2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/writeback.h>
71 #include <linux/buffer_head.h> /* for invalidate_bdev() */
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/gfp.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
78 #include <asm/uaccess.h>
80 static LIST_HEAD(loop_devices
);
81 static DEFINE_MUTEX(loop_devices_mutex
);
84 static int part_shift
;
89 static int transfer_none(struct loop_device
*lo
, int cmd
,
90 struct page
*raw_page
, unsigned raw_off
,
91 struct page
*loop_page
, unsigned loop_off
,
92 int size
, sector_t real_block
)
94 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
95 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
98 memcpy(loop_buf
, raw_buf
, size
);
100 memcpy(raw_buf
, loop_buf
, size
);
102 kunmap_atomic(raw_buf
, KM_USER0
);
103 kunmap_atomic(loop_buf
, KM_USER1
);
108 static int transfer_xor(struct loop_device
*lo
, int cmd
,
109 struct page
*raw_page
, unsigned raw_off
,
110 struct page
*loop_page
, unsigned loop_off
,
111 int size
, sector_t real_block
)
113 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
114 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
115 char *in
, *out
, *key
;
126 key
= lo
->lo_encrypt_key
;
127 keysize
= lo
->lo_encrypt_key_size
;
128 for (i
= 0; i
< size
; i
++)
129 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
131 kunmap_atomic(raw_buf
, KM_USER0
);
132 kunmap_atomic(loop_buf
, KM_USER1
);
137 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
139 if (unlikely(info
->lo_encrypt_key_size
<= 0))
144 static struct loop_func_table none_funcs
= {
145 .number
= LO_CRYPT_NONE
,
146 .transfer
= transfer_none
,
149 static struct loop_func_table xor_funcs
= {
150 .number
= LO_CRYPT_XOR
,
151 .transfer
= transfer_xor
,
155 /* xfer_funcs[0] is special - its release function is never called */
156 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
161 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
163 loff_t size
, offset
, loopsize
;
165 /* Compute loopsize in bytes */
166 size
= i_size_read(file
->f_mapping
->host
);
167 offset
= lo
->lo_offset
;
168 loopsize
= size
- offset
;
169 if (lo
->lo_sizelimit
> 0 && lo
->lo_sizelimit
< loopsize
)
170 loopsize
= lo
->lo_sizelimit
;
173 * Unfortunately, if we want to do I/O on the device,
174 * the number of 512-byte sectors has to fit into a sector_t.
176 return loopsize
>> 9;
180 figure_loop_size(struct loop_device
*lo
)
182 loff_t size
= get_loop_size(lo
, lo
->lo_backing_file
);
183 sector_t x
= (sector_t
)size
;
185 if (unlikely((loff_t
)x
!= size
))
188 set_capacity(lo
->lo_disk
, x
);
193 lo_do_transfer(struct loop_device
*lo
, int cmd
,
194 struct page
*rpage
, unsigned roffs
,
195 struct page
*lpage
, unsigned loffs
,
196 int size
, sector_t rblock
)
198 if (unlikely(!lo
->transfer
))
201 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
205 * do_lo_send_aops - helper for writing data to a loop device
207 * This is the fast version for backing filesystems which implement the address
208 * space operations write_begin and write_end.
210 static int do_lo_send_aops(struct loop_device
*lo
, struct bio_vec
*bvec
,
211 loff_t pos
, struct page
*unused
)
213 struct file
*file
= lo
->lo_backing_file
; /* kudos to NFsckingS */
214 struct address_space
*mapping
= file
->f_mapping
;
216 unsigned offset
, bv_offs
;
219 mutex_lock(&mapping
->host
->i_mutex
);
220 index
= pos
>> PAGE_CACHE_SHIFT
;
221 offset
= pos
& ((pgoff_t
)PAGE_CACHE_SIZE
- 1);
222 bv_offs
= bvec
->bv_offset
;
226 unsigned size
, copied
;
231 IV
= ((sector_t
)index
<< (PAGE_CACHE_SHIFT
- 9))+(offset
>> 9);
232 size
= PAGE_CACHE_SIZE
- offset
;
236 ret
= pagecache_write_begin(file
, mapping
, pos
, size
, 0,
241 file_update_time(file
);
243 transfer_result
= lo_do_transfer(lo
, WRITE
, page
, offset
,
244 bvec
->bv_page
, bv_offs
, size
, IV
);
246 if (unlikely(transfer_result
))
249 ret
= pagecache_write_end(file
, mapping
, pos
, size
, copied
,
251 if (ret
< 0 || ret
!= copied
)
254 if (unlikely(transfer_result
))
265 mutex_unlock(&mapping
->host
->i_mutex
);
273 * __do_lo_send_write - helper for writing data to a loop device
275 * This helper just factors out common code between do_lo_send_direct_write()
276 * and do_lo_send_write().
278 static int __do_lo_send_write(struct file
*file
,
279 u8
*buf
, const int len
, loff_t pos
)
282 mm_segment_t old_fs
= get_fs();
285 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
287 if (likely(bw
== len
))
289 printk(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
290 (unsigned long long)pos
, len
);
297 * do_lo_send_direct_write - helper for writing data to a loop device
299 * This is the fast, non-transforming version for backing filesystems which do
300 * not implement the address space operations write_begin and write_end.
301 * It uses the write file operation which should be present on all writeable
304 static int do_lo_send_direct_write(struct loop_device
*lo
,
305 struct bio_vec
*bvec
, loff_t pos
, struct page
*page
)
307 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
308 kmap(bvec
->bv_page
) + bvec
->bv_offset
,
310 kunmap(bvec
->bv_page
);
316 * do_lo_send_write - helper for writing data to a loop device
318 * This is the slow, transforming version for filesystems which do not
319 * implement the address space operations write_begin and write_end. It
320 * uses the write file operation which should be present on all writeable
323 * Using fops->write is slower than using aops->{prepare,commit}_write in the
324 * transforming case because we need to double buffer the data as we cannot do
325 * the transformations in place as we do not have direct access to the
326 * destination pages of the backing file.
328 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
329 loff_t pos
, struct page
*page
)
331 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
332 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
334 return __do_lo_send_write(lo
->lo_backing_file
,
335 page_address(page
), bvec
->bv_len
,
337 printk(KERN_ERR
"loop: Transfer error at byte offset %llu, "
338 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
344 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, loff_t pos
)
346 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, loff_t
,
348 struct bio_vec
*bvec
;
349 struct page
*page
= NULL
;
352 do_lo_send
= do_lo_send_aops
;
353 if (!(lo
->lo_flags
& LO_FLAGS_USE_AOPS
)) {
354 do_lo_send
= do_lo_send_direct_write
;
355 if (lo
->transfer
!= transfer_none
) {
356 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
360 do_lo_send
= do_lo_send_write
;
363 bio_for_each_segment(bvec
, bio
, i
) {
364 ret
= do_lo_send(lo
, bvec
, pos
, page
);
376 printk(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
381 struct lo_read_data
{
382 struct loop_device
*lo
;
389 lo_splice_actor(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
390 struct splice_desc
*sd
)
392 struct lo_read_data
*p
= sd
->u
.data
;
393 struct loop_device
*lo
= p
->lo
;
394 struct page
*page
= buf
->page
;
398 ret
= buf
->ops
->confirm(pipe
, buf
);
402 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9)) +
408 if (lo_do_transfer(lo
, READ
, page
, buf
->offset
, p
->page
, p
->offset
, size
, IV
)) {
409 printk(KERN_ERR
"loop: transfer error block %ld\n",
414 flush_dcache_page(p
->page
);
423 lo_direct_splice_actor(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
425 return __splice_from_pipe(pipe
, sd
, lo_splice_actor
);
429 do_lo_receive(struct loop_device
*lo
,
430 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
432 struct lo_read_data cookie
;
433 struct splice_desc sd
;
438 cookie
.page
= bvec
->bv_page
;
439 cookie
.offset
= bvec
->bv_offset
;
440 cookie
.bsize
= bsize
;
443 sd
.total_len
= bvec
->bv_len
;
448 file
= lo
->lo_backing_file
;
449 retval
= splice_direct_to_actor(file
, &sd
, lo_direct_splice_actor
);
458 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
460 struct bio_vec
*bvec
;
463 bio_for_each_segment(bvec
, bio
, i
) {
464 ret
= do_lo_receive(lo
, bvec
, bsize
, pos
);
472 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
477 pos
= ((loff_t
) bio
->bi_sector
<< 9) + lo
->lo_offset
;
479 if (bio_rw(bio
) == WRITE
) {
480 bool barrier
= bio_rw_flagged(bio
, BIO_RW_BARRIER
);
481 struct file
*file
= lo
->lo_backing_file
;
484 if (unlikely(!file
->f_op
->fsync
)) {
489 ret
= vfs_fsync(file
, file
->f_path
.dentry
, 0);
496 ret
= lo_send(lo
, bio
, pos
);
498 if (barrier
&& !ret
) {
499 ret
= vfs_fsync(file
, file
->f_path
.dentry
, 0);
504 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
511 * Add bio to back of pending list
513 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
515 bio_list_add(&lo
->lo_bio_list
, bio
);
519 * Grab first pending buffer
521 static struct bio
*loop_get_bio(struct loop_device
*lo
)
523 return bio_list_pop(&lo
->lo_bio_list
);
526 static int loop_make_request(struct request_queue
*q
, struct bio
*old_bio
)
528 struct loop_device
*lo
= q
->queuedata
;
529 int rw
= bio_rw(old_bio
);
534 BUG_ON(!lo
|| (rw
!= READ
&& rw
!= WRITE
));
536 spin_lock_irq(&lo
->lo_lock
);
537 if (lo
->lo_state
!= Lo_bound
)
539 if (unlikely(rw
== WRITE
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)))
541 loop_add_bio(lo
, old_bio
);
542 wake_up(&lo
->lo_event
);
543 spin_unlock_irq(&lo
->lo_lock
);
547 spin_unlock_irq(&lo
->lo_lock
);
548 bio_io_error(old_bio
);
553 * kick off io on the underlying address space
555 static void loop_unplug(struct request_queue
*q
)
557 struct loop_device
*lo
= q
->queuedata
;
559 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED
, q
);
560 blk_run_address_space(lo
->lo_backing_file
->f_mapping
);
563 struct switch_request
{
565 struct completion wait
;
568 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
570 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
572 if (unlikely(!bio
->bi_bdev
)) {
573 do_loop_switch(lo
, bio
->bi_private
);
576 int ret
= do_bio_filebacked(lo
, bio
);
582 * worker thread that handles reads/writes to file backed loop devices,
583 * to avoid blocking in our make_request_fn. it also does loop decrypting
584 * on reads for block backed loop, as that is too heavy to do from
585 * b_end_io context where irqs may be disabled.
587 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
588 * calling kthread_stop(). Therefore once kthread_should_stop() is
589 * true, make_request will not place any more requests. Therefore
590 * once kthread_should_stop() is true and lo_bio is NULL, we are
591 * done with the loop.
593 static int loop_thread(void *data
)
595 struct loop_device
*lo
= data
;
598 set_user_nice(current
, -20);
600 while (!kthread_should_stop() || !bio_list_empty(&lo
->lo_bio_list
)) {
602 wait_event_interruptible(lo
->lo_event
,
603 !bio_list_empty(&lo
->lo_bio_list
) ||
604 kthread_should_stop());
606 if (bio_list_empty(&lo
->lo_bio_list
))
608 spin_lock_irq(&lo
->lo_lock
);
609 bio
= loop_get_bio(lo
);
610 spin_unlock_irq(&lo
->lo_lock
);
613 loop_handle_bio(lo
, bio
);
620 * loop_switch performs the hard work of switching a backing store.
621 * First it needs to flush existing IO, it does this by sending a magic
622 * BIO down the pipe. The completion of this BIO does the actual switch.
624 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
626 struct switch_request w
;
627 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 0);
630 init_completion(&w
.wait
);
632 bio
->bi_private
= &w
;
634 loop_make_request(lo
->lo_queue
, bio
);
635 wait_for_completion(&w
.wait
);
640 * Helper to flush the IOs in loop, but keeping loop thread running
642 static int loop_flush(struct loop_device
*lo
)
644 /* loop not yet configured, no running thread, nothing to flush */
648 return loop_switch(lo
, NULL
);
652 * Do the actual switch; called from the BIO completion routine
654 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
656 struct file
*file
= p
->file
;
657 struct file
*old_file
= lo
->lo_backing_file
;
658 struct address_space
*mapping
;
660 /* if no new file, only flush of queued bios requested */
664 mapping
= file
->f_mapping
;
665 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
666 lo
->lo_backing_file
= file
;
667 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
668 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
669 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
670 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
677 * loop_change_fd switched the backing store of a loopback device to
678 * a new file. This is useful for operating system installers to free up
679 * the original file and in High Availability environments to switch to
680 * an alternative location for the content in case of server meltdown.
681 * This can only work if the loop device is used read-only, and if the
682 * new backing store is the same size and type as the old backing store.
684 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
687 struct file
*file
, *old_file
;
692 if (lo
->lo_state
!= Lo_bound
)
695 /* the loop device has to be read-only */
697 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
705 inode
= file
->f_mapping
->host
;
706 old_file
= lo
->lo_backing_file
;
710 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
713 /* size of the new backing store needs to be the same */
714 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
718 error
= loop_switch(lo
, file
);
724 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
733 static inline int is_loop_device(struct file
*file
)
735 struct inode
*i
= file
->f_mapping
->host
;
737 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
740 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
741 struct block_device
*bdev
, unsigned int arg
)
743 struct file
*file
, *f
;
745 struct address_space
*mapping
;
746 unsigned lo_blocksize
;
751 /* This is safe, since we have a reference from open(). */
752 __module_get(THIS_MODULE
);
760 if (lo
->lo_state
!= Lo_unbound
)
763 /* Avoid recursion */
765 while (is_loop_device(f
)) {
766 struct loop_device
*l
;
768 if (f
->f_mapping
->host
->i_bdev
== bdev
)
771 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
772 if (l
->lo_state
== Lo_unbound
) {
776 f
= l
->lo_backing_file
;
779 mapping
= file
->f_mapping
;
780 inode
= mapping
->host
;
782 if (!(file
->f_mode
& FMODE_WRITE
))
783 lo_flags
|= LO_FLAGS_READ_ONLY
;
786 if (S_ISREG(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
787 const struct address_space_operations
*aops
= mapping
->a_ops
;
789 if (aops
->write_begin
)
790 lo_flags
|= LO_FLAGS_USE_AOPS
;
791 if (!(lo_flags
& LO_FLAGS_USE_AOPS
) && !file
->f_op
->write
)
792 lo_flags
|= LO_FLAGS_READ_ONLY
;
794 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
795 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
802 size
= get_loop_size(lo
, file
);
804 if ((loff_t
)(sector_t
)size
!= size
) {
809 if (!(mode
& FMODE_WRITE
))
810 lo_flags
|= LO_FLAGS_READ_ONLY
;
812 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
814 lo
->lo_blocksize
= lo_blocksize
;
815 lo
->lo_device
= bdev
;
816 lo
->lo_flags
= lo_flags
;
817 lo
->lo_backing_file
= file
;
818 lo
->transfer
= transfer_none
;
820 lo
->lo_sizelimit
= 0;
821 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
822 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
824 bio_list_init(&lo
->lo_bio_list
);
827 * set queue make_request_fn, and add limits based on lower level
830 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
831 lo
->lo_queue
->queuedata
= lo
;
832 lo
->lo_queue
->unplug_fn
= loop_unplug
;
834 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
835 blk_queue_ordered(lo
->lo_queue
, QUEUE_ORDERED_DRAIN
, NULL
);
837 set_capacity(lo
->lo_disk
, size
);
838 bd_set_size(bdev
, size
<< 9);
840 set_blocksize(bdev
, lo_blocksize
);
842 lo
->lo_thread
= kthread_create(loop_thread
, lo
, "loop%d",
844 if (IS_ERR(lo
->lo_thread
)) {
845 error
= PTR_ERR(lo
->lo_thread
);
848 lo
->lo_state
= Lo_bound
;
849 wake_up_process(lo
->lo_thread
);
851 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
855 lo
->lo_thread
= NULL
;
856 lo
->lo_device
= NULL
;
857 lo
->lo_backing_file
= NULL
;
859 set_capacity(lo
->lo_disk
, 0);
860 invalidate_bdev(bdev
);
861 bd_set_size(bdev
, 0);
862 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
);
863 lo
->lo_state
= Lo_unbound
;
867 /* This is safe: open() is still holding a reference. */
868 module_put(THIS_MODULE
);
873 loop_release_xfer(struct loop_device
*lo
)
876 struct loop_func_table
*xfer
= lo
->lo_encryption
;
880 err
= xfer
->release(lo
);
882 lo
->lo_encryption
= NULL
;
883 module_put(xfer
->owner
);
889 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
890 const struct loop_info64
*i
)
895 struct module
*owner
= xfer
->owner
;
897 if (!try_module_get(owner
))
900 err
= xfer
->init(lo
, i
);
904 lo
->lo_encryption
= xfer
;
909 static int loop_clr_fd(struct loop_device
*lo
, struct block_device
*bdev
)
911 struct file
*filp
= lo
->lo_backing_file
;
912 gfp_t gfp
= lo
->old_gfp_mask
;
914 if (lo
->lo_state
!= Lo_bound
)
917 if (lo
->lo_refcnt
> 1) /* we needed one fd for the ioctl */
923 spin_lock_irq(&lo
->lo_lock
);
924 lo
->lo_state
= Lo_rundown
;
925 spin_unlock_irq(&lo
->lo_lock
);
927 kthread_stop(lo
->lo_thread
);
929 lo
->lo_queue
->unplug_fn
= NULL
;
930 lo
->lo_backing_file
= NULL
;
932 loop_release_xfer(lo
);
935 lo
->lo_device
= NULL
;
936 lo
->lo_encryption
= NULL
;
938 lo
->lo_sizelimit
= 0;
939 lo
->lo_encrypt_key_size
= 0;
941 lo
->lo_thread
= NULL
;
942 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
943 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
944 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
946 invalidate_bdev(bdev
);
947 set_capacity(lo
->lo_disk
, 0);
949 bd_set_size(bdev
, 0);
950 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
951 lo
->lo_state
= Lo_unbound
;
952 /* This is safe: open() is still holding a reference. */
953 module_put(THIS_MODULE
);
954 if (max_part
> 0 && bdev
)
955 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
956 mutex_unlock(&lo
->lo_ctl_mutex
);
958 * Need not hold lo_ctl_mutex to fput backing file.
959 * Calling fput holding lo_ctl_mutex triggers a circular
960 * lock dependency possibility warning as fput can take
961 * bd_mutex which is usually taken before lo_ctl_mutex.
968 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
971 struct loop_func_table
*xfer
;
972 uid_t uid
= current_uid();
974 if (lo
->lo_encrypt_key_size
&&
975 lo
->lo_key_owner
!= uid
&&
976 !capable(CAP_SYS_ADMIN
))
978 if (lo
->lo_state
!= Lo_bound
)
980 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
983 err
= loop_release_xfer(lo
);
987 if (info
->lo_encrypt_type
) {
988 unsigned int type
= info
->lo_encrypt_type
;
990 if (type
>= MAX_LO_CRYPT
)
992 xfer
= xfer_funcs
[type
];
998 err
= loop_init_xfer(lo
, xfer
, info
);
1002 if (lo
->lo_offset
!= info
->lo_offset
||
1003 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1004 lo
->lo_offset
= info
->lo_offset
;
1005 lo
->lo_sizelimit
= info
->lo_sizelimit
;
1006 if (figure_loop_size(lo
))
1010 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1011 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1012 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1013 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1017 lo
->transfer
= xfer
->transfer
;
1018 lo
->ioctl
= xfer
->ioctl
;
1020 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1021 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1022 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1024 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1025 lo
->lo_init
[0] = info
->lo_init
[0];
1026 lo
->lo_init
[1] = info
->lo_init
[1];
1027 if (info
->lo_encrypt_key_size
) {
1028 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1029 info
->lo_encrypt_key_size
);
1030 lo
->lo_key_owner
= uid
;
1037 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1039 struct file
*file
= lo
->lo_backing_file
;
1043 if (lo
->lo_state
!= Lo_bound
)
1045 error
= vfs_getattr(file
->f_path
.mnt
, file
->f_path
.dentry
, &stat
);
1048 memset(info
, 0, sizeof(*info
));
1049 info
->lo_number
= lo
->lo_number
;
1050 info
->lo_device
= huge_encode_dev(stat
.dev
);
1051 info
->lo_inode
= stat
.ino
;
1052 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1053 info
->lo_offset
= lo
->lo_offset
;
1054 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1055 info
->lo_flags
= lo
->lo_flags
;
1056 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1057 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1058 info
->lo_encrypt_type
=
1059 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1060 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1061 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1062 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1063 lo
->lo_encrypt_key_size
);
1069 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1071 memset(info64
, 0, sizeof(*info64
));
1072 info64
->lo_number
= info
->lo_number
;
1073 info64
->lo_device
= info
->lo_device
;
1074 info64
->lo_inode
= info
->lo_inode
;
1075 info64
->lo_rdevice
= info
->lo_rdevice
;
1076 info64
->lo_offset
= info
->lo_offset
;
1077 info64
->lo_sizelimit
= 0;
1078 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1079 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1080 info64
->lo_flags
= info
->lo_flags
;
1081 info64
->lo_init
[0] = info
->lo_init
[0];
1082 info64
->lo_init
[1] = info
->lo_init
[1];
1083 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1084 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1086 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1087 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1091 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1093 memset(info
, 0, sizeof(*info
));
1094 info
->lo_number
= info64
->lo_number
;
1095 info
->lo_device
= info64
->lo_device
;
1096 info
->lo_inode
= info64
->lo_inode
;
1097 info
->lo_rdevice
= info64
->lo_rdevice
;
1098 info
->lo_offset
= info64
->lo_offset
;
1099 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1100 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1101 info
->lo_flags
= info64
->lo_flags
;
1102 info
->lo_init
[0] = info64
->lo_init
[0];
1103 info
->lo_init
[1] = info64
->lo_init
[1];
1104 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1105 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1107 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1108 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1110 /* error in case values were truncated */
1111 if (info
->lo_device
!= info64
->lo_device
||
1112 info
->lo_rdevice
!= info64
->lo_rdevice
||
1113 info
->lo_inode
!= info64
->lo_inode
||
1114 info
->lo_offset
!= info64
->lo_offset
)
1121 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1123 struct loop_info info
;
1124 struct loop_info64 info64
;
1126 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1128 loop_info64_from_old(&info
, &info64
);
1129 return loop_set_status(lo
, &info64
);
1133 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1135 struct loop_info64 info64
;
1137 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1139 return loop_set_status(lo
, &info64
);
1143 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1144 struct loop_info info
;
1145 struct loop_info64 info64
;
1151 err
= loop_get_status(lo
, &info64
);
1153 err
= loop_info64_to_old(&info64
, &info
);
1154 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1161 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1162 struct loop_info64 info64
;
1168 err
= loop_get_status(lo
, &info64
);
1169 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1175 static int loop_set_capacity(struct loop_device
*lo
, struct block_device
*bdev
)
1182 if (unlikely(lo
->lo_state
!= Lo_bound
))
1184 err
= figure_loop_size(lo
);
1187 sec
= get_capacity(lo
->lo_disk
);
1188 /* the width of sector_t may be narrow for bit-shift */
1191 mutex_lock(&bdev
->bd_mutex
);
1192 bd_set_size(bdev
, sz
);
1193 mutex_unlock(&bdev
->bd_mutex
);
1199 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1200 unsigned int cmd
, unsigned long arg
)
1202 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1205 mutex_lock_nested(&lo
->lo_ctl_mutex
, 1);
1208 err
= loop_set_fd(lo
, mode
, bdev
, arg
);
1210 case LOOP_CHANGE_FD
:
1211 err
= loop_change_fd(lo
, bdev
, arg
);
1214 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1215 err
= loop_clr_fd(lo
, bdev
);
1219 case LOOP_SET_STATUS
:
1220 err
= loop_set_status_old(lo
, (struct loop_info __user
*) arg
);
1222 case LOOP_GET_STATUS
:
1223 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1225 case LOOP_SET_STATUS64
:
1226 err
= loop_set_status64(lo
, (struct loop_info64 __user
*) arg
);
1228 case LOOP_GET_STATUS64
:
1229 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1231 case LOOP_SET_CAPACITY
:
1233 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1234 err
= loop_set_capacity(lo
, bdev
);
1237 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1239 mutex_unlock(&lo
->lo_ctl_mutex
);
1245 #ifdef CONFIG_COMPAT
1246 struct compat_loop_info
{
1247 compat_int_t lo_number
; /* ioctl r/o */
1248 compat_dev_t lo_device
; /* ioctl r/o */
1249 compat_ulong_t lo_inode
; /* ioctl r/o */
1250 compat_dev_t lo_rdevice
; /* ioctl r/o */
1251 compat_int_t lo_offset
;
1252 compat_int_t lo_encrypt_type
;
1253 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1254 compat_int_t lo_flags
; /* ioctl r/o */
1255 char lo_name
[LO_NAME_SIZE
];
1256 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1257 compat_ulong_t lo_init
[2];
1262 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1263 * - noinlined to reduce stack space usage in main part of driver
1266 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1267 struct loop_info64
*info64
)
1269 struct compat_loop_info info
;
1271 if (copy_from_user(&info
, arg
, sizeof(info
)))
1274 memset(info64
, 0, sizeof(*info64
));
1275 info64
->lo_number
= info
.lo_number
;
1276 info64
->lo_device
= info
.lo_device
;
1277 info64
->lo_inode
= info
.lo_inode
;
1278 info64
->lo_rdevice
= info
.lo_rdevice
;
1279 info64
->lo_offset
= info
.lo_offset
;
1280 info64
->lo_sizelimit
= 0;
1281 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1282 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1283 info64
->lo_flags
= info
.lo_flags
;
1284 info64
->lo_init
[0] = info
.lo_init
[0];
1285 info64
->lo_init
[1] = info
.lo_init
[1];
1286 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1287 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1289 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1290 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1295 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1296 * - noinlined to reduce stack space usage in main part of driver
1299 loop_info64_to_compat(const struct loop_info64
*info64
,
1300 struct compat_loop_info __user
*arg
)
1302 struct compat_loop_info info
;
1304 memset(&info
, 0, sizeof(info
));
1305 info
.lo_number
= info64
->lo_number
;
1306 info
.lo_device
= info64
->lo_device
;
1307 info
.lo_inode
= info64
->lo_inode
;
1308 info
.lo_rdevice
= info64
->lo_rdevice
;
1309 info
.lo_offset
= info64
->lo_offset
;
1310 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1311 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1312 info
.lo_flags
= info64
->lo_flags
;
1313 info
.lo_init
[0] = info64
->lo_init
[0];
1314 info
.lo_init
[1] = info64
->lo_init
[1];
1315 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1316 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1318 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1319 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1321 /* error in case values were truncated */
1322 if (info
.lo_device
!= info64
->lo_device
||
1323 info
.lo_rdevice
!= info64
->lo_rdevice
||
1324 info
.lo_inode
!= info64
->lo_inode
||
1325 info
.lo_offset
!= info64
->lo_offset
||
1326 info
.lo_init
[0] != info64
->lo_init
[0] ||
1327 info
.lo_init
[1] != info64
->lo_init
[1])
1330 if (copy_to_user(arg
, &info
, sizeof(info
)))
1336 loop_set_status_compat(struct loop_device
*lo
,
1337 const struct compat_loop_info __user
*arg
)
1339 struct loop_info64 info64
;
1342 ret
= loop_info64_from_compat(arg
, &info64
);
1345 return loop_set_status(lo
, &info64
);
1349 loop_get_status_compat(struct loop_device
*lo
,
1350 struct compat_loop_info __user
*arg
)
1352 struct loop_info64 info64
;
1358 err
= loop_get_status(lo
, &info64
);
1360 err
= loop_info64_to_compat(&info64
, arg
);
1364 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1365 unsigned int cmd
, unsigned long arg
)
1367 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1371 case LOOP_SET_STATUS
:
1372 mutex_lock(&lo
->lo_ctl_mutex
);
1373 err
= loop_set_status_compat(
1374 lo
, (const struct compat_loop_info __user
*) arg
);
1375 mutex_unlock(&lo
->lo_ctl_mutex
);
1377 case LOOP_GET_STATUS
:
1378 mutex_lock(&lo
->lo_ctl_mutex
);
1379 err
= loop_get_status_compat(
1380 lo
, (struct compat_loop_info __user
*) arg
);
1381 mutex_unlock(&lo
->lo_ctl_mutex
);
1383 case LOOP_SET_CAPACITY
:
1385 case LOOP_GET_STATUS64
:
1386 case LOOP_SET_STATUS64
:
1387 arg
= (unsigned long) compat_ptr(arg
);
1389 case LOOP_CHANGE_FD
:
1390 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1400 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1402 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1404 mutex_lock(&lo
->lo_ctl_mutex
);
1406 mutex_unlock(&lo
->lo_ctl_mutex
);
1411 static int lo_release(struct gendisk
*disk
, fmode_t mode
)
1413 struct loop_device
*lo
= disk
->private_data
;
1416 mutex_lock(&lo
->lo_ctl_mutex
);
1418 if (--lo
->lo_refcnt
)
1421 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1423 * In autoclear mode, stop the loop thread
1424 * and remove configuration after last close.
1426 err
= loop_clr_fd(lo
, NULL
);
1431 * Otherwise keep thread (if running) and config,
1432 * but flush possible ongoing bios in thread.
1438 mutex_unlock(&lo
->lo_ctl_mutex
);
1443 static const struct block_device_operations lo_fops
= {
1444 .owner
= THIS_MODULE
,
1446 .release
= lo_release
,
1448 #ifdef CONFIG_COMPAT
1449 .compat_ioctl
= lo_compat_ioctl
,
1454 * And now the modules code and kernel interface.
1456 static int max_loop
;
1457 module_param(max_loop
, int, 0);
1458 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1459 module_param(max_part
, int, 0);
1460 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1461 MODULE_LICENSE("GPL");
1462 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1464 int loop_register_transfer(struct loop_func_table
*funcs
)
1466 unsigned int n
= funcs
->number
;
1468 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1470 xfer_funcs
[n
] = funcs
;
1474 int loop_unregister_transfer(int number
)
1476 unsigned int n
= number
;
1477 struct loop_device
*lo
;
1478 struct loop_func_table
*xfer
;
1480 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1483 xfer_funcs
[n
] = NULL
;
1485 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1486 mutex_lock(&lo
->lo_ctl_mutex
);
1488 if (lo
->lo_encryption
== xfer
)
1489 loop_release_xfer(lo
);
1491 mutex_unlock(&lo
->lo_ctl_mutex
);
1497 EXPORT_SYMBOL(loop_register_transfer
);
1498 EXPORT_SYMBOL(loop_unregister_transfer
);
1500 static struct loop_device
*loop_alloc(int i
)
1502 struct loop_device
*lo
;
1503 struct gendisk
*disk
;
1505 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1509 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1513 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1515 goto out_free_queue
;
1517 mutex_init(&lo
->lo_ctl_mutex
);
1519 lo
->lo_thread
= NULL
;
1520 init_waitqueue_head(&lo
->lo_event
);
1521 spin_lock_init(&lo
->lo_lock
);
1522 disk
->major
= LOOP_MAJOR
;
1523 disk
->first_minor
= i
<< part_shift
;
1524 disk
->fops
= &lo_fops
;
1525 disk
->private_data
= lo
;
1526 disk
->queue
= lo
->lo_queue
;
1527 sprintf(disk
->disk_name
, "loop%d", i
);
1531 blk_cleanup_queue(lo
->lo_queue
);
1538 static void loop_free(struct loop_device
*lo
)
1540 blk_cleanup_queue(lo
->lo_queue
);
1541 put_disk(lo
->lo_disk
);
1542 list_del(&lo
->lo_list
);
1546 static struct loop_device
*loop_init_one(int i
)
1548 struct loop_device
*lo
;
1550 list_for_each_entry(lo
, &loop_devices
, lo_list
) {
1551 if (lo
->lo_number
== i
)
1557 add_disk(lo
->lo_disk
);
1558 list_add_tail(&lo
->lo_list
, &loop_devices
);
1563 static void loop_del_one(struct loop_device
*lo
)
1565 del_gendisk(lo
->lo_disk
);
1569 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1571 struct loop_device
*lo
;
1572 struct kobject
*kobj
;
1574 mutex_lock(&loop_devices_mutex
);
1575 lo
= loop_init_one(MINOR(dev
) >> part_shift
);
1576 kobj
= lo
? get_disk(lo
->lo_disk
) : ERR_PTR(-ENOMEM
);
1577 mutex_unlock(&loop_devices_mutex
);
1583 static int __init
loop_init(void)
1586 unsigned long range
;
1587 struct loop_device
*lo
, *next
;
1590 * loop module now has a feature to instantiate underlying device
1591 * structure on-demand, provided that there is an access dev node.
1592 * However, this will not work well with user space tool that doesn't
1593 * know about such "feature". In order to not break any existing
1594 * tool, we do the following:
1596 * (1) if max_loop is specified, create that many upfront, and this
1597 * also becomes a hard limit.
1598 * (2) if max_loop is not specified, create 8 loop device on module
1599 * load, user can further extend loop device by create dev node
1600 * themselves and have kernel automatically instantiate actual
1606 part_shift
= fls(max_part
);
1608 if ((1UL << part_shift
) > DISK_MAX_PARTS
)
1611 if (max_loop
> 1UL << (MINORBITS
- part_shift
))
1616 range
= max_loop
<< part_shift
;
1619 range
= 1UL << MINORBITS
;
1622 if (register_blkdev(LOOP_MAJOR
, "loop"))
1625 for (i
= 0; i
< nr
; i
++) {
1629 list_add_tail(&lo
->lo_list
, &loop_devices
);
1632 /* point of no return */
1634 list_for_each_entry(lo
, &loop_devices
, lo_list
)
1635 add_disk(lo
->lo_disk
);
1637 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
1638 THIS_MODULE
, loop_probe
, NULL
, NULL
);
1640 printk(KERN_INFO
"loop: module loaded\n");
1644 printk(KERN_INFO
"loop: out of memory\n");
1646 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1649 unregister_blkdev(LOOP_MAJOR
, "loop");
1653 static void __exit
loop_exit(void)
1655 unsigned long range
;
1656 struct loop_device
*lo
, *next
;
1658 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
1660 list_for_each_entry_safe(lo
, next
, &loop_devices
, lo_list
)
1663 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
1664 unregister_blkdev(LOOP_MAJOR
, "loop");
1667 module_init(loop_init
);
1668 module_exit(loop_exit
);
1671 static int __init
max_loop_setup(char *str
)
1673 max_loop
= simple_strtol(str
, NULL
, 0);
1677 __setup("max_loop=", max_loop_setup
);