97 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
100 * Format the transport list for printing
102 int svc_print_xprts(char *buf, int maxlen)
104 struct list_head *le;
105 char tmpstr[80];
106 int len = 0;
107 buf[0] = '\0';
109 spin_lock(&svc_xprt_class_lock);
110 list_for_each(le, &svc_xprt_class_list) {
111 int slen;
112 struct svc_xprt_class *xcl =
113 list_entry(le, struct svc_xprt_class, xcl_list);
115 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
116 slen = strlen(tmpstr);
117 if (len + slen > maxlen)
118 break;
119 len += slen;
120 strcat(buf, tmpstr);
122 spin_unlock(&svc_xprt_class_lock);
124 return len;
127 static void svc_xprt_free(struct kref *kref)
129 struct svc_xprt *xprt =
130 container_of(kref, struct svc_xprt, xpt_ref);
131 struct module *owner = xprt->xpt_class->xcl_owner;
132 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)
133 && xprt->xpt_auth_cache != NULL)
134 svcauth_unix_info_release(xprt->xpt_auth_cache);
135 xprt->xpt_ops->xpo_free(xprt);
136 module_put(owner);
139 void svc_xprt_put(struct svc_xprt *xprt)
141 kref_put(&xprt->xpt_ref, svc_xprt_free);
143 EXPORT_SYMBOL_GPL(svc_xprt_put);
146 * Called by transport drivers to initialize the transport independent
147 * portion of the transport instance.
149 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
150 struct svc_serv *serv)
152 memset(xprt, 0, sizeof(*xprt));
153 xprt->xpt_class = xcl;
154 xprt->xpt_ops = xcl->xcl_ops;
155 kref_init(&xprt->xpt_ref);
156 xprt->xpt_server = serv;
157 INIT_LIST_HEAD(&xprt->xpt_list);
158 INIT_LIST_HEAD(&xprt->xpt_ready);
159 INIT_LIST_HEAD(&xprt->xpt_deferred);
160 mutex_init(&xprt->xpt_mutex);
161 spin_lock_init(&xprt->xpt_lock);
162 set_bit(XPT_BUSY, &xprt->xpt_flags);
163 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
165 EXPORT_SYMBOL_GPL(svc_xprt_init);
167 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
168 struct svc_serv *serv,
169 const int family,
170 const unsigned short port,
171 int flags)
173 struct sockaddr_in sin = {
174 .sin_family = AF_INET,
175 .sin_addr.s_addr = htonl(INADDR_ANY),
176 .sin_port = htons(port),
178 struct sockaddr_in6 sin6 = {
179 .sin6_family = AF_INET6,
180 .sin6_addr = IN6ADDR_ANY_INIT,
181 .sin6_port = htons(port),
183 struct sockaddr *sap;
184 size_t len;
186 switch (family) {
187 case PF_INET:
188 sap = (struct sockaddr *)&sin;
189 len = sizeof(sin);
190 break;
191 case PF_INET6:
192 sap = (struct sockaddr *)&sin6;
193 len = sizeof(sin6);
194 break;
195 default:
196 return ERR_PTR(-EAFNOSUPPORT);
199 return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
202 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
203 const int family, const unsigned short port,
204 int flags)
206 struct svc_xprt_class *xcl;
208 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
209 spin_lock(&svc_xprt_class_lock);
210 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
211 struct svc_xprt *newxprt;
212 unsigned short newport;
214 if (strcmp(xprt_name, xcl->xcl_name))
215 continue;
217 if (!try_module_get(xcl->xcl_owner))
218 goto err;
220 spin_unlock(&svc_xprt_class_lock);
221 newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
222 if (IS_ERR(newxprt)) {
223 module_put(xcl->xcl_owner);
224 return PTR_ERR(newxprt);
227 clear_bit(XPT_TEMP, &newxprt->xpt_flags);
228 spin_lock_bh(&serv->sv_lock);
229 list_add(&newxprt->xpt_list, &serv->sv_permsocks);
230 spin_unlock_bh(&serv->sv_lock);
231 newport = svc_xprt_local_port(newxprt);
232 clear_bit(XPT_BUSY, &newxprt->xpt_flags);
233 return newport;
235 err:
236 spin_unlock(&svc_xprt_class_lock);
237 dprintk("svc: transport %s not found\n", xprt_name);
238 return -ENOENT;
240 EXPORT_SYMBOL_GPL(svc_create_xprt);
243 * Copy the local and remote xprt addresses to the rqstp structure
245 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
247 struct sockaddr *sin;
249 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
250 rqstp->rq_addrlen = xprt->xpt_remotelen;
253 * Destination address in request is needed for binding the
254 * source address in RPC replies/callbacks later.
256 sin = (struct sockaddr *)&xprt->xpt_local;
257 switch (sin->sa_family) {
258 case AF_INET:
259 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
260 break;
261 case AF_INET6:
262 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
263 break;
266 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
269 * svc_print_addr - Format rq_addr field for printing
270 * @rqstp: svc_rqst struct containing address to print
271 * @buf: target buffer for formatted address
272 * @len: length of target buffer
275 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
277 return __svc_print_addr(svc_addr(rqstp), buf, len);
279 EXPORT_SYMBOL_GPL(svc_print_addr);
282 * Queue up an idle server thread. Must have pool->sp_lock held.
283 * Note: this is really a stack rather than a queue, so that we only
284 * use as many different threads as we need, and the rest don't pollute
285 * the cache.
287 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
289 list_add(&rqstp->rq_list, &pool->sp_threads);
293 * Dequeue an nfsd thread. Must have pool->sp_lock held.
295 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
297 list_del(&rqstp->rq_list);
301 * Queue up a transport with data pending. If there are idle nfsd
302 * processes, wake 'em up.
305 void svc_xprt_enqueue(struct svc_xprt *xprt)
307 struct svc_pool *pool;
308 struct svc_rqst *rqstp;
309 int cpu;
310 int thread_avail;
312 if (!(xprt->xpt_flags &
313 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
314 return;
316 cpu = get_cpu();
317 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
318 put_cpu();
320 spin_lock_bh(&pool->sp_lock);
322 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
323 /* Don't enqueue dead transports */
324 dprintk("svc: transport %p is dead, not enqueued\n", xprt);
325 goto out_unlock;
328 pool->sp_stats.packets++;
330 /* Mark transport as busy. It will remain in this state until
331 * the provider calls svc_xprt_received. We update XPT_BUSY
332 * atomically because it also guards against trying to enqueue
333 * the transport twice.
335 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
336 /* Don't enqueue transport while already enqueued */
337 dprintk("svc: transport %p busy, not enqueued\n", xprt);
338 goto out_unlock;
340 BUG_ON(xprt->xpt_pool != NULL);
341 xprt->xpt_pool = pool;
343 /* Handle pending connection */
344 if (test_bit(XPT_CONN, &xprt->xpt_flags))
345 goto process;
347 /* Handle close in-progress */
348 if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
349 goto process;
351 /* Check if we have space to reply to a request */
352 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
353 /* Don't enqueue while not enough space for reply */
354 dprintk("svc: no write space, transport %p not enqueued\n",
355 xprt);
356 xprt->xpt_pool = NULL;
357 clear_bit(XPT_BUSY, &xprt->xpt_flags);
358 goto out_unlock;
361 process:
362 /* Work out whether threads are available */
363 thread_avail = !list_empty(&pool->sp_threads); /* threads are asleep */
364 if (pool->sp_nwaking >= SVC_MAX_WAKING) {
365 /* too many threads are runnable and trying to wake up */
366 thread_avail = 0;
367 pool->sp_stats.overloads_avoided++;
370 if (thread_avail) {
371 rqstp = list_entry(pool->sp_threads.next,
372 struct svc_rqst,
373 rq_list);
374 dprintk("svc: transport %p served by daemon %p\n",
375 xprt, rqstp);
376 svc_thread_dequeue(pool, rqstp);
377 if (rqstp->rq_xprt)
378 printk(KERN_ERR
379 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
380 rqstp, rqstp->rq_xprt);
381 rqstp->rq_xprt = xprt;
382 svc_xprt_get(xprt);
383 rqstp->rq_waking = 1;
384 pool->sp_nwaking++;
385 pool->sp_stats.threads_woken++;
386 BUG_ON(xprt->xpt_pool != pool);
387 wake_up(&rqstp->rq_wait);
388 } else {
389 dprintk("svc: transport %p put into queue\n", xprt);
390 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
391 pool->sp_stats.sockets_queued++;
392 BUG_ON(xprt->xpt_pool != pool);
395 out_unlock:
396 spin_unlock_bh(&pool->sp_lock);
398 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
401 * Dequeue the first transport. Must be called with the pool->sp_lock held.
403 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
405 struct svc_xprt *xprt;
407 if (list_empty(&pool->sp_sockets))
408 return NULL;
410 xprt = list_entry(pool->sp_sockets.next,
411 struct svc_xprt, xpt_ready);
412 list_del_init(&xprt->xpt_ready);
414 dprintk("svc: transport %p dequeued, inuse=%d\n",
415 xprt, atomic_read(&xprt->xpt_ref.refcount));
417 return xprt;
421 * svc_xprt_received conditionally queues the transport for processing
422 * by another thread. The caller must hold the XPT_BUSY bit and must
423 * not thereafter touch transport data.
425 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
426 * insufficient) data.
428 void svc_xprt_received(struct svc_xprt *xprt)
430 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
431 xprt->xpt_pool = NULL;
432 /* As soon as we clear busy, the xprt could be closed and
433 * 'put', so we need a reference to call svc_xprt_enqueue with:
435 svc_xprt_get(xprt);
436 clear_bit(XPT_BUSY, &xprt->xpt_flags);
437 svc_xprt_enqueue(xprt);
438 svc_xprt_put(xprt);
440 EXPORT_SYMBOL_GPL(svc_xprt_received);
443 * svc_reserve - change the space reserved for the reply to a request.
444 * @rqstp: The request in question
445 * @space: new max space to reserve
447 * Each request reserves some space on the output queue of the transport
448 * to make sure the reply fits. This function reduces that reserved
449 * space to be the amount of space used already, plus @space.
452 void svc_reserve(struct svc_rqst *rqstp, int space)
454 space += rqstp->rq_res.head[0].iov_len;
456 if (space < rqstp->rq_reserved) {
457 struct svc_xprt *xprt = rqstp->rq_xprt;
458 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
459 rqstp->rq_reserved = space;
461 svc_xprt_enqueue(xprt);
464 EXPORT_SYMBOL_GPL(svc_reserve);
466 static void svc_xprt_release(struct svc_rqst *rqstp)
468 struct svc_xprt *xprt = rqstp->rq_xprt;
470 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
472 kfree(rqstp->rq_deferred);
473 rqstp->rq_deferred = NULL;
475 svc_free_res_pages(rqstp);
476 rqstp->rq_res.page_len = 0;
477 rqstp->rq_res.page_base = 0;
479 /* Reset response buffer and release
480 * the reservation.
481 * But first, check that enough space was reserved
482 * for the reply, otherwise we have a bug!
484 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
485 printk(KERN_ERR "RPC request reserved %d but used %d\n",
486 rqstp->rq_reserved,
487 rqstp->rq_res.len);
489 rqstp->rq_res.head[0].iov_len = 0;
490 svc_reserve(rqstp, 0);
491 rqstp->rq_xprt = NULL;
493 svc_xprt_put(xprt);
497 * External function to wake up a server waiting for data
498 * This really only makes sense for services like lockd
499 * which have exactly one thread anyway.
501 void svc_wake_up(struct svc_serv *serv)
503 struct svc_rqst *rqstp;
504 unsigned int i;
505 struct svc_pool *pool;
507 for (i = 0; i < serv->sv_nrpools; i++) {
508 pool = &serv->sv_pools[i];
510 spin_lock_bh(&pool->sp_lock);
511 if (!list_empty(&pool->sp_threads)) {
512 rqstp = list_entry(pool->sp_threads.next,
513 struct svc_rqst,
514 rq_list);
515 dprintk("svc: daemon %p woken up.\n", rqstp);
517 svc_thread_dequeue(pool, rqstp);
518 rqstp->rq_xprt = NULL;
520 wake_up(&rqstp->rq_wait);
522 spin_unlock_bh(&pool->sp_lock);
525 EXPORT_SYMBOL_GPL(svc_wake_up);
527 int svc_port_is_privileged(struct sockaddr *sin)
529 switch (sin->sa_family) {
530 case AF_INET:
531 return ntohs(((struct sockaddr_in *)sin)->sin_port)
532 < PROT_SOCK;
533 case AF_INET6:
534 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
535 < PROT_SOCK;
536 default:
537 return 0;
542 * Make sure that we don't have too many active connections. If we have,
543 * something must be dropped. It's not clear what will happen if we allow
544 * "too many" connections, but when dealing with network-facing software,
545 * we have to code defensively. Here we do that by imposing hard limits.
547 * There's no point in trying to do random drop here for DoS
548 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
549 * attacker can easily beat that.
551 * The only somewhat efficient mechanism would be if drop old
552 * connections from the same IP first. But right now we don't even
553 * record the client IP in svc_sock.
555 * single-threaded services that expect a lot of clients will probably
556 * need to set sv_maxconn to override the default value which is based
557 * on the number of threads
559 static void svc_check_conn_limits(struct svc_serv *serv)
561 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
562 (serv->sv_nrthreads+3) * 20;
564 if (serv->sv_tmpcnt > limit) {
565 struct svc_xprt *xprt = NULL;
566 spin_lock_bh(&serv->sv_lock);
567 if (!list_empty(&serv->sv_tempsocks)) {
568 if (net_ratelimit()) {
569 /* Try to help the admin */
570 printk(KERN_NOTICE "%s: too many open "
571 "connections, consider increasing %s\n",
572 serv->sv_name, serv->sv_maxconn ?
573 "the max number of connections." :
574 "the number of threads.");
577 * Always select the oldest connection. It's not fair,
578 * but so is life
580 xprt = list_entry(serv->sv_tempsocks.prev,
581 struct svc_xprt,
582 xpt_list);
583 set_bit(XPT_CLOSE, &xprt->xpt_flags);
584 svc_xprt_get(xprt);
586 spin_unlock_bh(&serv->sv_lock);
588 if (xprt) {
589 svc_xprt_enqueue(xprt);
590 svc_xprt_put(xprt);
596 * Receive the next request on any transport. This code is carefully
597 * organised not to touch any cachelines in the shared svc_serv
598 * structure, only cachelines in the local svc_pool.
600 int svc_recv(struct svc_rqst *rqstp, long timeout)
602 struct svc_xprt *xprt = NULL;
603 struct svc_serv *serv = rqstp->rq_server;
604 struct svc_pool *pool = rqstp->rq_pool;
605 int len, i;
606 int pages;
607 struct xdr_buf *arg;
608 DECLARE_WAITQUEUE(wait, current);
609 long time_left;
611 dprintk("svc: server %p waiting for data (to = %ld)\n",
612 rqstp, timeout);
614 if (rqstp->rq_xprt)
615 printk(KERN_ERR
616 "svc_recv: service %p, transport not NULL!\n",
617 rqstp);
618 if (waitqueue_active(&rqstp->rq_wait))
619 printk(KERN_ERR
620 "svc_recv: service %p, wait queue active!\n",
621 rqstp);
623 /* now allocate needed pages. If we get a failure, sleep briefly */
624 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
625 for (i = 0; i < pages ; i++)
626 while (rqstp->rq_pages[i] == NULL) {
627 struct page *p = alloc_page(GFP_KERNEL);
628 if (!p) {
629 set_current_state(TASK_INTERRUPTIBLE);
630 if (signalled() || kthread_should_stop()) {
631 set_current_state(TASK_RUNNING);
632 return -EINTR;
634 schedule_timeout(msecs_to_jiffies(500));
636 rqstp->rq_pages[i] = p;
638 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
639 BUG_ON(pages >= RPCSVC_MAXPAGES);
641 /* Make arg->head point to first page and arg->pages point to rest */
642 arg = &rqstp->rq_arg;
643 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
644 arg->head[0].iov_len = PAGE_SIZE;
645 arg->pages = rqstp->rq_pages + 1;
646 arg->page_base = 0;
647 /* save at least one page for response */
648 arg->page_len = (pages-2)*PAGE_SIZE;
649 arg->len = (pages-1)*PAGE_SIZE;
650 arg->tail[0].iov_len = 0;
652 try_to_freeze();
653 cond_resched();
654 if (signalled() || kthread_should_stop())
655 return -EINTR;
657 spin_lock_bh(&pool->sp_lock);
658 if (rqstp->rq_waking) {
659 rqstp->rq_waking = 0;
660 pool->sp_nwaking--;
661 BUG_ON(pool->sp_nwaking < 0);
663 xprt = svc_xprt_dequeue(pool);
664 if (xprt) {
665 rqstp->rq_xprt = xprt;
666 svc_xprt_get(xprt);
667 } else {
668 /* No data pending. Go to sleep */
669 svc_thread_enqueue(pool, rqstp);
672 * We have to be able to interrupt this wait
673 * to bring down the daemons ...
675 set_current_state(TASK_INTERRUPTIBLE);
678 * checking kthread_should_stop() here allows us to avoid
679 * locking and signalling when stopping kthreads that call
680 * svc_recv. If the thread has already been woken up, then
681 * we can exit here without sleeping. If not, then it
682 * it'll be woken up quickly during the schedule_timeout
684 if (kthread_should_stop()) {
685 set_current_state(TASK_RUNNING);
686 spin_unlock_bh(&pool->sp_lock);
687 return -EINTR;
690 add_wait_queue(&rqstp->rq_wait, &wait);
691 spin_unlock_bh(&pool->sp_lock);
693 time_left = schedule_timeout(timeout);
695 try_to_freeze();
697 spin_lock_bh(&pool->sp_lock);
698 remove_wait_queue(&rqstp->rq_wait, &wait);
699 if (!time_left)
700 pool->sp_stats.threads_timedout++;
702 xprt = rqstp->rq_xprt;
703 if (!xprt) {
704 svc_thread_dequeue(pool, rqstp);
705 spin_unlock_bh(&pool->sp_lock);
706 dprintk("svc: server %p, no data yet\n", rqstp);
707 if (signalled() || kthread_should_stop())
708 return -EINTR;
709 else
710 return -EAGAIN;
713 spin_unlock_bh(&pool->sp_lock);
715 len = 0;
716 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
717 dprintk("svc_recv: found XPT_CLOSE\n");
718 svc_delete_xprt(xprt);
719 } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
720 struct svc_xprt *newxpt;
721 newxpt = xprt->xpt_ops->xpo_accept(xprt);
722 if (newxpt) {
724 * We know this module_get will succeed because the
725 * listener holds a reference too
727 __module_get(newxpt->xpt_class->xcl_owner);
728 svc_check_conn_limits(xprt->xpt_server);
729 spin_lock_bh(&serv->sv_lock);
730 set_bit(XPT_TEMP, &newxpt->xpt_flags);
731 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
732 serv->sv_tmpcnt++;
733 if (serv->sv_temptimer.function == NULL) {
734 /* setup timer to age temp transports */
735 setup_timer(&serv->sv_temptimer,
736 svc_age_temp_xprts,
737 (unsigned long)serv);
738 mod_timer(&serv->sv_temptimer,
739 jiffies + svc_conn_age_period * HZ);
741 spin_unlock_bh(&serv->sv_lock);
742 svc_xprt_received(newxpt);
744 svc_xprt_received(xprt);
745 } else {
746 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
747 rqstp, pool->sp_id, xprt,
748 atomic_read(&xprt->xpt_ref.refcount));
749 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
750 if (rqstp->rq_deferred) {
751 svc_xprt_received(xprt);
752 len = svc_deferred_recv(rqstp);
753 } else
754 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
755 dprintk("svc: got len=%d\n", len);
756 rqstp->rq_reserved = serv->sv_max_mesg;
757 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
760 /* No data, incomplete (TCP) read, or accept() */
761 if (len == 0 || len == -EAGAIN) {
762 rqstp->rq_res.len = 0;
763 svc_xprt_release(rqstp);
764 return -EAGAIN;
766 clear_bit(XPT_OLD, &xprt->xpt_flags);
768 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
769 rqstp->rq_chandle.defer = svc_defer;
771 if (serv->sv_stats)
772 serv->sv_stats->netcnt++;
773 return len;
775 EXPORT_SYMBOL_GPL(svc_recv);
778 * Drop request
780 void svc_drop(struct svc_rqst *rqstp)
782 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
783 svc_xprt_release(rqstp);
785 EXPORT_SYMBOL_GPL(svc_drop);
788 * Return reply to client.
790 int svc_send(struct svc_rqst *rqstp)
792 struct svc_xprt *xprt;
793 int len;
794 struct xdr_buf *xb;
796 xprt = rqstp->rq_xprt;
797 if (!xprt)
798 return -EFAULT;
800 /* release the receive skb before sending the reply */
801 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
803 /* calculate over-all length */
804 xb = &rqstp->rq_res;
805 xb->len = xb->head[0].iov_len +
806 xb->page_len +
807 xb->tail[0].iov_len;
809 /* Grab mutex to serialize outgoing data. */
810 mutex_lock(&xprt->xpt_mutex);
811 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
812 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
813 len = -ENOTCONN;
814 else
815 len = xprt->xpt_ops->xpo_sendto(rqstp);
816 mutex_unlock(&xprt->xpt_mutex);
817 rpc_wake_up(&xprt->xpt_bc_pending);
818 svc_xprt_release(rqstp);
820 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
821 return 0;
822 return len;
826 * Timer function to close old temporary transports, using
827 * a mark-and-sweep algorithm.
829 static void svc_age_temp_xprts(unsigned long closure)
831 struct svc_serv *serv = (struct svc_serv *)closure;
832 struct svc_xprt *xprt;
833 struct list_head *le, *next;
834 LIST_HEAD(to_be_aged);
836 dprintk("svc_age_temp_xprts\n");
838 if (!spin_trylock_bh(&serv->sv_lock)) {
839 /* busy, try again 1 sec later */
840 dprintk("svc_age_temp_xprts: busy\n");
841 mod_timer(&serv->sv_temptimer, jiffies + HZ);
842 return;
845 list_for_each_safe(le, next, &serv->sv_tempsocks) {
846 xprt = list_entry(le, struct svc_xprt, xpt_list);
848 /* First time through, just mark it OLD. Second time
849 * through, close it. */
850 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
851 continue;
852 if (atomic_read(&xprt->xpt_ref.refcount) > 1
853 || test_bit(XPT_BUSY, &xprt->xpt_flags))
854 continue;
855 svc_xprt_get(xprt);
856 list_move(le, &to_be_aged);
857 set_bit(XPT_CLOSE, &xprt->xpt_flags);
858 set_bit(XPT_DETACHED, &xprt->xpt_flags);
860 spin_unlock_bh(&serv->sv_lock);
862 while (!list_empty(&to_be_aged)) {
863 le = to_be_aged.next;
864 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
865 list_del_init(le);
866 xprt = list_entry(le, struct svc_xprt, xpt_list);
868 dprintk("queuing xprt %p for closing\n", xprt);
870 /* a thread will dequeue and close it soon */
871 svc_xprt_enqueue(xprt);
872 svc_xprt_put(xprt);
875 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
879 * Remove a dead transport
881 void svc_delete_xprt(struct svc_xprt *xprt)
883 struct svc_serv *serv = xprt->xpt_server;
884 struct svc_deferred_req *dr;
886 /* Only do this once */
887 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
888 return;
890 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
891 xprt->xpt_ops->xpo_detach(xprt);
893 spin_lock_bh(&serv->sv_lock);
894 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
895 list_del_init(&xprt->xpt_list);
897 * The only time we're called while xpt_ready is still on a list
898 * is while the list itself is about to be destroyed (in
899 * svc_destroy). BUT svc_xprt_enqueue could still be attempting
900 * to add new entries to the sp_sockets list, so we can't leave
901 * a freed xprt on it.
903 list_del_init(&xprt->xpt_ready);
904 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
905 serv->sv_tmpcnt--;
907 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
908 kfree(dr);
910 svc_xprt_put(xprt);
911 spin_unlock_bh(&serv->sv_lock);
914 void svc_close_xprt(struct svc_xprt *xprt)
916 set_bit(XPT_CLOSE, &xprt->xpt_flags);
917 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
918 /* someone else will have to effect the close */
919 return;
921 svc_xprt_get(xprt);
922 svc_delete_xprt(xprt);
923 clear_bit(XPT_BUSY, &xprt->xpt_flags);
924 svc_xprt_put(xprt);
926 EXPORT_SYMBOL_GPL(svc_close_xprt);
928 static void svc_close_list(struct list_head *xprt_list)
930 struct svc_xprt *xprt;
931 struct svc_xprt *tmp;
933 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
934 set_bit(XPT_CLOSE, &xprt->xpt_flags);
935 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
936 /* Waiting to be processed, but no threads left,
937 * So just remove it from the waiting list
939 list_del_init(&xprt->xpt_ready);
940 clear_bit(XPT_BUSY, &xprt->xpt_flags);
942 svc_close_xprt(xprt);
946 void svc_close_all(struct svc_serv *serv)
948 svc_close_list(&serv->sv_tempsocks);
949 svc_close_list(&serv->sv_permsocks);
950 BUG_ON(!list_empty(&serv->sv_permsocks));
951 BUG_ON(!list_empty(&serv->sv_tempsocks));
956 * Handle defer and revisit of requests
959 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
961 struct svc_deferred_req *dr =
962 container_of(dreq, struct svc_deferred_req, handle);
963 struct svc_xprt *xprt = dr->xprt;
965 spin_lock(&xprt->xpt_lock);
966 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
967 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
968 spin_unlock(&xprt->xpt_lock);
969 dprintk("revisit canceled\n");
970 svc_xprt_put(xprt);
971 kfree(dr);
972 return;
974 dprintk("revisit queued\n");
975 dr->xprt = NULL;
976 list_add(&dr->handle.recent, &xprt->xpt_deferred);
977 spin_unlock(&xprt->xpt_lock);
978 svc_xprt_enqueue(xprt);
979 svc_xprt_put(xprt);
983 * Save the request off for later processing. The request buffer looks
984 * like this:
986 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
988 * This code can only handle requests that consist of an xprt-header
989 * and rpc-header.
991 static struct cache_deferred_req *svc_defer(struct cache_req *req)
993 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
994 struct svc_deferred_req *dr;
996 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
997 return NULL; /* if more than a page, give up FIXME */
998 if (rqstp->rq_deferred) {
999 dr = rqstp->rq_deferred;
1000 rqstp->rq_deferred = NULL;
1001 } else {
1002 size_t skip;
1003 size_t size;
1004 /* FIXME maybe discard if size too large */
1005 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1006 dr = kmalloc(size, GFP_KERNEL);
1007 if (dr == NULL)
1008 return NULL;
1010 dr->handle.owner = rqstp->rq_server;
1011 dr->prot = rqstp->rq_prot;
1012 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1013 dr->addrlen = rqstp->rq_addrlen;
1014 dr->daddr = rqstp->rq_daddr;
1015 dr->argslen = rqstp->rq_arg.len >> 2;
1016 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1018 /* back up head to the start of the buffer and copy */
1019 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1020 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1021 dr->argslen << 2);
1023 svc_xprt_get(rqstp->rq_xprt);
1024 dr->xprt = rqstp->rq_xprt;
1026 dr->handle.revisit = svc_revisit;
1027 return &dr->handle;
1031 * recv data from a deferred request into an active one
1033 static int svc_deferred_recv(struct svc_rqst *rqstp)
1035 struct svc_deferred_req *dr = rqstp->rq_deferred;
1037 /* setup iov_base past transport header */
1038 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1039 /* The iov_len does not include the transport header bytes */
1040 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1041 rqstp->rq_arg.page_len = 0;
1042 /* The rq_arg.len includes the transport header bytes */
1043 rqstp->rq_arg.len = dr->argslen<<2;
1044 rqstp->rq_prot = dr->prot;
1045 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1046 rqstp->rq_addrlen = dr->addrlen;
1047 /* Save off transport header len in case we get deferred again */
1048 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1049 rqstp->rq_daddr = dr->daddr;
1050 rqstp->rq_respages = rqstp->rq_pages;
1051 return (dr->argslen<<2) - dr->xprt_hlen;
1055 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1057 struct svc_deferred_req *dr = NULL;
1059 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1060 return NULL;
1061 spin_lock(&xprt->xpt_lock);
1062 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1063 if (!list_empty(&xprt->xpt_deferred)) {
1064 dr = list_entry(xprt->xpt_deferred.next,
1065 struct svc_deferred_req,
1066 handle.recent);
1067 list_del_init(&dr->handle.recent);
1068 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1070 spin_unlock(&xprt->xpt_lock);
1071 return dr;
1075 * svc_find_xprt - find an RPC transport instance
1076 * @serv: pointer to svc_serv to search
1077 * @xcl_name: C string containing transport's class name
1078 * @af: Address family of transport's local address
1079 * @port: transport's IP port number
1081 * Return the transport instance pointer for the endpoint accepting
1082 * connections/peer traffic from the specified transport class,
1083 * address family and port.
1085 * Specifying 0 for the address family or port is effectively a
1086 * wild-card, and will result in matching the first transport in the
1087 * service's list that has a matching class name.
1089 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1090 const sa_family_t af, const unsigned short port)
1092 struct svc_xprt *xprt;
1093 struct svc_xprt *found = NULL;
1095 /* Sanity check the args */
1096 if (serv == NULL || xcl_name == NULL)
1097 return found;
1099 spin_lock_bh(&serv->sv_lock);
1100 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1101 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1102 continue;
1103 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1104 continue;
1105 if (port != 0 && port != svc_xprt_local_port(xprt))
1106 continue;
1107 found = xprt;
1108 svc_xprt_get(xprt);
1109 break;
1111 spin_unlock_bh(&serv->sv_lock);
1112 return found;
1114 EXPORT_SYMBOL_GPL(svc_find_xprt);
1116 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1117 char *pos, int remaining)
1119 int len;
1121 len = snprintf(pos, remaining, "%s %u\n",
1122 xprt->xpt_class->xcl_name,
1123 svc_xprt_local_port(xprt));
1124 if (len >= remaining)
1125 return -ENAMETOOLONG;
1126 return len;
1130 * svc_xprt_names - format a buffer with a list of transport names
1131 * @serv: pointer to an RPC service
1132 * @buf: pointer to a buffer to be filled in
1133 * @buflen: length of buffer to be filled in
1135 * Fills in @buf with a string containing a list of transport names,
1136 * each name terminated with '\n'.
1138 * Returns positive length of the filled-in string on success; otherwise
1139 * a negative errno value is returned if an error occurs.
1141 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1143 struct svc_xprt *xprt;
1144 int len, totlen;
1145 char *pos;
1147 /* Sanity check args */
1148 if (!serv)
1149 return 0;
1151 spin_lock_bh(&serv->sv_lock);
1153 pos = buf;
1154 totlen = 0;
1155 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1156 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1157 if (len < 0) {
1158 *buf = '\0';
1159 totlen = len;
1161 if (len <= 0)
1162 break;
1164 pos += len;
1165 totlen += len;
1168 spin_unlock_bh(&serv->sv_lock);
1169 return totlen;
1171 EXPORT_SYMBOL_GPL(svc_xprt_names);
1174 /*----------------------------------------------------------------------------*/
1176 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1178 unsigned int pidx = (unsigned int)*pos;
1179 struct svc_serv *serv = m->private;
1181 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1183 if (!pidx)
1184 return SEQ_START_TOKEN;
1185 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1188 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1190 struct svc_pool *pool = p;
1191 struct svc_serv *serv = m->private;
1193 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1195 if (p == SEQ_START_TOKEN) {
1196 pool = &serv->sv_pools[0];
1197 } else {
1198 unsigned int pidx = (pool - &serv->sv_pools[0]);
1199 if (pidx < serv->sv_nrpools-1)
1200 pool = &serv->sv_pools[pidx+1];
1201 else
1202 pool = NULL;
1204 ++*pos;
1205 return pool;
1208 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1212 static int svc_pool_stats_show(struct seq_file *m, void *p)
1214 struct svc_pool *pool = p;
1216 if (p == SEQ_START_TOKEN) {
1217 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken overloads-avoided threads-timedout\n");
1218 return 0;
1221 seq_printf(m, "%u %lu %lu %lu %lu %lu\n",
1222 pool->sp_id,
1223 pool->sp_stats.packets,
1224 pool->sp_stats.sockets_queued,
1225 pool->sp_stats.threads_woken,
1226 pool->sp_stats.overloads_avoided,
1227 pool->sp_stats.threads_timedout);
1229 return 0;
1232 static const struct seq_operations svc_pool_stats_seq_ops = {
1233 .start = svc_pool_stats_start,
1234 .next = svc_pool_stats_next,
1235 .stop = svc_pool_stats_stop,
1236 .show = svc_pool_stats_show,
1239 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1241 int err;
1243 err = seq_open(file, &svc_pool_stats_seq_ops);
1244 if (!err)
1245 ((struct seq_file *) file->private_data)->private = serv;
1246 return err;
1248 EXPORT_SYMBOL(svc_pool_stats_open);
1250 /*----------------------------------------------------------------------------*/