1 /* Common capabilities, needed by capability.o and root_plug.o
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/personality.h>
33 * If a non-root user executes a setuid-root binary in
34 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
35 * However if fE is also set, then the intent is for only
36 * the file capabilities to be applied, and the setuid-root
37 * bit is left on either to change the uid (plausible) or
38 * to get full privilege on a kernel without file capabilities
39 * support. So in that case we do not raise capabilities.
41 * Warn if that happens, once per boot.
43 static void warn_setuid_and_fcaps_mixed(char *fname
)
47 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
48 " effective capabilities. Therefore not raising all"
49 " capabilities.\n", fname
);
54 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
56 NETLINK_CB(skb
).eff_cap
= current_cap();
60 int cap_netlink_recv(struct sk_buff
*skb
, int cap
)
62 if (!cap_raised(NETLINK_CB(skb
).eff_cap
, cap
))
66 EXPORT_SYMBOL(cap_netlink_recv
);
69 * cap_capable - Determine whether a task has a particular effective capability
70 * @tsk: The task to query
71 * @cred: The credentials to use
72 * @cap: The capability to check for
73 * @audit: Whether to write an audit message or not
75 * Determine whether the nominated task has the specified capability amongst
76 * its effective set, returning 0 if it does, -ve if it does not.
78 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
79 * and has_capability() functions. That is, it has the reverse semantics:
80 * cap_has_capability() returns 0 when a task has a capability, but the
81 * kernel's capable() and has_capability() returns 1 for this case.
83 int cap_capable(struct task_struct
*tsk
, const struct cred
*cred
, int cap
,
86 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
90 * cap_settime - Determine whether the current process may set the system clock
91 * @ts: The time to set
92 * @tz: The timezone to set
94 * Determine whether the current process may set the system clock and timezone
95 * information, returning 0 if permission granted, -ve if denied.
97 int cap_settime(struct timespec
*ts
, struct timezone
*tz
)
99 if (!capable(CAP_SYS_TIME
))
105 * cap_ptrace_access_check - Determine whether the current process may access
107 * @child: The process to be accessed
108 * @mode: The mode of attachment.
110 * Determine whether a process may access another, returning 0 if permission
111 * granted, -ve if denied.
113 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
118 if (!cap_issubset(__task_cred(child
)->cap_permitted
,
119 current_cred()->cap_permitted
) &&
120 !capable(CAP_SYS_PTRACE
))
127 * cap_ptrace_traceme - Determine whether another process may trace the current
128 * @parent: The task proposed to be the tracer
130 * Determine whether the nominated task is permitted to trace the current
131 * process, returning 0 if permission is granted, -ve if denied.
133 int cap_ptrace_traceme(struct task_struct
*parent
)
138 if (!cap_issubset(current_cred()->cap_permitted
,
139 __task_cred(parent
)->cap_permitted
) &&
140 !has_capability(parent
, CAP_SYS_PTRACE
))
147 * cap_capget - Retrieve a task's capability sets
148 * @target: The task from which to retrieve the capability sets
149 * @effective: The place to record the effective set
150 * @inheritable: The place to record the inheritable set
151 * @permitted: The place to record the permitted set
153 * This function retrieves the capabilities of the nominated task and returns
154 * them to the caller.
156 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
157 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
159 const struct cred
*cred
;
161 /* Derived from kernel/capability.c:sys_capget. */
163 cred
= __task_cred(target
);
164 *effective
= cred
->cap_effective
;
165 *inheritable
= cred
->cap_inheritable
;
166 *permitted
= cred
->cap_permitted
;
172 * Determine whether the inheritable capabilities are limited to the old
173 * permitted set. Returns 1 if they are limited, 0 if they are not.
175 static inline int cap_inh_is_capped(void)
177 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
179 /* they are so limited unless the current task has the CAP_SETPCAP
182 if (cap_capable(current
, current_cred(), CAP_SETPCAP
,
183 SECURITY_CAP_AUDIT
) == 0)
190 * cap_capset - Validate and apply proposed changes to current's capabilities
191 * @new: The proposed new credentials; alterations should be made here
192 * @old: The current task's current credentials
193 * @effective: A pointer to the proposed new effective capabilities set
194 * @inheritable: A pointer to the proposed new inheritable capabilities set
195 * @permitted: A pointer to the proposed new permitted capabilities set
197 * This function validates and applies a proposed mass change to the current
198 * process's capability sets. The changes are made to the proposed new
199 * credentials, and assuming no error, will be committed by the caller of LSM.
201 int cap_capset(struct cred
*new,
202 const struct cred
*old
,
203 const kernel_cap_t
*effective
,
204 const kernel_cap_t
*inheritable
,
205 const kernel_cap_t
*permitted
)
207 if (cap_inh_is_capped() &&
208 !cap_issubset(*inheritable
,
209 cap_combine(old
->cap_inheritable
,
210 old
->cap_permitted
)))
211 /* incapable of using this inheritable set */
214 if (!cap_issubset(*inheritable
,
215 cap_combine(old
->cap_inheritable
,
217 /* no new pI capabilities outside bounding set */
220 /* verify restrictions on target's new Permitted set */
221 if (!cap_issubset(*permitted
, old
->cap_permitted
))
224 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
225 if (!cap_issubset(*effective
, *permitted
))
228 new->cap_effective
= *effective
;
229 new->cap_inheritable
= *inheritable
;
230 new->cap_permitted
= *permitted
;
235 * Clear proposed capability sets for execve().
237 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
239 cap_clear(bprm
->cred
->cap_permitted
);
240 bprm
->cap_effective
= false;
243 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
246 * cap_inode_need_killpriv - Determine if inode change affects privileges
247 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
249 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
250 * affects the security markings on that inode, and if it is, should
251 * inode_killpriv() be invoked or the change rejected?
253 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
254 * -ve to deny the change.
256 int cap_inode_need_killpriv(struct dentry
*dentry
)
258 struct inode
*inode
= dentry
->d_inode
;
261 if (!inode
->i_op
->getxattr
)
264 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
271 * cap_inode_killpriv - Erase the security markings on an inode
272 * @dentry: The inode/dentry to alter
274 * Erase the privilege-enhancing security markings on an inode.
276 * Returns 0 if successful, -ve on error.
278 int cap_inode_killpriv(struct dentry
*dentry
)
280 struct inode
*inode
= dentry
->d_inode
;
282 if (!inode
->i_op
->removexattr
)
285 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
289 * Calculate the new process capability sets from the capability sets attached
292 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
293 struct linux_binprm
*bprm
,
296 struct cred
*new = bprm
->cred
;
300 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
303 CAP_FOR_EACH_U32(i
) {
304 __u32 permitted
= caps
->permitted
.cap
[i
];
305 __u32 inheritable
= caps
->inheritable
.cap
[i
];
308 * pP' = (X & fP) | (pI & fI)
310 new->cap_permitted
.cap
[i
] =
311 (new->cap_bset
.cap
[i
] & permitted
) |
312 (new->cap_inheritable
.cap
[i
] & inheritable
);
314 if (permitted
& ~new->cap_permitted
.cap
[i
])
315 /* insufficient to execute correctly */
320 * For legacy apps, with no internal support for recognizing they
321 * do not have enough capabilities, we return an error if they are
322 * missing some "forced" (aka file-permitted) capabilities.
324 return *effective
? ret
: 0;
328 * Extract the on-exec-apply capability sets for an executable file.
330 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
332 struct inode
*inode
= dentry
->d_inode
;
336 struct vfs_cap_data caps
;
338 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
340 if (!inode
|| !inode
->i_op
->getxattr
)
343 size
= inode
->i_op
->getxattr((struct dentry
*)dentry
, XATTR_NAME_CAPS
, &caps
,
345 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
346 /* no data, that's ok */
351 if (size
< sizeof(magic_etc
))
354 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
356 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
357 case VFS_CAP_REVISION_1
:
358 if (size
!= XATTR_CAPS_SZ_1
)
360 tocopy
= VFS_CAP_U32_1
;
362 case VFS_CAP_REVISION_2
:
363 if (size
!= XATTR_CAPS_SZ_2
)
365 tocopy
= VFS_CAP_U32_2
;
371 CAP_FOR_EACH_U32(i
) {
374 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
375 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
382 * Attempt to get the on-exec apply capability sets for an executable file from
383 * its xattrs and, if present, apply them to the proposed credentials being
384 * constructed by execve().
386 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
)
388 struct dentry
*dentry
;
390 struct cpu_vfs_cap_data vcaps
;
392 bprm_clear_caps(bprm
);
394 if (!file_caps_enabled
)
397 if (bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
)
400 dentry
= dget(bprm
->file
->f_dentry
);
402 rc
= get_vfs_caps_from_disk(dentry
, &vcaps
);
405 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
406 __func__
, rc
, bprm
->filename
);
407 else if (rc
== -ENODATA
)
412 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
);
414 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
415 __func__
, rc
, bprm
->filename
);
420 bprm_clear_caps(bprm
);
426 int cap_inode_need_killpriv(struct dentry
*dentry
)
431 int cap_inode_killpriv(struct dentry
*dentry
)
436 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
438 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
442 static inline int get_file_caps(struct linux_binprm
*bprm
, bool *effective
)
444 bprm_clear_caps(bprm
);
450 * Determine whether a exec'ing process's new permitted capabilities should be
451 * limited to just what it already has.
453 * This prevents processes that are being ptraced from gaining access to
454 * CAP_SETPCAP, unless the process they're tracing already has it, and the
455 * binary they're executing has filecaps that elevate it.
457 * Returns 1 if they should be limited, 0 if they are not.
459 static inline int cap_limit_ptraced_target(void)
461 #ifndef CONFIG_SECURITY_FILE_CAPABILITIES
462 if (capable(CAP_SETPCAP
))
469 * cap_bprm_set_creds - Set up the proposed credentials for execve().
470 * @bprm: The execution parameters, including the proposed creds
472 * Set up the proposed credentials for a new execution context being
473 * constructed by execve(). The proposed creds in @bprm->cred is altered,
474 * which won't take effect immediately. Returns 0 if successful, -ve on error.
476 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
478 const struct cred
*old
= current_cred();
479 struct cred
*new = bprm
->cred
;
484 ret
= get_file_caps(bprm
, &effective
);
488 if (!issecure(SECURE_NOROOT
)) {
490 * If the legacy file capability is set, then don't set privs
491 * for a setuid root binary run by a non-root user. Do set it
492 * for a root user just to cause least surprise to an admin.
494 if (effective
&& new->uid
!= 0 && new->euid
== 0) {
495 warn_setuid_and_fcaps_mixed(bprm
->filename
);
499 * To support inheritance of root-permissions and suid-root
500 * executables under compatibility mode, we override the
501 * capability sets for the file.
503 * If only the real uid is 0, we do not set the effective bit.
505 if (new->euid
== 0 || new->uid
== 0) {
506 /* pP' = (cap_bset & ~0) | (pI & ~0) */
507 new->cap_permitted
= cap_combine(old
->cap_bset
,
508 old
->cap_inheritable
);
515 /* if we have fs caps, clear dangerous personality flags */
516 if (!cap_issubset(new->cap_permitted
, old
->cap_permitted
))
517 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
520 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
521 * credentials unless they have the appropriate permit
523 if ((new->euid
!= old
->uid
||
524 new->egid
!= old
->gid
||
525 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
526 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
527 /* downgrade; they get no more than they had, and maybe less */
528 if (!capable(CAP_SETUID
)) {
529 new->euid
= new->uid
;
530 new->egid
= new->gid
;
532 if (cap_limit_ptraced_target())
533 new->cap_permitted
= cap_intersect(new->cap_permitted
,
537 new->suid
= new->fsuid
= new->euid
;
538 new->sgid
= new->fsgid
= new->egid
;
540 /* For init, we want to retain the capabilities set in the initial
541 * task. Thus we skip the usual capability rules
543 if (!is_global_init(current
)) {
545 new->cap_effective
= new->cap_permitted
;
547 cap_clear(new->cap_effective
);
549 bprm
->cap_effective
= effective
;
552 * Audit candidate if current->cap_effective is set
554 * We do not bother to audit if 3 things are true:
555 * 1) cap_effective has all caps
557 * 3) root is supposed to have all caps (SECURE_NOROOT)
558 * Since this is just a normal root execing a process.
560 * Number 1 above might fail if you don't have a full bset, but I think
561 * that is interesting information to audit.
563 if (!cap_isclear(new->cap_effective
)) {
564 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
565 new->euid
!= 0 || new->uid
!= 0 ||
566 issecure(SECURE_NOROOT
)) {
567 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
573 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
578 * cap_bprm_secureexec - Determine whether a secure execution is required
579 * @bprm: The execution parameters
581 * Determine whether a secure execution is required, return 1 if it is, and 0
584 * The credentials have been committed by this point, and so are no longer
585 * available through @bprm->cred.
587 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
589 const struct cred
*cred
= current_cred();
591 if (cred
->uid
!= 0) {
592 if (bprm
->cap_effective
)
594 if (!cap_isclear(cred
->cap_permitted
))
598 return (cred
->euid
!= cred
->uid
||
599 cred
->egid
!= cred
->gid
);
603 * cap_inode_setxattr - Determine whether an xattr may be altered
604 * @dentry: The inode/dentry being altered
605 * @name: The name of the xattr to be changed
606 * @value: The value that the xattr will be changed to
607 * @size: The size of value
608 * @flags: The replacement flag
610 * Determine whether an xattr may be altered or set on an inode, returning 0 if
611 * permission is granted, -ve if denied.
613 * This is used to make sure security xattrs don't get updated or set by those
614 * who aren't privileged to do so.
616 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
617 const void *value
, size_t size
, int flags
)
619 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
620 if (!capable(CAP_SETFCAP
))
625 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
626 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
627 !capable(CAP_SYS_ADMIN
))
633 * cap_inode_removexattr - Determine whether an xattr may be removed
634 * @dentry: The inode/dentry being altered
635 * @name: The name of the xattr to be changed
637 * Determine whether an xattr may be removed from an inode, returning 0 if
638 * permission is granted, -ve if denied.
640 * This is used to make sure security xattrs don't get removed by those who
641 * aren't privileged to remove them.
643 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
645 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
646 if (!capable(CAP_SETFCAP
))
651 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
652 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
653 !capable(CAP_SYS_ADMIN
))
659 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
660 * a process after a call to setuid, setreuid, or setresuid.
662 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
663 * {r,e,s}uid != 0, the permitted and effective capabilities are
666 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
667 * capabilities of the process are cleared.
669 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
670 * capabilities are set to the permitted capabilities.
672 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
677 * cevans - New behaviour, Oct '99
678 * A process may, via prctl(), elect to keep its capabilities when it
679 * calls setuid() and switches away from uid==0. Both permitted and
680 * effective sets will be retained.
681 * Without this change, it was impossible for a daemon to drop only some
682 * of its privilege. The call to setuid(!=0) would drop all privileges!
683 * Keeping uid 0 is not an option because uid 0 owns too many vital
685 * Thanks to Olaf Kirch and Peter Benie for spotting this.
687 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
689 if ((old
->uid
== 0 || old
->euid
== 0 || old
->suid
== 0) &&
690 (new->uid
!= 0 && new->euid
!= 0 && new->suid
!= 0) &&
691 !issecure(SECURE_KEEP_CAPS
)) {
692 cap_clear(new->cap_permitted
);
693 cap_clear(new->cap_effective
);
695 if (old
->euid
== 0 && new->euid
!= 0)
696 cap_clear(new->cap_effective
);
697 if (old
->euid
!= 0 && new->euid
== 0)
698 new->cap_effective
= new->cap_permitted
;
702 * cap_task_fix_setuid - Fix up the results of setuid() call
703 * @new: The proposed credentials
704 * @old: The current task's current credentials
705 * @flags: Indications of what has changed
707 * Fix up the results of setuid() call before the credential changes are
708 * actually applied, returning 0 to grant the changes, -ve to deny them.
710 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
716 /* juggle the capabilities to follow [RES]UID changes unless
717 * otherwise suppressed */
718 if (!issecure(SECURE_NO_SETUID_FIXUP
))
719 cap_emulate_setxuid(new, old
);
723 /* juggle the capabilties to follow FSUID changes, unless
724 * otherwise suppressed
726 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
727 * if not, we might be a bit too harsh here.
729 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
730 if (old
->fsuid
== 0 && new->fsuid
!= 0)
732 cap_drop_fs_set(new->cap_effective
);
734 if (old
->fsuid
!= 0 && new->fsuid
== 0)
736 cap_raise_fs_set(new->cap_effective
,
748 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
750 * Rationale: code calling task_setscheduler, task_setioprio, and
751 * task_setnice, assumes that
752 * . if capable(cap_sys_nice), then those actions should be allowed
753 * . if not capable(cap_sys_nice), but acting on your own processes,
754 * then those actions should be allowed
755 * This is insufficient now since you can call code without suid, but
756 * yet with increased caps.
757 * So we check for increased caps on the target process.
759 static int cap_safe_nice(struct task_struct
*p
)
764 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
765 current_cred()->cap_permitted
);
768 if (!is_subset
&& !capable(CAP_SYS_NICE
))
774 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
775 * @p: The task to affect
776 * @policy: The policy to effect
777 * @lp: The parameters to the scheduling policy
779 * Detemine if the requested scheduler policy change is permitted for the
780 * specified task, returning 0 if permission is granted, -ve if denied.
782 int cap_task_setscheduler(struct task_struct
*p
, int policy
,
783 struct sched_param
*lp
)
785 return cap_safe_nice(p
);
789 * cap_task_ioprio - Detemine if I/O priority change is permitted
790 * @p: The task to affect
791 * @ioprio: The I/O priority to set
793 * Detemine if the requested I/O priority change is permitted for the specified
794 * task, returning 0 if permission is granted, -ve if denied.
796 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
798 return cap_safe_nice(p
);
802 * cap_task_ioprio - Detemine if task priority change is permitted
803 * @p: The task to affect
804 * @nice: The nice value to set
806 * Detemine if the requested task priority change is permitted for the
807 * specified task, returning 0 if permission is granted, -ve if denied.
809 int cap_task_setnice(struct task_struct
*p
, int nice
)
811 return cap_safe_nice(p
);
815 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
816 * the current task's bounding set. Returns 0 on success, -ve on error.
818 static long cap_prctl_drop(struct cred
*new, unsigned long cap
)
820 if (!capable(CAP_SETPCAP
))
825 cap_lower(new->cap_bset
, cap
);
830 int cap_task_setscheduler (struct task_struct
*p
, int policy
,
831 struct sched_param
*lp
)
835 int cap_task_setioprio (struct task_struct
*p
, int ioprio
)
839 int cap_task_setnice (struct task_struct
*p
, int nice
)
846 * cap_task_prctl - Implement process control functions for this security module
847 * @option: The process control function requested
848 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
850 * Allow process control functions (sys_prctl()) to alter capabilities; may
851 * also deny access to other functions not otherwise implemented here.
853 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
854 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
855 * modules will consider performing the function.
857 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
858 unsigned long arg4
, unsigned long arg5
)
863 new = prepare_creds();
868 case PR_CAPBSET_READ
:
870 if (!cap_valid(arg2
))
872 error
= !!cap_raised(new->cap_bset
, arg2
);
875 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
876 case PR_CAPBSET_DROP
:
877 error
= cap_prctl_drop(new, arg2
);
883 * The next four prctl's remain to assist with transitioning a
884 * system from legacy UID=0 based privilege (when filesystem
885 * capabilities are not in use) to a system using filesystem
886 * capabilities only - as the POSIX.1e draft intended.
890 * PR_SET_SECUREBITS =
891 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
892 * | issecure_mask(SECURE_NOROOT)
893 * | issecure_mask(SECURE_NOROOT_LOCKED)
894 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
895 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
897 * will ensure that the current process and all of its
898 * children will be locked into a pure
899 * capability-based-privilege environment.
901 case PR_SET_SECUREBITS
:
903 if ((((new->securebits
& SECURE_ALL_LOCKS
) >> 1)
904 & (new->securebits
^ arg2
)) /*[1]*/
905 || ((new->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
906 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
907 || (cap_capable(current
, current_cred(), CAP_SETPCAP
,
908 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
910 * [1] no changing of bits that are locked
911 * [2] no unlocking of locks
912 * [3] no setting of unsupported bits
913 * [4] doing anything requires privilege (go read about
914 * the "sendmail capabilities bug")
917 /* cannot change a locked bit */
919 new->securebits
= arg2
;
922 case PR_GET_SECUREBITS
:
923 error
= new->securebits
;
926 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
928 case PR_GET_KEEPCAPS
:
929 if (issecure(SECURE_KEEP_CAPS
))
933 case PR_SET_KEEPCAPS
:
935 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
938 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
941 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
943 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
947 /* No functionality available - continue with default */
952 /* Functionality provided */
954 return commit_creds(new);
963 * cap_syslog - Determine whether syslog function is permitted
964 * @type: Function requested
966 * Determine whether the current process is permitted to use a particular
967 * syslog function, returning 0 if permission is granted, -ve if not.
969 int cap_syslog(int type
)
971 if ((type
!= 3 && type
!= 10) && !capable(CAP_SYS_ADMIN
))
977 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
978 * @mm: The VM space in which the new mapping is to be made
979 * @pages: The size of the mapping
981 * Determine whether the allocation of a new virtual mapping by the current
982 * task is permitted, returning 0 if permission is granted, -ve if not.
984 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
986 int cap_sys_admin
= 0;
988 if (cap_capable(current
, current_cred(), CAP_SYS_ADMIN
,
989 SECURITY_CAP_NOAUDIT
) == 0)
991 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);
995 * cap_file_mmap - check if able to map given addr
1000 * @addr: address attempting to be mapped
1001 * @addr_only: unused
1003 * If the process is attempting to map memory below mmap_min_addr they need
1004 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1005 * capability security module. Returns 0 if this mapping should be allowed
1008 int cap_file_mmap(struct file
*file
, unsigned long reqprot
,
1009 unsigned long prot
, unsigned long flags
,
1010 unsigned long addr
, unsigned long addr_only
)
1014 if (addr
< dac_mmap_min_addr
) {
1015 ret
= cap_capable(current
, current_cred(), CAP_SYS_RAWIO
,
1016 SECURITY_CAP_AUDIT
);
1017 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1019 current
->flags
|= PF_SUPERPRIV
;