2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/bio.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/crc7.h>
32 #include <linux/crc-itu-t.h>
33 #include <linux/scatterlist.h>
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
38 #include <linux/spi/spi.h>
39 #include <linux/spi/mmc_spi.h>
41 #include <asm/unaligned.h>
46 * - For now, we won't try to interoperate with a real mmc/sd/sdio
47 * controller, although some of them do have hardware support for
48 * SPI protocol. The main reason for such configs would be mmc-ish
49 * cards like DataFlash, which don't support that "native" protocol.
51 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52 * switch between driver stacks, and in any case if "native" mode
53 * is available, it will be faster and hence preferable.
55 * - MMC depends on a different chipselect management policy than the
56 * SPI interface currently supports for shared bus segments: it needs
57 * to issue multiple spi_message requests with the chipselect active,
58 * using the results of one message to decide the next one to issue.
60 * Pending updates to the programming interface, this driver expects
61 * that it not share the bus with other drivers (precluding conflicts).
63 * - We tell the controller to keep the chipselect active from the
64 * beginning of an mmc_host_ops.request until the end. So beware
65 * of SPI controller drivers that mis-handle the cs_change flag!
67 * However, many cards seem OK with chipselect flapping up/down
68 * during that time ... at least on unshared bus segments.
73 * Local protocol constants, internal to data block protocols.
76 /* Response tokens used to ack each block written: */
77 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
78 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
79 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
80 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
82 /* Read and write blocks start with these tokens and end with crc;
83 * on error, read tokens act like a subset of R2_SPI_* values.
85 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
86 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
87 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
89 #define MMC_SPI_BLOCKSIZE 512
92 /* These fixed timeouts come from the latest SD specs, which say to ignore
93 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95 * reads which takes nowhere near that long. Older cards may be able to use
96 * shorter timeouts ... but why bother?
98 #define r1b_timeout (HZ * 3)
100 /* One of the critical speed parameters is the amount of data which may
101 * be transfered in one command. If this value is too low, the SD card
102 * controller has to do multiple partial block writes (argggh!). With
103 * today (2008) SD cards there is little speed gain if we transfer more
104 * than 64 KBytes at a time. So use this value until there is any indication
105 * that we should do more here.
107 #define MMC_SPI_BLOCKSATONCE 128
109 /****************************************************************************/
112 * Local Data Structures
115 /* "scratch" is per-{command,block} data exchanged with the card */
122 struct mmc_spi_host
{
123 struct mmc_host
*mmc
;
124 struct spi_device
*spi
;
126 unsigned char power_mode
;
129 struct mmc_spi_platform_data
*pdata
;
131 /* for bulk data transfers */
132 struct spi_transfer token
, t
, crc
, early_status
;
133 struct spi_message m
;
135 /* for status readback */
136 struct spi_transfer status
;
137 struct spi_message readback
;
139 /* underlying DMA-aware controller, or null */
140 struct device
*dma_dev
;
142 /* buffer used for commands and for message "overhead" */
143 struct scratch
*data
;
146 /* Specs say to write ones most of the time, even when the card
147 * has no need to read its input data; and many cards won't care.
148 * This is our source of those ones.
155 /****************************************************************************/
158 * MMC-over-SPI protocol glue, used by the MMC stack interface
161 static inline int mmc_cs_off(struct mmc_spi_host
*host
)
163 /* chipselect will always be inactive after setup() */
164 return spi_setup(host
->spi
);
168 mmc_spi_readbytes(struct mmc_spi_host
*host
, unsigned len
)
172 if (len
> sizeof(*host
->data
)) {
177 host
->status
.len
= len
;
180 dma_sync_single_for_device(host
->dma_dev
,
181 host
->data_dma
, sizeof(*host
->data
),
184 status
= spi_sync(host
->spi
, &host
->readback
);
187 dma_sync_single_for_cpu(host
->dma_dev
,
188 host
->data_dma
, sizeof(*host
->data
),
194 static int mmc_spi_skip(struct mmc_spi_host
*host
, unsigned long timeout
,
197 u8
*cp
= host
->data
->status
;
198 unsigned long start
= jiffies
;
204 status
= mmc_spi_readbytes(host
, n
);
208 for (i
= 0; i
< n
; i
++) {
213 if (time_is_before_jiffies(start
+ timeout
))
216 /* If we need long timeouts, we may release the CPU.
217 * We use jiffies here because we want to have a relation
218 * between elapsed time and the blocking of the scheduler.
220 if (time_is_before_jiffies(start
+1))
227 mmc_spi_wait_unbusy(struct mmc_spi_host
*host
, unsigned long timeout
)
229 return mmc_spi_skip(host
, timeout
, sizeof(host
->data
->status
), 0);
232 static int mmc_spi_readtoken(struct mmc_spi_host
*host
, unsigned long timeout
)
234 return mmc_spi_skip(host
, timeout
, 1, 0xff);
239 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
240 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
241 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
243 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
244 * newer cards R7 (IF_COND).
247 static char *maptype(struct mmc_command
*cmd
)
249 switch (mmc_spi_resp_type(cmd
)) {
250 case MMC_RSP_SPI_R1
: return "R1";
251 case MMC_RSP_SPI_R1B
: return "R1B";
252 case MMC_RSP_SPI_R2
: return "R2/R5";
253 case MMC_RSP_SPI_R3
: return "R3/R4/R7";
258 /* return zero, else negative errno after setting cmd->error */
259 static int mmc_spi_response_get(struct mmc_spi_host
*host
,
260 struct mmc_command
*cmd
, int cs_on
)
262 u8
*cp
= host
->data
->status
;
263 u8
*end
= cp
+ host
->t
.len
;
267 unsigned short rotator
;
271 snprintf(tag
, sizeof(tag
), " ... CMD%d response SPI_%s",
272 cmd
->opcode
, maptype(cmd
));
274 /* Except for data block reads, the whole response will already
275 * be stored in the scratch buffer. It's somewhere after the
276 * command and the first byte we read after it. We ignore that
277 * first byte. After STOP_TRANSMISSION command it may include
278 * two data bits, but otherwise it's all ones.
281 while (cp
< end
&& *cp
== 0xff)
284 /* Data block reads (R1 response types) may need more data... */
286 cp
= host
->data
->status
;
289 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
290 * status byte ... and we already scanned 2 bytes.
292 * REVISIT block read paths use nasty byte-at-a-time I/O
293 * so it can always DMA directly into the target buffer.
294 * It'd probably be better to memcpy() the first chunk and
295 * avoid extra i/o calls...
297 * Note we check for more than 8 bytes, because in practice,
298 * some SD cards are slow...
300 for (i
= 2; i
< 16; i
++) {
301 value
= mmc_spi_readbytes(host
, 1);
314 /* Houston, we have an ugly card with a bit-shifted response */
315 rotator
= *cp
++ << 8;
316 /* read the next byte */
318 value
= mmc_spi_readbytes(host
, 1);
321 cp
= host
->data
->status
;
325 while (rotator
& 0x8000) {
329 cmd
->resp
[0] = rotator
>> 8;
332 cmd
->resp
[0] = *cp
++;
336 /* Status byte: the entire seven-bit R1 response. */
337 if (cmd
->resp
[0] != 0) {
338 if ((R1_SPI_PARAMETER
| R1_SPI_ADDRESS
)
340 value
= -EFAULT
; /* Bad address */
341 else if (R1_SPI_ILLEGAL_COMMAND
& cmd
->resp
[0])
342 value
= -ENOSYS
; /* Function not implemented */
343 else if (R1_SPI_COM_CRC
& cmd
->resp
[0])
344 value
= -EILSEQ
; /* Illegal byte sequence */
345 else if ((R1_SPI_ERASE_SEQ
| R1_SPI_ERASE_RESET
)
347 value
= -EIO
; /* I/O error */
348 /* else R1_SPI_IDLE, "it's resetting" */
351 switch (mmc_spi_resp_type(cmd
)) {
353 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
354 * and less-common stuff like various erase operations.
356 case MMC_RSP_SPI_R1B
:
357 /* maybe we read all the busy tokens already */
358 while (cp
< end
&& *cp
== 0)
361 mmc_spi_wait_unbusy(host
, r1b_timeout
);
364 /* SPI R2 == R1 + second status byte; SEND_STATUS
365 * SPI R5 == R1 + data byte; IO_RW_DIRECT
368 /* read the next byte */
370 value
= mmc_spi_readbytes(host
, 1);
373 cp
= host
->data
->status
;
377 rotator
= leftover
<< 8;
378 rotator
|= *cp
<< bitshift
;
379 cmd
->resp
[0] |= (rotator
& 0xFF00);
381 cmd
->resp
[0] |= *cp
<< 8;
385 /* SPI R3, R4, or R7 == R1 + 4 bytes */
387 rotator
= leftover
<< 8;
389 for (i
= 0; i
< 4; i
++) {
391 /* read the next byte */
393 value
= mmc_spi_readbytes(host
, 1);
396 cp
= host
->data
->status
;
400 rotator
|= *cp
++ << bitshift
;
401 cmd
->resp
[1] |= (rotator
>> 8);
404 cmd
->resp
[1] |= *cp
++;
409 /* SPI R1 == just one status byte */
414 dev_dbg(&host
->spi
->dev
, "bad response type %04x\n",
415 mmc_spi_resp_type(cmd
));
422 dev_dbg(&host
->spi
->dev
, "%s: resp %04x %08x\n",
423 tag
, cmd
->resp
[0], cmd
->resp
[1]);
425 /* disable chipselect on errors and some success cases */
426 if (value
>= 0 && cs_on
)
435 /* Issue command and read its response.
436 * Returns zero on success, negative for error.
438 * On error, caller must cope with mmc core retry mechanism. That
439 * means immediate low-level resubmit, which affects the bus lock...
442 mmc_spi_command_send(struct mmc_spi_host
*host
,
443 struct mmc_request
*mrq
,
444 struct mmc_command
*cmd
, int cs_on
)
446 struct scratch
*data
= host
->data
;
447 u8
*cp
= data
->status
;
450 struct spi_transfer
*t
;
452 /* We can handle most commands (except block reads) in one full
453 * duplex I/O operation before either starting the next transfer
454 * (data block or command) or else deselecting the card.
456 * First, write 7 bytes:
457 * - an all-ones byte to ensure the card is ready
458 * - opcode byte (plus start and transmission bits)
459 * - four bytes of big-endian argument
460 * - crc7 (plus end bit) ... always computed, it's cheap
462 * We init the whole buffer to all-ones, which is what we need
463 * to write while we're reading (later) response data.
465 memset(cp
++, 0xff, sizeof(data
->status
));
467 *cp
++ = 0x40 | cmd
->opcode
;
468 *cp
++ = (u8
)(arg
>> 24);
469 *cp
++ = (u8
)(arg
>> 16);
470 *cp
++ = (u8
)(arg
>> 8);
472 *cp
++ = (crc7(0, &data
->status
[1], 5) << 1) | 0x01;
474 /* Then, read up to 13 bytes (while writing all-ones):
475 * - N(CR) (== 1..8) bytes of all-ones
476 * - status byte (for all response types)
477 * - the rest of the response, either:
478 * + nothing, for R1 or R1B responses
479 * + second status byte, for R2 responses
480 * + four data bytes, for R3 and R7 responses
482 * Finally, read some more bytes ... in the nice cases we know in
483 * advance how many, and reading 1 more is always OK:
484 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
485 * - N(RC) (== 1..N) bytes of all-ones, before next command
486 * - N(WR) (== 1..N) bytes of all-ones, before data write
488 * So in those cases one full duplex I/O of at most 21 bytes will
489 * handle the whole command, leaving the card ready to receive a
490 * data block or new command. We do that whenever we can, shaving
491 * CPU and IRQ costs (especially when using DMA or FIFOs).
493 * There are two other cases, where it's not generally practical
494 * to rely on a single I/O:
496 * - R1B responses need at least N(EC) bytes of all-zeroes.
498 * In this case we can *try* to fit it into one I/O, then
499 * maybe read more data later.
501 * - Data block reads are more troublesome, since a variable
502 * number of padding bytes precede the token and data.
503 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
504 * + N(AC) (== 1..many) bytes of all-ones
506 * In this case we currently only have minimal speedups here:
507 * when N(CR) == 1 we can avoid I/O in response_get().
509 if (cs_on
&& (mrq
->data
->flags
& MMC_DATA_READ
)) {
510 cp
+= 2; /* min(N(CR)) + status */
513 cp
+= 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
514 if (cmd
->flags
& MMC_RSP_SPI_S2
) /* R2/R5 */
516 else if (cmd
->flags
& MMC_RSP_SPI_B4
) /* R3/R4/R7 */
518 else if (cmd
->flags
& MMC_RSP_BUSY
) /* R1B */
519 cp
= data
->status
+ sizeof(data
->status
);
520 /* else: R1 (most commands) */
523 dev_dbg(&host
->spi
->dev
, " mmc_spi: CMD%d, resp %s\n",
524 cmd
->opcode
, maptype(cmd
));
526 /* send command, leaving chipselect active */
527 spi_message_init(&host
->m
);
530 memset(t
, 0, sizeof(*t
));
531 t
->tx_buf
= t
->rx_buf
= data
->status
;
532 t
->tx_dma
= t
->rx_dma
= host
->data_dma
;
533 t
->len
= cp
- data
->status
;
535 spi_message_add_tail(t
, &host
->m
);
538 host
->m
.is_dma_mapped
= 1;
539 dma_sync_single_for_device(host
->dma_dev
,
540 host
->data_dma
, sizeof(*host
->data
),
543 status
= spi_sync(host
->spi
, &host
->m
);
546 dma_sync_single_for_cpu(host
->dma_dev
,
547 host
->data_dma
, sizeof(*host
->data
),
550 dev_dbg(&host
->spi
->dev
, " ... write returned %d\n", status
);
555 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
556 return mmc_spi_response_get(host
, cmd
, cs_on
);
559 /* Build data message with up to four separate transfers. For TX, we
560 * start by writing the data token. And in most cases, we finish with
563 * We always provide TX data for data and CRC. The MMC/SD protocol
564 * requires us to write ones; but Linux defaults to writing zeroes;
565 * so we explicitly initialize it to all ones on RX paths.
567 * We also handle DMA mapping, so the underlying SPI controller does
568 * not need to (re)do it for each message.
571 mmc_spi_setup_data_message(
572 struct mmc_spi_host
*host
,
574 enum dma_data_direction direction
)
576 struct spi_transfer
*t
;
577 struct scratch
*scratch
= host
->data
;
578 dma_addr_t dma
= host
->data_dma
;
580 spi_message_init(&host
->m
);
582 host
->m
.is_dma_mapped
= 1;
584 /* for reads, readblock() skips 0xff bytes before finding
585 * the token; for writes, this transfer issues that token.
587 if (direction
== DMA_TO_DEVICE
) {
589 memset(t
, 0, sizeof(*t
));
592 scratch
->data_token
= SPI_TOKEN_MULTI_WRITE
;
594 scratch
->data_token
= SPI_TOKEN_SINGLE
;
595 t
->tx_buf
= &scratch
->data_token
;
597 t
->tx_dma
= dma
+ offsetof(struct scratch
, data_token
);
598 spi_message_add_tail(t
, &host
->m
);
601 /* Body of transfer is buffer, then CRC ...
602 * either TX-only, or RX with TX-ones.
605 memset(t
, 0, sizeof(*t
));
606 t
->tx_buf
= host
->ones
;
607 t
->tx_dma
= host
->ones_dma
;
608 /* length and actual buffer info are written later */
609 spi_message_add_tail(t
, &host
->m
);
612 memset(t
, 0, sizeof(*t
));
614 if (direction
== DMA_TO_DEVICE
) {
615 /* the actual CRC may get written later */
616 t
->tx_buf
= &scratch
->crc_val
;
618 t
->tx_dma
= dma
+ offsetof(struct scratch
, crc_val
);
620 t
->tx_buf
= host
->ones
;
621 t
->tx_dma
= host
->ones_dma
;
622 t
->rx_buf
= &scratch
->crc_val
;
624 t
->rx_dma
= dma
+ offsetof(struct scratch
, crc_val
);
626 spi_message_add_tail(t
, &host
->m
);
629 * A single block read is followed by N(EC) [0+] all-ones bytes
630 * before deselect ... don't bother.
632 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
633 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
634 * collect that single byte, so readblock() doesn't need to.
636 * For a write, the one-byte data response follows immediately, then
637 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
638 * Then single block reads may deselect, and multiblock ones issue
639 * the next token (next data block, or STOP_TRAN). We can try to
640 * minimize I/O ops by using a single read to collect end-of-busy.
642 if (multiple
|| direction
== DMA_TO_DEVICE
) {
643 t
= &host
->early_status
;
644 memset(t
, 0, sizeof(*t
));
645 t
->len
= (direction
== DMA_TO_DEVICE
)
646 ? sizeof(scratch
->status
)
648 t
->tx_buf
= host
->ones
;
649 t
->tx_dma
= host
->ones_dma
;
650 t
->rx_buf
= scratch
->status
;
652 t
->rx_dma
= dma
+ offsetof(struct scratch
, status
);
654 spi_message_add_tail(t
, &host
->m
);
660 * - caller handled preceding N(WR) [1+] all-ones bytes
665 * - an all-ones byte ... card writes a data-response byte
666 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
668 * Return negative errno, else success.
671 mmc_spi_writeblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
,
672 unsigned long timeout
)
674 struct spi_device
*spi
= host
->spi
;
676 struct scratch
*scratch
= host
->data
;
679 if (host
->mmc
->use_spi_crc
)
680 scratch
->crc_val
= cpu_to_be16(
681 crc_itu_t(0, t
->tx_buf
, t
->len
));
683 dma_sync_single_for_device(host
->dma_dev
,
684 host
->data_dma
, sizeof(*scratch
),
687 status
= spi_sync(spi
, &host
->m
);
690 dev_dbg(&spi
->dev
, "write error (%d)\n", status
);
695 dma_sync_single_for_cpu(host
->dma_dev
,
696 host
->data_dma
, sizeof(*scratch
),
700 * Get the transmission data-response reply. It must follow
701 * immediately after the data block we transferred. This reply
702 * doesn't necessarily tell whether the write operation succeeded;
703 * it just says if the transmission was ok and whether *earlier*
704 * writes succeeded; see the standard.
706 * In practice, there are (even modern SDHC-)cards which are late
707 * in sending the response, and miss the time frame by a few bits,
708 * so we have to cope with this situation and check the response
709 * bit-by-bit. Arggh!!!
711 pattern
= scratch
->status
[0] << 24;
712 pattern
|= scratch
->status
[1] << 16;
713 pattern
|= scratch
->status
[2] << 8;
714 pattern
|= scratch
->status
[3];
716 /* First 3 bit of pattern are undefined */
717 pattern
|= 0xE0000000;
719 /* left-adjust to leading 0 bit */
720 while (pattern
& 0x80000000)
722 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
726 case SPI_RESPONSE_ACCEPTED
:
729 case SPI_RESPONSE_CRC_ERR
:
730 /* host shall then issue MMC_STOP_TRANSMISSION */
733 case SPI_RESPONSE_WRITE_ERR
:
734 /* host shall then issue MMC_STOP_TRANSMISSION,
735 * and should MMC_SEND_STATUS to sort it out
744 dev_dbg(&spi
->dev
, "write error %02x (%d)\n",
745 scratch
->status
[0], status
);
753 /* Return when not busy. If we didn't collect that status yet,
754 * we'll need some more I/O.
756 for (i
= 4; i
< sizeof(scratch
->status
); i
++) {
757 /* card is non-busy if the most recent bit is 1 */
758 if (scratch
->status
[i
] & 0x01)
761 return mmc_spi_wait_unbusy(host
, timeout
);
766 * - skip leading all-ones bytes ... either
767 * + N(AC) [1..f(clock,CSD)] usually, else
768 * + N(CX) [0..8] when reading CSD or CID
770 * + token ... if error token, no data or crc
774 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
775 * before dropping chipselect.
777 * For multiblock reads, caller either reads the next block or issues a
778 * STOP_TRANSMISSION command.
781 mmc_spi_readblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
,
782 unsigned long timeout
)
784 struct spi_device
*spi
= host
->spi
;
786 struct scratch
*scratch
= host
->data
;
787 unsigned int bitshift
;
790 /* At least one SD card sends an all-zeroes byte when N(CX)
791 * applies, before the all-ones bytes ... just cope with that.
793 status
= mmc_spi_readbytes(host
, 1);
796 status
= scratch
->status
[0];
797 if (status
== 0xff || status
== 0)
798 status
= mmc_spi_readtoken(host
, timeout
);
801 dev_dbg(&spi
->dev
, "read error %02x (%d)\n", status
, status
);
805 /* The token may be bit-shifted...
806 * the first 0-bit precedes the data stream.
809 while (status
& 0x80) {
813 leftover
= status
<< 1;
816 dma_sync_single_for_device(host
->dma_dev
,
817 host
->data_dma
, sizeof(*scratch
),
819 dma_sync_single_for_device(host
->dma_dev
,
824 status
= spi_sync(spi
, &host
->m
);
827 dma_sync_single_for_cpu(host
->dma_dev
,
828 host
->data_dma
, sizeof(*scratch
),
830 dma_sync_single_for_cpu(host
->dma_dev
,
836 /* Walk through the data and the crc and do
837 * all the magic to get byte-aligned data.
841 unsigned int bitright
= 8 - bitshift
;
843 for (len
= t
->len
; len
; len
--) {
845 *cp
++ = leftover
| (temp
>> bitshift
);
846 leftover
= temp
<< bitright
;
848 cp
= (u8
*) &scratch
->crc_val
;
850 *cp
++ = leftover
| (temp
>> bitshift
);
851 leftover
= temp
<< bitright
;
853 *cp
= leftover
| (temp
>> bitshift
);
856 if (host
->mmc
->use_spi_crc
) {
857 u16 crc
= crc_itu_t(0, t
->rx_buf
, t
->len
);
859 be16_to_cpus(&scratch
->crc_val
);
860 if (scratch
->crc_val
!= crc
) {
861 dev_dbg(&spi
->dev
, "read - crc error: crc_val=0x%04x, "
862 "computed=0x%04x len=%d\n",
863 scratch
->crc_val
, crc
, t
->len
);
876 * An MMC/SD data stage includes one or more blocks, optional CRCs,
877 * and inline handshaking. That handhaking makes it unlike most
878 * other SPI protocol stacks.
881 mmc_spi_data_do(struct mmc_spi_host
*host
, struct mmc_command
*cmd
,
882 struct mmc_data
*data
, u32 blk_size
)
884 struct spi_device
*spi
= host
->spi
;
885 struct device
*dma_dev
= host
->dma_dev
;
886 struct spi_transfer
*t
;
887 enum dma_data_direction direction
;
888 struct scatterlist
*sg
;
890 int multiple
= (data
->blocks
> 1);
892 unsigned long timeout
;
894 if (data
->flags
& MMC_DATA_READ
)
895 direction
= DMA_FROM_DEVICE
;
897 direction
= DMA_TO_DEVICE
;
898 mmc_spi_setup_data_message(host
, multiple
, direction
);
902 clock_rate
= t
->speed_hz
;
904 clock_rate
= spi
->max_speed_hz
;
906 timeout
= data
->timeout_ns
+
907 data
->timeout_clks
* 1000000 / clock_rate
;
908 timeout
= usecs_to_jiffies((unsigned int)(timeout
/ 1000)) + 1;
910 /* Handle scatterlist segments one at a time, with synch for
911 * each 512-byte block
913 for (sg
= data
->sg
, n_sg
= data
->sg_len
; n_sg
; n_sg
--, sg
++) {
915 dma_addr_t dma_addr
= 0;
917 unsigned length
= sg
->length
;
918 enum dma_data_direction dir
= direction
;
920 /* set up dma mapping for controller drivers that might
921 * use DMA ... though they may fall back to PIO
924 /* never invalidate whole *shared* pages ... */
925 if ((sg
->offset
!= 0 || length
!= PAGE_SIZE
)
926 && dir
== DMA_FROM_DEVICE
)
927 dir
= DMA_BIDIRECTIONAL
;
929 dma_addr
= dma_map_page(dma_dev
, sg_page(sg
), 0,
931 if (direction
== DMA_TO_DEVICE
)
932 t
->tx_dma
= dma_addr
+ sg
->offset
;
934 t
->rx_dma
= dma_addr
+ sg
->offset
;
937 /* allow pio too; we don't allow highmem */
938 kmap_addr
= kmap(sg_page(sg
));
939 if (direction
== DMA_TO_DEVICE
)
940 t
->tx_buf
= kmap_addr
+ sg
->offset
;
942 t
->rx_buf
= kmap_addr
+ sg
->offset
;
944 /* transfer each block, and update request status */
946 t
->len
= min(length
, blk_size
);
948 dev_dbg(&host
->spi
->dev
,
949 " mmc_spi: %s block, %d bytes\n",
950 (direction
== DMA_TO_DEVICE
)
955 if (direction
== DMA_TO_DEVICE
)
956 status
= mmc_spi_writeblock(host
, t
, timeout
);
958 status
= mmc_spi_readblock(host
, t
, timeout
);
962 data
->bytes_xfered
+= t
->len
;
969 /* discard mappings */
970 if (direction
== DMA_FROM_DEVICE
)
971 flush_kernel_dcache_page(sg_page(sg
));
974 dma_unmap_page(dma_dev
, dma_addr
, PAGE_SIZE
, dir
);
977 data
->error
= status
;
978 dev_dbg(&spi
->dev
, "%s status %d\n",
979 (direction
== DMA_TO_DEVICE
)
986 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
987 * can be issued before multiblock writes. Unlike its more widely
988 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
989 * that can affect the STOP_TRAN logic. Complete (and current)
990 * MMC specs should sort that out before Linux starts using CMD23.
992 if (direction
== DMA_TO_DEVICE
&& multiple
) {
993 struct scratch
*scratch
= host
->data
;
995 const unsigned statlen
= sizeof(scratch
->status
);
997 dev_dbg(&spi
->dev
, " mmc_spi: STOP_TRAN\n");
999 /* Tweak the per-block message we set up earlier by morphing
1000 * it to hold single buffer with the token followed by some
1001 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1002 * "not busy any longer" status, and leave chip selected.
1004 INIT_LIST_HEAD(&host
->m
.transfers
);
1005 list_add(&host
->early_status
.transfer_list
,
1006 &host
->m
.transfers
);
1008 memset(scratch
->status
, 0xff, statlen
);
1009 scratch
->status
[0] = SPI_TOKEN_STOP_TRAN
;
1011 host
->early_status
.tx_buf
= host
->early_status
.rx_buf
;
1012 host
->early_status
.tx_dma
= host
->early_status
.rx_dma
;
1013 host
->early_status
.len
= statlen
;
1016 dma_sync_single_for_device(host
->dma_dev
,
1017 host
->data_dma
, sizeof(*scratch
),
1020 tmp
= spi_sync(spi
, &host
->m
);
1023 dma_sync_single_for_cpu(host
->dma_dev
,
1024 host
->data_dma
, sizeof(*scratch
),
1033 /* Ideally we collected "not busy" status with one I/O,
1034 * avoiding wasteful byte-at-a-time scanning... but more
1035 * I/O is often needed.
1037 for (tmp
= 2; tmp
< statlen
; tmp
++) {
1038 if (scratch
->status
[tmp
] != 0)
1041 tmp
= mmc_spi_wait_unbusy(host
, timeout
);
1042 if (tmp
< 0 && !data
->error
)
1047 /****************************************************************************/
1050 * MMC driver implementation -- the interface to the MMC stack
1053 static void mmc_spi_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1055 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1056 int status
= -EINVAL
;
1059 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1061 struct mmc_command
*cmd
;
1065 if (!mmc_spi_resp_type(cmd
)) {
1066 dev_dbg(&host
->spi
->dev
, "bogus command\n");
1067 cmd
->error
= -EINVAL
;
1072 if (cmd
&& !mmc_spi_resp_type(cmd
)) {
1073 dev_dbg(&host
->spi
->dev
, "bogus STOP command\n");
1074 cmd
->error
= -EINVAL
;
1080 mmc_request_done(host
->mmc
, mrq
);
1086 /* issue command; then optionally data and stop */
1087 status
= mmc_spi_command_send(host
, mrq
, mrq
->cmd
, mrq
->data
!= NULL
);
1088 if (status
== 0 && mrq
->data
) {
1089 mmc_spi_data_do(host
, mrq
->cmd
, mrq
->data
, mrq
->data
->blksz
);
1091 status
= mmc_spi_command_send(host
, mrq
, mrq
->stop
, 0);
1096 mmc_request_done(host
->mmc
, mrq
);
1099 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1101 * NOTE that here we can't know that the card has just been powered up;
1102 * not all MMC/SD sockets support power switching.
1104 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1105 * this doesn't seem to do the right thing at all...
1107 static void mmc_spi_initsequence(struct mmc_spi_host
*host
)
1109 /* Try to be very sure any previous command has completed;
1110 * wait till not-busy, skip debris from any old commands.
1112 mmc_spi_wait_unbusy(host
, r1b_timeout
);
1113 mmc_spi_readbytes(host
, 10);
1116 * Do a burst with chipselect active-high. We need to do this to
1117 * meet the requirement of 74 clock cycles with both chipselect
1118 * and CMD (MOSI) high before CMD0 ... after the card has been
1119 * powered up to Vdd(min), and so is ready to take commands.
1121 * Some cards are particularly needy of this (e.g. Viking "SD256")
1122 * while most others don't seem to care.
1124 * Note that this is one of the places MMC/SD plays games with the
1125 * SPI protocol. Another is that when chipselect is released while
1126 * the card returns BUSY status, the clock must issue several cycles
1127 * with chipselect high before the card will stop driving its output.
1129 host
->spi
->mode
|= SPI_CS_HIGH
;
1130 if (spi_setup(host
->spi
) != 0) {
1131 /* Just warn; most cards work without it. */
1132 dev_warn(&host
->spi
->dev
,
1133 "can't change chip-select polarity\n");
1134 host
->spi
->mode
&= ~SPI_CS_HIGH
;
1136 mmc_spi_readbytes(host
, 18);
1138 host
->spi
->mode
&= ~SPI_CS_HIGH
;
1139 if (spi_setup(host
->spi
) != 0) {
1140 /* Wot, we can't get the same setup we had before? */
1141 dev_err(&host
->spi
->dev
,
1142 "can't restore chip-select polarity\n");
1147 static char *mmc_powerstring(u8 power_mode
)
1149 switch (power_mode
) {
1150 case MMC_POWER_OFF
: return "off";
1151 case MMC_POWER_UP
: return "up";
1152 case MMC_POWER_ON
: return "on";
1157 static void mmc_spi_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1159 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1161 if (host
->power_mode
!= ios
->power_mode
) {
1164 canpower
= host
->pdata
&& host
->pdata
->setpower
;
1166 dev_dbg(&host
->spi
->dev
, "mmc_spi: power %s (%d)%s\n",
1167 mmc_powerstring(ios
->power_mode
),
1169 canpower
? ", can switch" : "");
1171 /* switch power on/off if possible, accounting for
1172 * max 250msec powerup time if needed.
1175 switch (ios
->power_mode
) {
1178 host
->pdata
->setpower(&host
->spi
->dev
,
1180 if (ios
->power_mode
== MMC_POWER_UP
)
1181 msleep(host
->powerup_msecs
);
1185 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1186 if (ios
->power_mode
== MMC_POWER_ON
)
1187 mmc_spi_initsequence(host
);
1189 /* If powering down, ground all card inputs to avoid power
1190 * delivery from data lines! On a shared SPI bus, this
1191 * will probably be temporary; 6.4.2 of the simplified SD
1192 * spec says this must last at least 1msec.
1194 * - Clock low means CPOL 0, e.g. mode 0
1195 * - MOSI low comes from writing zero
1196 * - Chipselect is usually active low...
1198 if (canpower
&& ios
->power_mode
== MMC_POWER_OFF
) {
1202 host
->spi
->mode
&= ~(SPI_CPOL
|SPI_CPHA
);
1203 mres
= spi_setup(host
->spi
);
1205 dev_dbg(&host
->spi
->dev
,
1206 "switch to SPI mode 0 failed\n");
1208 if (spi_write(host
->spi
, &nullbyte
, 1) < 0)
1209 dev_dbg(&host
->spi
->dev
,
1210 "put spi signals to low failed\n");
1213 * Now clock should be low due to spi mode 0;
1214 * MOSI should be low because of written 0x00;
1215 * chipselect should be low (it is active low)
1216 * power supply is off, so now MMC is off too!
1218 * FIXME no, chipselect can be high since the
1219 * device is inactive and SPI_CS_HIGH is clear...
1223 host
->spi
->mode
|= (SPI_CPOL
|SPI_CPHA
);
1224 mres
= spi_setup(host
->spi
);
1226 dev_dbg(&host
->spi
->dev
,
1227 "switch back to SPI mode 3"
1232 host
->power_mode
= ios
->power_mode
;
1235 if (host
->spi
->max_speed_hz
!= ios
->clock
&& ios
->clock
!= 0) {
1238 host
->spi
->max_speed_hz
= ios
->clock
;
1239 status
= spi_setup(host
->spi
);
1240 dev_dbg(&host
->spi
->dev
,
1241 "mmc_spi: clock to %d Hz, %d\n",
1242 host
->spi
->max_speed_hz
, status
);
1246 static int mmc_spi_get_ro(struct mmc_host
*mmc
)
1248 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1250 if (host
->pdata
&& host
->pdata
->get_ro
)
1251 return !!host
->pdata
->get_ro(mmc
->parent
);
1253 * Board doesn't support read only detection; let the mmc core
1254 * decide what to do.
1259 static int mmc_spi_get_cd(struct mmc_host
*mmc
)
1261 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1263 if (host
->pdata
&& host
->pdata
->get_cd
)
1264 return !!host
->pdata
->get_cd(mmc
->parent
);
1268 static const struct mmc_host_ops mmc_spi_ops
= {
1269 .request
= mmc_spi_request
,
1270 .set_ios
= mmc_spi_set_ios
,
1271 .get_ro
= mmc_spi_get_ro
,
1272 .get_cd
= mmc_spi_get_cd
,
1276 /****************************************************************************/
1279 * SPI driver implementation
1283 mmc_spi_detect_irq(int irq
, void *mmc
)
1285 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1286 u16 delay_msec
= max(host
->pdata
->detect_delay
, (u16
)100);
1288 mmc_detect_change(mmc
, msecs_to_jiffies(delay_msec
));
1292 struct count_children
{
1294 struct bus_type
*bus
;
1297 static int maybe_count_child(struct device
*dev
, void *c
)
1299 struct count_children
*ccp
= c
;
1301 if (dev
->bus
== ccp
->bus
) {
1309 static int mmc_spi_probe(struct spi_device
*spi
)
1312 struct mmc_host
*mmc
;
1313 struct mmc_spi_host
*host
;
1316 /* We rely on full duplex transfers, mostly to reduce
1317 * per-transfer overheads (by making fewer transfers).
1319 if (spi
->master
->flags
& SPI_MASTER_HALF_DUPLEX
)
1322 /* MMC and SD specs only seem to care that sampling is on the
1323 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1324 * should be legit. We'll use mode 0 since the steady state is 0,
1325 * which is appropriate for hotplugging, unless the platform data
1326 * specify mode 3 (if hardware is not compatible to mode 0).
1328 if (spi
->mode
!= SPI_MODE_3
)
1329 spi
->mode
= SPI_MODE_0
;
1330 spi
->bits_per_word
= 8;
1332 status
= spi_setup(spi
);
1334 dev_dbg(&spi
->dev
, "needs SPI mode %02x, %d KHz; %d\n",
1335 spi
->mode
, spi
->max_speed_hz
/ 1000,
1340 /* We can use the bus safely iff nobody else will interfere with us.
1341 * Most commands consist of one SPI message to issue a command, then
1342 * several more to collect its response, then possibly more for data
1343 * transfer. Clocking access to other devices during that period will
1344 * corrupt the command execution.
1346 * Until we have software primitives which guarantee non-interference,
1347 * we'll aim for a hardware-level guarantee.
1349 * REVISIT we can't guarantee another device won't be added later...
1351 if (spi
->master
->num_chipselect
> 1) {
1352 struct count_children cc
;
1355 cc
.bus
= spi
->dev
.bus
;
1356 status
= device_for_each_child(spi
->dev
.parent
, &cc
,
1359 dev_err(&spi
->dev
, "can't share SPI bus\n");
1363 dev_warn(&spi
->dev
, "ASSUMING SPI bus stays unshared!\n");
1366 /* We need a supply of ones to transmit. This is the only time
1367 * the CPU touches these, so cache coherency isn't a concern.
1369 * NOTE if many systems use more than one MMC-over-SPI connector
1370 * it'd save some memory to share this. That's evidently rare.
1373 ones
= kmalloc(MMC_SPI_BLOCKSIZE
, GFP_KERNEL
);
1376 memset(ones
, 0xff, MMC_SPI_BLOCKSIZE
);
1378 mmc
= mmc_alloc_host(sizeof(*host
), &spi
->dev
);
1382 mmc
->ops
= &mmc_spi_ops
;
1383 mmc
->max_blk_size
= MMC_SPI_BLOCKSIZE
;
1384 mmc
->max_hw_segs
= MMC_SPI_BLOCKSATONCE
;
1385 mmc
->max_phys_segs
= MMC_SPI_BLOCKSATONCE
;
1386 mmc
->max_req_size
= MMC_SPI_BLOCKSATONCE
* MMC_SPI_BLOCKSIZE
;
1387 mmc
->max_blk_count
= MMC_SPI_BLOCKSATONCE
;
1389 mmc
->caps
= MMC_CAP_SPI
;
1391 /* SPI doesn't need the lowspeed device identification thing for
1392 * MMC or SD cards, since it never comes up in open drain mode.
1393 * That's good; some SPI masters can't handle very low speeds!
1395 * However, low speed SDIO cards need not handle over 400 KHz;
1396 * that's the only reason not to use a few MHz for f_min (until
1397 * the upper layer reads the target frequency from the CSD).
1399 mmc
->f_min
= 400000;
1400 mmc
->f_max
= spi
->max_speed_hz
;
1402 host
= mmc_priv(mmc
);
1408 /* Platform data is used to hook up things like card sensing
1409 * and power switching gpios.
1411 host
->pdata
= mmc_spi_get_pdata(spi
);
1413 mmc
->ocr_avail
= host
->pdata
->ocr_mask
;
1414 if (!mmc
->ocr_avail
) {
1415 dev_warn(&spi
->dev
, "ASSUMING 3.2-3.4 V slot power\n");
1416 mmc
->ocr_avail
= MMC_VDD_32_33
|MMC_VDD_33_34
;
1418 if (host
->pdata
&& host
->pdata
->setpower
) {
1419 host
->powerup_msecs
= host
->pdata
->powerup_msecs
;
1420 if (!host
->powerup_msecs
|| host
->powerup_msecs
> 250)
1421 host
->powerup_msecs
= 250;
1424 dev_set_drvdata(&spi
->dev
, mmc
);
1426 /* preallocate dma buffers */
1427 host
->data
= kmalloc(sizeof(*host
->data
), GFP_KERNEL
);
1431 if (spi
->master
->dev
.parent
->dma_mask
) {
1432 struct device
*dev
= spi
->master
->dev
.parent
;
1434 host
->dma_dev
= dev
;
1435 host
->ones_dma
= dma_map_single(dev
, ones
,
1436 MMC_SPI_BLOCKSIZE
, DMA_TO_DEVICE
);
1437 host
->data_dma
= dma_map_single(dev
, host
->data
,
1438 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1440 /* REVISIT in theory those map operations can fail... */
1442 dma_sync_single_for_cpu(host
->dma_dev
,
1443 host
->data_dma
, sizeof(*host
->data
),
1447 /* setup message for status/busy readback */
1448 spi_message_init(&host
->readback
);
1449 host
->readback
.is_dma_mapped
= (host
->dma_dev
!= NULL
);
1451 spi_message_add_tail(&host
->status
, &host
->readback
);
1452 host
->status
.tx_buf
= host
->ones
;
1453 host
->status
.tx_dma
= host
->ones_dma
;
1454 host
->status
.rx_buf
= &host
->data
->status
;
1455 host
->status
.rx_dma
= host
->data_dma
+ offsetof(struct scratch
, status
);
1456 host
->status
.cs_change
= 1;
1458 /* register card detect irq */
1459 if (host
->pdata
&& host
->pdata
->init
) {
1460 status
= host
->pdata
->init(&spi
->dev
, mmc_spi_detect_irq
, mmc
);
1462 goto fail_glue_init
;
1465 /* pass platform capabilities, if any */
1467 mmc
->caps
|= host
->pdata
->caps
;
1469 status
= mmc_add_host(mmc
);
1473 dev_info(&spi
->dev
, "SD/MMC host %s%s%s%s%s\n",
1474 dev_name(&mmc
->class_dev
),
1475 host
->dma_dev
? "" : ", no DMA",
1476 (host
->pdata
&& host
->pdata
->get_ro
)
1478 (host
->pdata
&& host
->pdata
->setpower
)
1479 ? "" : ", no poweroff",
1480 (mmc
->caps
& MMC_CAP_NEEDS_POLL
)
1481 ? ", cd polling" : "");
1485 mmc_remove_host (mmc
);
1488 dma_unmap_single(host
->dma_dev
, host
->data_dma
,
1489 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1494 mmc_spi_put_pdata(spi
);
1495 dev_set_drvdata(&spi
->dev
, NULL
);
1503 static int __devexit
mmc_spi_remove(struct spi_device
*spi
)
1505 struct mmc_host
*mmc
= dev_get_drvdata(&spi
->dev
);
1506 struct mmc_spi_host
*host
;
1509 host
= mmc_priv(mmc
);
1511 /* prevent new mmc_detect_change() calls */
1512 if (host
->pdata
&& host
->pdata
->exit
)
1513 host
->pdata
->exit(&spi
->dev
, mmc
);
1515 mmc_remove_host(mmc
);
1517 if (host
->dma_dev
) {
1518 dma_unmap_single(host
->dma_dev
, host
->ones_dma
,
1519 MMC_SPI_BLOCKSIZE
, DMA_TO_DEVICE
);
1520 dma_unmap_single(host
->dma_dev
, host
->data_dma
,
1521 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1527 spi
->max_speed_hz
= mmc
->f_max
;
1529 mmc_spi_put_pdata(spi
);
1530 dev_set_drvdata(&spi
->dev
, NULL
);
1536 static struct spi_driver mmc_spi_driver
= {
1539 .bus
= &spi_bus_type
,
1540 .owner
= THIS_MODULE
,
1542 .probe
= mmc_spi_probe
,
1543 .remove
= __devexit_p(mmc_spi_remove
),
1547 static int __init
mmc_spi_init(void)
1549 return spi_register_driver(&mmc_spi_driver
);
1551 module_init(mmc_spi_init
);
1554 static void __exit
mmc_spi_exit(void)
1556 spi_unregister_driver(&mmc_spi_driver
);
1558 module_exit(mmc_spi_exit
);
1561 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1562 "Hans-Peter Nilsson, Jan Nikitenko");
1563 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1564 MODULE_LICENSE("GPL");
1565 MODULE_ALIAS("spi:mmc_spi");