2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
76 const struct ata_port_operations ata_base_port_ops
= {
77 .prereset
= ata_std_prereset
,
78 .postreset
= ata_std_postreset
,
79 .error_handler
= ata_std_error_handler
,
82 const struct ata_port_operations sata_port_ops
= {
83 .inherits
= &ata_base_port_ops
,
85 .qc_defer
= ata_std_qc_defer
,
86 .hardreset
= sata_std_hardreset
,
89 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
90 u16 heads
, u16 sectors
);
91 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
92 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
93 u8 enable
, u8 feature
);
94 static void ata_dev_xfermask(struct ata_device
*dev
);
95 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
97 unsigned int ata_print_id
= 1;
98 static struct workqueue_struct
*ata_wq
;
100 struct workqueue_struct
*ata_aux_wq
;
102 struct ata_force_param
{
106 unsigned long xfer_mask
;
107 unsigned int horkage_on
;
108 unsigned int horkage_off
;
112 struct ata_force_ent
{
115 struct ata_force_param param
;
118 static struct ata_force_ent
*ata_force_tbl
;
119 static int ata_force_tbl_size
;
121 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
124 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 static int atapi_enabled
= 1;
127 module_param(atapi_enabled
, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130 static int atapi_dmadir
= 0;
131 module_param(atapi_dmadir
, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134 int atapi_passthru16
= 1;
135 module_param(atapi_passthru16
, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139 module_param_named(fua
, libata_fua
, int, 0444);
140 MODULE_PARM_DESC(fua
, "FUA support (0=off [default], 1=on)");
142 static int ata_ignore_hpa
;
143 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
147 module_param_named(dma
, libata_dma_mask
, int, 0444);
148 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 static int ata_probe_timeout
;
151 module_param(ata_probe_timeout
, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
154 int libata_noacpi
= 0;
155 module_param_named(noacpi
, libata_noacpi
, int, 0444);
156 MODULE_PARM_DESC(noacpi
, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158 int libata_allow_tpm
= 0;
159 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
160 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands (0=off [default], 1=on)");
163 module_param(atapi_an
, int, 0444);
164 MODULE_PARM_DESC(atapi_an
, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166 MODULE_AUTHOR("Jeff Garzik");
167 MODULE_DESCRIPTION("Library module for ATA devices");
168 MODULE_LICENSE("GPL");
169 MODULE_VERSION(DRV_VERSION
);
172 static bool ata_sstatus_online(u32 sstatus
)
174 return (sstatus
& 0xf) == 0x3;
178 * ata_link_next - link iteration helper
179 * @link: the previous link, NULL to start
180 * @ap: ATA port containing links to iterate
181 * @mode: iteration mode, one of ATA_LITER_*
184 * Host lock or EH context.
187 * Pointer to the next link.
189 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
190 enum ata_link_iter_mode mode
)
192 BUG_ON(mode
!= ATA_LITER_EDGE
&&
193 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
195 /* NULL link indicates start of iteration */
199 case ATA_LITER_PMP_FIRST
:
200 if (sata_pmp_attached(ap
))
203 case ATA_LITER_HOST_FIRST
:
207 /* we just iterated over the host link, what's next? */
208 if (link
== &ap
->link
)
210 case ATA_LITER_HOST_FIRST
:
211 if (sata_pmp_attached(ap
))
214 case ATA_LITER_PMP_FIRST
:
215 if (unlikely(ap
->slave_link
))
216 return ap
->slave_link
;
222 /* slave_link excludes PMP */
223 if (unlikely(link
== ap
->slave_link
))
226 /* we were over a PMP link */
227 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
230 if (mode
== ATA_LITER_PMP_FIRST
)
237 * ata_dev_next - device iteration helper
238 * @dev: the previous device, NULL to start
239 * @link: ATA link containing devices to iterate
240 * @mode: iteration mode, one of ATA_DITER_*
243 * Host lock or EH context.
246 * Pointer to the next device.
248 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
249 enum ata_dev_iter_mode mode
)
251 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
252 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
254 /* NULL dev indicates start of iteration */
257 case ATA_DITER_ENABLED
:
261 case ATA_DITER_ENABLED_REVERSE
:
262 case ATA_DITER_ALL_REVERSE
:
263 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
268 /* move to the next one */
270 case ATA_DITER_ENABLED
:
272 if (++dev
< link
->device
+ ata_link_max_devices(link
))
275 case ATA_DITER_ENABLED_REVERSE
:
276 case ATA_DITER_ALL_REVERSE
:
277 if (--dev
>= link
->device
)
283 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
284 !ata_dev_enabled(dev
))
290 * ata_dev_phys_link - find physical link for a device
291 * @dev: ATA device to look up physical link for
293 * Look up physical link which @dev is attached to. Note that
294 * this is different from @dev->link only when @dev is on slave
295 * link. For all other cases, it's the same as @dev->link.
301 * Pointer to the found physical link.
303 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
305 struct ata_port
*ap
= dev
->link
->ap
;
311 return ap
->slave_link
;
315 * ata_force_cbl - force cable type according to libata.force
316 * @ap: ATA port of interest
318 * Force cable type according to libata.force and whine about it.
319 * The last entry which has matching port number is used, so it
320 * can be specified as part of device force parameters. For
321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
327 void ata_force_cbl(struct ata_port
*ap
)
331 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
332 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
334 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
337 if (fe
->param
.cbl
== ATA_CBL_NONE
)
340 ap
->cbl
= fe
->param
.cbl
;
341 ata_port_printk(ap
, KERN_NOTICE
,
342 "FORCE: cable set to %s\n", fe
->param
.name
);
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
363 static void ata_force_link_limits(struct ata_link
*link
)
365 bool did_spd
= false;
366 int linkno
= link
->pmp
;
369 if (ata_is_host_link(link
))
372 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
373 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
375 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
378 if (fe
->device
!= -1 && fe
->device
!= linkno
)
381 /* only honor the first spd limit */
382 if (!did_spd
&& fe
->param
.spd_limit
) {
383 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
384 ata_link_printk(link
, KERN_NOTICE
,
385 "FORCE: PHY spd limit set to %s\n",
390 /* let lflags stack */
391 if (fe
->param
.lflags
) {
392 link
->flags
|= fe
->param
.lflags
;
393 ata_link_printk(link
, KERN_NOTICE
,
394 "FORCE: link flag 0x%x forced -> 0x%x\n",
395 fe
->param
.lflags
, link
->flags
);
401 * ata_force_xfermask - force xfermask according to libata.force
402 * @dev: ATA device of interest
404 * Force xfer_mask according to libata.force and whine about it.
405 * For consistency with link selection, device number 15 selects
406 * the first device connected to the host link.
411 static void ata_force_xfermask(struct ata_device
*dev
)
413 int devno
= dev
->link
->pmp
+ dev
->devno
;
414 int alt_devno
= devno
;
417 /* allow n.15/16 for devices attached to host port */
418 if (ata_is_host_link(dev
->link
))
421 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
422 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
423 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
425 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
428 if (fe
->device
!= -1 && fe
->device
!= devno
&&
429 fe
->device
!= alt_devno
)
432 if (!fe
->param
.xfer_mask
)
435 ata_unpack_xfermask(fe
->param
.xfer_mask
,
436 &pio_mask
, &mwdma_mask
, &udma_mask
);
438 dev
->udma_mask
= udma_mask
;
439 else if (mwdma_mask
) {
441 dev
->mwdma_mask
= mwdma_mask
;
445 dev
->pio_mask
= pio_mask
;
448 ata_dev_printk(dev
, KERN_NOTICE
,
449 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
455 * ata_force_horkage - force horkage according to libata.force
456 * @dev: ATA device of interest
458 * Force horkage according to libata.force and whine about it.
459 * For consistency with link selection, device number 15 selects
460 * the first device connected to the host link.
465 static void ata_force_horkage(struct ata_device
*dev
)
467 int devno
= dev
->link
->pmp
+ dev
->devno
;
468 int alt_devno
= devno
;
471 /* allow n.15/16 for devices attached to host port */
472 if (ata_is_host_link(dev
->link
))
475 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
476 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
478 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
481 if (fe
->device
!= -1 && fe
->device
!= devno
&&
482 fe
->device
!= alt_devno
)
485 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
486 !(dev
->horkage
& fe
->param
.horkage_off
))
489 dev
->horkage
|= fe
->param
.horkage_on
;
490 dev
->horkage
&= ~fe
->param
.horkage_off
;
492 ata_dev_printk(dev
, KERN_NOTICE
,
493 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
498 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
499 * @opcode: SCSI opcode
501 * Determine ATAPI command type from @opcode.
507 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
509 int atapi_cmd_type(u8 opcode
)
518 case GPCMD_WRITE_AND_VERIFY_10
:
522 case GPCMD_READ_CD_MSF
:
523 return ATAPI_READ_CD
;
527 if (atapi_passthru16
)
528 return ATAPI_PASS_THRU
;
536 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
537 * @tf: Taskfile to convert
538 * @pmp: Port multiplier port
539 * @is_cmd: This FIS is for command
540 * @fis: Buffer into which data will output
542 * Converts a standard ATA taskfile to a Serial ATA
543 * FIS structure (Register - Host to Device).
546 * Inherited from caller.
548 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
550 fis
[0] = 0x27; /* Register - Host to Device FIS */
551 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
553 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
555 fis
[2] = tf
->command
;
556 fis
[3] = tf
->feature
;
563 fis
[8] = tf
->hob_lbal
;
564 fis
[9] = tf
->hob_lbam
;
565 fis
[10] = tf
->hob_lbah
;
566 fis
[11] = tf
->hob_feature
;
569 fis
[13] = tf
->hob_nsect
;
580 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
581 * @fis: Buffer from which data will be input
582 * @tf: Taskfile to output
584 * Converts a serial ATA FIS structure to a standard ATA taskfile.
587 * Inherited from caller.
590 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
592 tf
->command
= fis
[2]; /* status */
593 tf
->feature
= fis
[3]; /* error */
600 tf
->hob_lbal
= fis
[8];
601 tf
->hob_lbam
= fis
[9];
602 tf
->hob_lbah
= fis
[10];
605 tf
->hob_nsect
= fis
[13];
608 static const u8 ata_rw_cmds
[] = {
612 ATA_CMD_READ_MULTI_EXT
,
613 ATA_CMD_WRITE_MULTI_EXT
,
617 ATA_CMD_WRITE_MULTI_FUA_EXT
,
621 ATA_CMD_PIO_READ_EXT
,
622 ATA_CMD_PIO_WRITE_EXT
,
635 ATA_CMD_WRITE_FUA_EXT
639 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
640 * @tf: command to examine and configure
641 * @dev: device tf belongs to
643 * Examine the device configuration and tf->flags to calculate
644 * the proper read/write commands and protocol to use.
649 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
653 int index
, fua
, lba48
, write
;
655 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
656 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
657 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
659 if (dev
->flags
& ATA_DFLAG_PIO
) {
660 tf
->protocol
= ATA_PROT_PIO
;
661 index
= dev
->multi_count
? 0 : 8;
662 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
663 /* Unable to use DMA due to host limitation */
664 tf
->protocol
= ATA_PROT_PIO
;
665 index
= dev
->multi_count
? 0 : 8;
667 tf
->protocol
= ATA_PROT_DMA
;
671 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
680 * ata_tf_read_block - Read block address from ATA taskfile
681 * @tf: ATA taskfile of interest
682 * @dev: ATA device @tf belongs to
687 * Read block address from @tf. This function can handle all
688 * three address formats - LBA, LBA48 and CHS. tf->protocol and
689 * flags select the address format to use.
692 * Block address read from @tf.
694 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
698 if (tf
->flags
& ATA_TFLAG_LBA
) {
699 if (tf
->flags
& ATA_TFLAG_LBA48
) {
700 block
|= (u64
)tf
->hob_lbah
<< 40;
701 block
|= (u64
)tf
->hob_lbam
<< 32;
702 block
|= (u64
)tf
->hob_lbal
<< 24;
704 block
|= (tf
->device
& 0xf) << 24;
706 block
|= tf
->lbah
<< 16;
707 block
|= tf
->lbam
<< 8;
712 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
713 head
= tf
->device
& 0xf;
717 ata_dev_printk(dev
, KERN_WARNING
, "device reported "
718 "invalid CHS sector 0\n");
719 sect
= 1; /* oh well */
722 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
- 1;
729 * ata_build_rw_tf - Build ATA taskfile for given read/write request
730 * @tf: Target ATA taskfile
731 * @dev: ATA device @tf belongs to
732 * @block: Block address
733 * @n_block: Number of blocks
734 * @tf_flags: RW/FUA etc...
740 * Build ATA taskfile @tf for read/write request described by
741 * @block, @n_block, @tf_flags and @tag on @dev.
745 * 0 on success, -ERANGE if the request is too large for @dev,
746 * -EINVAL if the request is invalid.
748 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
749 u64 block
, u32 n_block
, unsigned int tf_flags
,
752 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
753 tf
->flags
|= tf_flags
;
755 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
757 if (!lba_48_ok(block
, n_block
))
760 tf
->protocol
= ATA_PROT_NCQ
;
761 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
763 if (tf
->flags
& ATA_TFLAG_WRITE
)
764 tf
->command
= ATA_CMD_FPDMA_WRITE
;
766 tf
->command
= ATA_CMD_FPDMA_READ
;
768 tf
->nsect
= tag
<< 3;
769 tf
->hob_feature
= (n_block
>> 8) & 0xff;
770 tf
->feature
= n_block
& 0xff;
772 tf
->hob_lbah
= (block
>> 40) & 0xff;
773 tf
->hob_lbam
= (block
>> 32) & 0xff;
774 tf
->hob_lbal
= (block
>> 24) & 0xff;
775 tf
->lbah
= (block
>> 16) & 0xff;
776 tf
->lbam
= (block
>> 8) & 0xff;
777 tf
->lbal
= block
& 0xff;
780 if (tf
->flags
& ATA_TFLAG_FUA
)
781 tf
->device
|= 1 << 7;
782 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
783 tf
->flags
|= ATA_TFLAG_LBA
;
785 if (lba_28_ok(block
, n_block
)) {
787 tf
->device
|= (block
>> 24) & 0xf;
788 } else if (lba_48_ok(block
, n_block
)) {
789 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
793 tf
->flags
|= ATA_TFLAG_LBA48
;
795 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
797 tf
->hob_lbah
= (block
>> 40) & 0xff;
798 tf
->hob_lbam
= (block
>> 32) & 0xff;
799 tf
->hob_lbal
= (block
>> 24) & 0xff;
801 /* request too large even for LBA48 */
804 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
807 tf
->nsect
= n_block
& 0xff;
809 tf
->lbah
= (block
>> 16) & 0xff;
810 tf
->lbam
= (block
>> 8) & 0xff;
811 tf
->lbal
= block
& 0xff;
813 tf
->device
|= ATA_LBA
;
816 u32 sect
, head
, cyl
, track
;
818 /* The request -may- be too large for CHS addressing. */
819 if (!lba_28_ok(block
, n_block
))
822 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
825 /* Convert LBA to CHS */
826 track
= (u32
)block
/ dev
->sectors
;
827 cyl
= track
/ dev
->heads
;
828 head
= track
% dev
->heads
;
829 sect
= (u32
)block
% dev
->sectors
+ 1;
831 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
832 (u32
)block
, track
, cyl
, head
, sect
);
834 /* Check whether the converted CHS can fit.
838 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
841 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
852 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
853 * @pio_mask: pio_mask
854 * @mwdma_mask: mwdma_mask
855 * @udma_mask: udma_mask
857 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
858 * unsigned int xfer_mask.
866 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
867 unsigned long mwdma_mask
,
868 unsigned long udma_mask
)
870 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
871 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
872 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
876 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
877 * @xfer_mask: xfer_mask to unpack
878 * @pio_mask: resulting pio_mask
879 * @mwdma_mask: resulting mwdma_mask
880 * @udma_mask: resulting udma_mask
882 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
883 * Any NULL distination masks will be ignored.
885 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
886 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
889 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
891 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
893 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
896 static const struct ata_xfer_ent
{
900 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
901 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
902 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
907 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
908 * @xfer_mask: xfer_mask of interest
910 * Return matching XFER_* value for @xfer_mask. Only the highest
911 * bit of @xfer_mask is considered.
917 * Matching XFER_* value, 0xff if no match found.
919 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
921 int highbit
= fls(xfer_mask
) - 1;
922 const struct ata_xfer_ent
*ent
;
924 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
925 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
926 return ent
->base
+ highbit
- ent
->shift
;
931 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
932 * @xfer_mode: XFER_* of interest
934 * Return matching xfer_mask for @xfer_mode.
940 * Matching xfer_mask, 0 if no match found.
942 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
944 const struct ata_xfer_ent
*ent
;
946 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
947 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
948 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
949 & ~((1 << ent
->shift
) - 1);
954 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
955 * @xfer_mode: XFER_* of interest
957 * Return matching xfer_shift for @xfer_mode.
963 * Matching xfer_shift, -1 if no match found.
965 int ata_xfer_mode2shift(unsigned long xfer_mode
)
967 const struct ata_xfer_ent
*ent
;
969 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
970 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
976 * ata_mode_string - convert xfer_mask to string
977 * @xfer_mask: mask of bits supported; only highest bit counts.
979 * Determine string which represents the highest speed
980 * (highest bit in @modemask).
986 * Constant C string representing highest speed listed in
987 * @mode_mask, or the constant C string "<n/a>".
989 const char *ata_mode_string(unsigned long xfer_mask
)
991 static const char * const xfer_mode_str
[] = {
1015 highbit
= fls(xfer_mask
) - 1;
1016 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1017 return xfer_mode_str
[highbit
];
1021 static const char *sata_spd_string(unsigned int spd
)
1023 static const char * const spd_str
[] = {
1029 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1031 return spd_str
[spd
- 1];
1034 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
1036 struct ata_link
*link
= dev
->link
;
1037 struct ata_port
*ap
= link
->ap
;
1039 unsigned int err_mask
;
1043 * disallow DIPM for drivers which haven't set
1044 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1045 * phy ready will be set in the interrupt status on
1046 * state changes, which will cause some drivers to
1047 * think there are errors - additionally drivers will
1048 * need to disable hot plug.
1050 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
1051 ap
->pm_policy
= NOT_AVAILABLE
;
1056 * For DIPM, we will only enable it for the
1057 * min_power setting.
1059 * Why? Because Disks are too stupid to know that
1060 * If the host rejects a request to go to SLUMBER
1061 * they should retry at PARTIAL, and instead it
1062 * just would give up. So, for medium_power to
1063 * work at all, we need to only allow HIPM.
1065 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
1071 /* no restrictions on IPM transitions */
1072 scontrol
&= ~(0x3 << 8);
1073 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1078 if (dev
->flags
& ATA_DFLAG_DIPM
)
1079 err_mask
= ata_dev_set_feature(dev
,
1080 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
1083 /* allow IPM to PARTIAL */
1084 scontrol
&= ~(0x1 << 8);
1085 scontrol
|= (0x2 << 8);
1086 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1091 * we don't have to disable DIPM since IPM flags
1092 * disallow transitions to SLUMBER, which effectively
1093 * disable DIPM if it does not support PARTIAL
1097 case MAX_PERFORMANCE
:
1098 /* disable all IPM transitions */
1099 scontrol
|= (0x3 << 8);
1100 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1105 * we don't have to disable DIPM since IPM flags
1106 * disallow all transitions which effectively
1107 * disable DIPM anyway.
1112 /* FIXME: handle SET FEATURES failure */
1119 * ata_dev_enable_pm - enable SATA interface power management
1120 * @dev: device to enable power management
1121 * @policy: the link power management policy
1123 * Enable SATA Interface power management. This will enable
1124 * Device Interface Power Management (DIPM) for min_power
1125 * policy, and then call driver specific callbacks for
1126 * enabling Host Initiated Power management.
1129 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1131 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
1134 struct ata_port
*ap
= dev
->link
->ap
;
1136 /* set HIPM first, then DIPM */
1137 if (ap
->ops
->enable_pm
)
1138 rc
= ap
->ops
->enable_pm(ap
, policy
);
1141 rc
= ata_dev_set_dipm(dev
, policy
);
1145 ap
->pm_policy
= MAX_PERFORMANCE
;
1147 ap
->pm_policy
= policy
;
1148 return /* rc */; /* hopefully we can use 'rc' eventually */
1153 * ata_dev_disable_pm - disable SATA interface power management
1154 * @dev: device to disable power management
1156 * Disable SATA Interface power management. This will disable
1157 * Device Interface Power Management (DIPM) without changing
1158 * policy, call driver specific callbacks for disabling Host
1159 * Initiated Power management.
1164 static void ata_dev_disable_pm(struct ata_device
*dev
)
1166 struct ata_port
*ap
= dev
->link
->ap
;
1168 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
1169 if (ap
->ops
->disable_pm
)
1170 ap
->ops
->disable_pm(ap
);
1172 #endif /* CONFIG_PM */
1174 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
1176 ap
->pm_policy
= policy
;
1177 ap
->link
.eh_info
.action
|= ATA_EH_LPM
;
1178 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
1179 ata_port_schedule_eh(ap
);
1183 static void ata_lpm_enable(struct ata_host
*host
)
1185 struct ata_link
*link
;
1186 struct ata_port
*ap
;
1187 struct ata_device
*dev
;
1190 for (i
= 0; i
< host
->n_ports
; i
++) {
1191 ap
= host
->ports
[i
];
1192 ata_for_each_link(link
, ap
, EDGE
) {
1193 ata_for_each_dev(dev
, link
, ALL
)
1194 ata_dev_disable_pm(dev
);
1199 static void ata_lpm_disable(struct ata_host
*host
)
1203 for (i
= 0; i
< host
->n_ports
; i
++) {
1204 struct ata_port
*ap
= host
->ports
[i
];
1205 ata_lpm_schedule(ap
, ap
->pm_policy
);
1208 #endif /* CONFIG_PM */
1211 * ata_dev_classify - determine device type based on ATA-spec signature
1212 * @tf: ATA taskfile register set for device to be identified
1214 * Determine from taskfile register contents whether a device is
1215 * ATA or ATAPI, as per "Signature and persistence" section
1216 * of ATA/PI spec (volume 1, sect 5.14).
1222 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1223 * %ATA_DEV_UNKNOWN the event of failure.
1225 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1227 /* Apple's open source Darwin code hints that some devices only
1228 * put a proper signature into the LBA mid/high registers,
1229 * So, we only check those. It's sufficient for uniqueness.
1231 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1232 * signatures for ATA and ATAPI devices attached on SerialATA,
1233 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1234 * spec has never mentioned about using different signatures
1235 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1236 * Multiplier specification began to use 0x69/0x96 to identify
1237 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1238 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1239 * 0x69/0x96 shortly and described them as reserved for
1242 * We follow the current spec and consider that 0x69/0x96
1243 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1244 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1245 * SEMB signature. This is worked around in
1246 * ata_dev_read_id().
1248 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1249 DPRINTK("found ATA device by sig\n");
1253 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1254 DPRINTK("found ATAPI device by sig\n");
1255 return ATA_DEV_ATAPI
;
1258 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1259 DPRINTK("found PMP device by sig\n");
1263 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1264 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1265 return ATA_DEV_SEMB
;
1268 DPRINTK("unknown device\n");
1269 return ATA_DEV_UNKNOWN
;
1273 * ata_id_string - Convert IDENTIFY DEVICE page into string
1274 * @id: IDENTIFY DEVICE results we will examine
1275 * @s: string into which data is output
1276 * @ofs: offset into identify device page
1277 * @len: length of string to return. must be an even number.
1279 * The strings in the IDENTIFY DEVICE page are broken up into
1280 * 16-bit chunks. Run through the string, and output each
1281 * 8-bit chunk linearly, regardless of platform.
1287 void ata_id_string(const u16
*id
, unsigned char *s
,
1288 unsigned int ofs
, unsigned int len
)
1309 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1310 * @id: IDENTIFY DEVICE results we will examine
1311 * @s: string into which data is output
1312 * @ofs: offset into identify device page
1313 * @len: length of string to return. must be an odd number.
1315 * This function is identical to ata_id_string except that it
1316 * trims trailing spaces and terminates the resulting string with
1317 * null. @len must be actual maximum length (even number) + 1.
1322 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1323 unsigned int ofs
, unsigned int len
)
1327 ata_id_string(id
, s
, ofs
, len
- 1);
1329 p
= s
+ strnlen(s
, len
- 1);
1330 while (p
> s
&& p
[-1] == ' ')
1335 static u64
ata_id_n_sectors(const u16
*id
)
1337 if (ata_id_has_lba(id
)) {
1338 if (ata_id_has_lba48(id
))
1339 return ata_id_u64(id
, ATA_ID_LBA_CAPACITY_2
);
1341 return ata_id_u32(id
, ATA_ID_LBA_CAPACITY
);
1343 if (ata_id_current_chs_valid(id
))
1344 return id
[ATA_ID_CUR_CYLS
] * id
[ATA_ID_CUR_HEADS
] *
1345 id
[ATA_ID_CUR_SECTORS
];
1347 return id
[ATA_ID_CYLS
] * id
[ATA_ID_HEADS
] *
1352 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1356 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1357 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1358 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1359 sectors
|= (tf
->lbah
& 0xff) << 16;
1360 sectors
|= (tf
->lbam
& 0xff) << 8;
1361 sectors
|= (tf
->lbal
& 0xff);
1366 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1370 sectors
|= (tf
->device
& 0x0f) << 24;
1371 sectors
|= (tf
->lbah
& 0xff) << 16;
1372 sectors
|= (tf
->lbam
& 0xff) << 8;
1373 sectors
|= (tf
->lbal
& 0xff);
1379 * ata_read_native_max_address - Read native max address
1380 * @dev: target device
1381 * @max_sectors: out parameter for the result native max address
1383 * Perform an LBA48 or LBA28 native size query upon the device in
1387 * 0 on success, -EACCES if command is aborted by the drive.
1388 * -EIO on other errors.
1390 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1392 unsigned int err_mask
;
1393 struct ata_taskfile tf
;
1394 int lba48
= ata_id_has_lba48(dev
->id
);
1396 ata_tf_init(dev
, &tf
);
1398 /* always clear all address registers */
1399 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1402 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1403 tf
.flags
|= ATA_TFLAG_LBA48
;
1405 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1407 tf
.protocol
|= ATA_PROT_NODATA
;
1408 tf
.device
|= ATA_LBA
;
1410 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1412 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1413 "max address (err_mask=0x%x)\n", err_mask
);
1414 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1420 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1422 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1423 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1429 * ata_set_max_sectors - Set max sectors
1430 * @dev: target device
1431 * @new_sectors: new max sectors value to set for the device
1433 * Set max sectors of @dev to @new_sectors.
1436 * 0 on success, -EACCES if command is aborted or denied (due to
1437 * previous non-volatile SET_MAX) by the drive. -EIO on other
1440 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1442 unsigned int err_mask
;
1443 struct ata_taskfile tf
;
1444 int lba48
= ata_id_has_lba48(dev
->id
);
1448 ata_tf_init(dev
, &tf
);
1450 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1453 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1454 tf
.flags
|= ATA_TFLAG_LBA48
;
1456 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1457 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1458 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1460 tf
.command
= ATA_CMD_SET_MAX
;
1462 tf
.device
|= (new_sectors
>> 24) & 0xf;
1465 tf
.protocol
|= ATA_PROT_NODATA
;
1466 tf
.device
|= ATA_LBA
;
1468 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1469 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1470 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1472 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1474 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1475 "max address (err_mask=0x%x)\n", err_mask
);
1476 if (err_mask
== AC_ERR_DEV
&&
1477 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1486 * ata_hpa_resize - Resize a device with an HPA set
1487 * @dev: Device to resize
1489 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1490 * it if required to the full size of the media. The caller must check
1491 * the drive has the HPA feature set enabled.
1494 * 0 on success, -errno on failure.
1496 static int ata_hpa_resize(struct ata_device
*dev
)
1498 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1499 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1500 u64 sectors
= ata_id_n_sectors(dev
->id
);
1504 /* do we need to do it? */
1505 if (dev
->class != ATA_DEV_ATA
||
1506 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1507 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1510 /* read native max address */
1511 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1513 /* If device aborted the command or HPA isn't going to
1514 * be unlocked, skip HPA resizing.
1516 if (rc
== -EACCES
|| !ata_ignore_hpa
) {
1517 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1518 "broken, skipping HPA handling\n");
1519 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1521 /* we can continue if device aborted the command */
1528 dev
->n_native_sectors
= native_sectors
;
1530 /* nothing to do? */
1531 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1532 if (!print_info
|| native_sectors
== sectors
)
1535 if (native_sectors
> sectors
)
1536 ata_dev_printk(dev
, KERN_INFO
,
1537 "HPA detected: current %llu, native %llu\n",
1538 (unsigned long long)sectors
,
1539 (unsigned long long)native_sectors
);
1540 else if (native_sectors
< sectors
)
1541 ata_dev_printk(dev
, KERN_WARNING
,
1542 "native sectors (%llu) is smaller than "
1544 (unsigned long long)native_sectors
,
1545 (unsigned long long)sectors
);
1549 /* let's unlock HPA */
1550 rc
= ata_set_max_sectors(dev
, native_sectors
);
1551 if (rc
== -EACCES
) {
1552 /* if device aborted the command, skip HPA resizing */
1553 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1554 "(%llu -> %llu), skipping HPA handling\n",
1555 (unsigned long long)sectors
,
1556 (unsigned long long)native_sectors
);
1557 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1562 /* re-read IDENTIFY data */
1563 rc
= ata_dev_reread_id(dev
, 0);
1565 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1566 "data after HPA resizing\n");
1571 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1572 ata_dev_printk(dev
, KERN_INFO
,
1573 "HPA unlocked: %llu -> %llu, native %llu\n",
1574 (unsigned long long)sectors
,
1575 (unsigned long long)new_sectors
,
1576 (unsigned long long)native_sectors
);
1583 * ata_dump_id - IDENTIFY DEVICE info debugging output
1584 * @id: IDENTIFY DEVICE page to dump
1586 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1593 static inline void ata_dump_id(const u16
*id
)
1595 DPRINTK("49==0x%04x "
1605 DPRINTK("80==0x%04x "
1615 DPRINTK("88==0x%04x "
1622 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1623 * @id: IDENTIFY data to compute xfer mask from
1625 * Compute the xfermask for this device. This is not as trivial
1626 * as it seems if we must consider early devices correctly.
1628 * FIXME: pre IDE drive timing (do we care ?).
1636 unsigned long ata_id_xfermask(const u16
*id
)
1638 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1640 /* Usual case. Word 53 indicates word 64 is valid */
1641 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1642 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1646 /* If word 64 isn't valid then Word 51 high byte holds
1647 * the PIO timing number for the maximum. Turn it into
1650 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1651 if (mode
< 5) /* Valid PIO range */
1652 pio_mask
= (2 << mode
) - 1;
1656 /* But wait.. there's more. Design your standards by
1657 * committee and you too can get a free iordy field to
1658 * process. However its the speeds not the modes that
1659 * are supported... Note drivers using the timing API
1660 * will get this right anyway
1664 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1666 if (ata_id_is_cfa(id
)) {
1668 * Process compact flash extended modes
1670 int pio
= (id
[ATA_ID_CFA_MODES
] >> 0) & 0x7;
1671 int dma
= (id
[ATA_ID_CFA_MODES
] >> 3) & 0x7;
1674 pio_mask
|= (1 << 5);
1676 pio_mask
|= (1 << 6);
1678 mwdma_mask
|= (1 << 3);
1680 mwdma_mask
|= (1 << 4);
1684 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1685 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1687 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1691 * ata_pio_queue_task - Queue port_task
1692 * @ap: The ata_port to queue port_task for
1693 * @data: data for @fn to use
1694 * @delay: delay time in msecs for workqueue function
1696 * Schedule @fn(@data) for execution after @delay jiffies using
1697 * port_task. There is one port_task per port and it's the
1698 * user(low level driver)'s responsibility to make sure that only
1699 * one task is active at any given time.
1701 * libata core layer takes care of synchronization between
1702 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1706 * Inherited from caller.
1708 void ata_pio_queue_task(struct ata_port
*ap
, void *data
, unsigned long delay
)
1710 ap
->port_task_data
= data
;
1712 /* may fail if ata_port_flush_task() in progress */
1713 queue_delayed_work(ata_wq
, &ap
->port_task
, msecs_to_jiffies(delay
));
1717 * ata_port_flush_task - Flush port_task
1718 * @ap: The ata_port to flush port_task for
1720 * After this function completes, port_task is guranteed not to
1721 * be running or scheduled.
1724 * Kernel thread context (may sleep)
1726 void ata_port_flush_task(struct ata_port
*ap
)
1730 cancel_rearming_delayed_work(&ap
->port_task
);
1732 if (ata_msg_ctl(ap
))
1733 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1736 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1738 struct completion
*waiting
= qc
->private_data
;
1744 * ata_exec_internal_sg - execute libata internal command
1745 * @dev: Device to which the command is sent
1746 * @tf: Taskfile registers for the command and the result
1747 * @cdb: CDB for packet command
1748 * @dma_dir: Data tranfer direction of the command
1749 * @sgl: sg list for the data buffer of the command
1750 * @n_elem: Number of sg entries
1751 * @timeout: Timeout in msecs (0 for default)
1753 * Executes libata internal command with timeout. @tf contains
1754 * command on entry and result on return. Timeout and error
1755 * conditions are reported via return value. No recovery action
1756 * is taken after a command times out. It's caller's duty to
1757 * clean up after timeout.
1760 * None. Should be called with kernel context, might sleep.
1763 * Zero on success, AC_ERR_* mask on failure
1765 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1766 struct ata_taskfile
*tf
, const u8
*cdb
,
1767 int dma_dir
, struct scatterlist
*sgl
,
1768 unsigned int n_elem
, unsigned long timeout
)
1770 struct ata_link
*link
= dev
->link
;
1771 struct ata_port
*ap
= link
->ap
;
1772 u8 command
= tf
->command
;
1773 int auto_timeout
= 0;
1774 struct ata_queued_cmd
*qc
;
1775 unsigned int tag
, preempted_tag
;
1776 u32 preempted_sactive
, preempted_qc_active
;
1777 int preempted_nr_active_links
;
1778 DECLARE_COMPLETION_ONSTACK(wait
);
1779 unsigned long flags
;
1780 unsigned int err_mask
;
1783 spin_lock_irqsave(ap
->lock
, flags
);
1785 /* no internal command while frozen */
1786 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1787 spin_unlock_irqrestore(ap
->lock
, flags
);
1788 return AC_ERR_SYSTEM
;
1791 /* initialize internal qc */
1793 /* XXX: Tag 0 is used for drivers with legacy EH as some
1794 * drivers choke if any other tag is given. This breaks
1795 * ata_tag_internal() test for those drivers. Don't use new
1796 * EH stuff without converting to it.
1798 if (ap
->ops
->error_handler
)
1799 tag
= ATA_TAG_INTERNAL
;
1803 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1805 qc
= __ata_qc_from_tag(ap
, tag
);
1813 preempted_tag
= link
->active_tag
;
1814 preempted_sactive
= link
->sactive
;
1815 preempted_qc_active
= ap
->qc_active
;
1816 preempted_nr_active_links
= ap
->nr_active_links
;
1817 link
->active_tag
= ATA_TAG_POISON
;
1820 ap
->nr_active_links
= 0;
1822 /* prepare & issue qc */
1825 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1826 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1827 qc
->dma_dir
= dma_dir
;
1828 if (dma_dir
!= DMA_NONE
) {
1829 unsigned int i
, buflen
= 0;
1830 struct scatterlist
*sg
;
1832 for_each_sg(sgl
, sg
, n_elem
, i
)
1833 buflen
+= sg
->length
;
1835 ata_sg_init(qc
, sgl
, n_elem
);
1836 qc
->nbytes
= buflen
;
1839 qc
->private_data
= &wait
;
1840 qc
->complete_fn
= ata_qc_complete_internal
;
1844 spin_unlock_irqrestore(ap
->lock
, flags
);
1847 if (ata_probe_timeout
)
1848 timeout
= ata_probe_timeout
* 1000;
1850 timeout
= ata_internal_cmd_timeout(dev
, command
);
1855 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1857 ata_port_flush_task(ap
);
1860 spin_lock_irqsave(ap
->lock
, flags
);
1862 /* We're racing with irq here. If we lose, the
1863 * following test prevents us from completing the qc
1864 * twice. If we win, the port is frozen and will be
1865 * cleaned up by ->post_internal_cmd().
1867 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1868 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1870 if (ap
->ops
->error_handler
)
1871 ata_port_freeze(ap
);
1873 ata_qc_complete(qc
);
1875 if (ata_msg_warn(ap
))
1876 ata_dev_printk(dev
, KERN_WARNING
,
1877 "qc timeout (cmd 0x%x)\n", command
);
1880 spin_unlock_irqrestore(ap
->lock
, flags
);
1883 /* do post_internal_cmd */
1884 if (ap
->ops
->post_internal_cmd
)
1885 ap
->ops
->post_internal_cmd(qc
);
1887 /* perform minimal error analysis */
1888 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1889 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1890 qc
->err_mask
|= AC_ERR_DEV
;
1893 qc
->err_mask
|= AC_ERR_OTHER
;
1895 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1896 qc
->err_mask
&= ~AC_ERR_OTHER
;
1900 spin_lock_irqsave(ap
->lock
, flags
);
1902 *tf
= qc
->result_tf
;
1903 err_mask
= qc
->err_mask
;
1906 link
->active_tag
= preempted_tag
;
1907 link
->sactive
= preempted_sactive
;
1908 ap
->qc_active
= preempted_qc_active
;
1909 ap
->nr_active_links
= preempted_nr_active_links
;
1911 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1912 * Until those drivers are fixed, we detect the condition
1913 * here, fail the command with AC_ERR_SYSTEM and reenable the
1916 * Note that this doesn't change any behavior as internal
1917 * command failure results in disabling the device in the
1918 * higher layer for LLDDs without new reset/EH callbacks.
1920 * Kill the following code as soon as those drivers are fixed.
1922 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1923 err_mask
|= AC_ERR_SYSTEM
;
1927 spin_unlock_irqrestore(ap
->lock
, flags
);
1929 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1930 ata_internal_cmd_timed_out(dev
, command
);
1936 * ata_exec_internal - execute libata internal command
1937 * @dev: Device to which the command is sent
1938 * @tf: Taskfile registers for the command and the result
1939 * @cdb: CDB for packet command
1940 * @dma_dir: Data tranfer direction of the command
1941 * @buf: Data buffer of the command
1942 * @buflen: Length of data buffer
1943 * @timeout: Timeout in msecs (0 for default)
1945 * Wrapper around ata_exec_internal_sg() which takes simple
1946 * buffer instead of sg list.
1949 * None. Should be called with kernel context, might sleep.
1952 * Zero on success, AC_ERR_* mask on failure
1954 unsigned ata_exec_internal(struct ata_device
*dev
,
1955 struct ata_taskfile
*tf
, const u8
*cdb
,
1956 int dma_dir
, void *buf
, unsigned int buflen
,
1957 unsigned long timeout
)
1959 struct scatterlist
*psg
= NULL
, sg
;
1960 unsigned int n_elem
= 0;
1962 if (dma_dir
!= DMA_NONE
) {
1964 sg_init_one(&sg
, buf
, buflen
);
1969 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1974 * ata_do_simple_cmd - execute simple internal command
1975 * @dev: Device to which the command is sent
1976 * @cmd: Opcode to execute
1978 * Execute a 'simple' command, that only consists of the opcode
1979 * 'cmd' itself, without filling any other registers
1982 * Kernel thread context (may sleep).
1985 * Zero on success, AC_ERR_* mask on failure
1987 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1989 struct ata_taskfile tf
;
1991 ata_tf_init(dev
, &tf
);
1994 tf
.flags
|= ATA_TFLAG_DEVICE
;
1995 tf
.protocol
= ATA_PROT_NODATA
;
1997 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
2001 * ata_pio_need_iordy - check if iordy needed
2004 * Check if the current speed of the device requires IORDY. Used
2005 * by various controllers for chip configuration.
2007 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
2009 /* Don't set IORDY if we're preparing for reset. IORDY may
2010 * lead to controller lock up on certain controllers if the
2011 * port is not occupied. See bko#11703 for details.
2013 if (adev
->link
->ap
->pflags
& ATA_PFLAG_RESETTING
)
2015 /* Controller doesn't support IORDY. Probably a pointless
2016 * check as the caller should know this.
2018 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
2020 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2021 if (ata_id_is_cfa(adev
->id
)
2022 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
2024 /* PIO3 and higher it is mandatory */
2025 if (adev
->pio_mode
> XFER_PIO_2
)
2027 /* We turn it on when possible */
2028 if (ata_id_has_iordy(adev
->id
))
2034 * ata_pio_mask_no_iordy - Return the non IORDY mask
2037 * Compute the highest mode possible if we are not using iordy. Return
2038 * -1 if no iordy mode is available.
2040 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
2042 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2043 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
2044 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
2045 /* Is the speed faster than the drive allows non IORDY ? */
2047 /* This is cycle times not frequency - watch the logic! */
2048 if (pio
> 240) /* PIO2 is 240nS per cycle */
2049 return 3 << ATA_SHIFT_PIO
;
2050 return 7 << ATA_SHIFT_PIO
;
2053 return 3 << ATA_SHIFT_PIO
;
2057 * ata_do_dev_read_id - default ID read method
2059 * @tf: proposed taskfile
2062 * Issue the identify taskfile and hand back the buffer containing
2063 * identify data. For some RAID controllers and for pre ATA devices
2064 * this function is wrapped or replaced by the driver
2066 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
2067 struct ata_taskfile
*tf
, u16
*id
)
2069 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
2070 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
2074 * ata_dev_read_id - Read ID data from the specified device
2075 * @dev: target device
2076 * @p_class: pointer to class of the target device (may be changed)
2077 * @flags: ATA_READID_* flags
2078 * @id: buffer to read IDENTIFY data into
2080 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2081 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2082 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2083 * for pre-ATA4 drives.
2085 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2086 * now we abort if we hit that case.
2089 * Kernel thread context (may sleep)
2092 * 0 on success, -errno otherwise.
2094 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
2095 unsigned int flags
, u16
*id
)
2097 struct ata_port
*ap
= dev
->link
->ap
;
2098 unsigned int class = *p_class
;
2099 struct ata_taskfile tf
;
2100 unsigned int err_mask
= 0;
2102 bool is_semb
= class == ATA_DEV_SEMB
;
2103 int may_fallback
= 1, tried_spinup
= 0;
2106 if (ata_msg_ctl(ap
))
2107 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2110 ata_tf_init(dev
, &tf
);
2114 class = ATA_DEV_ATA
; /* some hard drives report SEMB sig */
2116 tf
.command
= ATA_CMD_ID_ATA
;
2119 tf
.command
= ATA_CMD_ID_ATAPI
;
2123 reason
= "unsupported class";
2127 tf
.protocol
= ATA_PROT_PIO
;
2129 /* Some devices choke if TF registers contain garbage. Make
2130 * sure those are properly initialized.
2132 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2134 /* Device presence detection is unreliable on some
2135 * controllers. Always poll IDENTIFY if available.
2137 tf
.flags
|= ATA_TFLAG_POLLING
;
2139 if (ap
->ops
->read_id
)
2140 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
2142 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
2145 if (err_mask
& AC_ERR_NODEV_HINT
) {
2146 ata_dev_printk(dev
, KERN_DEBUG
,
2147 "NODEV after polling detection\n");
2152 ata_dev_printk(dev
, KERN_INFO
, "IDENTIFY failed on "
2153 "device w/ SEMB sig, disabled\n");
2154 /* SEMB is not supported yet */
2155 *p_class
= ATA_DEV_SEMB_UNSUP
;
2159 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
2160 /* Device or controller might have reported
2161 * the wrong device class. Give a shot at the
2162 * other IDENTIFY if the current one is
2163 * aborted by the device.
2168 if (class == ATA_DEV_ATA
)
2169 class = ATA_DEV_ATAPI
;
2171 class = ATA_DEV_ATA
;
2175 /* Control reaches here iff the device aborted
2176 * both flavors of IDENTIFYs which happens
2177 * sometimes with phantom devices.
2179 ata_dev_printk(dev
, KERN_DEBUG
,
2180 "both IDENTIFYs aborted, assuming NODEV\n");
2185 reason
= "I/O error";
2189 /* Falling back doesn't make sense if ID data was read
2190 * successfully at least once.
2194 swap_buf_le16(id
, ATA_ID_WORDS
);
2198 reason
= "device reports invalid type";
2200 if (class == ATA_DEV_ATA
) {
2201 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
2204 if (ata_id_is_ata(id
))
2208 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2211 * Drive powered-up in standby mode, and requires a specific
2212 * SET_FEATURES spin-up subcommand before it will accept
2213 * anything other than the original IDENTIFY command.
2215 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2216 if (err_mask
&& id
[2] != 0x738c) {
2218 reason
= "SPINUP failed";
2222 * If the drive initially returned incomplete IDENTIFY info,
2223 * we now must reissue the IDENTIFY command.
2225 if (id
[2] == 0x37c8)
2229 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2231 * The exact sequence expected by certain pre-ATA4 drives is:
2233 * IDENTIFY (optional in early ATA)
2234 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2236 * Some drives were very specific about that exact sequence.
2238 * Note that ATA4 says lba is mandatory so the second check
2239 * shoud never trigger.
2241 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2242 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2245 reason
= "INIT_DEV_PARAMS failed";
2249 /* current CHS translation info (id[53-58]) might be
2250 * changed. reread the identify device info.
2252 flags
&= ~ATA_READID_POSTRESET
;
2262 if (ata_msg_warn(ap
))
2263 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2264 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2268 static int ata_do_link_spd_horkage(struct ata_device
*dev
)
2270 struct ata_link
*plink
= ata_dev_phys_link(dev
);
2271 u32 target
, target_limit
;
2273 if (!sata_scr_valid(plink
))
2276 if (dev
->horkage
& ATA_HORKAGE_1_5_GBPS
)
2281 target_limit
= (1 << target
) - 1;
2283 /* if already on stricter limit, no need to push further */
2284 if (plink
->sata_spd_limit
<= target_limit
)
2287 plink
->sata_spd_limit
= target_limit
;
2289 /* Request another EH round by returning -EAGAIN if link is
2290 * going faster than the target speed. Forward progress is
2291 * guaranteed by setting sata_spd_limit to target_limit above.
2293 if (plink
->sata_spd
> target
) {
2294 ata_dev_printk(dev
, KERN_INFO
,
2295 "applying link speed limit horkage to %s\n",
2296 sata_spd_string(target
));
2302 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2304 struct ata_port
*ap
= dev
->link
->ap
;
2306 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2309 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2312 static int ata_dev_config_ncq(struct ata_device
*dev
,
2313 char *desc
, size_t desc_sz
)
2315 struct ata_port
*ap
= dev
->link
->ap
;
2316 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2317 unsigned int err_mask
;
2320 if (!ata_id_has_ncq(dev
->id
)) {
2324 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2325 snprintf(desc
, desc_sz
, "NCQ (not used)");
2328 if (ap
->flags
& ATA_FLAG_NCQ
) {
2329 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2330 dev
->flags
|= ATA_DFLAG_NCQ
;
2333 if (!(dev
->horkage
& ATA_HORKAGE_BROKEN_FPDMA_AA
) &&
2334 (ap
->flags
& ATA_FLAG_FPDMA_AA
) &&
2335 ata_id_has_fpdma_aa(dev
->id
)) {
2336 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SATA_ENABLE
,
2339 ata_dev_printk(dev
, KERN_ERR
, "failed to enable AA"
2340 "(error_mask=0x%x)\n", err_mask
);
2341 if (err_mask
!= AC_ERR_DEV
) {
2342 dev
->horkage
|= ATA_HORKAGE_BROKEN_FPDMA_AA
;
2349 if (hdepth
>= ddepth
)
2350 snprintf(desc
, desc_sz
, "NCQ (depth %d)%s", ddepth
, aa_desc
);
2352 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)%s", hdepth
,
2358 * ata_dev_configure - Configure the specified ATA/ATAPI device
2359 * @dev: Target device to configure
2361 * Configure @dev according to @dev->id. Generic and low-level
2362 * driver specific fixups are also applied.
2365 * Kernel thread context (may sleep)
2368 * 0 on success, -errno otherwise
2370 int ata_dev_configure(struct ata_device
*dev
)
2372 struct ata_port
*ap
= dev
->link
->ap
;
2373 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2374 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2375 const u16
*id
= dev
->id
;
2376 unsigned long xfer_mask
;
2377 char revbuf
[7]; /* XYZ-99\0 */
2378 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2379 char modelbuf
[ATA_ID_PROD_LEN
+1];
2382 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2383 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2388 if (ata_msg_probe(ap
))
2389 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2392 dev
->horkage
|= ata_dev_blacklisted(dev
);
2393 ata_force_horkage(dev
);
2395 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2396 ata_dev_printk(dev
, KERN_INFO
,
2397 "unsupported device, disabling\n");
2398 ata_dev_disable(dev
);
2402 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2403 dev
->class == ATA_DEV_ATAPI
) {
2404 ata_dev_printk(dev
, KERN_WARNING
,
2405 "WARNING: ATAPI is %s, device ignored.\n",
2406 atapi_enabled
? "not supported with this driver"
2408 ata_dev_disable(dev
);
2412 rc
= ata_do_link_spd_horkage(dev
);
2416 /* let ACPI work its magic */
2417 rc
= ata_acpi_on_devcfg(dev
);
2421 /* massage HPA, do it early as it might change IDENTIFY data */
2422 rc
= ata_hpa_resize(dev
);
2426 /* print device capabilities */
2427 if (ata_msg_probe(ap
))
2428 ata_dev_printk(dev
, KERN_DEBUG
,
2429 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2430 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2432 id
[49], id
[82], id
[83], id
[84],
2433 id
[85], id
[86], id
[87], id
[88]);
2435 /* initialize to-be-configured parameters */
2436 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2437 dev
->max_sectors
= 0;
2443 dev
->multi_count
= 0;
2446 * common ATA, ATAPI feature tests
2449 /* find max transfer mode; for printk only */
2450 xfer_mask
= ata_id_xfermask(id
);
2452 if (ata_msg_probe(ap
))
2455 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2456 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2459 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2462 /* ATA-specific feature tests */
2463 if (dev
->class == ATA_DEV_ATA
) {
2464 if (ata_id_is_cfa(id
)) {
2465 /* CPRM may make this media unusable */
2466 if (id
[ATA_ID_CFA_KEY_MGMT
] & 1)
2467 ata_dev_printk(dev
, KERN_WARNING
,
2468 "supports DRM functions and may "
2469 "not be fully accessable.\n");
2470 snprintf(revbuf
, 7, "CFA");
2472 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2473 /* Warn the user if the device has TPM extensions */
2474 if (ata_id_has_tpm(id
))
2475 ata_dev_printk(dev
, KERN_WARNING
,
2476 "supports DRM functions and may "
2477 "not be fully accessable.\n");
2480 dev
->n_sectors
= ata_id_n_sectors(id
);
2482 /* get current R/W Multiple count setting */
2483 if ((dev
->id
[47] >> 8) == 0x80 && (dev
->id
[59] & 0x100)) {
2484 unsigned int max
= dev
->id
[47] & 0xff;
2485 unsigned int cnt
= dev
->id
[59] & 0xff;
2486 /* only recognize/allow powers of two here */
2487 if (is_power_of_2(max
) && is_power_of_2(cnt
))
2489 dev
->multi_count
= cnt
;
2492 if (ata_id_has_lba(id
)) {
2493 const char *lba_desc
;
2497 dev
->flags
|= ATA_DFLAG_LBA
;
2498 if (ata_id_has_lba48(id
)) {
2499 dev
->flags
|= ATA_DFLAG_LBA48
;
2502 if (dev
->n_sectors
>= (1UL << 28) &&
2503 ata_id_has_flush_ext(id
))
2504 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2508 rc
= ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2512 /* print device info to dmesg */
2513 if (ata_msg_drv(ap
) && print_info
) {
2514 ata_dev_printk(dev
, KERN_INFO
,
2515 "%s: %s, %s, max %s\n",
2516 revbuf
, modelbuf
, fwrevbuf
,
2517 ata_mode_string(xfer_mask
));
2518 ata_dev_printk(dev
, KERN_INFO
,
2519 "%Lu sectors, multi %u: %s %s\n",
2520 (unsigned long long)dev
->n_sectors
,
2521 dev
->multi_count
, lba_desc
, ncq_desc
);
2526 /* Default translation */
2527 dev
->cylinders
= id
[1];
2529 dev
->sectors
= id
[6];
2531 if (ata_id_current_chs_valid(id
)) {
2532 /* Current CHS translation is valid. */
2533 dev
->cylinders
= id
[54];
2534 dev
->heads
= id
[55];
2535 dev
->sectors
= id
[56];
2538 /* print device info to dmesg */
2539 if (ata_msg_drv(ap
) && print_info
) {
2540 ata_dev_printk(dev
, KERN_INFO
,
2541 "%s: %s, %s, max %s\n",
2542 revbuf
, modelbuf
, fwrevbuf
,
2543 ata_mode_string(xfer_mask
));
2544 ata_dev_printk(dev
, KERN_INFO
,
2545 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2546 (unsigned long long)dev
->n_sectors
,
2547 dev
->multi_count
, dev
->cylinders
,
2548 dev
->heads
, dev
->sectors
);
2555 /* ATAPI-specific feature tests */
2556 else if (dev
->class == ATA_DEV_ATAPI
) {
2557 const char *cdb_intr_string
= "";
2558 const char *atapi_an_string
= "";
2559 const char *dma_dir_string
= "";
2562 rc
= atapi_cdb_len(id
);
2563 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2564 if (ata_msg_warn(ap
))
2565 ata_dev_printk(dev
, KERN_WARNING
,
2566 "unsupported CDB len\n");
2570 dev
->cdb_len
= (unsigned int) rc
;
2572 /* Enable ATAPI AN if both the host and device have
2573 * the support. If PMP is attached, SNTF is required
2574 * to enable ATAPI AN to discern between PHY status
2575 * changed notifications and ATAPI ANs.
2578 (ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2579 (!sata_pmp_attached(ap
) ||
2580 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2581 unsigned int err_mask
;
2583 /* issue SET feature command to turn this on */
2584 err_mask
= ata_dev_set_feature(dev
,
2585 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2587 ata_dev_printk(dev
, KERN_ERR
,
2588 "failed to enable ATAPI AN "
2589 "(err_mask=0x%x)\n", err_mask
);
2591 dev
->flags
|= ATA_DFLAG_AN
;
2592 atapi_an_string
= ", ATAPI AN";
2596 if (ata_id_cdb_intr(dev
->id
)) {
2597 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2598 cdb_intr_string
= ", CDB intr";
2601 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2602 dev
->flags
|= ATA_DFLAG_DMADIR
;
2603 dma_dir_string
= ", DMADIR";
2606 /* print device info to dmesg */
2607 if (ata_msg_drv(ap
) && print_info
)
2608 ata_dev_printk(dev
, KERN_INFO
,
2609 "ATAPI: %s, %s, max %s%s%s%s\n",
2611 ata_mode_string(xfer_mask
),
2612 cdb_intr_string
, atapi_an_string
,
2616 /* determine max_sectors */
2617 dev
->max_sectors
= ATA_MAX_SECTORS
;
2618 if (dev
->flags
& ATA_DFLAG_LBA48
)
2619 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2621 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2622 if (ata_id_has_hipm(dev
->id
))
2623 dev
->flags
|= ATA_DFLAG_HIPM
;
2624 if (ata_id_has_dipm(dev
->id
))
2625 dev
->flags
|= ATA_DFLAG_DIPM
;
2628 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2630 if (ata_dev_knobble(dev
)) {
2631 if (ata_msg_drv(ap
) && print_info
)
2632 ata_dev_printk(dev
, KERN_INFO
,
2633 "applying bridge limits\n");
2634 dev
->udma_mask
&= ATA_UDMA5
;
2635 dev
->max_sectors
= ATA_MAX_SECTORS
;
2638 if ((dev
->class == ATA_DEV_ATAPI
) &&
2639 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2640 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2641 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2644 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2645 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2648 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2649 dev
->horkage
|= ATA_HORKAGE_IPM
;
2651 /* reset link pm_policy for this port to no pm */
2652 ap
->pm_policy
= MAX_PERFORMANCE
;
2655 if (ap
->ops
->dev_config
)
2656 ap
->ops
->dev_config(dev
);
2658 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2659 /* Let the user know. We don't want to disallow opens for
2660 rescue purposes, or in case the vendor is just a blithering
2661 idiot. Do this after the dev_config call as some controllers
2662 with buggy firmware may want to avoid reporting false device
2666 ata_dev_printk(dev
, KERN_WARNING
,
2667 "Drive reports diagnostics failure. This may indicate a drive\n");
2668 ata_dev_printk(dev
, KERN_WARNING
,
2669 "fault or invalid emulation. Contact drive vendor for information.\n");
2673 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2674 ata_dev_printk(dev
, KERN_WARNING
, "WARNING: device requires "
2675 "firmware update to be fully functional.\n");
2676 ata_dev_printk(dev
, KERN_WARNING
, " contact the vendor "
2677 "or visit http://ata.wiki.kernel.org.\n");
2683 if (ata_msg_probe(ap
))
2684 ata_dev_printk(dev
, KERN_DEBUG
,
2685 "%s: EXIT, err\n", __func__
);
2690 * ata_cable_40wire - return 40 wire cable type
2693 * Helper method for drivers which want to hardwire 40 wire cable
2697 int ata_cable_40wire(struct ata_port
*ap
)
2699 return ATA_CBL_PATA40
;
2703 * ata_cable_80wire - return 80 wire cable type
2706 * Helper method for drivers which want to hardwire 80 wire cable
2710 int ata_cable_80wire(struct ata_port
*ap
)
2712 return ATA_CBL_PATA80
;
2716 * ata_cable_unknown - return unknown PATA cable.
2719 * Helper method for drivers which have no PATA cable detection.
2722 int ata_cable_unknown(struct ata_port
*ap
)
2724 return ATA_CBL_PATA_UNK
;
2728 * ata_cable_ignore - return ignored PATA cable.
2731 * Helper method for drivers which don't use cable type to limit
2734 int ata_cable_ignore(struct ata_port
*ap
)
2736 return ATA_CBL_PATA_IGN
;
2740 * ata_cable_sata - return SATA cable type
2743 * Helper method for drivers which have SATA cables
2746 int ata_cable_sata(struct ata_port
*ap
)
2748 return ATA_CBL_SATA
;
2752 * ata_bus_probe - Reset and probe ATA bus
2755 * Master ATA bus probing function. Initiates a hardware-dependent
2756 * bus reset, then attempts to identify any devices found on
2760 * PCI/etc. bus probe sem.
2763 * Zero on success, negative errno otherwise.
2766 int ata_bus_probe(struct ata_port
*ap
)
2768 unsigned int classes
[ATA_MAX_DEVICES
];
2769 int tries
[ATA_MAX_DEVICES
];
2771 struct ata_device
*dev
;
2775 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2776 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2779 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2780 /* If we issue an SRST then an ATA drive (not ATAPI)
2781 * may change configuration and be in PIO0 timing. If
2782 * we do a hard reset (or are coming from power on)
2783 * this is true for ATA or ATAPI. Until we've set a
2784 * suitable controller mode we should not touch the
2785 * bus as we may be talking too fast.
2787 dev
->pio_mode
= XFER_PIO_0
;
2789 /* If the controller has a pio mode setup function
2790 * then use it to set the chipset to rights. Don't
2791 * touch the DMA setup as that will be dealt with when
2792 * configuring devices.
2794 if (ap
->ops
->set_piomode
)
2795 ap
->ops
->set_piomode(ap
, dev
);
2798 /* reset and determine device classes */
2799 ap
->ops
->phy_reset(ap
);
2801 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2802 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2803 dev
->class != ATA_DEV_UNKNOWN
)
2804 classes
[dev
->devno
] = dev
->class;
2806 classes
[dev
->devno
] = ATA_DEV_NONE
;
2808 dev
->class = ATA_DEV_UNKNOWN
;
2813 /* read IDENTIFY page and configure devices. We have to do the identify
2814 specific sequence bass-ackwards so that PDIAG- is released by
2817 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2818 if (tries
[dev
->devno
])
2819 dev
->class = classes
[dev
->devno
];
2821 if (!ata_dev_enabled(dev
))
2824 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2830 /* Now ask for the cable type as PDIAG- should have been released */
2831 if (ap
->ops
->cable_detect
)
2832 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2834 /* We may have SATA bridge glue hiding here irrespective of
2835 * the reported cable types and sensed types. When SATA
2836 * drives indicate we have a bridge, we don't know which end
2837 * of the link the bridge is which is a problem.
2839 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2840 if (ata_id_is_sata(dev
->id
))
2841 ap
->cbl
= ATA_CBL_SATA
;
2843 /* After the identify sequence we can now set up the devices. We do
2844 this in the normal order so that the user doesn't get confused */
2846 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2847 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2848 rc
= ata_dev_configure(dev
);
2849 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2854 /* configure transfer mode */
2855 rc
= ata_set_mode(&ap
->link
, &dev
);
2859 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2862 /* no device present, disable port */
2863 ata_port_disable(ap
);
2867 tries
[dev
->devno
]--;
2871 /* eeek, something went very wrong, give up */
2872 tries
[dev
->devno
] = 0;
2876 /* give it just one more chance */
2877 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2879 if (tries
[dev
->devno
] == 1) {
2880 /* This is the last chance, better to slow
2881 * down than lose it.
2883 sata_down_spd_limit(&ap
->link
, 0);
2884 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2888 if (!tries
[dev
->devno
])
2889 ata_dev_disable(dev
);
2895 * ata_port_probe - Mark port as enabled
2896 * @ap: Port for which we indicate enablement
2898 * Modify @ap data structure such that the system
2899 * thinks that the entire port is enabled.
2901 * LOCKING: host lock, or some other form of
2905 void ata_port_probe(struct ata_port
*ap
)
2907 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2911 * sata_print_link_status - Print SATA link status
2912 * @link: SATA link to printk link status about
2914 * This function prints link speed and status of a SATA link.
2919 static void sata_print_link_status(struct ata_link
*link
)
2921 u32 sstatus
, scontrol
, tmp
;
2923 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2925 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2927 if (ata_phys_link_online(link
)) {
2928 tmp
= (sstatus
>> 4) & 0xf;
2929 ata_link_printk(link
, KERN_INFO
,
2930 "SATA link up %s (SStatus %X SControl %X)\n",
2931 sata_spd_string(tmp
), sstatus
, scontrol
);
2933 ata_link_printk(link
, KERN_INFO
,
2934 "SATA link down (SStatus %X SControl %X)\n",
2940 * ata_dev_pair - return other device on cable
2943 * Obtain the other device on the same cable, or if none is
2944 * present NULL is returned
2947 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2949 struct ata_link
*link
= adev
->link
;
2950 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2951 if (!ata_dev_enabled(pair
))
2957 * ata_port_disable - Disable port.
2958 * @ap: Port to be disabled.
2960 * Modify @ap data structure such that the system
2961 * thinks that the entire port is disabled, and should
2962 * never attempt to probe or communicate with devices
2965 * LOCKING: host lock, or some other form of
2969 void ata_port_disable(struct ata_port
*ap
)
2971 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2972 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2973 ap
->flags
|= ATA_FLAG_DISABLED
;
2977 * sata_down_spd_limit - adjust SATA spd limit downward
2978 * @link: Link to adjust SATA spd limit for
2979 * @spd_limit: Additional limit
2981 * Adjust SATA spd limit of @link downward. Note that this
2982 * function only adjusts the limit. The change must be applied
2983 * using sata_set_spd().
2985 * If @spd_limit is non-zero, the speed is limited to equal to or
2986 * lower than @spd_limit if such speed is supported. If
2987 * @spd_limit is slower than any supported speed, only the lowest
2988 * supported speed is allowed.
2991 * Inherited from caller.
2994 * 0 on success, negative errno on failure
2996 int sata_down_spd_limit(struct ata_link
*link
, u32 spd_limit
)
2998 u32 sstatus
, spd
, mask
;
3001 if (!sata_scr_valid(link
))
3004 /* If SCR can be read, use it to determine the current SPD.
3005 * If not, use cached value in link->sata_spd.
3007 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
3008 if (rc
== 0 && ata_sstatus_online(sstatus
))
3009 spd
= (sstatus
>> 4) & 0xf;
3011 spd
= link
->sata_spd
;
3013 mask
= link
->sata_spd_limit
;
3017 /* unconditionally mask off the highest bit */
3018 bit
= fls(mask
) - 1;
3019 mask
&= ~(1 << bit
);
3021 /* Mask off all speeds higher than or equal to the current
3022 * one. Force 1.5Gbps if current SPD is not available.
3025 mask
&= (1 << (spd
- 1)) - 1;
3029 /* were we already at the bottom? */
3034 if (mask
& ((1 << spd_limit
) - 1))
3035 mask
&= (1 << spd_limit
) - 1;
3037 bit
= ffs(mask
) - 1;
3042 link
->sata_spd_limit
= mask
;
3044 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
3045 sata_spd_string(fls(mask
)));
3050 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
3052 struct ata_link
*host_link
= &link
->ap
->link
;
3053 u32 limit
, target
, spd
;
3055 limit
= link
->sata_spd_limit
;
3057 /* Don't configure downstream link faster than upstream link.
3058 * It doesn't speed up anything and some PMPs choke on such
3061 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
3062 limit
&= (1 << host_link
->sata_spd
) - 1;
3064 if (limit
== UINT_MAX
)
3067 target
= fls(limit
);
3069 spd
= (*scontrol
>> 4) & 0xf;
3070 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
3072 return spd
!= target
;
3076 * sata_set_spd_needed - is SATA spd configuration needed
3077 * @link: Link in question
3079 * Test whether the spd limit in SControl matches
3080 * @link->sata_spd_limit. This function is used to determine
3081 * whether hardreset is necessary to apply SATA spd
3085 * Inherited from caller.
3088 * 1 if SATA spd configuration is needed, 0 otherwise.
3090 static int sata_set_spd_needed(struct ata_link
*link
)
3094 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
3097 return __sata_set_spd_needed(link
, &scontrol
);
3101 * sata_set_spd - set SATA spd according to spd limit
3102 * @link: Link to set SATA spd for
3104 * Set SATA spd of @link according to sata_spd_limit.
3107 * Inherited from caller.
3110 * 0 if spd doesn't need to be changed, 1 if spd has been
3111 * changed. Negative errno if SCR registers are inaccessible.
3113 int sata_set_spd(struct ata_link
*link
)
3118 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3121 if (!__sata_set_spd_needed(link
, &scontrol
))
3124 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3131 * This mode timing computation functionality is ported over from
3132 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3135 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3136 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3137 * for UDMA6, which is currently supported only by Maxtor drives.
3139 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3142 static const struct ata_timing ata_timing
[] = {
3143 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3144 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3145 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3146 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3147 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3148 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3149 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3150 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3152 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3153 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3154 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3156 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3157 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3158 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3159 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3160 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3162 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3163 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3164 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3165 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3166 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3167 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3168 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3169 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3174 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3175 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3177 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3179 q
->setup
= EZ(t
->setup
* 1000, T
);
3180 q
->act8b
= EZ(t
->act8b
* 1000, T
);
3181 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
3182 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
3183 q
->active
= EZ(t
->active
* 1000, T
);
3184 q
->recover
= EZ(t
->recover
* 1000, T
);
3185 q
->dmack_hold
= EZ(t
->dmack_hold
* 1000, T
);
3186 q
->cycle
= EZ(t
->cycle
* 1000, T
);
3187 q
->udma
= EZ(t
->udma
* 1000, UT
);
3190 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3191 struct ata_timing
*m
, unsigned int what
)
3193 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3194 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3195 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3196 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3197 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3198 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3199 if (what
& ATA_TIMING_DMACK_HOLD
) m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
3200 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3201 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3204 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3206 const struct ata_timing
*t
= ata_timing
;
3208 while (xfer_mode
> t
->mode
)
3211 if (xfer_mode
== t
->mode
)
3216 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3217 struct ata_timing
*t
, int T
, int UT
)
3219 const struct ata_timing
*s
;
3220 struct ata_timing p
;
3226 if (!(s
= ata_timing_find_mode(speed
)))
3229 memcpy(t
, s
, sizeof(*s
));
3232 * If the drive is an EIDE drive, it can tell us it needs extended
3233 * PIO/MW_DMA cycle timing.
3236 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3237 memset(&p
, 0, sizeof(p
));
3238 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
3239 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
3240 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
3241 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
3242 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
3244 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3248 * Convert the timing to bus clock counts.
3251 ata_timing_quantize(t
, t
, T
, UT
);
3254 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3255 * S.M.A.R.T * and some other commands. We have to ensure that the
3256 * DMA cycle timing is slower/equal than the fastest PIO timing.
3259 if (speed
> XFER_PIO_6
) {
3260 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3261 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3265 * Lengthen active & recovery time so that cycle time is correct.
3268 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3269 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3270 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3273 if (t
->active
+ t
->recover
< t
->cycle
) {
3274 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3275 t
->recover
= t
->cycle
- t
->active
;
3278 /* In a few cases quantisation may produce enough errors to
3279 leave t->cycle too low for the sum of active and recovery
3280 if so we must correct this */
3281 if (t
->active
+ t
->recover
> t
->cycle
)
3282 t
->cycle
= t
->active
+ t
->recover
;
3288 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3289 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3290 * @cycle: cycle duration in ns
3292 * Return matching xfer mode for @cycle. The returned mode is of
3293 * the transfer type specified by @xfer_shift. If @cycle is too
3294 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3295 * than the fastest known mode, the fasted mode is returned.
3301 * Matching xfer_mode, 0xff if no match found.
3303 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3305 u8 base_mode
= 0xff, last_mode
= 0xff;
3306 const struct ata_xfer_ent
*ent
;
3307 const struct ata_timing
*t
;
3309 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3310 if (ent
->shift
== xfer_shift
)
3311 base_mode
= ent
->base
;
3313 for (t
= ata_timing_find_mode(base_mode
);
3314 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3315 unsigned short this_cycle
;
3317 switch (xfer_shift
) {
3319 case ATA_SHIFT_MWDMA
:
3320 this_cycle
= t
->cycle
;
3322 case ATA_SHIFT_UDMA
:
3323 this_cycle
= t
->udma
;
3329 if (cycle
> this_cycle
)
3332 last_mode
= t
->mode
;
3339 * ata_down_xfermask_limit - adjust dev xfer masks downward
3340 * @dev: Device to adjust xfer masks
3341 * @sel: ATA_DNXFER_* selector
3343 * Adjust xfer masks of @dev downward. Note that this function
3344 * does not apply the change. Invoking ata_set_mode() afterwards
3345 * will apply the limit.
3348 * Inherited from caller.
3351 * 0 on success, negative errno on failure
3353 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3356 unsigned long orig_mask
, xfer_mask
;
3357 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3360 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3361 sel
&= ~ATA_DNXFER_QUIET
;
3363 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3366 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3369 case ATA_DNXFER_PIO
:
3370 highbit
= fls(pio_mask
) - 1;
3371 pio_mask
&= ~(1 << highbit
);
3374 case ATA_DNXFER_DMA
:
3376 highbit
= fls(udma_mask
) - 1;
3377 udma_mask
&= ~(1 << highbit
);
3380 } else if (mwdma_mask
) {
3381 highbit
= fls(mwdma_mask
) - 1;
3382 mwdma_mask
&= ~(1 << highbit
);
3388 case ATA_DNXFER_40C
:
3389 udma_mask
&= ATA_UDMA_MASK_40C
;
3392 case ATA_DNXFER_FORCE_PIO0
:
3394 case ATA_DNXFER_FORCE_PIO
:
3403 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3405 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3409 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3410 snprintf(buf
, sizeof(buf
), "%s:%s",
3411 ata_mode_string(xfer_mask
),
3412 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3414 snprintf(buf
, sizeof(buf
), "%s",
3415 ata_mode_string(xfer_mask
));
3417 ata_dev_printk(dev
, KERN_WARNING
,
3418 "limiting speed to %s\n", buf
);
3421 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3427 static int ata_dev_set_mode(struct ata_device
*dev
)
3429 struct ata_port
*ap
= dev
->link
->ap
;
3430 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3431 const bool nosetxfer
= dev
->horkage
& ATA_HORKAGE_NOSETXFER
;
3432 const char *dev_err_whine
= "";
3433 int ign_dev_err
= 0;
3434 unsigned int err_mask
= 0;
3437 dev
->flags
&= ~ATA_DFLAG_PIO
;
3438 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3439 dev
->flags
|= ATA_DFLAG_PIO
;
3441 if (nosetxfer
&& ap
->flags
& ATA_FLAG_SATA
&& ata_id_is_sata(dev
->id
))
3442 dev_err_whine
= " (SET_XFERMODE skipped)";
3445 ata_dev_printk(dev
, KERN_WARNING
,
3446 "NOSETXFER but PATA detected - can't "
3447 "skip SETXFER, might malfunction\n");
3448 err_mask
= ata_dev_set_xfermode(dev
);
3451 if (err_mask
& ~AC_ERR_DEV
)
3455 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3456 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3457 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3461 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3462 /* Old CFA may refuse this command, which is just fine */
3463 if (ata_id_is_cfa(dev
->id
))
3465 /* Catch several broken garbage emulations plus some pre
3467 if (ata_id_major_version(dev
->id
) == 0 &&
3468 dev
->pio_mode
<= XFER_PIO_2
)
3470 /* Some very old devices and some bad newer ones fail
3471 any kind of SET_XFERMODE request but support PIO0-2
3472 timings and no IORDY */
3473 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3476 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3477 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3478 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3479 dev
->dma_mode
== XFER_MW_DMA_0
&&
3480 (dev
->id
[63] >> 8) & 1)
3483 /* if the device is actually configured correctly, ignore dev err */
3484 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3487 if (err_mask
& AC_ERR_DEV
) {
3491 dev_err_whine
= " (device error ignored)";
3494 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3495 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3497 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3498 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3504 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3505 "(err_mask=0x%x)\n", err_mask
);
3510 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3511 * @link: link on which timings will be programmed
3512 * @r_failed_dev: out parameter for failed device
3514 * Standard implementation of the function used to tune and set
3515 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3516 * ata_dev_set_mode() fails, pointer to the failing device is
3517 * returned in @r_failed_dev.
3520 * PCI/etc. bus probe sem.
3523 * 0 on success, negative errno otherwise
3526 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3528 struct ata_port
*ap
= link
->ap
;
3529 struct ata_device
*dev
;
3530 int rc
= 0, used_dma
= 0, found
= 0;
3532 /* step 1: calculate xfer_mask */
3533 ata_for_each_dev(dev
, link
, ENABLED
) {
3534 unsigned long pio_mask
, dma_mask
;
3535 unsigned int mode_mask
;
3537 mode_mask
= ATA_DMA_MASK_ATA
;
3538 if (dev
->class == ATA_DEV_ATAPI
)
3539 mode_mask
= ATA_DMA_MASK_ATAPI
;
3540 else if (ata_id_is_cfa(dev
->id
))
3541 mode_mask
= ATA_DMA_MASK_CFA
;
3543 ata_dev_xfermask(dev
);
3544 ata_force_xfermask(dev
);
3546 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3547 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3549 if (libata_dma_mask
& mode_mask
)
3550 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3554 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3555 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3558 if (ata_dma_enabled(dev
))
3564 /* step 2: always set host PIO timings */
3565 ata_for_each_dev(dev
, link
, ENABLED
) {
3566 if (dev
->pio_mode
== 0xff) {
3567 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3572 dev
->xfer_mode
= dev
->pio_mode
;
3573 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3574 if (ap
->ops
->set_piomode
)
3575 ap
->ops
->set_piomode(ap
, dev
);
3578 /* step 3: set host DMA timings */
3579 ata_for_each_dev(dev
, link
, ENABLED
) {
3580 if (!ata_dma_enabled(dev
))
3583 dev
->xfer_mode
= dev
->dma_mode
;
3584 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3585 if (ap
->ops
->set_dmamode
)
3586 ap
->ops
->set_dmamode(ap
, dev
);
3589 /* step 4: update devices' xfer mode */
3590 ata_for_each_dev(dev
, link
, ENABLED
) {
3591 rc
= ata_dev_set_mode(dev
);
3596 /* Record simplex status. If we selected DMA then the other
3597 * host channels are not permitted to do so.
3599 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3600 ap
->host
->simplex_claimed
= ap
;
3604 *r_failed_dev
= dev
;
3609 * ata_wait_ready - wait for link to become ready
3610 * @link: link to be waited on
3611 * @deadline: deadline jiffies for the operation
3612 * @check_ready: callback to check link readiness
3614 * Wait for @link to become ready. @check_ready should return
3615 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3616 * link doesn't seem to be occupied, other errno for other error
3619 * Transient -ENODEV conditions are allowed for
3620 * ATA_TMOUT_FF_WAIT.
3626 * 0 if @linke is ready before @deadline; otherwise, -errno.
3628 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3629 int (*check_ready
)(struct ata_link
*link
))
3631 unsigned long start
= jiffies
;
3632 unsigned long nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3635 /* Slave readiness can't be tested separately from master. On
3636 * M/S emulation configuration, this function should be called
3637 * only on the master and it will handle both master and slave.
3639 WARN_ON(link
== link
->ap
->slave_link
);
3641 if (time_after(nodev_deadline
, deadline
))
3642 nodev_deadline
= deadline
;
3645 unsigned long now
= jiffies
;
3648 ready
= tmp
= check_ready(link
);
3652 /* -ENODEV could be transient. Ignore -ENODEV if link
3653 * is online. Also, some SATA devices take a long
3654 * time to clear 0xff after reset. For example,
3655 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3656 * GoVault needs even more than that. Wait for
3657 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3659 * Note that some PATA controllers (pata_ali) explode
3660 * if status register is read more than once when
3661 * there's no device attached.
3663 if (ready
== -ENODEV
) {
3664 if (ata_link_online(link
))
3666 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3667 !ata_link_offline(link
) &&
3668 time_before(now
, nodev_deadline
))
3674 if (time_after(now
, deadline
))
3677 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3678 (deadline
- now
> 3 * HZ
)) {
3679 ata_link_printk(link
, KERN_WARNING
,
3680 "link is slow to respond, please be patient "
3681 "(ready=%d)\n", tmp
);
3690 * ata_wait_after_reset - wait for link to become ready after reset
3691 * @link: link to be waited on
3692 * @deadline: deadline jiffies for the operation
3693 * @check_ready: callback to check link readiness
3695 * Wait for @link to become ready after reset.
3701 * 0 if @linke is ready before @deadline; otherwise, -errno.
3703 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3704 int (*check_ready
)(struct ata_link
*link
))
3706 msleep(ATA_WAIT_AFTER_RESET
);
3708 return ata_wait_ready(link
, deadline
, check_ready
);
3712 * sata_link_debounce - debounce SATA phy status
3713 * @link: ATA link to debounce SATA phy status for
3714 * @params: timing parameters { interval, duratinon, timeout } in msec
3715 * @deadline: deadline jiffies for the operation
3717 * Make sure SStatus of @link reaches stable state, determined by
3718 * holding the same value where DET is not 1 for @duration polled
3719 * every @interval, before @timeout. Timeout constraints the
3720 * beginning of the stable state. Because DET gets stuck at 1 on
3721 * some controllers after hot unplugging, this functions waits
3722 * until timeout then returns 0 if DET is stable at 1.
3724 * @timeout is further limited by @deadline. The sooner of the
3728 * Kernel thread context (may sleep)
3731 * 0 on success, -errno on failure.
3733 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3734 unsigned long deadline
)
3736 unsigned long interval
= params
[0];
3737 unsigned long duration
= params
[1];
3738 unsigned long last_jiffies
, t
;
3742 t
= ata_deadline(jiffies
, params
[2]);
3743 if (time_before(t
, deadline
))
3746 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3751 last_jiffies
= jiffies
;
3755 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3761 if (cur
== 1 && time_before(jiffies
, deadline
))
3763 if (time_after(jiffies
,
3764 ata_deadline(last_jiffies
, duration
)))
3769 /* unstable, start over */
3771 last_jiffies
= jiffies
;
3773 /* Check deadline. If debouncing failed, return
3774 * -EPIPE to tell upper layer to lower link speed.
3776 if (time_after(jiffies
, deadline
))
3782 * sata_link_resume - resume SATA link
3783 * @link: ATA link to resume SATA
3784 * @params: timing parameters { interval, duratinon, timeout } in msec
3785 * @deadline: deadline jiffies for the operation
3787 * Resume SATA phy @link and debounce it.
3790 * Kernel thread context (may sleep)
3793 * 0 on success, -errno on failure.
3795 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3796 unsigned long deadline
)
3798 int tries
= ATA_LINK_RESUME_TRIES
;
3799 u32 scontrol
, serror
;
3802 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3806 * Writes to SControl sometimes get ignored under certain
3807 * controllers (ata_piix SIDPR). Make sure DET actually is
3811 scontrol
= (scontrol
& 0x0f0) | 0x300;
3812 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3815 * Some PHYs react badly if SStatus is pounded
3816 * immediately after resuming. Delay 200ms before
3821 /* is SControl restored correctly? */
3822 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3824 } while ((scontrol
& 0xf0f) != 0x300 && --tries
);
3826 if ((scontrol
& 0xf0f) != 0x300) {
3827 ata_link_printk(link
, KERN_ERR
,
3828 "failed to resume link (SControl %X)\n",
3833 if (tries
< ATA_LINK_RESUME_TRIES
)
3834 ata_link_printk(link
, KERN_WARNING
,
3835 "link resume succeeded after %d retries\n",
3836 ATA_LINK_RESUME_TRIES
- tries
);
3838 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3841 /* clear SError, some PHYs require this even for SRST to work */
3842 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3843 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3845 return rc
!= -EINVAL
? rc
: 0;
3849 * ata_std_prereset - prepare for reset
3850 * @link: ATA link to be reset
3851 * @deadline: deadline jiffies for the operation
3853 * @link is about to be reset. Initialize it. Failure from
3854 * prereset makes libata abort whole reset sequence and give up
3855 * that port, so prereset should be best-effort. It does its
3856 * best to prepare for reset sequence but if things go wrong, it
3857 * should just whine, not fail.
3860 * Kernel thread context (may sleep)
3863 * 0 on success, -errno otherwise.
3865 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3867 struct ata_port
*ap
= link
->ap
;
3868 struct ata_eh_context
*ehc
= &link
->eh_context
;
3869 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3872 /* if we're about to do hardreset, nothing more to do */
3873 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3876 /* if SATA, resume link */
3877 if (ap
->flags
& ATA_FLAG_SATA
) {
3878 rc
= sata_link_resume(link
, timing
, deadline
);
3879 /* whine about phy resume failure but proceed */
3880 if (rc
&& rc
!= -EOPNOTSUPP
)
3881 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3882 "link for reset (errno=%d)\n", rc
);
3885 /* no point in trying softreset on offline link */
3886 if (ata_phys_link_offline(link
))
3887 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3893 * sata_link_hardreset - reset link via SATA phy reset
3894 * @link: link to reset
3895 * @timing: timing parameters { interval, duratinon, timeout } in msec
3896 * @deadline: deadline jiffies for the operation
3897 * @online: optional out parameter indicating link onlineness
3898 * @check_ready: optional callback to check link readiness
3900 * SATA phy-reset @link using DET bits of SControl register.
3901 * After hardreset, link readiness is waited upon using
3902 * ata_wait_ready() if @check_ready is specified. LLDs are
3903 * allowed to not specify @check_ready and wait itself after this
3904 * function returns. Device classification is LLD's
3907 * *@online is set to one iff reset succeeded and @link is online
3911 * Kernel thread context (may sleep)
3914 * 0 on success, -errno otherwise.
3916 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3917 unsigned long deadline
,
3918 bool *online
, int (*check_ready
)(struct ata_link
*))
3928 if (sata_set_spd_needed(link
)) {
3929 /* SATA spec says nothing about how to reconfigure
3930 * spd. To be on the safe side, turn off phy during
3931 * reconfiguration. This works for at least ICH7 AHCI
3934 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3937 scontrol
= (scontrol
& 0x0f0) | 0x304;
3939 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3945 /* issue phy wake/reset */
3946 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3949 scontrol
= (scontrol
& 0x0f0) | 0x301;
3951 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3954 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3955 * 10.4.2 says at least 1 ms.
3959 /* bring link back */
3960 rc
= sata_link_resume(link
, timing
, deadline
);
3963 /* if link is offline nothing more to do */
3964 if (ata_phys_link_offline(link
))
3967 /* Link is online. From this point, -ENODEV too is an error. */
3971 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3972 /* If PMP is supported, we have to do follow-up SRST.
3973 * Some PMPs don't send D2H Reg FIS after hardreset if
3974 * the first port is empty. Wait only for
3975 * ATA_TMOUT_PMP_SRST_WAIT.
3978 unsigned long pmp_deadline
;
3980 pmp_deadline
= ata_deadline(jiffies
,
3981 ATA_TMOUT_PMP_SRST_WAIT
);
3982 if (time_after(pmp_deadline
, deadline
))
3983 pmp_deadline
= deadline
;
3984 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3992 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3994 if (rc
&& rc
!= -EAGAIN
) {
3995 /* online is set iff link is online && reset succeeded */
3998 ata_link_printk(link
, KERN_ERR
,
3999 "COMRESET failed (errno=%d)\n", rc
);
4001 DPRINTK("EXIT, rc=%d\n", rc
);
4006 * sata_std_hardreset - COMRESET w/o waiting or classification
4007 * @link: link to reset
4008 * @class: resulting class of attached device
4009 * @deadline: deadline jiffies for the operation
4011 * Standard SATA COMRESET w/o waiting or classification.
4014 * Kernel thread context (may sleep)
4017 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4019 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
4020 unsigned long deadline
)
4022 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
4027 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
4028 return online
? -EAGAIN
: rc
;
4032 * ata_std_postreset - standard postreset callback
4033 * @link: the target ata_link
4034 * @classes: classes of attached devices
4036 * This function is invoked after a successful reset. Note that
4037 * the device might have been reset more than once using
4038 * different reset methods before postreset is invoked.
4041 * Kernel thread context (may sleep)
4043 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
4049 /* reset complete, clear SError */
4050 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
4051 sata_scr_write(link
, SCR_ERROR
, serror
);
4053 /* print link status */
4054 sata_print_link_status(link
);
4060 * ata_dev_same_device - Determine whether new ID matches configured device
4061 * @dev: device to compare against
4062 * @new_class: class of the new device
4063 * @new_id: IDENTIFY page of the new device
4065 * Compare @new_class and @new_id against @dev and determine
4066 * whether @dev is the device indicated by @new_class and
4073 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4075 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
4078 const u16
*old_id
= dev
->id
;
4079 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
4080 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
4082 if (dev
->class != new_class
) {
4083 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
4084 dev
->class, new_class
);
4088 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
4089 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
4090 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
4091 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
4093 if (strcmp(model
[0], model
[1])) {
4094 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
4095 "'%s' != '%s'\n", model
[0], model
[1]);
4099 if (strcmp(serial
[0], serial
[1])) {
4100 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
4101 "'%s' != '%s'\n", serial
[0], serial
[1]);
4109 * ata_dev_reread_id - Re-read IDENTIFY data
4110 * @dev: target ATA device
4111 * @readid_flags: read ID flags
4113 * Re-read IDENTIFY page and make sure @dev is still attached to
4117 * Kernel thread context (may sleep)
4120 * 0 on success, negative errno otherwise
4122 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
4124 unsigned int class = dev
->class;
4125 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
4129 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
4133 /* is the device still there? */
4134 if (!ata_dev_same_device(dev
, class, id
))
4137 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4142 * ata_dev_revalidate - Revalidate ATA device
4143 * @dev: device to revalidate
4144 * @new_class: new class code
4145 * @readid_flags: read ID flags
4147 * Re-read IDENTIFY page, make sure @dev is still attached to the
4148 * port and reconfigure it according to the new IDENTIFY page.
4151 * Kernel thread context (may sleep)
4154 * 0 on success, negative errno otherwise
4156 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4157 unsigned int readid_flags
)
4159 u64 n_sectors
= dev
->n_sectors
;
4160 u64 n_native_sectors
= dev
->n_native_sectors
;
4163 if (!ata_dev_enabled(dev
))
4166 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4167 if (ata_class_enabled(new_class
) &&
4168 new_class
!= ATA_DEV_ATA
&&
4169 new_class
!= ATA_DEV_ATAPI
&&
4170 new_class
!= ATA_DEV_SEMB
) {
4171 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
4172 dev
->class, new_class
);
4178 rc
= ata_dev_reread_id(dev
, readid_flags
);
4182 /* configure device according to the new ID */
4183 rc
= ata_dev_configure(dev
);
4187 /* verify n_sectors hasn't changed */
4188 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
4189 dev
->n_sectors
!= n_sectors
) {
4190 ata_dev_printk(dev
, KERN_WARNING
, "n_sectors mismatch "
4192 (unsigned long long)n_sectors
,
4193 (unsigned long long)dev
->n_sectors
);
4195 * Something could have caused HPA to be unlocked
4196 * involuntarily. If n_native_sectors hasn't changed
4197 * and the new size matches it, keep the device.
4199 if (dev
->n_native_sectors
== n_native_sectors
&&
4200 dev
->n_sectors
> n_sectors
&&
4201 dev
->n_sectors
== n_native_sectors
) {
4202 ata_dev_printk(dev
, KERN_WARNING
,
4203 "new n_sectors matches native, probably "
4204 "late HPA unlock, continuing\n");
4205 /* keep using the old n_sectors */
4206 dev
->n_sectors
= n_sectors
;
4208 /* restore original n_[native]_sectors and fail */
4209 dev
->n_native_sectors
= n_native_sectors
;
4210 dev
->n_sectors
= n_sectors
;
4219 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4223 struct ata_blacklist_entry
{
4224 const char *model_num
;
4225 const char *model_rev
;
4226 unsigned long horkage
;
4229 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4230 /* Devices with DMA related problems under Linux */
4231 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4232 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4233 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4234 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4235 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4236 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4237 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4238 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4239 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4240 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
4241 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
4242 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4243 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4244 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4245 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4246 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4247 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
4248 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
4249 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4250 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4251 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4252 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4253 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4254 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4255 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4256 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4257 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4258 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4259 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4260 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4261 /* Odd clown on sil3726/4726 PMPs */
4262 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4264 /* Weird ATAPI devices */
4265 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4266 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4268 /* Devices we expect to fail diagnostics */
4270 /* Devices where NCQ should be avoided */
4272 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4273 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4274 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4275 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4277 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4278 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4279 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4280 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4281 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4283 /* Seagate NCQ + FLUSH CACHE firmware bug */
4284 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ
|
4285 ATA_HORKAGE_FIRMWARE_WARN
},
4286 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ
|
4287 ATA_HORKAGE_FIRMWARE_WARN
},
4288 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ
|
4289 ATA_HORKAGE_FIRMWARE_WARN
},
4290 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ
|
4291 ATA_HORKAGE_FIRMWARE_WARN
},
4292 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ
|
4293 ATA_HORKAGE_FIRMWARE_WARN
},
4295 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ
|
4296 ATA_HORKAGE_FIRMWARE_WARN
},
4297 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ
|
4298 ATA_HORKAGE_FIRMWARE_WARN
},
4299 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ
|
4300 ATA_HORKAGE_FIRMWARE_WARN
},
4301 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ
|
4302 ATA_HORKAGE_FIRMWARE_WARN
},
4303 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ
|
4304 ATA_HORKAGE_FIRMWARE_WARN
},
4306 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ
|
4307 ATA_HORKAGE_FIRMWARE_WARN
},
4308 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ
|
4309 ATA_HORKAGE_FIRMWARE_WARN
},
4310 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ
|
4311 ATA_HORKAGE_FIRMWARE_WARN
},
4312 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ
|
4313 ATA_HORKAGE_FIRMWARE_WARN
},
4314 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ
|
4315 ATA_HORKAGE_FIRMWARE_WARN
},
4317 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ
|
4318 ATA_HORKAGE_FIRMWARE_WARN
},
4319 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ
|
4320 ATA_HORKAGE_FIRMWARE_WARN
},
4321 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ
|
4322 ATA_HORKAGE_FIRMWARE_WARN
},
4323 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ
|
4324 ATA_HORKAGE_FIRMWARE_WARN
},
4325 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ
|
4326 ATA_HORKAGE_FIRMWARE_WARN
},
4328 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ
|
4329 ATA_HORKAGE_FIRMWARE_WARN
},
4330 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ
|
4331 ATA_HORKAGE_FIRMWARE_WARN
},
4332 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ
|
4333 ATA_HORKAGE_FIRMWARE_WARN
},
4334 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ
|
4335 ATA_HORKAGE_FIRMWARE_WARN
},
4336 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ
|
4337 ATA_HORKAGE_FIRMWARE_WARN
},
4339 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ
|
4340 ATA_HORKAGE_FIRMWARE_WARN
},
4341 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ
|
4342 ATA_HORKAGE_FIRMWARE_WARN
},
4343 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ
|
4344 ATA_HORKAGE_FIRMWARE_WARN
},
4345 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ
|
4346 ATA_HORKAGE_FIRMWARE_WARN
},
4347 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ
|
4348 ATA_HORKAGE_FIRMWARE_WARN
},
4350 /* Blacklist entries taken from Silicon Image 3124/3132
4351 Windows driver .inf file - also several Linux problem reports */
4352 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4353 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4354 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4356 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4357 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ
, },
4359 /* devices which puke on READ_NATIVE_MAX */
4360 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4361 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4362 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4363 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4365 /* this one allows HPA unlocking but fails IOs on the area */
4366 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA
},
4368 /* Devices which report 1 sector over size HPA */
4369 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4370 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4371 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4373 /* Devices which get the IVB wrong */
4374 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4375 /* Maybe we should just blacklist TSSTcorp... */
4376 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB
, },
4377 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB
, },
4378 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4379 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4380 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4381 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4383 /* Devices that do not need bridging limits applied */
4384 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4386 /* Devices which aren't very happy with higher link speeds */
4387 { "WD My Book", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4390 * Devices which choke on SETXFER. Applies only if both the
4391 * device and controller are SATA.
4393 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER
},
4399 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4405 * check for trailing wildcard: *\0
4407 p
= strchr(patt
, wildchar
);
4408 if (p
&& ((*(p
+ 1)) == 0))
4419 return strncmp(patt
, name
, len
);
4422 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4424 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4425 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4426 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4428 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4429 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4431 while (ad
->model_num
) {
4432 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4433 if (ad
->model_rev
== NULL
)
4435 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4443 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4445 /* We don't support polling DMA.
4446 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4447 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4449 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4450 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4452 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4456 * ata_is_40wire - check drive side detection
4459 * Perform drive side detection decoding, allowing for device vendors
4460 * who can't follow the documentation.
4463 static int ata_is_40wire(struct ata_device
*dev
)
4465 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4466 return ata_drive_40wire_relaxed(dev
->id
);
4467 return ata_drive_40wire(dev
->id
);
4471 * cable_is_40wire - 40/80/SATA decider
4472 * @ap: port to consider
4474 * This function encapsulates the policy for speed management
4475 * in one place. At the moment we don't cache the result but
4476 * there is a good case for setting ap->cbl to the result when
4477 * we are called with unknown cables (and figuring out if it
4478 * impacts hotplug at all).
4480 * Return 1 if the cable appears to be 40 wire.
4483 static int cable_is_40wire(struct ata_port
*ap
)
4485 struct ata_link
*link
;
4486 struct ata_device
*dev
;
4488 /* If the controller thinks we are 40 wire, we are. */
4489 if (ap
->cbl
== ATA_CBL_PATA40
)
4492 /* If the controller thinks we are 80 wire, we are. */
4493 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4496 /* If the system is known to be 40 wire short cable (eg
4497 * laptop), then we allow 80 wire modes even if the drive
4500 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4503 /* If the controller doesn't know, we scan.
4505 * Note: We look for all 40 wire detects at this point. Any
4506 * 80 wire detect is taken to be 80 wire cable because
4507 * - in many setups only the one drive (slave if present) will
4508 * give a valid detect
4509 * - if you have a non detect capable drive you don't want it
4510 * to colour the choice
4512 ata_for_each_link(link
, ap
, EDGE
) {
4513 ata_for_each_dev(dev
, link
, ENABLED
) {
4514 if (!ata_is_40wire(dev
))
4522 * ata_dev_xfermask - Compute supported xfermask of the given device
4523 * @dev: Device to compute xfermask for
4525 * Compute supported xfermask of @dev and store it in
4526 * dev->*_mask. This function is responsible for applying all
4527 * known limits including host controller limits, device
4533 static void ata_dev_xfermask(struct ata_device
*dev
)
4535 struct ata_link
*link
= dev
->link
;
4536 struct ata_port
*ap
= link
->ap
;
4537 struct ata_host
*host
= ap
->host
;
4538 unsigned long xfer_mask
;
4540 /* controller modes available */
4541 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4542 ap
->mwdma_mask
, ap
->udma_mask
);
4544 /* drive modes available */
4545 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4546 dev
->mwdma_mask
, dev
->udma_mask
);
4547 xfer_mask
&= ata_id_xfermask(dev
->id
);
4550 * CFA Advanced TrueIDE timings are not allowed on a shared
4553 if (ata_dev_pair(dev
)) {
4554 /* No PIO5 or PIO6 */
4555 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4556 /* No MWDMA3 or MWDMA 4 */
4557 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4560 if (ata_dma_blacklisted(dev
)) {
4561 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4562 ata_dev_printk(dev
, KERN_WARNING
,
4563 "device is on DMA blacklist, disabling DMA\n");
4566 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4567 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4568 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4569 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4570 "other device, disabling DMA\n");
4573 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4574 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4576 if (ap
->ops
->mode_filter
)
4577 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4579 /* Apply cable rule here. Don't apply it early because when
4580 * we handle hot plug the cable type can itself change.
4581 * Check this last so that we know if the transfer rate was
4582 * solely limited by the cable.
4583 * Unknown or 80 wire cables reported host side are checked
4584 * drive side as well. Cases where we know a 40wire cable
4585 * is used safely for 80 are not checked here.
4587 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4588 /* UDMA/44 or higher would be available */
4589 if (cable_is_40wire(ap
)) {
4590 ata_dev_printk(dev
, KERN_WARNING
,
4591 "limited to UDMA/33 due to 40-wire cable\n");
4592 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4595 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4596 &dev
->mwdma_mask
, &dev
->udma_mask
);
4600 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4601 * @dev: Device to which command will be sent
4603 * Issue SET FEATURES - XFER MODE command to device @dev
4607 * PCI/etc. bus probe sem.
4610 * 0 on success, AC_ERR_* mask otherwise.
4613 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4615 struct ata_taskfile tf
;
4616 unsigned int err_mask
;
4618 /* set up set-features taskfile */
4619 DPRINTK("set features - xfer mode\n");
4621 /* Some controllers and ATAPI devices show flaky interrupt
4622 * behavior after setting xfer mode. Use polling instead.
4624 ata_tf_init(dev
, &tf
);
4625 tf
.command
= ATA_CMD_SET_FEATURES
;
4626 tf
.feature
= SETFEATURES_XFER
;
4627 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4628 tf
.protocol
= ATA_PROT_NODATA
;
4629 /* If we are using IORDY we must send the mode setting command */
4630 if (ata_pio_need_iordy(dev
))
4631 tf
.nsect
= dev
->xfer_mode
;
4632 /* If the device has IORDY and the controller does not - turn it off */
4633 else if (ata_id_has_iordy(dev
->id
))
4635 else /* In the ancient relic department - skip all of this */
4638 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4640 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4644 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4645 * @dev: Device to which command will be sent
4646 * @enable: Whether to enable or disable the feature
4647 * @feature: The sector count represents the feature to set
4649 * Issue SET FEATURES - SATA FEATURES command to device @dev
4650 * on port @ap with sector count
4653 * PCI/etc. bus probe sem.
4656 * 0 on success, AC_ERR_* mask otherwise.
4658 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4661 struct ata_taskfile tf
;
4662 unsigned int err_mask
;
4664 /* set up set-features taskfile */
4665 DPRINTK("set features - SATA features\n");
4667 ata_tf_init(dev
, &tf
);
4668 tf
.command
= ATA_CMD_SET_FEATURES
;
4669 tf
.feature
= enable
;
4670 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4671 tf
.protocol
= ATA_PROT_NODATA
;
4674 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4676 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4681 * ata_dev_init_params - Issue INIT DEV PARAMS command
4682 * @dev: Device to which command will be sent
4683 * @heads: Number of heads (taskfile parameter)
4684 * @sectors: Number of sectors (taskfile parameter)
4687 * Kernel thread context (may sleep)
4690 * 0 on success, AC_ERR_* mask otherwise.
4692 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4693 u16 heads
, u16 sectors
)
4695 struct ata_taskfile tf
;
4696 unsigned int err_mask
;
4698 /* Number of sectors per track 1-255. Number of heads 1-16 */
4699 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4700 return AC_ERR_INVALID
;
4702 /* set up init dev params taskfile */
4703 DPRINTK("init dev params \n");
4705 ata_tf_init(dev
, &tf
);
4706 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4707 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4708 tf
.protocol
= ATA_PROT_NODATA
;
4710 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4712 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4713 /* A clean abort indicates an original or just out of spec drive
4714 and we should continue as we issue the setup based on the
4715 drive reported working geometry */
4716 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4719 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4724 * ata_sg_clean - Unmap DMA memory associated with command
4725 * @qc: Command containing DMA memory to be released
4727 * Unmap all mapped DMA memory associated with this command.
4730 * spin_lock_irqsave(host lock)
4732 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4734 struct ata_port
*ap
= qc
->ap
;
4735 struct scatterlist
*sg
= qc
->sg
;
4736 int dir
= qc
->dma_dir
;
4738 WARN_ON_ONCE(sg
== NULL
);
4740 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4743 dma_unmap_sg(ap
->dev
, sg
, qc
->orig_n_elem
, dir
);
4745 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4750 * atapi_check_dma - Check whether ATAPI DMA can be supported
4751 * @qc: Metadata associated with taskfile to check
4753 * Allow low-level driver to filter ATA PACKET commands, returning
4754 * a status indicating whether or not it is OK to use DMA for the
4755 * supplied PACKET command.
4758 * spin_lock_irqsave(host lock)
4760 * RETURNS: 0 when ATAPI DMA can be used
4763 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4765 struct ata_port
*ap
= qc
->ap
;
4767 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4768 * few ATAPI devices choke on such DMA requests.
4770 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4771 unlikely(qc
->nbytes
& 15))
4774 if (ap
->ops
->check_atapi_dma
)
4775 return ap
->ops
->check_atapi_dma(qc
);
4781 * ata_std_qc_defer - Check whether a qc needs to be deferred
4782 * @qc: ATA command in question
4784 * Non-NCQ commands cannot run with any other command, NCQ or
4785 * not. As upper layer only knows the queue depth, we are
4786 * responsible for maintaining exclusion. This function checks
4787 * whether a new command @qc can be issued.
4790 * spin_lock_irqsave(host lock)
4793 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4795 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4797 struct ata_link
*link
= qc
->dev
->link
;
4799 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4800 if (!ata_tag_valid(link
->active_tag
))
4803 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4807 return ATA_DEFER_LINK
;
4810 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4813 * ata_sg_init - Associate command with scatter-gather table.
4814 * @qc: Command to be associated
4815 * @sg: Scatter-gather table.
4816 * @n_elem: Number of elements in s/g table.
4818 * Initialize the data-related elements of queued_cmd @qc
4819 * to point to a scatter-gather table @sg, containing @n_elem
4823 * spin_lock_irqsave(host lock)
4825 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4826 unsigned int n_elem
)
4829 qc
->n_elem
= n_elem
;
4834 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4835 * @qc: Command with scatter-gather table to be mapped.
4837 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4840 * spin_lock_irqsave(host lock)
4843 * Zero on success, negative on error.
4846 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4848 struct ata_port
*ap
= qc
->ap
;
4849 unsigned int n_elem
;
4851 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4853 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4857 DPRINTK("%d sg elements mapped\n", n_elem
);
4858 qc
->orig_n_elem
= qc
->n_elem
;
4859 qc
->n_elem
= n_elem
;
4860 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4866 * swap_buf_le16 - swap halves of 16-bit words in place
4867 * @buf: Buffer to swap
4868 * @buf_words: Number of 16-bit words in buffer.
4870 * Swap halves of 16-bit words if needed to convert from
4871 * little-endian byte order to native cpu byte order, or
4875 * Inherited from caller.
4877 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4882 for (i
= 0; i
< buf_words
; i
++)
4883 buf
[i
] = le16_to_cpu(buf
[i
]);
4884 #endif /* __BIG_ENDIAN */
4888 * ata_qc_new - Request an available ATA command, for queueing
4895 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4897 struct ata_queued_cmd
*qc
= NULL
;
4900 /* no command while frozen */
4901 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4904 /* the last tag is reserved for internal command. */
4905 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4906 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4907 qc
= __ata_qc_from_tag(ap
, i
);
4918 * ata_qc_new_init - Request an available ATA command, and initialize it
4919 * @dev: Device from whom we request an available command structure
4925 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4927 struct ata_port
*ap
= dev
->link
->ap
;
4928 struct ata_queued_cmd
*qc
;
4930 qc
= ata_qc_new(ap
);
4943 * ata_qc_free - free unused ata_queued_cmd
4944 * @qc: Command to complete
4946 * Designed to free unused ata_queued_cmd object
4947 * in case something prevents using it.
4950 * spin_lock_irqsave(host lock)
4952 void ata_qc_free(struct ata_queued_cmd
*qc
)
4954 struct ata_port
*ap
;
4957 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4962 if (likely(ata_tag_valid(tag
))) {
4963 qc
->tag
= ATA_TAG_POISON
;
4964 clear_bit(tag
, &ap
->qc_allocated
);
4968 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4970 struct ata_port
*ap
;
4971 struct ata_link
*link
;
4973 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4974 WARN_ON_ONCE(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4976 link
= qc
->dev
->link
;
4978 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4981 /* command should be marked inactive atomically with qc completion */
4982 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4983 link
->sactive
&= ~(1 << qc
->tag
);
4985 ap
->nr_active_links
--;
4987 link
->active_tag
= ATA_TAG_POISON
;
4988 ap
->nr_active_links
--;
4991 /* clear exclusive status */
4992 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4993 ap
->excl_link
== link
))
4994 ap
->excl_link
= NULL
;
4996 /* atapi: mark qc as inactive to prevent the interrupt handler
4997 * from completing the command twice later, before the error handler
4998 * is called. (when rc != 0 and atapi request sense is needed)
5000 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
5001 ap
->qc_active
&= ~(1 << qc
->tag
);
5003 /* call completion callback */
5004 qc
->complete_fn(qc
);
5007 static void fill_result_tf(struct ata_queued_cmd
*qc
)
5009 struct ata_port
*ap
= qc
->ap
;
5011 qc
->result_tf
.flags
= qc
->tf
.flags
;
5012 ap
->ops
->qc_fill_rtf(qc
);
5015 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
5017 struct ata_device
*dev
= qc
->dev
;
5019 if (ata_is_nodata(qc
->tf
.protocol
))
5022 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
5025 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
5029 * ata_qc_complete - Complete an active ATA command
5030 * @qc: Command to complete
5032 * Indicate to the mid and upper layers that an ATA
5033 * command has completed, with either an ok or not-ok status.
5036 * spin_lock_irqsave(host lock)
5038 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5040 struct ata_port
*ap
= qc
->ap
;
5042 /* XXX: New EH and old EH use different mechanisms to
5043 * synchronize EH with regular execution path.
5045 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5046 * Normal execution path is responsible for not accessing a
5047 * failed qc. libata core enforces the rule by returning NULL
5048 * from ata_qc_from_tag() for failed qcs.
5050 * Old EH depends on ata_qc_complete() nullifying completion
5051 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5052 * not synchronize with interrupt handler. Only PIO task is
5055 if (ap
->ops
->error_handler
) {
5056 struct ata_device
*dev
= qc
->dev
;
5057 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5059 if (unlikely(qc
->err_mask
))
5060 qc
->flags
|= ATA_QCFLAG_FAILED
;
5063 * Finish internal commands without any further processing
5064 * and always with the result TF filled.
5066 if (unlikely(ata_tag_internal(qc
->tag
))) {
5068 __ata_qc_complete(qc
);
5073 * Non-internal qc has failed. Fill the result TF and
5076 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5078 ata_qc_schedule_eh(qc
);
5082 WARN_ON_ONCE(ap
->pflags
& ATA_PFLAG_FROZEN
);
5084 /* read result TF if requested */
5085 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5088 /* Some commands need post-processing after successful
5091 switch (qc
->tf
.command
) {
5092 case ATA_CMD_SET_FEATURES
:
5093 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
5094 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
5097 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
5098 case ATA_CMD_SET_MULTI
: /* multi_count changed */
5099 /* revalidate device */
5100 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
5101 ata_port_schedule_eh(ap
);
5105 dev
->flags
|= ATA_DFLAG_SLEEPING
;
5109 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
5110 ata_verify_xfer(qc
);
5112 __ata_qc_complete(qc
);
5114 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5117 /* read result TF if failed or requested */
5118 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5121 __ata_qc_complete(qc
);
5126 * ata_qc_complete_multiple - Complete multiple qcs successfully
5127 * @ap: port in question
5128 * @qc_active: new qc_active mask
5130 * Complete in-flight commands. This functions is meant to be
5131 * called from low-level driver's interrupt routine to complete
5132 * requests normally. ap->qc_active and @qc_active is compared
5133 * and commands are completed accordingly.
5136 * spin_lock_irqsave(host lock)
5139 * Number of completed commands on success, -errno otherwise.
5141 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
5146 done_mask
= ap
->qc_active
^ qc_active
;
5148 if (unlikely(done_mask
& qc_active
)) {
5149 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5150 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5155 struct ata_queued_cmd
*qc
;
5156 unsigned int tag
= __ffs(done_mask
);
5158 qc
= ata_qc_from_tag(ap
, tag
);
5160 ata_qc_complete(qc
);
5163 done_mask
&= ~(1 << tag
);
5170 * ata_qc_issue - issue taskfile to device
5171 * @qc: command to issue to device
5173 * Prepare an ATA command to submission to device.
5174 * This includes mapping the data into a DMA-able
5175 * area, filling in the S/G table, and finally
5176 * writing the taskfile to hardware, starting the command.
5179 * spin_lock_irqsave(host lock)
5181 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5183 struct ata_port
*ap
= qc
->ap
;
5184 struct ata_link
*link
= qc
->dev
->link
;
5185 u8 prot
= qc
->tf
.protocol
;
5187 /* Make sure only one non-NCQ command is outstanding. The
5188 * check is skipped for old EH because it reuses active qc to
5189 * request ATAPI sense.
5191 WARN_ON_ONCE(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5193 if (ata_is_ncq(prot
)) {
5194 WARN_ON_ONCE(link
->sactive
& (1 << qc
->tag
));
5197 ap
->nr_active_links
++;
5198 link
->sactive
|= 1 << qc
->tag
;
5200 WARN_ON_ONCE(link
->sactive
);
5202 ap
->nr_active_links
++;
5203 link
->active_tag
= qc
->tag
;
5206 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5207 ap
->qc_active
|= 1 << qc
->tag
;
5209 /* We guarantee to LLDs that they will have at least one
5210 * non-zero sg if the command is a data command.
5212 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
5214 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5215 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5216 if (ata_sg_setup(qc
))
5219 /* if device is sleeping, schedule reset and abort the link */
5220 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5221 link
->eh_info
.action
|= ATA_EH_RESET
;
5222 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5223 ata_link_abort(link
);
5227 ap
->ops
->qc_prep(qc
);
5229 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5230 if (unlikely(qc
->err_mask
))
5235 qc
->err_mask
|= AC_ERR_SYSTEM
;
5237 ata_qc_complete(qc
);
5241 * sata_scr_valid - test whether SCRs are accessible
5242 * @link: ATA link to test SCR accessibility for
5244 * Test whether SCRs are accessible for @link.
5250 * 1 if SCRs are accessible, 0 otherwise.
5252 int sata_scr_valid(struct ata_link
*link
)
5254 struct ata_port
*ap
= link
->ap
;
5256 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5260 * sata_scr_read - read SCR register of the specified port
5261 * @link: ATA link to read SCR for
5263 * @val: Place to store read value
5265 * Read SCR register @reg of @link into *@val. This function is
5266 * guaranteed to succeed if @link is ap->link, the cable type of
5267 * the port is SATA and the port implements ->scr_read.
5270 * None if @link is ap->link. Kernel thread context otherwise.
5273 * 0 on success, negative errno on failure.
5275 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5277 if (ata_is_host_link(link
)) {
5278 if (sata_scr_valid(link
))
5279 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5283 return sata_pmp_scr_read(link
, reg
, val
);
5287 * sata_scr_write - write SCR register of the specified port
5288 * @link: ATA link to write SCR for
5289 * @reg: SCR to write
5290 * @val: value to write
5292 * Write @val to SCR register @reg of @link. This function is
5293 * guaranteed to succeed if @link is ap->link, the cable type of
5294 * the port is SATA and the port implements ->scr_read.
5297 * None if @link is ap->link. Kernel thread context otherwise.
5300 * 0 on success, negative errno on failure.
5302 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5304 if (ata_is_host_link(link
)) {
5305 if (sata_scr_valid(link
))
5306 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5310 return sata_pmp_scr_write(link
, reg
, val
);
5314 * sata_scr_write_flush - write SCR register of the specified port and flush
5315 * @link: ATA link to write SCR for
5316 * @reg: SCR to write
5317 * @val: value to write
5319 * This function is identical to sata_scr_write() except that this
5320 * function performs flush after writing to the register.
5323 * None if @link is ap->link. Kernel thread context otherwise.
5326 * 0 on success, negative errno on failure.
5328 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5330 if (ata_is_host_link(link
)) {
5333 if (sata_scr_valid(link
)) {
5334 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5336 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5342 return sata_pmp_scr_write(link
, reg
, val
);
5346 * ata_phys_link_online - test whether the given link is online
5347 * @link: ATA link to test
5349 * Test whether @link is online. Note that this function returns
5350 * 0 if online status of @link cannot be obtained, so
5351 * ata_link_online(link) != !ata_link_offline(link).
5357 * True if the port online status is available and online.
5359 bool ata_phys_link_online(struct ata_link
*link
)
5363 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5364 ata_sstatus_online(sstatus
))
5370 * ata_phys_link_offline - test whether the given link is offline
5371 * @link: ATA link to test
5373 * Test whether @link is offline. Note that this function
5374 * returns 0 if offline status of @link cannot be obtained, so
5375 * ata_link_online(link) != !ata_link_offline(link).
5381 * True if the port offline status is available and offline.
5383 bool ata_phys_link_offline(struct ata_link
*link
)
5387 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5388 !ata_sstatus_online(sstatus
))
5394 * ata_link_online - test whether the given link is online
5395 * @link: ATA link to test
5397 * Test whether @link is online. This is identical to
5398 * ata_phys_link_online() when there's no slave link. When
5399 * there's a slave link, this function should only be called on
5400 * the master link and will return true if any of M/S links is
5407 * True if the port online status is available and online.
5409 bool ata_link_online(struct ata_link
*link
)
5411 struct ata_link
*slave
= link
->ap
->slave_link
;
5413 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5415 return ata_phys_link_online(link
) ||
5416 (slave
&& ata_phys_link_online(slave
));
5420 * ata_link_offline - test whether the given link is offline
5421 * @link: ATA link to test
5423 * Test whether @link is offline. This is identical to
5424 * ata_phys_link_offline() when there's no slave link. When
5425 * there's a slave link, this function should only be called on
5426 * the master link and will return true if both M/S links are
5433 * True if the port offline status is available and offline.
5435 bool ata_link_offline(struct ata_link
*link
)
5437 struct ata_link
*slave
= link
->ap
->slave_link
;
5439 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5441 return ata_phys_link_offline(link
) &&
5442 (!slave
|| ata_phys_link_offline(slave
));
5446 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5447 unsigned int action
, unsigned int ehi_flags
,
5450 unsigned long flags
;
5453 for (i
= 0; i
< host
->n_ports
; i
++) {
5454 struct ata_port
*ap
= host
->ports
[i
];
5455 struct ata_link
*link
;
5457 /* Previous resume operation might still be in
5458 * progress. Wait for PM_PENDING to clear.
5460 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5461 ata_port_wait_eh(ap
);
5462 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5465 /* request PM ops to EH */
5466 spin_lock_irqsave(ap
->lock
, flags
);
5471 ap
->pm_result
= &rc
;
5474 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5475 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5476 link
->eh_info
.action
|= action
;
5477 link
->eh_info
.flags
|= ehi_flags
;
5480 ata_port_schedule_eh(ap
);
5482 spin_unlock_irqrestore(ap
->lock
, flags
);
5484 /* wait and check result */
5486 ata_port_wait_eh(ap
);
5487 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5497 * ata_host_suspend - suspend host
5498 * @host: host to suspend
5501 * Suspend @host. Actual operation is performed by EH. This
5502 * function requests EH to perform PM operations and waits for EH
5506 * Kernel thread context (may sleep).
5509 * 0 on success, -errno on failure.
5511 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5513 unsigned int ehi_flags
= ATA_EHI_QUIET
;
5517 * disable link pm on all ports before requesting
5520 ata_lpm_enable(host
);
5523 * On some hardware, device fails to respond after spun down
5524 * for suspend. As the device won't be used before being
5525 * resumed, we don't need to touch the device. Ask EH to skip
5526 * the usual stuff and proceed directly to suspend.
5528 * http://thread.gmane.org/gmane.linux.ide/46764
5530 if (mesg
.event
== PM_EVENT_SUSPEND
)
5531 ehi_flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_NO_RECOVERY
;
5533 rc
= ata_host_request_pm(host
, mesg
, 0, ehi_flags
, 1);
5535 host
->dev
->power
.power_state
= mesg
;
5540 * ata_host_resume - resume host
5541 * @host: host to resume
5543 * Resume @host. Actual operation is performed by EH. This
5544 * function requests EH to perform PM operations and returns.
5545 * Note that all resume operations are performed parallely.
5548 * Kernel thread context (may sleep).
5550 void ata_host_resume(struct ata_host
*host
)
5552 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_RESET
,
5553 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5554 host
->dev
->power
.power_state
= PMSG_ON
;
5556 /* reenable link pm */
5557 ata_lpm_disable(host
);
5562 * ata_port_start - Set port up for dma.
5563 * @ap: Port to initialize
5565 * Called just after data structures for each port are
5566 * initialized. Allocates space for PRD table.
5568 * May be used as the port_start() entry in ata_port_operations.
5571 * Inherited from caller.
5573 int ata_port_start(struct ata_port
*ap
)
5575 struct device
*dev
= ap
->dev
;
5577 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5586 * ata_dev_init - Initialize an ata_device structure
5587 * @dev: Device structure to initialize
5589 * Initialize @dev in preparation for probing.
5592 * Inherited from caller.
5594 void ata_dev_init(struct ata_device
*dev
)
5596 struct ata_link
*link
= ata_dev_phys_link(dev
);
5597 struct ata_port
*ap
= link
->ap
;
5598 unsigned long flags
;
5600 /* SATA spd limit is bound to the attached device, reset together */
5601 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5604 /* High bits of dev->flags are used to record warm plug
5605 * requests which occur asynchronously. Synchronize using
5608 spin_lock_irqsave(ap
->lock
, flags
);
5609 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5611 spin_unlock_irqrestore(ap
->lock
, flags
);
5613 memset((void *)dev
+ ATA_DEVICE_CLEAR_BEGIN
, 0,
5614 ATA_DEVICE_CLEAR_END
- ATA_DEVICE_CLEAR_BEGIN
);
5615 dev
->pio_mask
= UINT_MAX
;
5616 dev
->mwdma_mask
= UINT_MAX
;
5617 dev
->udma_mask
= UINT_MAX
;
5621 * ata_link_init - Initialize an ata_link structure
5622 * @ap: ATA port link is attached to
5623 * @link: Link structure to initialize
5624 * @pmp: Port multiplier port number
5629 * Kernel thread context (may sleep)
5631 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5635 /* clear everything except for devices */
5636 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
5640 link
->active_tag
= ATA_TAG_POISON
;
5641 link
->hw_sata_spd_limit
= UINT_MAX
;
5643 /* can't use iterator, ap isn't initialized yet */
5644 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5645 struct ata_device
*dev
= &link
->device
[i
];
5648 dev
->devno
= dev
- link
->device
;
5649 #ifdef CONFIG_ATA_ACPI
5650 dev
->gtf_filter
= ata_acpi_gtf_filter
;
5657 * sata_link_init_spd - Initialize link->sata_spd_limit
5658 * @link: Link to configure sata_spd_limit for
5660 * Initialize @link->[hw_]sata_spd_limit to the currently
5664 * Kernel thread context (may sleep).
5667 * 0 on success, -errno on failure.
5669 int sata_link_init_spd(struct ata_link
*link
)
5674 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5678 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5680 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5682 ata_force_link_limits(link
);
5684 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5690 * ata_port_alloc - allocate and initialize basic ATA port resources
5691 * @host: ATA host this allocated port belongs to
5693 * Allocate and initialize basic ATA port resources.
5696 * Allocate ATA port on success, NULL on failure.
5699 * Inherited from calling layer (may sleep).
5701 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5703 struct ata_port
*ap
;
5707 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5711 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
5712 ap
->lock
= &host
->lock
;
5713 ap
->flags
= ATA_FLAG_DISABLED
;
5715 ap
->ctl
= ATA_DEVCTL_OBS
;
5717 ap
->dev
= host
->dev
;
5718 ap
->last_ctl
= 0xFF;
5720 #if defined(ATA_VERBOSE_DEBUG)
5721 /* turn on all debugging levels */
5722 ap
->msg_enable
= 0x00FF;
5723 #elif defined(ATA_DEBUG)
5724 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5726 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5729 #ifdef CONFIG_ATA_SFF
5730 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
5732 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
5734 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5735 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5736 INIT_LIST_HEAD(&ap
->eh_done_q
);
5737 init_waitqueue_head(&ap
->eh_wait_q
);
5738 init_completion(&ap
->park_req_pending
);
5739 init_timer_deferrable(&ap
->fastdrain_timer
);
5740 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5741 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5743 ap
->cbl
= ATA_CBL_NONE
;
5745 ata_link_init(ap
, &ap
->link
, 0);
5748 ap
->stats
.unhandled_irq
= 1;
5749 ap
->stats
.idle_irq
= 1;
5754 static void ata_host_release(struct device
*gendev
, void *res
)
5756 struct ata_host
*host
= dev_get_drvdata(gendev
);
5759 for (i
= 0; i
< host
->n_ports
; i
++) {
5760 struct ata_port
*ap
= host
->ports
[i
];
5766 scsi_host_put(ap
->scsi_host
);
5768 kfree(ap
->pmp_link
);
5769 kfree(ap
->slave_link
);
5771 host
->ports
[i
] = NULL
;
5774 dev_set_drvdata(gendev
, NULL
);
5778 * ata_host_alloc - allocate and init basic ATA host resources
5779 * @dev: generic device this host is associated with
5780 * @max_ports: maximum number of ATA ports associated with this host
5782 * Allocate and initialize basic ATA host resources. LLD calls
5783 * this function to allocate a host, initializes it fully and
5784 * attaches it using ata_host_register().
5786 * @max_ports ports are allocated and host->n_ports is
5787 * initialized to @max_ports. The caller is allowed to decrease
5788 * host->n_ports before calling ata_host_register(). The unused
5789 * ports will be automatically freed on registration.
5792 * Allocate ATA host on success, NULL on failure.
5795 * Inherited from calling layer (may sleep).
5797 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5799 struct ata_host
*host
;
5805 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5808 /* alloc a container for our list of ATA ports (buses) */
5809 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5810 /* alloc a container for our list of ATA ports (buses) */
5811 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5815 devres_add(dev
, host
);
5816 dev_set_drvdata(dev
, host
);
5818 spin_lock_init(&host
->lock
);
5820 host
->n_ports
= max_ports
;
5822 /* allocate ports bound to this host */
5823 for (i
= 0; i
< max_ports
; i
++) {
5824 struct ata_port
*ap
;
5826 ap
= ata_port_alloc(host
);
5831 host
->ports
[i
] = ap
;
5834 devres_remove_group(dev
, NULL
);
5838 devres_release_group(dev
, NULL
);
5843 * ata_host_alloc_pinfo - alloc host and init with port_info array
5844 * @dev: generic device this host is associated with
5845 * @ppi: array of ATA port_info to initialize host with
5846 * @n_ports: number of ATA ports attached to this host
5848 * Allocate ATA host and initialize with info from @ppi. If NULL
5849 * terminated, @ppi may contain fewer entries than @n_ports. The
5850 * last entry will be used for the remaining ports.
5853 * Allocate ATA host on success, NULL on failure.
5856 * Inherited from calling layer (may sleep).
5858 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5859 const struct ata_port_info
* const * ppi
,
5862 const struct ata_port_info
*pi
;
5863 struct ata_host
*host
;
5866 host
= ata_host_alloc(dev
, n_ports
);
5870 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5871 struct ata_port
*ap
= host
->ports
[i
];
5876 ap
->pio_mask
= pi
->pio_mask
;
5877 ap
->mwdma_mask
= pi
->mwdma_mask
;
5878 ap
->udma_mask
= pi
->udma_mask
;
5879 ap
->flags
|= pi
->flags
;
5880 ap
->link
.flags
|= pi
->link_flags
;
5881 ap
->ops
= pi
->port_ops
;
5883 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5884 host
->ops
= pi
->port_ops
;
5891 * ata_slave_link_init - initialize slave link
5892 * @ap: port to initialize slave link for
5894 * Create and initialize slave link for @ap. This enables slave
5895 * link handling on the port.
5897 * In libata, a port contains links and a link contains devices.
5898 * There is single host link but if a PMP is attached to it,
5899 * there can be multiple fan-out links. On SATA, there's usually
5900 * a single device connected to a link but PATA and SATA
5901 * controllers emulating TF based interface can have two - master
5904 * However, there are a few controllers which don't fit into this
5905 * abstraction too well - SATA controllers which emulate TF
5906 * interface with both master and slave devices but also have
5907 * separate SCR register sets for each device. These controllers
5908 * need separate links for physical link handling
5909 * (e.g. onlineness, link speed) but should be treated like a
5910 * traditional M/S controller for everything else (e.g. command
5911 * issue, softreset).
5913 * slave_link is libata's way of handling this class of
5914 * controllers without impacting core layer too much. For
5915 * anything other than physical link handling, the default host
5916 * link is used for both master and slave. For physical link
5917 * handling, separate @ap->slave_link is used. All dirty details
5918 * are implemented inside libata core layer. From LLD's POV, the
5919 * only difference is that prereset, hardreset and postreset are
5920 * called once more for the slave link, so the reset sequence
5921 * looks like the following.
5923 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5924 * softreset(M) -> postreset(M) -> postreset(S)
5926 * Note that softreset is called only for the master. Softreset
5927 * resets both M/S by definition, so SRST on master should handle
5928 * both (the standard method will work just fine).
5931 * Should be called before host is registered.
5934 * 0 on success, -errno on failure.
5936 int ata_slave_link_init(struct ata_port
*ap
)
5938 struct ata_link
*link
;
5940 WARN_ON(ap
->slave_link
);
5941 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
5943 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
5947 ata_link_init(ap
, link
, 1);
5948 ap
->slave_link
= link
;
5952 static void ata_host_stop(struct device
*gendev
, void *res
)
5954 struct ata_host
*host
= dev_get_drvdata(gendev
);
5957 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5959 for (i
= 0; i
< host
->n_ports
; i
++) {
5960 struct ata_port
*ap
= host
->ports
[i
];
5962 if (ap
->ops
->port_stop
)
5963 ap
->ops
->port_stop(ap
);
5966 if (host
->ops
->host_stop
)
5967 host
->ops
->host_stop(host
);
5971 * ata_finalize_port_ops - finalize ata_port_operations
5972 * @ops: ata_port_operations to finalize
5974 * An ata_port_operations can inherit from another ops and that
5975 * ops can again inherit from another. This can go on as many
5976 * times as necessary as long as there is no loop in the
5977 * inheritance chain.
5979 * Ops tables are finalized when the host is started. NULL or
5980 * unspecified entries are inherited from the closet ancestor
5981 * which has the method and the entry is populated with it.
5982 * After finalization, the ops table directly points to all the
5983 * methods and ->inherits is no longer necessary and cleared.
5985 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5990 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5992 static DEFINE_SPINLOCK(lock
);
5993 const struct ata_port_operations
*cur
;
5994 void **begin
= (void **)ops
;
5995 void **end
= (void **)&ops
->inherits
;
5998 if (!ops
|| !ops
->inherits
)
6003 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
6004 void **inherit
= (void **)cur
;
6006 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
6011 for (pp
= begin
; pp
< end
; pp
++)
6015 ops
->inherits
= NULL
;
6021 * ata_host_start - start and freeze ports of an ATA host
6022 * @host: ATA host to start ports for
6024 * Start and then freeze ports of @host. Started status is
6025 * recorded in host->flags, so this function can be called
6026 * multiple times. Ports are guaranteed to get started only
6027 * once. If host->ops isn't initialized yet, its set to the
6028 * first non-dummy port ops.
6031 * Inherited from calling layer (may sleep).
6034 * 0 if all ports are started successfully, -errno otherwise.
6036 int ata_host_start(struct ata_host
*host
)
6039 void *start_dr
= NULL
;
6042 if (host
->flags
& ATA_HOST_STARTED
)
6045 ata_finalize_port_ops(host
->ops
);
6047 for (i
= 0; i
< host
->n_ports
; i
++) {
6048 struct ata_port
*ap
= host
->ports
[i
];
6050 ata_finalize_port_ops(ap
->ops
);
6052 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6053 host
->ops
= ap
->ops
;
6055 if (ap
->ops
->port_stop
)
6059 if (host
->ops
->host_stop
)
6063 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
6068 for (i
= 0; i
< host
->n_ports
; i
++) {
6069 struct ata_port
*ap
= host
->ports
[i
];
6071 if (ap
->ops
->port_start
) {
6072 rc
= ap
->ops
->port_start(ap
);
6075 dev_printk(KERN_ERR
, host
->dev
,
6076 "failed to start port %d "
6077 "(errno=%d)\n", i
, rc
);
6081 ata_eh_freeze_port(ap
);
6085 devres_add(host
->dev
, start_dr
);
6086 host
->flags
|= ATA_HOST_STARTED
;
6091 struct ata_port
*ap
= host
->ports
[i
];
6093 if (ap
->ops
->port_stop
)
6094 ap
->ops
->port_stop(ap
);
6096 devres_free(start_dr
);
6101 * ata_sas_host_init - Initialize a host struct
6102 * @host: host to initialize
6103 * @dev: device host is attached to
6104 * @flags: host flags
6108 * PCI/etc. bus probe sem.
6111 /* KILLME - the only user left is ipr */
6112 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6113 unsigned long flags
, struct ata_port_operations
*ops
)
6115 spin_lock_init(&host
->lock
);
6117 host
->flags
= flags
;
6122 static void async_port_probe(void *data
, async_cookie_t cookie
)
6125 struct ata_port
*ap
= data
;
6128 * If we're not allowed to scan this host in parallel,
6129 * we need to wait until all previous scans have completed
6130 * before going further.
6131 * Jeff Garzik says this is only within a controller, so we
6132 * don't need to wait for port 0, only for later ports.
6134 if (!(ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
) && ap
->port_no
!= 0)
6135 async_synchronize_cookie(cookie
);
6138 if (ap
->ops
->error_handler
) {
6139 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6140 unsigned long flags
;
6144 /* kick EH for boot probing */
6145 spin_lock_irqsave(ap
->lock
, flags
);
6147 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
6148 ehi
->action
|= ATA_EH_RESET
| ATA_EH_LPM
;
6149 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6151 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6152 ap
->pflags
|= ATA_PFLAG_LOADING
;
6153 ata_port_schedule_eh(ap
);
6155 spin_unlock_irqrestore(ap
->lock
, flags
);
6157 /* wait for EH to finish */
6158 ata_port_wait_eh(ap
);
6160 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6161 rc
= ata_bus_probe(ap
);
6162 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6165 /* FIXME: do something useful here?
6166 * Current libata behavior will
6167 * tear down everything when
6168 * the module is removed
6169 * or the h/w is unplugged.
6174 /* in order to keep device order, we need to synchronize at this point */
6175 async_synchronize_cookie(cookie
);
6177 ata_scsi_scan_host(ap
, 1);
6181 * ata_host_register - register initialized ATA host
6182 * @host: ATA host to register
6183 * @sht: template for SCSI host
6185 * Register initialized ATA host. @host is allocated using
6186 * ata_host_alloc() and fully initialized by LLD. This function
6187 * starts ports, registers @host with ATA and SCSI layers and
6188 * probe registered devices.
6191 * Inherited from calling layer (may sleep).
6194 * 0 on success, -errno otherwise.
6196 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6200 /* host must have been started */
6201 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6202 dev_printk(KERN_ERR
, host
->dev
,
6203 "BUG: trying to register unstarted host\n");
6208 /* Blow away unused ports. This happens when LLD can't
6209 * determine the exact number of ports to allocate at
6212 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6213 kfree(host
->ports
[i
]);
6215 /* give ports names and add SCSI hosts */
6216 for (i
= 0; i
< host
->n_ports
; i
++)
6217 host
->ports
[i
]->print_id
= ata_print_id
++;
6219 rc
= ata_scsi_add_hosts(host
, sht
);
6223 /* associate with ACPI nodes */
6224 ata_acpi_associate(host
);
6226 /* set cable, sata_spd_limit and report */
6227 for (i
= 0; i
< host
->n_ports
; i
++) {
6228 struct ata_port
*ap
= host
->ports
[i
];
6229 unsigned long xfer_mask
;
6231 /* set SATA cable type if still unset */
6232 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6233 ap
->cbl
= ATA_CBL_SATA
;
6235 /* init sata_spd_limit to the current value */
6236 sata_link_init_spd(&ap
->link
);
6238 sata_link_init_spd(ap
->slave_link
);
6240 /* print per-port info to dmesg */
6241 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6244 if (!ata_port_is_dummy(ap
)) {
6245 ata_port_printk(ap
, KERN_INFO
,
6246 "%cATA max %s %s\n",
6247 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6248 ata_mode_string(xfer_mask
),
6249 ap
->link
.eh_info
.desc
);
6250 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6252 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6255 /* perform each probe asynchronously */
6256 for (i
= 0; i
< host
->n_ports
; i
++) {
6257 struct ata_port
*ap
= host
->ports
[i
];
6258 async_schedule(async_port_probe
, ap
);
6265 * ata_host_activate - start host, request IRQ and register it
6266 * @host: target ATA host
6267 * @irq: IRQ to request
6268 * @irq_handler: irq_handler used when requesting IRQ
6269 * @irq_flags: irq_flags used when requesting IRQ
6270 * @sht: scsi_host_template to use when registering the host
6272 * After allocating an ATA host and initializing it, most libata
6273 * LLDs perform three steps to activate the host - start host,
6274 * request IRQ and register it. This helper takes necessasry
6275 * arguments and performs the three steps in one go.
6277 * An invalid IRQ skips the IRQ registration and expects the host to
6278 * have set polling mode on the port. In this case, @irq_handler
6282 * Inherited from calling layer (may sleep).
6285 * 0 on success, -errno otherwise.
6287 int ata_host_activate(struct ata_host
*host
, int irq
,
6288 irq_handler_t irq_handler
, unsigned long irq_flags
,
6289 struct scsi_host_template
*sht
)
6293 rc
= ata_host_start(host
);
6297 /* Special case for polling mode */
6299 WARN_ON(irq_handler
);
6300 return ata_host_register(host
, sht
);
6303 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6304 dev_driver_string(host
->dev
), host
);
6308 for (i
= 0; i
< host
->n_ports
; i
++)
6309 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6311 rc
= ata_host_register(host
, sht
);
6312 /* if failed, just free the IRQ and leave ports alone */
6314 devm_free_irq(host
->dev
, irq
, host
);
6320 * ata_port_detach - Detach ATA port in prepration of device removal
6321 * @ap: ATA port to be detached
6323 * Detach all ATA devices and the associated SCSI devices of @ap;
6324 * then, remove the associated SCSI host. @ap is guaranteed to
6325 * be quiescent on return from this function.
6328 * Kernel thread context (may sleep).
6330 static void ata_port_detach(struct ata_port
*ap
)
6332 unsigned long flags
;
6334 if (!ap
->ops
->error_handler
)
6337 /* tell EH we're leaving & flush EH */
6338 spin_lock_irqsave(ap
->lock
, flags
);
6339 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6340 ata_port_schedule_eh(ap
);
6341 spin_unlock_irqrestore(ap
->lock
, flags
);
6343 /* wait till EH commits suicide */
6344 ata_port_wait_eh(ap
);
6346 /* it better be dead now */
6347 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6349 cancel_rearming_delayed_work(&ap
->hotplug_task
);
6352 /* remove the associated SCSI host */
6353 scsi_remove_host(ap
->scsi_host
);
6357 * ata_host_detach - Detach all ports of an ATA host
6358 * @host: Host to detach
6360 * Detach all ports of @host.
6363 * Kernel thread context (may sleep).
6365 void ata_host_detach(struct ata_host
*host
)
6369 for (i
= 0; i
< host
->n_ports
; i
++)
6370 ata_port_detach(host
->ports
[i
]);
6372 /* the host is dead now, dissociate ACPI */
6373 ata_acpi_dissociate(host
);
6379 * ata_pci_remove_one - PCI layer callback for device removal
6380 * @pdev: PCI device that was removed
6382 * PCI layer indicates to libata via this hook that hot-unplug or
6383 * module unload event has occurred. Detach all ports. Resource
6384 * release is handled via devres.
6387 * Inherited from PCI layer (may sleep).
6389 void ata_pci_remove_one(struct pci_dev
*pdev
)
6391 struct device
*dev
= &pdev
->dev
;
6392 struct ata_host
*host
= dev_get_drvdata(dev
);
6394 ata_host_detach(host
);
6397 /* move to PCI subsystem */
6398 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6400 unsigned long tmp
= 0;
6402 switch (bits
->width
) {
6405 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6411 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6417 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6428 return (tmp
== bits
->val
) ? 1 : 0;
6432 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6434 pci_save_state(pdev
);
6435 pci_disable_device(pdev
);
6437 if (mesg
.event
& PM_EVENT_SLEEP
)
6438 pci_set_power_state(pdev
, PCI_D3hot
);
6441 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6445 pci_set_power_state(pdev
, PCI_D0
);
6446 pci_restore_state(pdev
);
6448 rc
= pcim_enable_device(pdev
);
6450 dev_printk(KERN_ERR
, &pdev
->dev
,
6451 "failed to enable device after resume (%d)\n", rc
);
6455 pci_set_master(pdev
);
6459 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6461 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6464 rc
= ata_host_suspend(host
, mesg
);
6468 ata_pci_device_do_suspend(pdev
, mesg
);
6473 int ata_pci_device_resume(struct pci_dev
*pdev
)
6475 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6478 rc
= ata_pci_device_do_resume(pdev
);
6480 ata_host_resume(host
);
6483 #endif /* CONFIG_PM */
6485 #endif /* CONFIG_PCI */
6487 static int __init
ata_parse_force_one(char **cur
,
6488 struct ata_force_ent
*force_ent
,
6489 const char **reason
)
6491 /* FIXME: Currently, there's no way to tag init const data and
6492 * using __initdata causes build failure on some versions of
6493 * gcc. Once __initdataconst is implemented, add const to the
6494 * following structure.
6496 static struct ata_force_param force_tbl
[] __initdata
= {
6497 { "40c", .cbl
= ATA_CBL_PATA40
},
6498 { "80c", .cbl
= ATA_CBL_PATA80
},
6499 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6500 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6501 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6502 { "sata", .cbl
= ATA_CBL_SATA
},
6503 { "1.5Gbps", .spd_limit
= 1 },
6504 { "3.0Gbps", .spd_limit
= 2 },
6505 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6506 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6507 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6508 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6509 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6510 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6511 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6512 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6513 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6514 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6515 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6516 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6517 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6518 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6519 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6520 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6521 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6522 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6523 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6524 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6525 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6526 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6527 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6528 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6529 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6530 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6531 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6532 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6533 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6534 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6535 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6536 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6537 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6538 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6539 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6540 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6541 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6542 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6543 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6545 char *start
= *cur
, *p
= *cur
;
6546 char *id
, *val
, *endp
;
6547 const struct ata_force_param
*match_fp
= NULL
;
6548 int nr_matches
= 0, i
;
6550 /* find where this param ends and update *cur */
6551 while (*p
!= '\0' && *p
!= ',')
6562 p
= strchr(start
, ':');
6564 val
= strstrip(start
);
6569 id
= strstrip(start
);
6570 val
= strstrip(p
+ 1);
6573 p
= strchr(id
, '.');
6576 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6577 if (p
== endp
|| *endp
!= '\0') {
6578 *reason
= "invalid device";
6583 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6584 if (p
== endp
|| *endp
!= '\0') {
6585 *reason
= "invalid port/link";
6590 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6591 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6592 const struct ata_force_param
*fp
= &force_tbl
[i
];
6594 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6600 if (strcasecmp(val
, fp
->name
) == 0) {
6607 *reason
= "unknown value";
6610 if (nr_matches
> 1) {
6611 *reason
= "ambigious value";
6615 force_ent
->param
= *match_fp
;
6620 static void __init
ata_parse_force_param(void)
6622 int idx
= 0, size
= 1;
6623 int last_port
= -1, last_device
= -1;
6624 char *p
, *cur
, *next
;
6626 /* calculate maximum number of params and allocate force_tbl */
6627 for (p
= ata_force_param_buf
; *p
; p
++)
6631 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6632 if (!ata_force_tbl
) {
6633 printk(KERN_WARNING
"ata: failed to extend force table, "
6634 "libata.force ignored\n");
6638 /* parse and populate the table */
6639 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6640 const char *reason
= "";
6641 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6644 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6645 printk(KERN_WARNING
"ata: failed to parse force "
6646 "parameter \"%s\" (%s)\n",
6651 if (te
.port
== -1) {
6652 te
.port
= last_port
;
6653 te
.device
= last_device
;
6656 ata_force_tbl
[idx
++] = te
;
6658 last_port
= te
.port
;
6659 last_device
= te
.device
;
6662 ata_force_tbl_size
= idx
;
6665 static int __init
ata_init(void)
6667 ata_parse_force_param();
6669 ata_wq
= create_workqueue("ata");
6671 goto free_force_tbl
;
6673 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6677 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6681 destroy_workqueue(ata_wq
);
6683 kfree(ata_force_tbl
);
6687 static void __exit
ata_exit(void)
6689 kfree(ata_force_tbl
);
6690 destroy_workqueue(ata_wq
);
6691 destroy_workqueue(ata_aux_wq
);
6694 subsys_initcall(ata_init
);
6695 module_exit(ata_exit
);
6697 static unsigned long ratelimit_time
;
6698 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6700 int ata_ratelimit(void)
6703 unsigned long flags
;
6705 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6707 if (time_after(jiffies
, ratelimit_time
)) {
6709 ratelimit_time
= jiffies
+ (HZ
/5);
6713 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6719 * ata_wait_register - wait until register value changes
6720 * @reg: IO-mapped register
6721 * @mask: Mask to apply to read register value
6722 * @val: Wait condition
6723 * @interval: polling interval in milliseconds
6724 * @timeout: timeout in milliseconds
6726 * Waiting for some bits of register to change is a common
6727 * operation for ATA controllers. This function reads 32bit LE
6728 * IO-mapped register @reg and tests for the following condition.
6730 * (*@reg & mask) != val
6732 * If the condition is met, it returns; otherwise, the process is
6733 * repeated after @interval_msec until timeout.
6736 * Kernel thread context (may sleep)
6739 * The final register value.
6741 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6742 unsigned long interval
, unsigned long timeout
)
6744 unsigned long deadline
;
6747 tmp
= ioread32(reg
);
6749 /* Calculate timeout _after_ the first read to make sure
6750 * preceding writes reach the controller before starting to
6751 * eat away the timeout.
6753 deadline
= ata_deadline(jiffies
, timeout
);
6755 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
6757 tmp
= ioread32(reg
);
6766 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6768 return AC_ERR_SYSTEM
;
6771 static void ata_dummy_error_handler(struct ata_port
*ap
)
6776 struct ata_port_operations ata_dummy_port_ops
= {
6777 .qc_prep
= ata_noop_qc_prep
,
6778 .qc_issue
= ata_dummy_qc_issue
,
6779 .error_handler
= ata_dummy_error_handler
,
6782 const struct ata_port_info ata_dummy_port_info
= {
6783 .port_ops
= &ata_dummy_port_ops
,
6787 * libata is essentially a library of internal helper functions for
6788 * low-level ATA host controller drivers. As such, the API/ABI is
6789 * likely to change as new drivers are added and updated.
6790 * Do not depend on ABI/API stability.
6792 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6793 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6794 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6795 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6796 EXPORT_SYMBOL_GPL(sata_port_ops
);
6797 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6798 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6799 EXPORT_SYMBOL_GPL(ata_link_next
);
6800 EXPORT_SYMBOL_GPL(ata_dev_next
);
6801 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6802 EXPORT_SYMBOL_GPL(ata_host_init
);
6803 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6804 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6805 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
6806 EXPORT_SYMBOL_GPL(ata_host_start
);
6807 EXPORT_SYMBOL_GPL(ata_host_register
);
6808 EXPORT_SYMBOL_GPL(ata_host_activate
);
6809 EXPORT_SYMBOL_GPL(ata_host_detach
);
6810 EXPORT_SYMBOL_GPL(ata_sg_init
);
6811 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6812 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6813 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6814 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6815 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6816 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6817 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6818 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6819 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6820 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6821 EXPORT_SYMBOL_GPL(ata_mode_string
);
6822 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6823 EXPORT_SYMBOL_GPL(ata_port_start
);
6824 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6825 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6826 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6827 EXPORT_SYMBOL_GPL(ata_port_probe
);
6828 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6829 EXPORT_SYMBOL_GPL(sata_set_spd
);
6830 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6831 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6832 EXPORT_SYMBOL_GPL(sata_link_resume
);
6833 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6834 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6835 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6836 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6837 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6838 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6839 EXPORT_SYMBOL_GPL(ata_port_disable
);
6840 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6841 EXPORT_SYMBOL_GPL(ata_wait_register
);
6842 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6843 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6844 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6845 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6846 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6847 EXPORT_SYMBOL_GPL(sata_scr_read
);
6848 EXPORT_SYMBOL_GPL(sata_scr_write
);
6849 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6850 EXPORT_SYMBOL_GPL(ata_link_online
);
6851 EXPORT_SYMBOL_GPL(ata_link_offline
);
6853 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6854 EXPORT_SYMBOL_GPL(ata_host_resume
);
6855 #endif /* CONFIG_PM */
6856 EXPORT_SYMBOL_GPL(ata_id_string
);
6857 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6858 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
6859 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6861 EXPORT_SYMBOL_GPL(ata_pio_queue_task
);
6862 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6863 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6864 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6865 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6866 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6869 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6870 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6872 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6873 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6874 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6875 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6876 #endif /* CONFIG_PM */
6877 #endif /* CONFIG_PCI */
6879 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
6880 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
6881 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
6882 EXPORT_SYMBOL_GPL(ata_port_desc
);
6884 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
6885 #endif /* CONFIG_PCI */
6886 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6887 EXPORT_SYMBOL_GPL(ata_link_abort
);
6888 EXPORT_SYMBOL_GPL(ata_port_abort
);
6889 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6890 EXPORT_SYMBOL_GPL(sata_async_notification
);
6891 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6892 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6893 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6894 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6895 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
6896 EXPORT_SYMBOL_GPL(ata_do_eh
);
6897 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
6899 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6900 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6901 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6902 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
6903 EXPORT_SYMBOL_GPL(ata_cable_sata
);