Try to be nice about not being nice, use #ifdef CONFIG_ARCH_MOXART in the following...
[linux-2.6.32.60-moxart.git] / block / blk-core.c
blobcffd73792633e1cbc1f4d2816cda53374de3a9ec
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
34 #include "blk.h"
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 static int __make_request(struct request_queue *q, struct bio *bio);
43 * For the allocated request tables
45 static struct kmem_cache *request_cachep;
48 * For queue allocation
50 struct kmem_cache *blk_requestq_cachep;
53 * Controlling structure to kblockd
55 static struct workqueue_struct *kblockd_workqueue;
57 static void drive_stat_acct(struct request *rq, int new_io)
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
63 if (!blk_do_io_stat(rq))
64 return;
66 cpu = part_stat_lock();
67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
69 if (!new_io)
70 part_stat_inc(cpu, part, merges[rw]);
71 else {
72 part_round_stats(cpu, part);
73 part_inc_in_flight(part, rw);
76 part_stat_unlock();
79 void blk_queue_congestion_threshold(struct request_queue *q)
81 int nr;
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
94 /**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
101 * Will return NULL if the request queue cannot be located.
103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
105 struct backing_dev_info *ret = NULL;
106 struct request_queue *q = bdev_get_queue(bdev);
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
112 EXPORT_SYMBOL(blk_get_backing_dev_info);
114 void blk_rq_init(struct request_queue *q, struct request *rq)
116 memset(rq, 0, sizeof(*rq));
118 INIT_LIST_HEAD(&rq->queuelist);
119 INIT_LIST_HEAD(&rq->timeout_list);
120 rq->cpu = -1;
121 rq->q = q;
122 rq->__sector = (sector_t) -1;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
125 rq->cmd = rq->__cmd;
126 rq->cmd_len = BLK_MAX_CDB;
127 rq->tag = -1;
128 rq->ref_count = 1;
129 rq->start_time = jiffies;
131 EXPORT_SYMBOL(blk_rq_init);
133 static void req_bio_endio(struct request *rq, struct bio *bio,
134 unsigned int nbytes, int error)
136 struct request_queue *q = rq->q;
138 if (&q->bar_rq != rq) {
139 if (error)
140 clear_bit(BIO_UPTODATE, &bio->bi_flags);
141 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
142 error = -EIO;
144 if (unlikely(nbytes > bio->bi_size)) {
145 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
146 __func__, nbytes, bio->bi_size);
147 nbytes = bio->bi_size;
150 if (unlikely(rq->cmd_flags & REQ_QUIET))
151 set_bit(BIO_QUIET, &bio->bi_flags);
153 bio->bi_size -= nbytes;
154 bio->bi_sector += (nbytes >> 9);
156 if (bio_integrity(bio))
157 bio_integrity_advance(bio, nbytes);
159 if (bio->bi_size == 0)
160 bio_endio(bio, error);
161 } else {
164 * Okay, this is the barrier request in progress, just
165 * record the error;
167 if (error && !q->orderr)
168 q->orderr = error;
172 void blk_dump_rq_flags(struct request *rq, char *msg)
174 int bit;
176 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
177 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
178 rq->cmd_flags);
180 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
181 (unsigned long long)blk_rq_pos(rq),
182 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
183 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
184 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
186 if (blk_pc_request(rq)) {
187 printk(KERN_INFO " cdb: ");
188 for (bit = 0; bit < BLK_MAX_CDB; bit++)
189 printk("%02x ", rq->cmd[bit]);
190 printk("\n");
193 EXPORT_SYMBOL(blk_dump_rq_flags);
196 * "plug" the device if there are no outstanding requests: this will
197 * force the transfer to start only after we have put all the requests
198 * on the list.
200 * This is called with interrupts off and no requests on the queue and
201 * with the queue lock held.
203 void blk_plug_device(struct request_queue *q)
205 WARN_ON(!irqs_disabled());
208 * don't plug a stopped queue, it must be paired with blk_start_queue()
209 * which will restart the queueing
211 if (blk_queue_stopped(q))
212 return;
214 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
215 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
216 trace_block_plug(q);
219 EXPORT_SYMBOL(blk_plug_device);
222 * blk_plug_device_unlocked - plug a device without queue lock held
223 * @q: The &struct request_queue to plug
225 * Description:
226 * Like @blk_plug_device(), but grabs the queue lock and disables
227 * interrupts.
229 void blk_plug_device_unlocked(struct request_queue *q)
231 unsigned long flags;
233 spin_lock_irqsave(q->queue_lock, flags);
234 blk_plug_device(q);
235 spin_unlock_irqrestore(q->queue_lock, flags);
237 EXPORT_SYMBOL(blk_plug_device_unlocked);
240 * remove the queue from the plugged list, if present. called with
241 * queue lock held and interrupts disabled.
243 int blk_remove_plug(struct request_queue *q)
245 WARN_ON(!irqs_disabled());
247 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
248 return 0;
250 del_timer(&q->unplug_timer);
251 return 1;
253 EXPORT_SYMBOL(blk_remove_plug);
256 * remove the plug and let it rip..
258 void __generic_unplug_device(struct request_queue *q)
260 if (unlikely(blk_queue_stopped(q)))
261 return;
262 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
263 return;
265 q->request_fn(q);
269 * generic_unplug_device - fire a request queue
270 * @q: The &struct request_queue in question
272 * Description:
273 * Linux uses plugging to build bigger requests queues before letting
274 * the device have at them. If a queue is plugged, the I/O scheduler
275 * is still adding and merging requests on the queue. Once the queue
276 * gets unplugged, the request_fn defined for the queue is invoked and
277 * transfers started.
279 void generic_unplug_device(struct request_queue *q)
281 if (blk_queue_plugged(q)) {
282 spin_lock_irq(q->queue_lock);
283 __generic_unplug_device(q);
284 spin_unlock_irq(q->queue_lock);
287 EXPORT_SYMBOL(generic_unplug_device);
289 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
290 struct page *page)
292 struct request_queue *q = bdi->unplug_io_data;
294 blk_unplug(q);
297 void blk_unplug_work(struct work_struct *work)
299 struct request_queue *q =
300 container_of(work, struct request_queue, unplug_work);
302 trace_block_unplug_io(q);
303 q->unplug_fn(q);
306 void blk_unplug_timeout(unsigned long data)
308 struct request_queue *q = (struct request_queue *)data;
310 trace_block_unplug_timer(q);
311 kblockd_schedule_work(q, &q->unplug_work);
313 EXPORT_SYMBOL(blk_put_queue);
315 void blk_unplug(struct request_queue *q)
318 * devices don't necessarily have an ->unplug_fn defined
320 if (q->unplug_fn) {
321 trace_block_unplug_io(q);
322 q->unplug_fn(q);
325 EXPORT_SYMBOL(blk_unplug);
328 * blk_start_queue - restart a previously stopped queue
329 * @q: The &struct request_queue in question
331 * Description:
332 * blk_start_queue() will clear the stop flag on the queue, and call
333 * the request_fn for the queue if it was in a stopped state when
334 * entered. Also see blk_stop_queue(). Queue lock must be held.
336 void blk_start_queue(struct request_queue *q)
338 WARN_ON(!irqs_disabled());
340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 __blk_run_queue(q);
343 EXPORT_SYMBOL(blk_start_queue);
346 * blk_stop_queue - stop a queue
347 * @q: The &struct request_queue in question
349 * Description:
350 * The Linux block layer assumes that a block driver will consume all
351 * entries on the request queue when the request_fn strategy is called.
352 * Often this will not happen, because of hardware limitations (queue
353 * depth settings). If a device driver gets a 'queue full' response,
354 * or if it simply chooses not to queue more I/O at one point, it can
355 * call this function to prevent the request_fn from being called until
356 * the driver has signalled it's ready to go again. This happens by calling
357 * blk_start_queue() to restart queue operations. Queue lock must be held.
359 void blk_stop_queue(struct request_queue *q)
361 blk_remove_plug(q);
362 queue_flag_set(QUEUE_FLAG_STOPPED, q);
364 EXPORT_SYMBOL(blk_stop_queue);
367 * blk_sync_queue - cancel any pending callbacks on a queue
368 * @q: the queue
370 * Description:
371 * The block layer may perform asynchronous callback activity
372 * on a queue, such as calling the unplug function after a timeout.
373 * A block device may call blk_sync_queue to ensure that any
374 * such activity is cancelled, thus allowing it to release resources
375 * that the callbacks might use. The caller must already have made sure
376 * that its ->make_request_fn will not re-add plugging prior to calling
377 * this function.
380 void blk_sync_queue(struct request_queue *q)
382 del_timer_sync(&q->unplug_timer);
383 del_timer_sync(&q->timeout);
384 cancel_work_sync(&q->unplug_work);
386 EXPORT_SYMBOL(blk_sync_queue);
389 * __blk_run_queue - run a single device queue
390 * @q: The queue to run
392 * Description:
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
397 void __blk_run_queue(struct request_queue *q)
399 blk_remove_plug(q);
401 if (unlikely(blk_queue_stopped(q)))
402 return;
404 if (elv_queue_empty(q))
405 return;
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 q->request_fn(q);
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 } else {
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
419 EXPORT_SYMBOL(__blk_run_queue);
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
425 * Description:
426 * Invoke request handling on this queue, if it has pending work to do.
427 * May be used to restart queueing when a request has completed.
429 void blk_run_queue(struct request_queue *q)
431 unsigned long flags;
433 spin_lock_irqsave(q->queue_lock, flags);
434 __blk_run_queue(q);
435 spin_unlock_irqrestore(q->queue_lock, flags);
437 EXPORT_SYMBOL(blk_run_queue);
439 void blk_put_queue(struct request_queue *q)
441 kobject_put(&q->kobj);
444 void blk_cleanup_queue(struct request_queue *q)
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
452 blk_sync_queue(q);
454 mutex_lock(&q->sysfs_lock);
455 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
456 mutex_unlock(&q->sysfs_lock);
458 if (q->elevator)
459 elevator_exit(q->elevator);
461 blk_put_queue(q);
463 EXPORT_SYMBOL(blk_cleanup_queue);
465 static int blk_init_free_list(struct request_queue *q)
467 struct request_list *rl = &q->rq;
469 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
470 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
471 rl->elvpriv = 0;
472 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
473 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
475 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
476 mempool_free_slab, request_cachep, q->node);
478 if (!rl->rq_pool)
479 return -ENOMEM;
481 return 0;
484 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
486 return blk_alloc_queue_node(gfp_mask, -1);
488 EXPORT_SYMBOL(blk_alloc_queue);
490 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
492 struct request_queue *q;
493 int err;
495 q = kmem_cache_alloc_node(blk_requestq_cachep,
496 gfp_mask | __GFP_ZERO, node_id);
497 if (!q)
498 return NULL;
500 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
501 q->backing_dev_info.unplug_io_data = q;
502 q->backing_dev_info.ra_pages =
503 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
504 q->backing_dev_info.state = 0;
505 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
506 q->backing_dev_info.name = "block";
508 err = bdi_init(&q->backing_dev_info);
509 if (err) {
510 kmem_cache_free(blk_requestq_cachep, q);
511 return NULL;
514 init_timer(&q->unplug_timer);
515 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
516 INIT_LIST_HEAD(&q->timeout_list);
517 INIT_WORK(&q->unplug_work, blk_unplug_work);
519 kobject_init(&q->kobj, &blk_queue_ktype);
521 mutex_init(&q->sysfs_lock);
522 spin_lock_init(&q->__queue_lock);
524 return q;
526 EXPORT_SYMBOL(blk_alloc_queue_node);
529 * blk_init_queue - prepare a request queue for use with a block device
530 * @rfn: The function to be called to process requests that have been
531 * placed on the queue.
532 * @lock: Request queue spin lock
534 * Description:
535 * If a block device wishes to use the standard request handling procedures,
536 * which sorts requests and coalesces adjacent requests, then it must
537 * call blk_init_queue(). The function @rfn will be called when there
538 * are requests on the queue that need to be processed. If the device
539 * supports plugging, then @rfn may not be called immediately when requests
540 * are available on the queue, but may be called at some time later instead.
541 * Plugged queues are generally unplugged when a buffer belonging to one
542 * of the requests on the queue is needed, or due to memory pressure.
544 * @rfn is not required, or even expected, to remove all requests off the
545 * queue, but only as many as it can handle at a time. If it does leave
546 * requests on the queue, it is responsible for arranging that the requests
547 * get dealt with eventually.
549 * The queue spin lock must be held while manipulating the requests on the
550 * request queue; this lock will be taken also from interrupt context, so irq
551 * disabling is needed for it.
553 * Function returns a pointer to the initialized request queue, or %NULL if
554 * it didn't succeed.
556 * Note:
557 * blk_init_queue() must be paired with a blk_cleanup_queue() call
558 * when the block device is deactivated (such as at module unload).
561 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
563 return blk_init_queue_node(rfn, lock, -1);
565 EXPORT_SYMBOL(blk_init_queue);
567 struct request_queue *
568 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
570 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
572 if (!q)
573 return NULL;
575 q->node = node_id;
576 if (blk_init_free_list(q)) {
577 kmem_cache_free(blk_requestq_cachep, q);
578 return NULL;
581 q->request_fn = rfn;
582 q->prep_rq_fn = NULL;
583 q->unplug_fn = generic_unplug_device;
584 q->queue_flags = QUEUE_FLAG_DEFAULT;
585 q->queue_lock = lock;
588 * This also sets hw/phys segments, boundary and size
590 blk_queue_make_request(q, __make_request);
592 q->sg_reserved_size = INT_MAX;
595 * all done
597 if (!elevator_init(q, NULL)) {
598 blk_queue_congestion_threshold(q);
599 return q;
602 blk_put_queue(q);
603 return NULL;
605 EXPORT_SYMBOL(blk_init_queue_node);
607 int blk_get_queue(struct request_queue *q)
609 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
610 kobject_get(&q->kobj);
611 return 0;
614 return 1;
616 EXPORT_SYMBOL(blk_get_queue);
618 static inline void blk_free_request(struct request_queue *q, struct request *rq)
620 if (rq->cmd_flags & REQ_ELVPRIV)
621 elv_put_request(q, rq);
622 mempool_free(rq, q->rq.rq_pool);
625 static struct request *
626 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
628 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
630 if (!rq)
631 return NULL;
633 blk_rq_init(q, rq);
635 rq->cmd_flags = flags | REQ_ALLOCED;
637 if (priv) {
638 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
639 mempool_free(rq, q->rq.rq_pool);
640 return NULL;
642 rq->cmd_flags |= REQ_ELVPRIV;
645 return rq;
649 * ioc_batching returns true if the ioc is a valid batching request and
650 * should be given priority access to a request.
652 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
654 if (!ioc)
655 return 0;
658 * Make sure the process is able to allocate at least 1 request
659 * even if the batch times out, otherwise we could theoretically
660 * lose wakeups.
662 return ioc->nr_batch_requests == q->nr_batching ||
663 (ioc->nr_batch_requests > 0
664 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
668 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
669 * will cause the process to be a "batcher" on all queues in the system. This
670 * is the behaviour we want though - once it gets a wakeup it should be given
671 * a nice run.
673 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
675 if (!ioc || ioc_batching(q, ioc))
676 return;
678 ioc->nr_batch_requests = q->nr_batching;
679 ioc->last_waited = jiffies;
682 static void __freed_request(struct request_queue *q, int sync)
684 struct request_list *rl = &q->rq;
686 if (rl->count[sync] < queue_congestion_off_threshold(q))
687 blk_clear_queue_congested(q, sync);
689 if (rl->count[sync] + 1 <= q->nr_requests) {
690 if (waitqueue_active(&rl->wait[sync]))
691 wake_up(&rl->wait[sync]);
693 blk_clear_queue_full(q, sync);
698 * A request has just been released. Account for it, update the full and
699 * congestion status, wake up any waiters. Called under q->queue_lock.
701 static void freed_request(struct request_queue *q, int sync, int priv)
703 struct request_list *rl = &q->rq;
705 rl->count[sync]--;
706 if (priv)
707 rl->elvpriv--;
709 __freed_request(q, sync);
711 if (unlikely(rl->starved[sync ^ 1]))
712 __freed_request(q, sync ^ 1);
716 * Get a free request, queue_lock must be held.
717 * Returns NULL on failure, with queue_lock held.
718 * Returns !NULL on success, with queue_lock *not held*.
720 static struct request *get_request(struct request_queue *q, int rw_flags,
721 struct bio *bio, gfp_t gfp_mask)
723 struct request *rq = NULL;
724 struct request_list *rl = &q->rq;
725 struct io_context *ioc = NULL;
726 const bool is_sync = rw_is_sync(rw_flags) != 0;
727 int may_queue, priv;
729 may_queue = elv_may_queue(q, rw_flags);
730 if (may_queue == ELV_MQUEUE_NO)
731 goto rq_starved;
733 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
734 if (rl->count[is_sync]+1 >= q->nr_requests) {
735 ioc = current_io_context(GFP_ATOMIC, q->node);
737 * The queue will fill after this allocation, so set
738 * it as full, and mark this process as "batching".
739 * This process will be allowed to complete a batch of
740 * requests, others will be blocked.
742 if (!blk_queue_full(q, is_sync)) {
743 ioc_set_batching(q, ioc);
744 blk_set_queue_full(q, is_sync);
745 } else {
746 if (may_queue != ELV_MQUEUE_MUST
747 && !ioc_batching(q, ioc)) {
749 * The queue is full and the allocating
750 * process is not a "batcher", and not
751 * exempted by the IO scheduler
753 goto out;
757 blk_set_queue_congested(q, is_sync);
761 * Only allow batching queuers to allocate up to 50% over the defined
762 * limit of requests, otherwise we could have thousands of requests
763 * allocated with any setting of ->nr_requests
765 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
766 goto out;
768 rl->count[is_sync]++;
769 rl->starved[is_sync] = 0;
771 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
772 if (priv)
773 rl->elvpriv++;
775 if (blk_queue_io_stat(q))
776 rw_flags |= REQ_IO_STAT;
777 spin_unlock_irq(q->queue_lock);
779 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
780 if (unlikely(!rq)) {
782 * Allocation failed presumably due to memory. Undo anything
783 * we might have messed up.
785 * Allocating task should really be put onto the front of the
786 * wait queue, but this is pretty rare.
788 spin_lock_irq(q->queue_lock);
789 freed_request(q, is_sync, priv);
792 * in the very unlikely event that allocation failed and no
793 * requests for this direction was pending, mark us starved
794 * so that freeing of a request in the other direction will
795 * notice us. another possible fix would be to split the
796 * rq mempool into READ and WRITE
798 rq_starved:
799 if (unlikely(rl->count[is_sync] == 0))
800 rl->starved[is_sync] = 1;
802 goto out;
806 * ioc may be NULL here, and ioc_batching will be false. That's
807 * OK, if the queue is under the request limit then requests need
808 * not count toward the nr_batch_requests limit. There will always
809 * be some limit enforced by BLK_BATCH_TIME.
811 if (ioc_batching(q, ioc))
812 ioc->nr_batch_requests--;
814 trace_block_getrq(q, bio, rw_flags & 1);
815 out:
816 return rq;
820 * No available requests for this queue, unplug the device and wait for some
821 * requests to become available.
823 * Called with q->queue_lock held, and returns with it unlocked.
825 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
826 struct bio *bio)
828 const bool is_sync = rw_is_sync(rw_flags) != 0;
829 struct request *rq;
831 rq = get_request(q, rw_flags, bio, GFP_NOIO);
832 while (!rq) {
833 DEFINE_WAIT(wait);
834 struct io_context *ioc;
835 struct request_list *rl = &q->rq;
837 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
838 TASK_UNINTERRUPTIBLE);
840 trace_block_sleeprq(q, bio, rw_flags & 1);
842 __generic_unplug_device(q);
843 spin_unlock_irq(q->queue_lock);
844 io_schedule();
847 * After sleeping, we become a "batching" process and
848 * will be able to allocate at least one request, and
849 * up to a big batch of them for a small period time.
850 * See ioc_batching, ioc_set_batching
852 ioc = current_io_context(GFP_NOIO, q->node);
853 ioc_set_batching(q, ioc);
855 spin_lock_irq(q->queue_lock);
856 finish_wait(&rl->wait[is_sync], &wait);
858 rq = get_request(q, rw_flags, bio, GFP_NOIO);
861 return rq;
864 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
866 struct request *rq;
868 BUG_ON(rw != READ && rw != WRITE);
870 spin_lock_irq(q->queue_lock);
871 if (gfp_mask & __GFP_WAIT) {
872 rq = get_request_wait(q, rw, NULL);
873 } else {
874 rq = get_request(q, rw, NULL, gfp_mask);
875 if (!rq)
876 spin_unlock_irq(q->queue_lock);
878 /* q->queue_lock is unlocked at this point */
880 return rq;
882 EXPORT_SYMBOL(blk_get_request);
885 * blk_make_request - given a bio, allocate a corresponding struct request.
886 * @q: target request queue
887 * @bio: The bio describing the memory mappings that will be submitted for IO.
888 * It may be a chained-bio properly constructed by block/bio layer.
889 * @gfp_mask: gfp flags to be used for memory allocation
891 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
892 * type commands. Where the struct request needs to be farther initialized by
893 * the caller. It is passed a &struct bio, which describes the memory info of
894 * the I/O transfer.
896 * The caller of blk_make_request must make sure that bi_io_vec
897 * are set to describe the memory buffers. That bio_data_dir() will return
898 * the needed direction of the request. (And all bio's in the passed bio-chain
899 * are properly set accordingly)
901 * If called under none-sleepable conditions, mapped bio buffers must not
902 * need bouncing, by calling the appropriate masked or flagged allocator,
903 * suitable for the target device. Otherwise the call to blk_queue_bounce will
904 * BUG.
906 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
907 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
908 * anything but the first bio in the chain. Otherwise you risk waiting for IO
909 * completion of a bio that hasn't been submitted yet, thus resulting in a
910 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
911 * of bio_alloc(), as that avoids the mempool deadlock.
912 * If possible a big IO should be split into smaller parts when allocation
913 * fails. Partial allocation should not be an error, or you risk a live-lock.
915 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
916 gfp_t gfp_mask)
918 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
920 if (unlikely(!rq))
921 return ERR_PTR(-ENOMEM);
923 for_each_bio(bio) {
924 struct bio *bounce_bio = bio;
925 int ret;
927 blk_queue_bounce(q, &bounce_bio);
928 ret = blk_rq_append_bio(q, rq, bounce_bio);
929 if (unlikely(ret)) {
930 blk_put_request(rq);
931 return ERR_PTR(ret);
935 return rq;
937 EXPORT_SYMBOL(blk_make_request);
940 * blk_requeue_request - put a request back on queue
941 * @q: request queue where request should be inserted
942 * @rq: request to be inserted
944 * Description:
945 * Drivers often keep queueing requests until the hardware cannot accept
946 * more, when that condition happens we need to put the request back
947 * on the queue. Must be called with queue lock held.
949 void blk_requeue_request(struct request_queue *q, struct request *rq)
951 blk_delete_timer(rq);
952 blk_clear_rq_complete(rq);
953 trace_block_rq_requeue(q, rq);
955 if (blk_rq_tagged(rq))
956 blk_queue_end_tag(q, rq);
958 BUG_ON(blk_queued_rq(rq));
960 elv_requeue_request(q, rq);
962 EXPORT_SYMBOL(blk_requeue_request);
965 * blk_insert_request - insert a special request into a request queue
966 * @q: request queue where request should be inserted
967 * @rq: request to be inserted
968 * @at_head: insert request at head or tail of queue
969 * @data: private data
971 * Description:
972 * Many block devices need to execute commands asynchronously, so they don't
973 * block the whole kernel from preemption during request execution. This is
974 * accomplished normally by inserting aritficial requests tagged as
975 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
976 * be scheduled for actual execution by the request queue.
978 * We have the option of inserting the head or the tail of the queue.
979 * Typically we use the tail for new ioctls and so forth. We use the head
980 * of the queue for things like a QUEUE_FULL message from a device, or a
981 * host that is unable to accept a particular command.
983 void blk_insert_request(struct request_queue *q, struct request *rq,
984 int at_head, void *data)
986 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
987 unsigned long flags;
990 * tell I/O scheduler that this isn't a regular read/write (ie it
991 * must not attempt merges on this) and that it acts as a soft
992 * barrier
994 rq->cmd_type = REQ_TYPE_SPECIAL;
996 rq->special = data;
998 spin_lock_irqsave(q->queue_lock, flags);
1001 * If command is tagged, release the tag
1003 if (blk_rq_tagged(rq))
1004 blk_queue_end_tag(q, rq);
1006 drive_stat_acct(rq, 1);
1007 __elv_add_request(q, rq, where, 0);
1008 __blk_run_queue(q);
1009 spin_unlock_irqrestore(q->queue_lock, flags);
1011 EXPORT_SYMBOL(blk_insert_request);
1014 * add-request adds a request to the linked list.
1015 * queue lock is held and interrupts disabled, as we muck with the
1016 * request queue list.
1018 static inline void add_request(struct request_queue *q, struct request *req)
1020 drive_stat_acct(req, 1);
1023 * elevator indicated where it wants this request to be
1024 * inserted at elevator_merge time
1026 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1029 static void part_round_stats_single(int cpu, struct hd_struct *part,
1030 unsigned long now)
1032 if (now == part->stamp)
1033 return;
1035 if (part_in_flight(part)) {
1036 __part_stat_add(cpu, part, time_in_queue,
1037 part_in_flight(part) * (now - part->stamp));
1038 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1040 part->stamp = now;
1044 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1045 * @cpu: cpu number for stats access
1046 * @part: target partition
1048 * The average IO queue length and utilisation statistics are maintained
1049 * by observing the current state of the queue length and the amount of
1050 * time it has been in this state for.
1052 * Normally, that accounting is done on IO completion, but that can result
1053 * in more than a second's worth of IO being accounted for within any one
1054 * second, leading to >100% utilisation. To deal with that, we call this
1055 * function to do a round-off before returning the results when reading
1056 * /proc/diskstats. This accounts immediately for all queue usage up to
1057 * the current jiffies and restarts the counters again.
1059 void part_round_stats(int cpu, struct hd_struct *part)
1061 unsigned long now = jiffies;
1063 if (part->partno)
1064 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1065 part_round_stats_single(cpu, part, now);
1067 EXPORT_SYMBOL_GPL(part_round_stats);
1070 * queue lock must be held
1072 void __blk_put_request(struct request_queue *q, struct request *req)
1074 if (unlikely(!q))
1075 return;
1076 if (unlikely(--req->ref_count))
1077 return;
1079 elv_completed_request(q, req);
1081 /* this is a bio leak */
1082 WARN_ON(req->bio != NULL);
1085 * Request may not have originated from ll_rw_blk. if not,
1086 * it didn't come out of our reserved rq pools
1088 if (req->cmd_flags & REQ_ALLOCED) {
1089 int is_sync = rq_is_sync(req) != 0;
1090 int priv = req->cmd_flags & REQ_ELVPRIV;
1092 BUG_ON(!list_empty(&req->queuelist));
1093 BUG_ON(!hlist_unhashed(&req->hash));
1095 blk_free_request(q, req);
1096 freed_request(q, is_sync, priv);
1099 EXPORT_SYMBOL_GPL(__blk_put_request);
1101 void blk_put_request(struct request *req)
1103 unsigned long flags;
1104 struct request_queue *q = req->q;
1106 spin_lock_irqsave(q->queue_lock, flags);
1107 __blk_put_request(q, req);
1108 spin_unlock_irqrestore(q->queue_lock, flags);
1110 EXPORT_SYMBOL(blk_put_request);
1112 void init_request_from_bio(struct request *req, struct bio *bio)
1114 req->cpu = bio->bi_comp_cpu;
1115 req->cmd_type = REQ_TYPE_FS;
1118 * Inherit FAILFAST from bio (for read-ahead, and explicit
1119 * FAILFAST). FAILFAST flags are identical for req and bio.
1121 if (bio_rw_flagged(bio, BIO_RW_AHEAD))
1122 req->cmd_flags |= REQ_FAILFAST_MASK;
1123 else
1124 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
1126 if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) {
1127 req->cmd_flags |= REQ_DISCARD;
1128 if (bio_rw_flagged(bio, BIO_RW_BARRIER))
1129 req->cmd_flags |= REQ_SOFTBARRIER;
1130 } else if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)))
1131 req->cmd_flags |= REQ_HARDBARRIER;
1133 if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
1134 req->cmd_flags |= REQ_RW_SYNC;
1135 if (bio_rw_flagged(bio, BIO_RW_META))
1136 req->cmd_flags |= REQ_RW_META;
1137 if (bio_rw_flagged(bio, BIO_RW_NOIDLE))
1138 req->cmd_flags |= REQ_NOIDLE;
1140 req->errors = 0;
1141 req->__sector = bio->bi_sector;
1142 req->ioprio = bio_prio(bio);
1143 blk_rq_bio_prep(req->q, req, bio);
1147 * Only disabling plugging for non-rotational devices if it does tagging
1148 * as well, otherwise we do need the proper merging
1150 static inline bool queue_should_plug(struct request_queue *q)
1152 return !(blk_queue_nonrot(q) && blk_queue_queuing(q));
1155 static int __make_request(struct request_queue *q, struct bio *bio)
1157 struct request *req;
1158 int el_ret;
1159 unsigned int bytes = bio->bi_size;
1160 const unsigned short prio = bio_prio(bio);
1161 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1162 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
1163 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1164 int rw_flags;
1166 if (bio_rw_flagged(bio, BIO_RW_BARRIER) &&
1167 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1168 bio_endio(bio, -EOPNOTSUPP);
1169 return 0;
1172 * low level driver can indicate that it wants pages above a
1173 * certain limit bounced to low memory (ie for highmem, or even
1174 * ISA dma in theory)
1176 blk_queue_bounce(q, &bio);
1178 spin_lock_irq(q->queue_lock);
1180 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
1181 goto get_rq;
1183 el_ret = elv_merge(q, &req, bio);
1184 switch (el_ret) {
1185 case ELEVATOR_BACK_MERGE:
1186 BUG_ON(!rq_mergeable(req));
1188 if (!ll_back_merge_fn(q, req, bio))
1189 break;
1191 trace_block_bio_backmerge(q, bio);
1193 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1194 blk_rq_set_mixed_merge(req);
1196 req->biotail->bi_next = bio;
1197 req->biotail = bio;
1198 req->__data_len += bytes;
1199 req->ioprio = ioprio_best(req->ioprio, prio);
1200 if (!blk_rq_cpu_valid(req))
1201 req->cpu = bio->bi_comp_cpu;
1202 drive_stat_acct(req, 0);
1203 if (!attempt_back_merge(q, req))
1204 elv_merged_request(q, req, el_ret);
1205 goto out;
1207 case ELEVATOR_FRONT_MERGE:
1208 BUG_ON(!rq_mergeable(req));
1210 if (!ll_front_merge_fn(q, req, bio))
1211 break;
1213 trace_block_bio_frontmerge(q, bio);
1215 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1216 blk_rq_set_mixed_merge(req);
1217 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1218 req->cmd_flags |= ff;
1221 bio->bi_next = req->bio;
1222 req->bio = bio;
1225 * may not be valid. if the low level driver said
1226 * it didn't need a bounce buffer then it better
1227 * not touch req->buffer either...
1229 req->buffer = bio_data(bio);
1230 req->__sector = bio->bi_sector;
1231 req->__data_len += bytes;
1232 req->ioprio = ioprio_best(req->ioprio, prio);
1233 if (!blk_rq_cpu_valid(req))
1234 req->cpu = bio->bi_comp_cpu;
1235 drive_stat_acct(req, 0);
1236 if (!attempt_front_merge(q, req))
1237 elv_merged_request(q, req, el_ret);
1238 goto out;
1240 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1241 default:
1245 get_rq:
1247 * This sync check and mask will be re-done in init_request_from_bio(),
1248 * but we need to set it earlier to expose the sync flag to the
1249 * rq allocator and io schedulers.
1251 rw_flags = bio_data_dir(bio);
1252 if (sync)
1253 rw_flags |= REQ_RW_SYNC;
1256 * Grab a free request. This is might sleep but can not fail.
1257 * Returns with the queue unlocked.
1259 req = get_request_wait(q, rw_flags, bio);
1262 * After dropping the lock and possibly sleeping here, our request
1263 * may now be mergeable after it had proven unmergeable (above).
1264 * We don't worry about that case for efficiency. It won't happen
1265 * often, and the elevators are able to handle it.
1267 init_request_from_bio(req, bio);
1269 spin_lock_irq(q->queue_lock);
1270 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1271 bio_flagged(bio, BIO_CPU_AFFINE))
1272 req->cpu = blk_cpu_to_group(smp_processor_id());
1273 if (queue_should_plug(q) && elv_queue_empty(q))
1274 blk_plug_device(q);
1275 add_request(q, req);
1276 out:
1277 if (unplug || !queue_should_plug(q))
1278 __generic_unplug_device(q);
1279 spin_unlock_irq(q->queue_lock);
1280 return 0;
1284 * If bio->bi_dev is a partition, remap the location
1286 static inline void blk_partition_remap(struct bio *bio)
1288 struct block_device *bdev = bio->bi_bdev;
1290 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1291 struct hd_struct *p = bdev->bd_part;
1293 bio->bi_sector += p->start_sect;
1294 bio->bi_bdev = bdev->bd_contains;
1296 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1297 bdev->bd_dev,
1298 bio->bi_sector - p->start_sect);
1302 static void handle_bad_sector(struct bio *bio)
1304 char b[BDEVNAME_SIZE];
1306 printk(KERN_INFO "attempt to access beyond end of device\n");
1307 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1308 bdevname(bio->bi_bdev, b),
1309 bio->bi_rw,
1310 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1311 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1313 set_bit(BIO_EOF, &bio->bi_flags);
1316 #ifdef CONFIG_FAIL_MAKE_REQUEST
1318 static DECLARE_FAULT_ATTR(fail_make_request);
1320 static int __init setup_fail_make_request(char *str)
1322 return setup_fault_attr(&fail_make_request, str);
1324 __setup("fail_make_request=", setup_fail_make_request);
1326 static int should_fail_request(struct bio *bio)
1328 struct hd_struct *part = bio->bi_bdev->bd_part;
1330 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1331 return should_fail(&fail_make_request, bio->bi_size);
1333 return 0;
1336 static int __init fail_make_request_debugfs(void)
1338 return init_fault_attr_dentries(&fail_make_request,
1339 "fail_make_request");
1342 late_initcall(fail_make_request_debugfs);
1344 #else /* CONFIG_FAIL_MAKE_REQUEST */
1346 static inline int should_fail_request(struct bio *bio)
1348 return 0;
1351 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1354 * Check whether this bio extends beyond the end of the device.
1356 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1358 sector_t maxsector;
1360 if (!nr_sectors)
1361 return 0;
1363 /* Test device or partition size, when known. */
1364 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1365 if (maxsector) {
1366 sector_t sector = bio->bi_sector;
1368 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1370 * This may well happen - the kernel calls bread()
1371 * without checking the size of the device, e.g., when
1372 * mounting a device.
1374 handle_bad_sector(bio);
1375 return 1;
1379 return 0;
1383 * generic_make_request - hand a buffer to its device driver for I/O
1384 * @bio: The bio describing the location in memory and on the device.
1386 * generic_make_request() is used to make I/O requests of block
1387 * devices. It is passed a &struct bio, which describes the I/O that needs
1388 * to be done.
1390 * generic_make_request() does not return any status. The
1391 * success/failure status of the request, along with notification of
1392 * completion, is delivered asynchronously through the bio->bi_end_io
1393 * function described (one day) else where.
1395 * The caller of generic_make_request must make sure that bi_io_vec
1396 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1397 * set to describe the device address, and the
1398 * bi_end_io and optionally bi_private are set to describe how
1399 * completion notification should be signaled.
1401 * generic_make_request and the drivers it calls may use bi_next if this
1402 * bio happens to be merged with someone else, and may change bi_dev and
1403 * bi_sector for remaps as it sees fit. So the values of these fields
1404 * should NOT be depended on after the call to generic_make_request.
1406 static inline void __generic_make_request(struct bio *bio)
1408 struct request_queue *q;
1409 sector_t old_sector;
1410 int ret, nr_sectors = bio_sectors(bio);
1411 dev_t old_dev;
1412 int err = -EIO;
1414 might_sleep();
1416 if (bio_check_eod(bio, nr_sectors))
1417 goto end_io;
1420 * Resolve the mapping until finished. (drivers are
1421 * still free to implement/resolve their own stacking
1422 * by explicitly returning 0)
1424 * NOTE: we don't repeat the blk_size check for each new device.
1425 * Stacking drivers are expected to know what they are doing.
1427 old_sector = -1;
1428 old_dev = 0;
1429 do {
1430 char b[BDEVNAME_SIZE];
1432 q = bdev_get_queue(bio->bi_bdev);
1433 if (unlikely(!q)) {
1434 printk(KERN_ERR
1435 "generic_make_request: Trying to access "
1436 "nonexistent block-device %s (%Lu)\n",
1437 bdevname(bio->bi_bdev, b),
1438 (long long) bio->bi_sector);
1439 goto end_io;
1442 if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1443 nr_sectors > queue_max_hw_sectors(q))) {
1444 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1445 bdevname(bio->bi_bdev, b),
1446 bio_sectors(bio),
1447 queue_max_hw_sectors(q));
1448 goto end_io;
1451 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1452 goto end_io;
1454 if (should_fail_request(bio))
1455 goto end_io;
1458 * If this device has partitions, remap block n
1459 * of partition p to block n+start(p) of the disk.
1461 blk_partition_remap(bio);
1463 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1464 goto end_io;
1466 if (old_sector != -1)
1467 trace_block_remap(q, bio, old_dev, old_sector);
1469 old_sector = bio->bi_sector;
1470 old_dev = bio->bi_bdev->bd_dev;
1472 if (bio_check_eod(bio, nr_sectors))
1473 goto end_io;
1475 if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1476 !blk_queue_discard(q)) {
1477 err = -EOPNOTSUPP;
1478 goto end_io;
1481 trace_block_bio_queue(q, bio);
1483 ret = q->make_request_fn(q, bio);
1484 } while (ret);
1486 return;
1488 end_io:
1489 bio_endio(bio, err);
1493 * We only want one ->make_request_fn to be active at a time,
1494 * else stack usage with stacked devices could be a problem.
1495 * So use current->bio_{list,tail} to keep a list of requests
1496 * submited by a make_request_fn function.
1497 * current->bio_tail is also used as a flag to say if
1498 * generic_make_request is currently active in this task or not.
1499 * If it is NULL, then no make_request is active. If it is non-NULL,
1500 * then a make_request is active, and new requests should be added
1501 * at the tail
1503 void generic_make_request(struct bio *bio)
1505 if (current->bio_tail) {
1506 /* make_request is active */
1507 *(current->bio_tail) = bio;
1508 bio->bi_next = NULL;
1509 current->bio_tail = &bio->bi_next;
1510 return;
1512 /* following loop may be a bit non-obvious, and so deserves some
1513 * explanation.
1514 * Before entering the loop, bio->bi_next is NULL (as all callers
1515 * ensure that) so we have a list with a single bio.
1516 * We pretend that we have just taken it off a longer list, so
1517 * we assign bio_list to the next (which is NULL) and bio_tail
1518 * to &bio_list, thus initialising the bio_list of new bios to be
1519 * added. __generic_make_request may indeed add some more bios
1520 * through a recursive call to generic_make_request. If it
1521 * did, we find a non-NULL value in bio_list and re-enter the loop
1522 * from the top. In this case we really did just take the bio
1523 * of the top of the list (no pretending) and so fixup bio_list and
1524 * bio_tail or bi_next, and call into __generic_make_request again.
1526 * The loop was structured like this to make only one call to
1527 * __generic_make_request (which is important as it is large and
1528 * inlined) and to keep the structure simple.
1530 BUG_ON(bio->bi_next);
1531 do {
1532 current->bio_list = bio->bi_next;
1533 if (bio->bi_next == NULL)
1534 current->bio_tail = &current->bio_list;
1535 else
1536 bio->bi_next = NULL;
1537 __generic_make_request(bio);
1538 bio = current->bio_list;
1539 } while (bio);
1540 current->bio_tail = NULL; /* deactivate */
1542 EXPORT_SYMBOL(generic_make_request);
1545 * submit_bio - submit a bio to the block device layer for I/O
1546 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1547 * @bio: The &struct bio which describes the I/O
1549 * submit_bio() is very similar in purpose to generic_make_request(), and
1550 * uses that function to do most of the work. Both are fairly rough
1551 * interfaces; @bio must be presetup and ready for I/O.
1554 void submit_bio(int rw, struct bio *bio)
1556 int count = bio_sectors(bio);
1558 bio->bi_rw |= rw;
1561 * If it's a regular read/write or a barrier with data attached,
1562 * go through the normal accounting stuff before submission.
1564 if (bio_has_data(bio)) {
1565 if (rw & WRITE) {
1566 count_vm_events(PGPGOUT, count);
1567 } else {
1568 task_io_account_read(bio->bi_size);
1569 count_vm_events(PGPGIN, count);
1572 if (unlikely(block_dump)) {
1573 char b[BDEVNAME_SIZE];
1574 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1575 current->comm, task_pid_nr(current),
1576 (rw & WRITE) ? "WRITE" : "READ",
1577 (unsigned long long)bio->bi_sector,
1578 bdevname(bio->bi_bdev, b));
1582 generic_make_request(bio);
1584 EXPORT_SYMBOL(submit_bio);
1587 * blk_rq_check_limits - Helper function to check a request for the queue limit
1588 * @q: the queue
1589 * @rq: the request being checked
1591 * Description:
1592 * @rq may have been made based on weaker limitations of upper-level queues
1593 * in request stacking drivers, and it may violate the limitation of @q.
1594 * Since the block layer and the underlying device driver trust @rq
1595 * after it is inserted to @q, it should be checked against @q before
1596 * the insertion using this generic function.
1598 * This function should also be useful for request stacking drivers
1599 * in some cases below, so export this fuction.
1600 * Request stacking drivers like request-based dm may change the queue
1601 * limits while requests are in the queue (e.g. dm's table swapping).
1602 * Such request stacking drivers should check those requests agaist
1603 * the new queue limits again when they dispatch those requests,
1604 * although such checkings are also done against the old queue limits
1605 * when submitting requests.
1607 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1609 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1610 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1611 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1612 return -EIO;
1616 * queue's settings related to segment counting like q->bounce_pfn
1617 * may differ from that of other stacking queues.
1618 * Recalculate it to check the request correctly on this queue's
1619 * limitation.
1621 blk_recalc_rq_segments(rq);
1622 if (rq->nr_phys_segments > queue_max_phys_segments(q) ||
1623 rq->nr_phys_segments > queue_max_hw_segments(q)) {
1624 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1625 return -EIO;
1628 return 0;
1630 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1633 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1634 * @q: the queue to submit the request
1635 * @rq: the request being queued
1637 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1639 unsigned long flags;
1641 if (blk_rq_check_limits(q, rq))
1642 return -EIO;
1644 #ifdef CONFIG_FAIL_MAKE_REQUEST
1645 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1646 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1647 return -EIO;
1648 #endif
1650 spin_lock_irqsave(q->queue_lock, flags);
1653 * Submitting request must be dequeued before calling this function
1654 * because it will be linked to another request_queue
1656 BUG_ON(blk_queued_rq(rq));
1658 drive_stat_acct(rq, 1);
1659 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1661 spin_unlock_irqrestore(q->queue_lock, flags);
1663 return 0;
1665 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1668 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1669 * @rq: request to examine
1671 * Description:
1672 * A request could be merge of IOs which require different failure
1673 * handling. This function determines the number of bytes which
1674 * can be failed from the beginning of the request without
1675 * crossing into area which need to be retried further.
1677 * Return:
1678 * The number of bytes to fail.
1680 * Context:
1681 * queue_lock must be held.
1683 unsigned int blk_rq_err_bytes(const struct request *rq)
1685 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1686 unsigned int bytes = 0;
1687 struct bio *bio;
1689 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1690 return blk_rq_bytes(rq);
1693 * Currently the only 'mixing' which can happen is between
1694 * different fastfail types. We can safely fail portions
1695 * which have all the failfast bits that the first one has -
1696 * the ones which are at least as eager to fail as the first
1697 * one.
1699 for (bio = rq->bio; bio; bio = bio->bi_next) {
1700 if ((bio->bi_rw & ff) != ff)
1701 break;
1702 bytes += bio->bi_size;
1705 /* this could lead to infinite loop */
1706 BUG_ON(blk_rq_bytes(rq) && !bytes);
1707 return bytes;
1709 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1711 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1713 if (blk_do_io_stat(req)) {
1714 const int rw = rq_data_dir(req);
1715 struct hd_struct *part;
1716 int cpu;
1718 cpu = part_stat_lock();
1719 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1720 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1721 part_stat_unlock();
1725 static void blk_account_io_done(struct request *req)
1728 * Account IO completion. bar_rq isn't accounted as a normal
1729 * IO on queueing nor completion. Accounting the containing
1730 * request is enough.
1732 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1733 unsigned long duration = jiffies - req->start_time;
1734 const int rw = rq_data_dir(req);
1735 struct hd_struct *part;
1736 int cpu;
1738 cpu = part_stat_lock();
1739 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1741 part_stat_inc(cpu, part, ios[rw]);
1742 part_stat_add(cpu, part, ticks[rw], duration);
1743 part_round_stats(cpu, part);
1744 part_dec_in_flight(part, rw);
1746 part_stat_unlock();
1751 * blk_peek_request - peek at the top of a request queue
1752 * @q: request queue to peek at
1754 * Description:
1755 * Return the request at the top of @q. The returned request
1756 * should be started using blk_start_request() before LLD starts
1757 * processing it.
1759 * Return:
1760 * Pointer to the request at the top of @q if available. Null
1761 * otherwise.
1763 * Context:
1764 * queue_lock must be held.
1766 struct request *blk_peek_request(struct request_queue *q)
1768 struct request *rq;
1769 int ret;
1771 while ((rq = __elv_next_request(q)) != NULL) {
1772 if (!(rq->cmd_flags & REQ_STARTED)) {
1774 * This is the first time the device driver
1775 * sees this request (possibly after
1776 * requeueing). Notify IO scheduler.
1778 if (blk_sorted_rq(rq))
1779 elv_activate_rq(q, rq);
1782 * just mark as started even if we don't start
1783 * it, a request that has been delayed should
1784 * not be passed by new incoming requests
1786 rq->cmd_flags |= REQ_STARTED;
1787 trace_block_rq_issue(q, rq);
1790 if (!q->boundary_rq || q->boundary_rq == rq) {
1791 q->end_sector = rq_end_sector(rq);
1792 q->boundary_rq = NULL;
1795 if (rq->cmd_flags & REQ_DONTPREP)
1796 break;
1798 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1800 * make sure space for the drain appears we
1801 * know we can do this because max_hw_segments
1802 * has been adjusted to be one fewer than the
1803 * device can handle
1805 rq->nr_phys_segments++;
1808 if (!q->prep_rq_fn)
1809 break;
1811 ret = q->prep_rq_fn(q, rq);
1812 if (ret == BLKPREP_OK) {
1813 break;
1814 } else if (ret == BLKPREP_DEFER) {
1816 * the request may have been (partially) prepped.
1817 * we need to keep this request in the front to
1818 * avoid resource deadlock. REQ_STARTED will
1819 * prevent other fs requests from passing this one.
1821 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1822 !(rq->cmd_flags & REQ_DONTPREP)) {
1824 * remove the space for the drain we added
1825 * so that we don't add it again
1827 --rq->nr_phys_segments;
1830 rq = NULL;
1831 break;
1832 } else if (ret == BLKPREP_KILL) {
1833 rq->cmd_flags |= REQ_QUIET;
1835 * Mark this request as started so we don't trigger
1836 * any debug logic in the end I/O path.
1838 blk_start_request(rq);
1839 __blk_end_request_all(rq, -EIO);
1840 } else {
1841 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1842 break;
1846 return rq;
1848 EXPORT_SYMBOL(blk_peek_request);
1850 void blk_dequeue_request(struct request *rq)
1852 struct request_queue *q = rq->q;
1854 BUG_ON(list_empty(&rq->queuelist));
1855 BUG_ON(ELV_ON_HASH(rq));
1857 list_del_init(&rq->queuelist);
1860 * the time frame between a request being removed from the lists
1861 * and to it is freed is accounted as io that is in progress at
1862 * the driver side.
1864 if (blk_account_rq(rq)) {
1865 q->in_flight[rq_is_sync(rq)]++;
1867 * Mark this device as supporting hardware queuing, if
1868 * we have more IOs in flight than 4.
1870 if (!blk_queue_queuing(q) && queue_in_flight(q) > 4)
1871 set_bit(QUEUE_FLAG_CQ, &q->queue_flags);
1876 * blk_start_request - start request processing on the driver
1877 * @req: request to dequeue
1879 * Description:
1880 * Dequeue @req and start timeout timer on it. This hands off the
1881 * request to the driver.
1883 * Block internal functions which don't want to start timer should
1884 * call blk_dequeue_request().
1886 * Context:
1887 * queue_lock must be held.
1889 void blk_start_request(struct request *req)
1891 blk_dequeue_request(req);
1894 * We are now handing the request to the hardware, initialize
1895 * resid_len to full count and add the timeout handler.
1897 req->resid_len = blk_rq_bytes(req);
1898 if (unlikely(blk_bidi_rq(req)))
1899 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1901 blk_add_timer(req);
1903 EXPORT_SYMBOL(blk_start_request);
1906 * blk_fetch_request - fetch a request from a request queue
1907 * @q: request queue to fetch a request from
1909 * Description:
1910 * Return the request at the top of @q. The request is started on
1911 * return and LLD can start processing it immediately.
1913 * Return:
1914 * Pointer to the request at the top of @q if available. Null
1915 * otherwise.
1917 * Context:
1918 * queue_lock must be held.
1920 struct request *blk_fetch_request(struct request_queue *q)
1922 struct request *rq;
1924 rq = blk_peek_request(q);
1925 if (rq)
1926 blk_start_request(rq);
1927 return rq;
1929 EXPORT_SYMBOL(blk_fetch_request);
1932 * blk_update_request - Special helper function for request stacking drivers
1933 * @req: the request being processed
1934 * @error: %0 for success, < %0 for error
1935 * @nr_bytes: number of bytes to complete @req
1937 * Description:
1938 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1939 * the request structure even if @req doesn't have leftover.
1940 * If @req has leftover, sets it up for the next range of segments.
1942 * This special helper function is only for request stacking drivers
1943 * (e.g. request-based dm) so that they can handle partial completion.
1944 * Actual device drivers should use blk_end_request instead.
1946 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1947 * %false return from this function.
1949 * Return:
1950 * %false - this request doesn't have any more data
1951 * %true - this request has more data
1953 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1955 int total_bytes, bio_nbytes, next_idx = 0;
1956 struct bio *bio;
1958 if (!req->bio)
1959 return false;
1961 trace_block_rq_complete(req->q, req);
1964 * For fs requests, rq is just carrier of independent bio's
1965 * and each partial completion should be handled separately.
1966 * Reset per-request error on each partial completion.
1968 * TODO: tj: This is too subtle. It would be better to let
1969 * low level drivers do what they see fit.
1971 if (blk_fs_request(req))
1972 req->errors = 0;
1974 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1975 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1976 req->rq_disk ? req->rq_disk->disk_name : "?",
1977 (unsigned long long)blk_rq_pos(req));
1980 blk_account_io_completion(req, nr_bytes);
1982 total_bytes = bio_nbytes = 0;
1983 while ((bio = req->bio) != NULL) {
1984 int nbytes;
1986 if (nr_bytes >= bio->bi_size) {
1987 req->bio = bio->bi_next;
1988 nbytes = bio->bi_size;
1989 req_bio_endio(req, bio, nbytes, error);
1990 next_idx = 0;
1991 bio_nbytes = 0;
1992 } else {
1993 int idx = bio->bi_idx + next_idx;
1995 if (unlikely(idx >= bio->bi_vcnt)) {
1996 blk_dump_rq_flags(req, "__end_that");
1997 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1998 __func__, idx, bio->bi_vcnt);
1999 break;
2002 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2003 BIO_BUG_ON(nbytes > bio->bi_size);
2006 * not a complete bvec done
2008 if (unlikely(nbytes > nr_bytes)) {
2009 bio_nbytes += nr_bytes;
2010 total_bytes += nr_bytes;
2011 break;
2015 * advance to the next vector
2017 next_idx++;
2018 bio_nbytes += nbytes;
2021 total_bytes += nbytes;
2022 nr_bytes -= nbytes;
2024 bio = req->bio;
2025 if (bio) {
2027 * end more in this run, or just return 'not-done'
2029 if (unlikely(nr_bytes <= 0))
2030 break;
2035 * completely done
2037 if (!req->bio) {
2039 * Reset counters so that the request stacking driver
2040 * can find how many bytes remain in the request
2041 * later.
2043 req->__data_len = 0;
2044 return false;
2048 * if the request wasn't completed, update state
2050 if (bio_nbytes) {
2051 req_bio_endio(req, bio, bio_nbytes, error);
2052 bio->bi_idx += next_idx;
2053 bio_iovec(bio)->bv_offset += nr_bytes;
2054 bio_iovec(bio)->bv_len -= nr_bytes;
2057 req->__data_len -= total_bytes;
2058 req->buffer = bio_data(req->bio);
2060 /* update sector only for requests with clear definition of sector */
2061 if (blk_fs_request(req) || blk_discard_rq(req))
2062 req->__sector += total_bytes >> 9;
2064 /* mixed attributes always follow the first bio */
2065 if (req->cmd_flags & REQ_MIXED_MERGE) {
2066 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2067 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2071 * If total number of sectors is less than the first segment
2072 * size, something has gone terribly wrong.
2074 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2075 printk(KERN_ERR "blk: request botched\n");
2076 req->__data_len = blk_rq_cur_bytes(req);
2079 /* recalculate the number of segments */
2080 blk_recalc_rq_segments(req);
2082 return true;
2084 EXPORT_SYMBOL_GPL(blk_update_request);
2086 static bool blk_update_bidi_request(struct request *rq, int error,
2087 unsigned int nr_bytes,
2088 unsigned int bidi_bytes)
2090 if (blk_update_request(rq, error, nr_bytes))
2091 return true;
2093 /* Bidi request must be completed as a whole */
2094 if (unlikely(blk_bidi_rq(rq)) &&
2095 blk_update_request(rq->next_rq, error, bidi_bytes))
2096 return true;
2098 add_disk_randomness(rq->rq_disk);
2100 return false;
2104 * queue lock must be held
2106 static void blk_finish_request(struct request *req, int error)
2108 if (blk_rq_tagged(req))
2109 blk_queue_end_tag(req->q, req);
2111 BUG_ON(blk_queued_rq(req));
2113 if (unlikely(laptop_mode) && blk_fs_request(req))
2114 laptop_io_completion();
2116 blk_delete_timer(req);
2118 blk_account_io_done(req);
2120 if (req->end_io)
2121 req->end_io(req, error);
2122 else {
2123 if (blk_bidi_rq(req))
2124 __blk_put_request(req->next_rq->q, req->next_rq);
2126 __blk_put_request(req->q, req);
2131 * blk_end_bidi_request - Complete a bidi request
2132 * @rq: the request to complete
2133 * @error: %0 for success, < %0 for error
2134 * @nr_bytes: number of bytes to complete @rq
2135 * @bidi_bytes: number of bytes to complete @rq->next_rq
2137 * Description:
2138 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2139 * Drivers that supports bidi can safely call this member for any
2140 * type of request, bidi or uni. In the later case @bidi_bytes is
2141 * just ignored.
2143 * Return:
2144 * %false - we are done with this request
2145 * %true - still buffers pending for this request
2147 static bool blk_end_bidi_request(struct request *rq, int error,
2148 unsigned int nr_bytes, unsigned int bidi_bytes)
2150 struct request_queue *q = rq->q;
2151 unsigned long flags;
2153 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2154 return true;
2156 spin_lock_irqsave(q->queue_lock, flags);
2157 blk_finish_request(rq, error);
2158 spin_unlock_irqrestore(q->queue_lock, flags);
2160 return false;
2164 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2165 * @rq: the request to complete
2166 * @error: %0 for success, < %0 for error
2167 * @nr_bytes: number of bytes to complete @rq
2168 * @bidi_bytes: number of bytes to complete @rq->next_rq
2170 * Description:
2171 * Identical to blk_end_bidi_request() except that queue lock is
2172 * assumed to be locked on entry and remains so on return.
2174 * Return:
2175 * %false - we are done with this request
2176 * %true - still buffers pending for this request
2178 static bool __blk_end_bidi_request(struct request *rq, int error,
2179 unsigned int nr_bytes, unsigned int bidi_bytes)
2181 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2182 return true;
2184 blk_finish_request(rq, error);
2186 return false;
2190 * blk_end_request - Helper function for drivers to complete the request.
2191 * @rq: the request being processed
2192 * @error: %0 for success, < %0 for error
2193 * @nr_bytes: number of bytes to complete
2195 * Description:
2196 * Ends I/O on a number of bytes attached to @rq.
2197 * If @rq has leftover, sets it up for the next range of segments.
2199 * Return:
2200 * %false - we are done with this request
2201 * %true - still buffers pending for this request
2203 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2205 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2207 EXPORT_SYMBOL(blk_end_request);
2210 * blk_end_request_all - Helper function for drives to finish the request.
2211 * @rq: the request to finish
2212 * @error: %0 for success, < %0 for error
2214 * Description:
2215 * Completely finish @rq.
2217 void blk_end_request_all(struct request *rq, int error)
2219 bool pending;
2220 unsigned int bidi_bytes = 0;
2222 if (unlikely(blk_bidi_rq(rq)))
2223 bidi_bytes = blk_rq_bytes(rq->next_rq);
2225 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2226 BUG_ON(pending);
2228 EXPORT_SYMBOL(blk_end_request_all);
2231 * blk_end_request_cur - Helper function to finish the current request chunk.
2232 * @rq: the request to finish the current chunk for
2233 * @error: %0 for success, < %0 for error
2235 * Description:
2236 * Complete the current consecutively mapped chunk from @rq.
2238 * Return:
2239 * %false - we are done with this request
2240 * %true - still buffers pending for this request
2242 bool blk_end_request_cur(struct request *rq, int error)
2244 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2246 EXPORT_SYMBOL(blk_end_request_cur);
2249 * blk_end_request_err - Finish a request till the next failure boundary.
2250 * @rq: the request to finish till the next failure boundary for
2251 * @error: must be negative errno
2253 * Description:
2254 * Complete @rq till the next failure boundary.
2256 * Return:
2257 * %false - we are done with this request
2258 * %true - still buffers pending for this request
2260 bool blk_end_request_err(struct request *rq, int error)
2262 WARN_ON(error >= 0);
2263 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2265 EXPORT_SYMBOL_GPL(blk_end_request_err);
2268 * __blk_end_request - Helper function for drivers to complete the request.
2269 * @rq: the request being processed
2270 * @error: %0 for success, < %0 for error
2271 * @nr_bytes: number of bytes to complete
2273 * Description:
2274 * Must be called with queue lock held unlike blk_end_request().
2276 * Return:
2277 * %false - we are done with this request
2278 * %true - still buffers pending for this request
2280 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2282 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2284 EXPORT_SYMBOL(__blk_end_request);
2287 * __blk_end_request_all - Helper function for drives to finish the request.
2288 * @rq: the request to finish
2289 * @error: %0 for success, < %0 for error
2291 * Description:
2292 * Completely finish @rq. Must be called with queue lock held.
2294 void __blk_end_request_all(struct request *rq, int error)
2296 bool pending;
2297 unsigned int bidi_bytes = 0;
2299 if (unlikely(blk_bidi_rq(rq)))
2300 bidi_bytes = blk_rq_bytes(rq->next_rq);
2302 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2303 BUG_ON(pending);
2305 EXPORT_SYMBOL(__blk_end_request_all);
2308 * __blk_end_request_cur - Helper function to finish the current request chunk.
2309 * @rq: the request to finish the current chunk for
2310 * @error: %0 for success, < %0 for error
2312 * Description:
2313 * Complete the current consecutively mapped chunk from @rq. Must
2314 * be called with queue lock held.
2316 * Return:
2317 * %false - we are done with this request
2318 * %true - still buffers pending for this request
2320 bool __blk_end_request_cur(struct request *rq, int error)
2322 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2324 EXPORT_SYMBOL(__blk_end_request_cur);
2327 * __blk_end_request_err - Finish a request till the next failure boundary.
2328 * @rq: the request to finish till the next failure boundary for
2329 * @error: must be negative errno
2331 * Description:
2332 * Complete @rq till the next failure boundary. Must be called
2333 * with queue lock held.
2335 * Return:
2336 * %false - we are done with this request
2337 * %true - still buffers pending for this request
2339 bool __blk_end_request_err(struct request *rq, int error)
2341 WARN_ON(error >= 0);
2342 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2344 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2346 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2347 struct bio *bio)
2349 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2350 rq->cmd_flags |= bio->bi_rw & REQ_RW;
2352 if (bio_has_data(bio)) {
2353 rq->nr_phys_segments = bio_phys_segments(q, bio);
2354 rq->buffer = bio_data(bio);
2356 rq->__data_len = bio->bi_size;
2357 rq->bio = rq->biotail = bio;
2359 if (bio->bi_bdev)
2360 rq->rq_disk = bio->bi_bdev->bd_disk;
2364 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2365 * @q : the queue of the device being checked
2367 * Description:
2368 * Check if underlying low-level drivers of a device are busy.
2369 * If the drivers want to export their busy state, they must set own
2370 * exporting function using blk_queue_lld_busy() first.
2372 * Basically, this function is used only by request stacking drivers
2373 * to stop dispatching requests to underlying devices when underlying
2374 * devices are busy. This behavior helps more I/O merging on the queue
2375 * of the request stacking driver and prevents I/O throughput regression
2376 * on burst I/O load.
2378 * Return:
2379 * 0 - Not busy (The request stacking driver should dispatch request)
2380 * 1 - Busy (The request stacking driver should stop dispatching request)
2382 int blk_lld_busy(struct request_queue *q)
2384 if (q->lld_busy_fn)
2385 return q->lld_busy_fn(q);
2387 return 0;
2389 EXPORT_SYMBOL_GPL(blk_lld_busy);
2392 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2393 * @rq: the clone request to be cleaned up
2395 * Description:
2396 * Free all bios in @rq for a cloned request.
2398 void blk_rq_unprep_clone(struct request *rq)
2400 struct bio *bio;
2402 while ((bio = rq->bio) != NULL) {
2403 rq->bio = bio->bi_next;
2405 bio_put(bio);
2408 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2411 * Copy attributes of the original request to the clone request.
2412 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2414 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2416 dst->cpu = src->cpu;
2417 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2418 dst->cmd_type = src->cmd_type;
2419 dst->__sector = blk_rq_pos(src);
2420 dst->__data_len = blk_rq_bytes(src);
2421 dst->nr_phys_segments = src->nr_phys_segments;
2422 dst->ioprio = src->ioprio;
2423 dst->extra_len = src->extra_len;
2427 * blk_rq_prep_clone - Helper function to setup clone request
2428 * @rq: the request to be setup
2429 * @rq_src: original request to be cloned
2430 * @bs: bio_set that bios for clone are allocated from
2431 * @gfp_mask: memory allocation mask for bio
2432 * @bio_ctr: setup function to be called for each clone bio.
2433 * Returns %0 for success, non %0 for failure.
2434 * @data: private data to be passed to @bio_ctr
2436 * Description:
2437 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2438 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2439 * are not copied, and copying such parts is the caller's responsibility.
2440 * Also, pages which the original bios are pointing to are not copied
2441 * and the cloned bios just point same pages.
2442 * So cloned bios must be completed before original bios, which means
2443 * the caller must complete @rq before @rq_src.
2445 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2446 struct bio_set *bs, gfp_t gfp_mask,
2447 int (*bio_ctr)(struct bio *, struct bio *, void *),
2448 void *data)
2450 struct bio *bio, *bio_src;
2452 if (!bs)
2453 bs = fs_bio_set;
2455 blk_rq_init(NULL, rq);
2457 __rq_for_each_bio(bio_src, rq_src) {
2458 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2459 if (!bio)
2460 goto free_and_out;
2462 __bio_clone(bio, bio_src);
2464 if (bio_integrity(bio_src) &&
2465 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2466 goto free_and_out;
2468 if (bio_ctr && bio_ctr(bio, bio_src, data))
2469 goto free_and_out;
2471 if (rq->bio) {
2472 rq->biotail->bi_next = bio;
2473 rq->biotail = bio;
2474 } else
2475 rq->bio = rq->biotail = bio;
2478 __blk_rq_prep_clone(rq, rq_src);
2480 return 0;
2482 free_and_out:
2483 if (bio)
2484 bio_free(bio, bs);
2485 blk_rq_unprep_clone(rq);
2487 return -ENOMEM;
2489 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2491 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2493 return queue_work(kblockd_workqueue, work);
2495 EXPORT_SYMBOL(kblockd_schedule_work);
2497 int __init blk_dev_init(void)
2499 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2500 sizeof(((struct request *)0)->cmd_flags));
2502 kblockd_workqueue = create_workqueue("kblockd");
2503 if (!kblockd_workqueue)
2504 panic("Failed to create kblockd\n");
2506 request_cachep = kmem_cache_create("blkdev_requests",
2507 sizeof(struct request), 0, SLAB_PANIC, NULL);
2509 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2510 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2512 return 0;