4 #include <linux/errno.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
20 struct writeback_control
;
23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24 extern unsigned long max_mapnr
;
27 extern unsigned long num_physpages
;
28 extern unsigned long totalram_pages
;
29 extern void * high_memory
;
30 extern int page_cluster
;
33 extern int sysctl_legacy_va_layout
;
35 #define sysctl_legacy_va_layout 0
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44 /* to align the pointer to the (next) page boundary */
45 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48 * Linux kernel virtual memory manager primitives.
49 * The idea being to have a "virtual" mm in the same way
50 * we have a virtual fs - giving a cleaner interface to the
51 * mm details, and allowing different kinds of memory mappings
52 * (from shared memory to executable loading to arbitrary
56 extern struct kmem_cache
*vm_area_cachep
;
59 extern struct rb_root nommu_region_tree
;
60 extern struct rw_semaphore nommu_region_sem
;
62 extern unsigned int kobjsize(const void *objp
);
66 * vm_flags in vm_area_struct, see mm_types.h.
68 #define VM_READ 0x00000001 /* currently active flags */
69 #define VM_WRITE 0x00000002
70 #define VM_EXEC 0x00000004
71 #define VM_SHARED 0x00000008
73 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
74 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
75 #define VM_MAYWRITE 0x00000020
76 #define VM_MAYEXEC 0x00000040
77 #define VM_MAYSHARE 0x00000080
79 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
80 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
81 #define VM_GROWSUP 0x00000200
83 #define VM_GROWSUP 0x00000000
85 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
86 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
88 #define VM_EXECUTABLE 0x00001000
89 #define VM_LOCKED 0x00002000
90 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92 /* Used by sys_madvise() */
93 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
94 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
97 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
98 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
99 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
100 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
101 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
103 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
104 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
105 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
107 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
108 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
109 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
110 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
111 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
113 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
114 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
117 #ifdef CONFIG_STACK_GROWSUP
118 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
120 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
123 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
124 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
125 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
126 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
127 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
130 * special vmas that are non-mergable, non-mlock()able
132 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
135 * mapping from the currently active vm_flags protection bits (the
136 * low four bits) to a page protection mask..
138 extern pgprot_t protection_map
[16];
140 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
141 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
142 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
145 * This interface is used by x86 PAT code to identify a pfn mapping that is
146 * linear over entire vma. This is to optimize PAT code that deals with
147 * marking the physical region with a particular prot. This is not for generic
148 * mm use. Note also that this check will not work if the pfn mapping is
149 * linear for a vma starting at physical address 0. In which case PAT code
150 * falls back to slow path of reserving physical range page by page.
152 static inline int is_linear_pfn_mapping(struct vm_area_struct
*vma
)
154 return (vma
->vm_flags
& VM_PFN_AT_MMAP
);
157 static inline int is_pfn_mapping(struct vm_area_struct
*vma
)
159 return (vma
->vm_flags
& VM_PFNMAP
);
163 * vm_fault is filled by the the pagefault handler and passed to the vma's
164 * ->fault function. The vma's ->fault is responsible for returning a bitmask
165 * of VM_FAULT_xxx flags that give details about how the fault was handled.
167 * pgoff should be used in favour of virtual_address, if possible. If pgoff
168 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
172 unsigned int flags
; /* FAULT_FLAG_xxx flags */
173 pgoff_t pgoff
; /* Logical page offset based on vma */
174 void __user
*virtual_address
; /* Faulting virtual address */
176 struct page
*page
; /* ->fault handlers should return a
177 * page here, unless VM_FAULT_NOPAGE
178 * is set (which is also implied by
184 * These are the virtual MM functions - opening of an area, closing and
185 * unmapping it (needed to keep files on disk up-to-date etc), pointer
186 * to the functions called when a no-page or a wp-page exception occurs.
188 struct vm_operations_struct
{
189 void (*open
)(struct vm_area_struct
* area
);
190 void (*close
)(struct vm_area_struct
* area
);
191 int (*fault
)(struct vm_area_struct
*vma
, struct vm_fault
*vmf
);
193 /* notification that a previously read-only page is about to become
194 * writable, if an error is returned it will cause a SIGBUS */
195 int (*page_mkwrite
)(struct vm_area_struct
*vma
, struct vm_fault
*vmf
);
197 /* called by access_process_vm when get_user_pages() fails, typically
198 * for use by special VMAs that can switch between memory and hardware
200 int (*access
)(struct vm_area_struct
*vma
, unsigned long addr
,
201 void *buf
, int len
, int write
);
204 * set_policy() op must add a reference to any non-NULL @new mempolicy
205 * to hold the policy upon return. Caller should pass NULL @new to
206 * remove a policy and fall back to surrounding context--i.e. do not
207 * install a MPOL_DEFAULT policy, nor the task or system default
210 int (*set_policy
)(struct vm_area_struct
*vma
, struct mempolicy
*new);
213 * get_policy() op must add reference [mpol_get()] to any policy at
214 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
215 * in mm/mempolicy.c will do this automatically.
216 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
217 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
218 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
219 * must return NULL--i.e., do not "fallback" to task or system default
222 struct mempolicy
*(*get_policy
)(struct vm_area_struct
*vma
,
224 int (*migrate
)(struct vm_area_struct
*vma
, const nodemask_t
*from
,
225 const nodemask_t
*to
, unsigned long flags
);
232 #define page_private(page) ((page)->private)
233 #define set_page_private(page, v) ((page)->private = (v))
236 * FIXME: take this include out, include page-flags.h in
237 * files which need it (119 of them)
239 #include <linux/page-flags.h>
242 * Methods to modify the page usage count.
244 * What counts for a page usage:
245 * - cache mapping (page->mapping)
246 * - private data (page->private)
247 * - page mapped in a task's page tables, each mapping
248 * is counted separately
250 * Also, many kernel routines increase the page count before a critical
251 * routine so they can be sure the page doesn't go away from under them.
255 * Drop a ref, return true if the refcount fell to zero (the page has no users)
257 static inline int put_page_testzero(struct page
*page
)
259 VM_BUG_ON(atomic_read(&page
->_count
) == 0);
260 return atomic_dec_and_test(&page
->_count
);
264 * Try to grab a ref unless the page has a refcount of zero, return false if
267 static inline int get_page_unless_zero(struct page
*page
)
269 return atomic_inc_not_zero(&page
->_count
);
272 /* Support for virtually mapped pages */
273 struct page
*vmalloc_to_page(const void *addr
);
274 unsigned long vmalloc_to_pfn(const void *addr
);
277 * Determine if an address is within the vmalloc range
279 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
280 * is no special casing required.
282 static inline int is_vmalloc_addr(const void *x
)
285 unsigned long addr
= (unsigned long)x
;
287 return addr
>= VMALLOC_START
&& addr
< VMALLOC_END
;
293 extern int is_vmalloc_or_module_addr(const void *x
);
295 static inline int is_vmalloc_or_module_addr(const void *x
)
301 static inline struct page
*compound_head(struct page
*page
)
303 if (unlikely(PageTail(page
)))
304 return page
->first_page
;
308 static inline int page_count(struct page
*page
)
310 return atomic_read(&compound_head(page
)->_count
);
313 static inline void get_page(struct page
*page
)
315 page
= compound_head(page
);
316 VM_BUG_ON(atomic_read(&page
->_count
) == 0);
317 atomic_inc(&page
->_count
);
320 static inline struct page
*virt_to_head_page(const void *x
)
322 struct page
*page
= virt_to_page(x
);
323 return compound_head(page
);
327 * Setup the page count before being freed into the page allocator for
328 * the first time (boot or memory hotplug)
330 static inline void init_page_count(struct page
*page
)
332 atomic_set(&page
->_count
, 1);
335 void put_page(struct page
*page
);
336 void put_pages_list(struct list_head
*pages
);
338 void split_page(struct page
*page
, unsigned int order
);
341 * Compound pages have a destructor function. Provide a
342 * prototype for that function and accessor functions.
343 * These are _only_ valid on the head of a PG_compound page.
345 typedef void compound_page_dtor(struct page
*);
347 static inline void set_compound_page_dtor(struct page
*page
,
348 compound_page_dtor
*dtor
)
350 page
[1].lru
.next
= (void *)dtor
;
353 static inline compound_page_dtor
*get_compound_page_dtor(struct page
*page
)
355 return (compound_page_dtor
*)page
[1].lru
.next
;
358 static inline int compound_order(struct page
*page
)
362 return (unsigned long)page
[1].lru
.prev
;
365 static inline void set_compound_order(struct page
*page
, unsigned long order
)
367 page
[1].lru
.prev
= (void *)order
;
371 * Multiple processes may "see" the same page. E.g. for untouched
372 * mappings of /dev/null, all processes see the same page full of
373 * zeroes, and text pages of executables and shared libraries have
374 * only one copy in memory, at most, normally.
376 * For the non-reserved pages, page_count(page) denotes a reference count.
377 * page_count() == 0 means the page is free. page->lru is then used for
378 * freelist management in the buddy allocator.
379 * page_count() > 0 means the page has been allocated.
381 * Pages are allocated by the slab allocator in order to provide memory
382 * to kmalloc and kmem_cache_alloc. In this case, the management of the
383 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
384 * unless a particular usage is carefully commented. (the responsibility of
385 * freeing the kmalloc memory is the caller's, of course).
387 * A page may be used by anyone else who does a __get_free_page().
388 * In this case, page_count still tracks the references, and should only
389 * be used through the normal accessor functions. The top bits of page->flags
390 * and page->virtual store page management information, but all other fields
391 * are unused and could be used privately, carefully. The management of this
392 * page is the responsibility of the one who allocated it, and those who have
393 * subsequently been given references to it.
395 * The other pages (we may call them "pagecache pages") are completely
396 * managed by the Linux memory manager: I/O, buffers, swapping etc.
397 * The following discussion applies only to them.
399 * A pagecache page contains an opaque `private' member, which belongs to the
400 * page's address_space. Usually, this is the address of a circular list of
401 * the page's disk buffers. PG_private must be set to tell the VM to call
402 * into the filesystem to release these pages.
404 * A page may belong to an inode's memory mapping. In this case, page->mapping
405 * is the pointer to the inode, and page->index is the file offset of the page,
406 * in units of PAGE_CACHE_SIZE.
408 * If pagecache pages are not associated with an inode, they are said to be
409 * anonymous pages. These may become associated with the swapcache, and in that
410 * case PG_swapcache is set, and page->private is an offset into the swapcache.
412 * In either case (swapcache or inode backed), the pagecache itself holds one
413 * reference to the page. Setting PG_private should also increment the
414 * refcount. The each user mapping also has a reference to the page.
416 * The pagecache pages are stored in a per-mapping radix tree, which is
417 * rooted at mapping->page_tree, and indexed by offset.
418 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
419 * lists, we instead now tag pages as dirty/writeback in the radix tree.
421 * All pagecache pages may be subject to I/O:
422 * - inode pages may need to be read from disk,
423 * - inode pages which have been modified and are MAP_SHARED may need
424 * to be written back to the inode on disk,
425 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
426 * modified may need to be swapped out to swap space and (later) to be read
431 * The zone field is never updated after free_area_init_core()
432 * sets it, so none of the operations on it need to be atomic.
437 * page->flags layout:
439 * There are three possibilities for how page->flags get
440 * laid out. The first is for the normal case, without
441 * sparsemem. The second is for sparsemem when there is
442 * plenty of space for node and section. The last is when
443 * we have run out of space and have to fall back to an
444 * alternate (slower) way of determining the node.
446 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
447 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
448 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
450 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
451 #define SECTIONS_WIDTH SECTIONS_SHIFT
453 #define SECTIONS_WIDTH 0
456 #define ZONES_WIDTH ZONES_SHIFT
458 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
459 #define NODES_WIDTH NODES_SHIFT
461 #ifdef CONFIG_SPARSEMEM_VMEMMAP
462 #error "Vmemmap: No space for nodes field in page flags"
464 #define NODES_WIDTH 0
467 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
468 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
469 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
470 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
473 * We are going to use the flags for the page to node mapping if its in
474 * there. This includes the case where there is no node, so it is implicit.
476 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
477 #define NODE_NOT_IN_PAGE_FLAGS
480 #ifndef PFN_SECTION_SHIFT
481 #define PFN_SECTION_SHIFT 0
485 * Define the bit shifts to access each section. For non-existant
486 * sections we define the shift as 0; that plus a 0 mask ensures
487 * the compiler will optimise away reference to them.
489 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
490 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
491 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
493 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
494 #ifdef NODE_NOT_IN_PAGEFLAGS
495 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
496 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
497 SECTIONS_PGOFF : ZONES_PGOFF)
499 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
500 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
501 NODES_PGOFF : ZONES_PGOFF)
504 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
506 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
507 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
510 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
511 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
512 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
513 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
515 static inline enum zone_type
page_zonenum(struct page
*page
)
517 return (page
->flags
>> ZONES_PGSHIFT
) & ZONES_MASK
;
521 * The identification function is only used by the buddy allocator for
522 * determining if two pages could be buddies. We are not really
523 * identifying a zone since we could be using a the section number
524 * id if we have not node id available in page flags.
525 * We guarantee only that it will return the same value for two
526 * combinable pages in a zone.
528 static inline int page_zone_id(struct page
*page
)
530 return (page
->flags
>> ZONEID_PGSHIFT
) & ZONEID_MASK
;
533 static inline int zone_to_nid(struct zone
*zone
)
542 #ifdef NODE_NOT_IN_PAGE_FLAGS
543 extern int page_to_nid(struct page
*page
);
545 static inline int page_to_nid(struct page
*page
)
547 return (page
->flags
>> NODES_PGSHIFT
) & NODES_MASK
;
551 static inline struct zone
*page_zone(struct page
*page
)
553 return &NODE_DATA(page_to_nid(page
))->node_zones
[page_zonenum(page
)];
556 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
557 static inline unsigned long page_to_section(struct page
*page
)
559 return (page
->flags
>> SECTIONS_PGSHIFT
) & SECTIONS_MASK
;
563 static inline void set_page_zone(struct page
*page
, enum zone_type zone
)
565 page
->flags
&= ~(ZONES_MASK
<< ZONES_PGSHIFT
);
566 page
->flags
|= (zone
& ZONES_MASK
) << ZONES_PGSHIFT
;
569 static inline void set_page_node(struct page
*page
, unsigned long node
)
571 page
->flags
&= ~(NODES_MASK
<< NODES_PGSHIFT
);
572 page
->flags
|= (node
& NODES_MASK
) << NODES_PGSHIFT
;
575 static inline void set_page_section(struct page
*page
, unsigned long section
)
577 page
->flags
&= ~(SECTIONS_MASK
<< SECTIONS_PGSHIFT
);
578 page
->flags
|= (section
& SECTIONS_MASK
) << SECTIONS_PGSHIFT
;
581 static inline void set_page_links(struct page
*page
, enum zone_type zone
,
582 unsigned long node
, unsigned long pfn
)
584 set_page_zone(page
, zone
);
585 set_page_node(page
, node
);
586 set_page_section(page
, pfn_to_section_nr(pfn
));
590 * Some inline functions in vmstat.h depend on page_zone()
592 #include <linux/vmstat.h>
594 static __always_inline
void *lowmem_page_address(struct page
*page
)
596 return __va(page_to_pfn(page
) << PAGE_SHIFT
);
599 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
600 #define HASHED_PAGE_VIRTUAL
603 #if defined(WANT_PAGE_VIRTUAL)
604 #define page_address(page) ((page)->virtual)
605 #define set_page_address(page, address) \
607 (page)->virtual = (address); \
609 #define page_address_init() do { } while(0)
612 #if defined(HASHED_PAGE_VIRTUAL)
613 void *page_address(struct page
*page
);
614 void set_page_address(struct page
*page
, void *virtual);
615 void page_address_init(void);
618 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
619 #define page_address(page) lowmem_page_address(page)
620 #define set_page_address(page, address) do { } while(0)
621 #define page_address_init() do { } while(0)
625 * On an anonymous page mapped into a user virtual memory area,
626 * page->mapping points to its anon_vma, not to a struct address_space;
627 * with the PAGE_MAPPING_ANON bit set to distinguish it.
629 * Please note that, confusingly, "page_mapping" refers to the inode
630 * address_space which maps the page from disk; whereas "page_mapped"
631 * refers to user virtual address space into which the page is mapped.
633 #define PAGE_MAPPING_ANON 1
635 extern struct address_space swapper_space
;
636 static inline struct address_space
*page_mapping(struct page
*page
)
638 struct address_space
*mapping
= page
->mapping
;
640 VM_BUG_ON(PageSlab(page
));
642 if (unlikely(PageSwapCache(page
)))
643 mapping
= &swapper_space
;
646 if (unlikely((unsigned long)mapping
& PAGE_MAPPING_ANON
))
651 static inline int PageAnon(struct page
*page
)
653 return ((unsigned long)page
->mapping
& PAGE_MAPPING_ANON
) != 0;
657 * Return the pagecache index of the passed page. Regular pagecache pages
658 * use ->index whereas swapcache pages use ->private
660 static inline pgoff_t
page_index(struct page
*page
)
662 if (unlikely(PageSwapCache(page
)))
663 return page_private(page
);
668 * The atomic page->_mapcount, like _count, starts from -1:
669 * so that transitions both from it and to it can be tracked,
670 * using atomic_inc_and_test and atomic_add_negative(-1).
672 static inline void reset_page_mapcount(struct page
*page
)
674 atomic_set(&(page
)->_mapcount
, -1);
677 static inline int page_mapcount(struct page
*page
)
679 return atomic_read(&(page
)->_mapcount
) + 1;
683 * Return true if this page is mapped into pagetables.
685 static inline int page_mapped(struct page
*page
)
687 return atomic_read(&(page
)->_mapcount
) >= 0;
691 * Different kinds of faults, as returned by handle_mm_fault().
692 * Used to decide whether a process gets delivered SIGBUS or
693 * just gets major/minor fault counters bumped up.
696 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
698 #define VM_FAULT_OOM 0x0001
699 #define VM_FAULT_SIGBUS 0x0002
700 #define VM_FAULT_MAJOR 0x0004
701 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
702 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned page */
704 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
705 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
707 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)
710 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
712 extern void pagefault_out_of_memory(void);
714 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
716 extern void show_free_areas(void);
718 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
);
719 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
);
720 int shmem_zero_setup(struct vm_area_struct
*);
723 extern unsigned long shmem_get_unmapped_area(struct file
*file
,
727 unsigned long flags
);
730 extern int can_do_mlock(void);
731 extern int user_shm_lock(size_t, struct user_struct
*);
732 extern void user_shm_unlock(size_t, struct user_struct
*);
735 * Parameter block passed down to zap_pte_range in exceptional cases.
738 struct vm_area_struct
*nonlinear_vma
; /* Check page->index if set */
739 struct address_space
*check_mapping
; /* Check page->mapping if set */
740 pgoff_t first_index
; /* Lowest page->index to unmap */
741 pgoff_t last_index
; /* Highest page->index to unmap */
742 spinlock_t
*i_mmap_lock
; /* For unmap_mapping_range: */
743 unsigned long truncate_count
; /* Compare vm_truncate_count */
746 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
749 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
751 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
752 unsigned long size
, struct zap_details
*);
753 unsigned long unmap_vmas(struct mmu_gather
**tlb
,
754 struct vm_area_struct
*start_vma
, unsigned long start_addr
,
755 unsigned long end_addr
, unsigned long *nr_accounted
,
756 struct zap_details
*);
759 * mm_walk - callbacks for walk_page_range
760 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
761 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
762 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
763 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
764 * @pte_hole: if set, called for each hole at all levels
766 * (see walk_page_range for more details)
769 int (*pgd_entry
)(pgd_t
*, unsigned long, unsigned long, struct mm_walk
*);
770 int (*pud_entry
)(pud_t
*, unsigned long, unsigned long, struct mm_walk
*);
771 int (*pmd_entry
)(pmd_t
*, unsigned long, unsigned long, struct mm_walk
*);
772 int (*pte_entry
)(pte_t
*, unsigned long, unsigned long, struct mm_walk
*);
773 int (*pte_hole
)(unsigned long, unsigned long, struct mm_walk
*);
774 struct mm_struct
*mm
;
778 int walk_page_range(unsigned long addr
, unsigned long end
,
779 struct mm_walk
*walk
);
780 void free_pgd_range(struct mmu_gather
*tlb
, unsigned long addr
,
781 unsigned long end
, unsigned long floor
, unsigned long ceiling
);
782 int copy_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
783 struct vm_area_struct
*vma
);
784 void unmap_mapping_range(struct address_space
*mapping
,
785 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
);
786 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
788 int follow_phys(struct vm_area_struct
*vma
, unsigned long address
,
789 unsigned int flags
, unsigned long *prot
, resource_size_t
*phys
);
790 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
791 void *buf
, int len
, int write
);
793 static inline void unmap_shared_mapping_range(struct address_space
*mapping
,
794 loff_t
const holebegin
, loff_t
const holelen
)
796 unmap_mapping_range(mapping
, holebegin
, holelen
, 0);
799 extern void truncate_pagecache(struct inode
*inode
, loff_t old
, loff_t
new);
800 extern int vmtruncate(struct inode
*inode
, loff_t offset
);
801 extern int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
);
803 int truncate_inode_page(struct address_space
*mapping
, struct page
*page
);
804 int generic_error_remove_page(struct address_space
*mapping
, struct page
*page
);
806 int invalidate_inode_page(struct page
*page
);
809 extern int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
810 unsigned long address
, unsigned int flags
);
812 static inline int handle_mm_fault(struct mm_struct
*mm
,
813 struct vm_area_struct
*vma
, unsigned long address
,
816 /* should never happen if there's no MMU */
818 return VM_FAULT_SIGBUS
;
822 extern int make_pages_present(unsigned long addr
, unsigned long end
);
823 extern int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
);
825 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
826 unsigned long start
, int nr_pages
, int write
, int force
,
827 struct page
**pages
, struct vm_area_struct
**vmas
);
828 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
829 struct page
**pages
);
830 struct page
*get_dump_page(unsigned long addr
);
832 extern int try_to_release_page(struct page
* page
, gfp_t gfp_mask
);
833 extern void do_invalidatepage(struct page
*page
, unsigned long offset
);
835 int __set_page_dirty_nobuffers(struct page
*page
);
836 int __set_page_dirty_no_writeback(struct page
*page
);
837 int redirty_page_for_writepage(struct writeback_control
*wbc
,
839 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
);
840 int set_page_dirty(struct page
*page
);
841 int set_page_dirty_lock(struct page
*page
);
842 int clear_page_dirty_for_io(struct page
*page
);
844 /* Is the vma a continuation of the stack vma above it? */
845 static inline int vma_stack_continue(struct vm_area_struct
*vma
, unsigned long addr
)
847 return vma
&& (vma
->vm_end
== addr
) && (vma
->vm_flags
& VM_GROWSDOWN
);
850 extern unsigned long move_page_tables(struct vm_area_struct
*vma
,
851 unsigned long old_addr
, struct vm_area_struct
*new_vma
,
852 unsigned long new_addr
, unsigned long len
);
853 extern unsigned long do_mremap(unsigned long addr
,
854 unsigned long old_len
, unsigned long new_len
,
855 unsigned long flags
, unsigned long new_addr
);
856 extern int mprotect_fixup(struct vm_area_struct
*vma
,
857 struct vm_area_struct
**pprev
, unsigned long start
,
858 unsigned long end
, unsigned long newflags
);
861 * doesn't attempt to fault and will return short.
863 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
864 struct page
**pages
);
867 * A callback you can register to apply pressure to ageable caches.
869 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
870 * look through the least-recently-used 'nr_to_scan' entries and
871 * attempt to free them up. It should return the number of objects
872 * which remain in the cache. If it returns -1, it means it cannot do
873 * any scanning at this time (eg. there is a risk of deadlock).
875 * The 'gfpmask' refers to the allocation we are currently trying to
878 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
879 * querying the cache size, so a fastpath for that case is appropriate.
882 int (*shrink
)(int nr_to_scan
, gfp_t gfp_mask
);
883 int seeks
; /* seeks to recreate an obj */
885 /* These are for internal use */
886 struct list_head list
;
887 long nr
; /* objs pending delete */
889 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
890 extern void register_shrinker(struct shrinker
*);
891 extern void unregister_shrinker(struct shrinker
*);
893 int vma_wants_writenotify(struct vm_area_struct
*vma
);
895 extern pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
, spinlock_t
**ptl
);
897 #ifdef __PAGETABLE_PUD_FOLDED
898 static inline int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
,
899 unsigned long address
)
904 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
);
907 #ifdef __PAGETABLE_PMD_FOLDED
908 static inline int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
,
909 unsigned long address
)
914 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
);
917 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
);
918 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
);
921 * The following ifdef needed to get the 4level-fixup.h header to work.
922 * Remove it when 4level-fixup.h has been removed.
924 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
925 static inline pud_t
*pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
927 return (unlikely(pgd_none(*pgd
)) && __pud_alloc(mm
, pgd
, address
))?
928 NULL
: pud_offset(pgd
, address
);
931 static inline pmd_t
*pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
933 return (unlikely(pud_none(*pud
)) && __pmd_alloc(mm
, pud
, address
))?
934 NULL
: pmd_offset(pud
, address
);
936 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
938 #if USE_SPLIT_PTLOCKS
940 * We tuck a spinlock to guard each pagetable page into its struct page,
941 * at page->private, with BUILD_BUG_ON to make sure that this will not
942 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
943 * When freeing, reset page->mapping so free_pages_check won't complain.
945 #define __pte_lockptr(page) &((page)->ptl)
946 #define pte_lock_init(_page) do { \
947 spin_lock_init(__pte_lockptr(_page)); \
949 #define pte_lock_deinit(page) ((page)->mapping = NULL)
950 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
951 #else /* !USE_SPLIT_PTLOCKS */
953 * We use mm->page_table_lock to guard all pagetable pages of the mm.
955 #define pte_lock_init(page) do {} while (0)
956 #define pte_lock_deinit(page) do {} while (0)
957 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
958 #endif /* USE_SPLIT_PTLOCKS */
960 static inline void pgtable_page_ctor(struct page
*page
)
963 inc_zone_page_state(page
, NR_PAGETABLE
);
966 static inline void pgtable_page_dtor(struct page
*page
)
968 pte_lock_deinit(page
);
969 dec_zone_page_state(page
, NR_PAGETABLE
);
972 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
974 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
975 pte_t *__pte = pte_offset_map(pmd, address); \
981 #define pte_unmap_unlock(pte, ptl) do { \
986 #define pte_alloc_map(mm, pmd, address) \
987 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
988 NULL: pte_offset_map(pmd, address))
990 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
991 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
992 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
994 #define pte_alloc_kernel(pmd, address) \
995 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
996 NULL: pte_offset_kernel(pmd, address))
998 extern void free_area_init(unsigned long * zones_size
);
999 extern void free_area_init_node(int nid
, unsigned long * zones_size
,
1000 unsigned long zone_start_pfn
, unsigned long *zholes_size
);
1001 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1003 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1004 * zones, allocate the backing mem_map and account for memory holes in a more
1005 * architecture independent manner. This is a substitute for creating the
1006 * zone_sizes[] and zholes_size[] arrays and passing them to
1007 * free_area_init_node()
1009 * An architecture is expected to register range of page frames backed by
1010 * physical memory with add_active_range() before calling
1011 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1012 * usage, an architecture is expected to do something like
1014 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1016 * for_each_valid_physical_page_range()
1017 * add_active_range(node_id, start_pfn, end_pfn)
1018 * free_area_init_nodes(max_zone_pfns);
1020 * If the architecture guarantees that there are no holes in the ranges
1021 * registered with add_active_range(), free_bootmem_active_regions()
1022 * will call free_bootmem_node() for each registered physical page range.
1023 * Similarly sparse_memory_present_with_active_regions() calls
1024 * memory_present() for each range when SPARSEMEM is enabled.
1026 * See mm/page_alloc.c for more information on each function exposed by
1027 * CONFIG_ARCH_POPULATES_NODE_MAP
1029 extern void free_area_init_nodes(unsigned long *max_zone_pfn
);
1030 extern void add_active_range(unsigned int nid
, unsigned long start_pfn
,
1031 unsigned long end_pfn
);
1032 extern void remove_active_range(unsigned int nid
, unsigned long start_pfn
,
1033 unsigned long end_pfn
);
1034 extern void remove_all_active_ranges(void);
1035 extern unsigned long absent_pages_in_range(unsigned long start_pfn
,
1036 unsigned long end_pfn
);
1037 extern void get_pfn_range_for_nid(unsigned int nid
,
1038 unsigned long *start_pfn
, unsigned long *end_pfn
);
1039 extern unsigned long find_min_pfn_with_active_regions(void);
1040 extern void free_bootmem_with_active_regions(int nid
,
1041 unsigned long max_low_pfn
);
1042 typedef int (*work_fn_t
)(unsigned long, unsigned long, void *);
1043 extern void work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
);
1044 extern void sparse_memory_present_with_active_regions(int nid
);
1045 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1047 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1048 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1049 static inline int __early_pfn_to_nid(unsigned long pfn
)
1054 /* please see mm/page_alloc.c */
1055 extern int __meminit
early_pfn_to_nid(unsigned long pfn
);
1056 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1057 /* there is a per-arch backend function. */
1058 extern int __meminit
__early_pfn_to_nid(unsigned long pfn
);
1059 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1062 extern void set_dma_reserve(unsigned long new_dma_reserve
);
1063 extern void memmap_init_zone(unsigned long, int, unsigned long,
1064 unsigned long, enum memmap_context
);
1065 extern void setup_per_zone_wmarks(void);
1066 extern void calculate_zone_inactive_ratio(struct zone
*zone
);
1067 extern void mem_init(void);
1068 extern void __init
mmap_init(void);
1069 extern void show_mem(void);
1070 extern void si_meminfo(struct sysinfo
* val
);
1071 extern void si_meminfo_node(struct sysinfo
*val
, int nid
);
1072 extern int after_bootmem
;
1075 extern void setup_per_cpu_pageset(void);
1077 static inline void setup_per_cpu_pageset(void) {}
1080 extern void zone_pcp_update(struct zone
*zone
);
1083 extern atomic_long_t mmap_pages_allocated
;
1086 void vma_prio_tree_add(struct vm_area_struct
*, struct vm_area_struct
*old
);
1087 void vma_prio_tree_insert(struct vm_area_struct
*, struct prio_tree_root
*);
1088 void vma_prio_tree_remove(struct vm_area_struct
*, struct prio_tree_root
*);
1089 struct vm_area_struct
*vma_prio_tree_next(struct vm_area_struct
*vma
,
1090 struct prio_tree_iter
*iter
);
1092 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1093 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1094 (vma = vma_prio_tree_next(vma, iter)); )
1096 static inline void vma_nonlinear_insert(struct vm_area_struct
*vma
,
1097 struct list_head
*list
)
1099 vma
->shared
.vm_set
.parent
= NULL
;
1100 list_add_tail(&vma
->shared
.vm_set
.list
, list
);
1104 extern int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
);
1105 extern void vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
1106 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
);
1107 extern struct vm_area_struct
*vma_merge(struct mm_struct
*,
1108 struct vm_area_struct
*prev
, unsigned long addr
, unsigned long end
,
1109 unsigned long vm_flags
, struct anon_vma
*, struct file
*, pgoff_t
,
1110 struct mempolicy
*);
1111 extern struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*);
1112 extern int split_vma(struct mm_struct
*,
1113 struct vm_area_struct
*, unsigned long addr
, int new_below
);
1114 extern int insert_vm_struct(struct mm_struct
*, struct vm_area_struct
*);
1115 extern void __vma_link_rb(struct mm_struct
*, struct vm_area_struct
*,
1116 struct rb_node
**, struct rb_node
*);
1117 extern void unlink_file_vma(struct vm_area_struct
*);
1118 extern struct vm_area_struct
*copy_vma(struct vm_area_struct
**,
1119 unsigned long addr
, unsigned long len
, pgoff_t pgoff
);
1120 extern void exit_mmap(struct mm_struct
*);
1122 extern int mm_take_all_locks(struct mm_struct
*mm
);
1123 extern void mm_drop_all_locks(struct mm_struct
*mm
);
1125 #ifdef CONFIG_PROC_FS
1126 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1127 extern void added_exe_file_vma(struct mm_struct
*mm
);
1128 extern void removed_exe_file_vma(struct mm_struct
*mm
);
1130 static inline void added_exe_file_vma(struct mm_struct
*mm
)
1133 static inline void removed_exe_file_vma(struct mm_struct
*mm
)
1135 #endif /* CONFIG_PROC_FS */
1137 extern int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
);
1138 extern int install_special_mapping(struct mm_struct
*mm
,
1139 unsigned long addr
, unsigned long len
,
1140 unsigned long flags
, struct page
**pages
);
1142 extern unsigned long get_unmapped_area(struct file
*, unsigned long, unsigned long, unsigned long, unsigned long);
1144 extern unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
1145 unsigned long len
, unsigned long prot
,
1146 unsigned long flag
, unsigned long pgoff
);
1147 extern unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1148 unsigned long len
, unsigned long flags
,
1149 unsigned int vm_flags
, unsigned long pgoff
);
1151 static inline unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1152 unsigned long len
, unsigned long prot
,
1153 unsigned long flag
, unsigned long offset
)
1155 unsigned long ret
= -EINVAL
;
1156 if ((offset
+ PAGE_ALIGN(len
)) < offset
)
1158 if (!(offset
& ~PAGE_MASK
))
1159 ret
= do_mmap_pgoff(file
, addr
, len
, prot
, flag
, offset
>> PAGE_SHIFT
);
1164 extern int do_munmap(struct mm_struct
*, unsigned long, size_t);
1166 extern unsigned long do_brk(unsigned long, unsigned long);
1169 extern unsigned long page_unuse(struct page
*);
1170 extern void truncate_inode_pages(struct address_space
*, loff_t
);
1171 extern void truncate_inode_pages_range(struct address_space
*,
1172 loff_t lstart
, loff_t lend
);
1174 /* generic vm_area_ops exported for stackable file systems */
1175 extern int filemap_fault(struct vm_area_struct
*, struct vm_fault
*);
1177 /* mm/page-writeback.c */
1178 int write_one_page(struct page
*page
, int wait
);
1179 void task_dirty_inc(struct task_struct
*tsk
);
1182 #define VM_MAX_READAHEAD 128 /* kbytes */
1183 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1185 int force_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
1186 pgoff_t offset
, unsigned long nr_to_read
);
1188 void page_cache_sync_readahead(struct address_space
*mapping
,
1189 struct file_ra_state
*ra
,
1192 unsigned long size
);
1194 void page_cache_async_readahead(struct address_space
*mapping
,
1195 struct file_ra_state
*ra
,
1199 unsigned long size
);
1201 unsigned long max_sane_readahead(unsigned long nr
);
1202 unsigned long ra_submit(struct file_ra_state
*ra
,
1203 struct address_space
*mapping
,
1206 /* Do stack extension */
1207 extern int expand_stack(struct vm_area_struct
*vma
, unsigned long address
);
1209 extern int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
);
1211 #define expand_upwards(vma, address) do { } while (0)
1213 extern int expand_stack_downwards(struct vm_area_struct
*vma
,
1214 unsigned long address
);
1216 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1217 extern struct vm_area_struct
* find_vma(struct mm_struct
* mm
, unsigned long addr
);
1218 extern struct vm_area_struct
* find_vma_prev(struct mm_struct
* mm
, unsigned long addr
,
1219 struct vm_area_struct
**pprev
);
1221 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1222 NULL if none. Assume start_addr < end_addr. */
1223 static inline struct vm_area_struct
* find_vma_intersection(struct mm_struct
* mm
, unsigned long start_addr
, unsigned long end_addr
)
1225 struct vm_area_struct
* vma
= find_vma(mm
,start_addr
);
1227 if (vma
&& end_addr
<= vma
->vm_start
)
1232 static inline unsigned long vma_pages(struct vm_area_struct
*vma
)
1234 return (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
1237 pgprot_t
vm_get_page_prot(unsigned long vm_flags
);
1238 struct vm_area_struct
*find_extend_vma(struct mm_struct
*, unsigned long addr
);
1239 int remap_pfn_range(struct vm_area_struct
*, unsigned long addr
,
1240 unsigned long pfn
, unsigned long size
, pgprot_t
);
1241 int vm_insert_page(struct vm_area_struct
*, unsigned long addr
, struct page
*);
1242 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1244 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1247 struct page
*follow_page(struct vm_area_struct
*, unsigned long address
,
1248 unsigned int foll_flags
);
1249 #define FOLL_WRITE 0x01 /* check pte is writable */
1250 #define FOLL_TOUCH 0x02 /* mark page accessed */
1251 #define FOLL_GET 0x04 /* do get_page on page */
1252 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1253 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1255 typedef int (*pte_fn_t
)(pte_t
*pte
, pgtable_t token
, unsigned long addr
,
1257 extern int apply_to_page_range(struct mm_struct
*mm
, unsigned long address
,
1258 unsigned long size
, pte_fn_t fn
, void *data
);
1260 #ifdef CONFIG_PROC_FS
1261 void vm_stat_account(struct mm_struct
*, unsigned long, struct file
*, long);
1263 static inline void vm_stat_account(struct mm_struct
*mm
,
1264 unsigned long flags
, struct file
*file
, long pages
)
1267 #endif /* CONFIG_PROC_FS */
1269 #ifdef CONFIG_DEBUG_PAGEALLOC
1270 extern int debug_pagealloc_enabled
;
1272 extern void kernel_map_pages(struct page
*page
, int numpages
, int enable
);
1274 static inline void enable_debug_pagealloc(void)
1276 debug_pagealloc_enabled
= 1;
1278 #ifdef CONFIG_HIBERNATION
1279 extern bool kernel_page_present(struct page
*page
);
1280 #endif /* CONFIG_HIBERNATION */
1283 kernel_map_pages(struct page
*page
, int numpages
, int enable
) {}
1284 static inline void enable_debug_pagealloc(void)
1287 #ifdef CONFIG_HIBERNATION
1288 static inline bool kernel_page_present(struct page
*page
) { return true; }
1289 #endif /* CONFIG_HIBERNATION */
1292 extern struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
);
1293 #ifdef __HAVE_ARCH_GATE_AREA
1294 int in_gate_area_no_task(unsigned long addr
);
1295 int in_gate_area(struct task_struct
*task
, unsigned long addr
);
1297 int in_gate_area_no_task(unsigned long addr
);
1298 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1299 #endif /* __HAVE_ARCH_GATE_AREA */
1301 int drop_caches_sysctl_handler(struct ctl_table
*, int,
1302 void __user
*, size_t *, loff_t
*);
1303 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
1304 unsigned long lru_pages
);
1307 #define randomize_va_space 0
1309 extern int randomize_va_space
;
1312 const char * arch_vma_name(struct vm_area_struct
*vma
);
1313 void print_vma_addr(char *prefix
, unsigned long rip
);
1315 struct page
*sparse_mem_map_populate(unsigned long pnum
, int nid
);
1316 pgd_t
*vmemmap_pgd_populate(unsigned long addr
, int node
);
1317 pud_t
*vmemmap_pud_populate(pgd_t
*pgd
, unsigned long addr
, int node
);
1318 pmd_t
*vmemmap_pmd_populate(pud_t
*pud
, unsigned long addr
, int node
);
1319 pte_t
*vmemmap_pte_populate(pmd_t
*pmd
, unsigned long addr
, int node
);
1320 void *vmemmap_alloc_block(unsigned long size
, int node
);
1321 void vmemmap_verify(pte_t
*, int, unsigned long, unsigned long);
1322 int vmemmap_populate_basepages(struct page
*start_page
,
1323 unsigned long pages
, int node
);
1324 int vmemmap_populate(struct page
*start_page
, unsigned long pages
, int node
);
1325 void vmemmap_populate_print_last(void);
1327 extern int account_locked_memory(struct mm_struct
*mm
, struct rlimit
*rlim
,
1329 extern void refund_locked_memory(struct mm_struct
*mm
, size_t size
);
1331 extern void memory_failure(unsigned long pfn
, int trapno
);
1332 extern int __memory_failure(unsigned long pfn
, int trapno
, int ref
);
1333 extern int sysctl_memory_failure_early_kill
;
1334 extern int sysctl_memory_failure_recovery
;
1335 extern atomic_long_t mce_bad_pages
;
1337 #endif /* __KERNEL__ */
1338 #endif /* _LINUX_MM_H */