drivers/char/Kconfig: don't mess it up for everyone else
[linux-2.6.32.60-moxart.git] / fs / ext4 / extents.c
blobb4402c8d3b9bc5fa437f01c457e12ff663bcf4fd
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
49 * ext_pblock:
50 * combine low and high parts of physical block number into ext4_fsblk_t
52 ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
54 ext4_fsblk_t block;
56 block = le32_to_cpu(ex->ee_start_lo);
57 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 return block;
62 * idx_pblock:
63 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
67 ext4_fsblk_t block;
69 block = le32_to_cpu(ix->ei_leaf_lo);
70 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 return block;
75 * ext4_ext_store_pblock:
76 * stores a large physical block number into an extent struct,
77 * breaking it into parts
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
81 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
86 * ext4_idx_store_pblock:
87 * stores a large physical block number into an index struct,
88 * breaking it into parts
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
92 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
96 static int ext4_ext_truncate_extend_restart(handle_t *handle,
97 struct inode *inode,
98 int needed)
100 int err;
102 if (!ext4_handle_valid(handle))
103 return 0;
104 if (handle->h_buffer_credits > needed)
105 return 0;
106 err = ext4_journal_extend(handle, needed);
107 if (err <= 0)
108 return err;
109 err = ext4_truncate_restart_trans(handle, inode, needed);
110 if (err == 0)
111 err = -EAGAIN;
113 return err;
117 * could return:
118 * - EROFS
119 * - ENOMEM
121 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
122 struct ext4_ext_path *path)
124 if (path->p_bh) {
125 /* path points to block */
126 return ext4_journal_get_write_access(handle, path->p_bh);
128 /* path points to leaf/index in inode body */
129 /* we use in-core data, no need to protect them */
130 return 0;
134 * could return:
135 * - EROFS
136 * - ENOMEM
137 * - EIO
139 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
140 struct ext4_ext_path *path)
142 int err;
143 if (path->p_bh) {
144 /* path points to block */
145 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
146 } else {
147 /* path points to leaf/index in inode body */
148 err = ext4_mark_inode_dirty(handle, inode);
150 return err;
153 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
154 struct ext4_ext_path *path,
155 ext4_lblk_t block)
157 struct ext4_inode_info *ei = EXT4_I(inode);
158 ext4_fsblk_t bg_start;
159 ext4_fsblk_t last_block;
160 ext4_grpblk_t colour;
161 ext4_group_t block_group;
162 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
163 int depth;
165 if (path) {
166 struct ext4_extent *ex;
167 depth = path->p_depth;
169 /* try to predict block placement */
170 ex = path[depth].p_ext;
171 if (ex)
172 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
174 /* it looks like index is empty;
175 * try to find starting block from index itself */
176 if (path[depth].p_bh)
177 return path[depth].p_bh->b_blocknr;
180 /* OK. use inode's group */
181 block_group = ei->i_block_group;
182 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
184 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
185 * block groups per flexgroup, reserve the first block
186 * group for directories and special files. Regular
187 * files will start at the second block group. This
188 * tends to speed up directory access and improves
189 * fsck times.
191 block_group &= ~(flex_size-1);
192 if (S_ISREG(inode->i_mode))
193 block_group++;
195 bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
196 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
197 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
200 * If we are doing delayed allocation, we don't need take
201 * colour into account.
203 if (test_opt(inode->i_sb, DELALLOC))
204 return bg_start;
206 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
207 colour = (current->pid % 16) *
208 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
209 else
210 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
211 return bg_start + colour + block;
215 * Allocation for a meta data block
217 static ext4_fsblk_t
218 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
219 struct ext4_ext_path *path,
220 struct ext4_extent *ex, int *err)
222 ext4_fsblk_t goal, newblock;
224 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
225 newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
226 return newblock;
229 static inline int ext4_ext_space_block(struct inode *inode, int check)
231 int size;
233 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
234 / sizeof(struct ext4_extent);
235 if (!check) {
236 #ifdef AGGRESSIVE_TEST
237 if (size > 6)
238 size = 6;
239 #endif
241 return size;
244 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
246 int size;
248 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
249 / sizeof(struct ext4_extent_idx);
250 if (!check) {
251 #ifdef AGGRESSIVE_TEST
252 if (size > 5)
253 size = 5;
254 #endif
256 return size;
259 static inline int ext4_ext_space_root(struct inode *inode, int check)
261 int size;
263 size = sizeof(EXT4_I(inode)->i_data);
264 size -= sizeof(struct ext4_extent_header);
265 size /= sizeof(struct ext4_extent);
266 if (!check) {
267 #ifdef AGGRESSIVE_TEST
268 if (size > 3)
269 size = 3;
270 #endif
272 return size;
275 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
277 int size;
279 size = sizeof(EXT4_I(inode)->i_data);
280 size -= sizeof(struct ext4_extent_header);
281 size /= sizeof(struct ext4_extent_idx);
282 if (!check) {
283 #ifdef AGGRESSIVE_TEST
284 if (size > 4)
285 size = 4;
286 #endif
288 return size;
292 * Calculate the number of metadata blocks needed
293 * to allocate @blocks
294 * Worse case is one block per extent
296 int ext4_ext_calc_metadata_amount(struct inode *inode, sector_t lblock)
298 struct ext4_inode_info *ei = EXT4_I(inode);
299 int idxs, num = 0;
301 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
302 / sizeof(struct ext4_extent_idx));
305 * If the new delayed allocation block is contiguous with the
306 * previous da block, it can share index blocks with the
307 * previous block, so we only need to allocate a new index
308 * block every idxs leaf blocks. At ldxs**2 blocks, we need
309 * an additional index block, and at ldxs**3 blocks, yet
310 * another index blocks.
312 if (ei->i_da_metadata_calc_len &&
313 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
314 if ((ei->i_da_metadata_calc_len % idxs) == 0)
315 num++;
316 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
317 num++;
318 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
319 num++;
320 ei->i_da_metadata_calc_len = 0;
321 } else
322 ei->i_da_metadata_calc_len++;
323 ei->i_da_metadata_calc_last_lblock++;
324 return num;
328 * In the worst case we need a new set of index blocks at
329 * every level of the inode's extent tree.
331 ei->i_da_metadata_calc_len = 1;
332 ei->i_da_metadata_calc_last_lblock = lblock;
333 return ext_depth(inode) + 1;
336 static int
337 ext4_ext_max_entries(struct inode *inode, int depth)
339 int max;
341 if (depth == ext_depth(inode)) {
342 if (depth == 0)
343 max = ext4_ext_space_root(inode, 1);
344 else
345 max = ext4_ext_space_root_idx(inode, 1);
346 } else {
347 if (depth == 0)
348 max = ext4_ext_space_block(inode, 1);
349 else
350 max = ext4_ext_space_block_idx(inode, 1);
353 return max;
356 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
358 ext4_fsblk_t block = ext_pblock(ext);
359 int len = ext4_ext_get_actual_len(ext);
361 if (len == 0)
362 return 0;
363 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
366 static int ext4_valid_extent_idx(struct inode *inode,
367 struct ext4_extent_idx *ext_idx)
369 ext4_fsblk_t block = idx_pblock(ext_idx);
371 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
374 static int ext4_valid_extent_entries(struct inode *inode,
375 struct ext4_extent_header *eh,
376 int depth)
378 struct ext4_extent *ext;
379 struct ext4_extent_idx *ext_idx;
380 unsigned short entries;
381 if (eh->eh_entries == 0)
382 return 1;
384 entries = le16_to_cpu(eh->eh_entries);
386 if (depth == 0) {
387 /* leaf entries */
388 ext = EXT_FIRST_EXTENT(eh);
389 while (entries) {
390 if (!ext4_valid_extent(inode, ext))
391 return 0;
392 ext++;
393 entries--;
395 } else {
396 ext_idx = EXT_FIRST_INDEX(eh);
397 while (entries) {
398 if (!ext4_valid_extent_idx(inode, ext_idx))
399 return 0;
400 ext_idx++;
401 entries--;
404 return 1;
407 static int __ext4_ext_check(const char *function, struct inode *inode,
408 struct ext4_extent_header *eh,
409 int depth)
411 const char *error_msg;
412 int max = 0;
414 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
415 error_msg = "invalid magic";
416 goto corrupted;
418 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
419 error_msg = "unexpected eh_depth";
420 goto corrupted;
422 if (unlikely(eh->eh_max == 0)) {
423 error_msg = "invalid eh_max";
424 goto corrupted;
426 max = ext4_ext_max_entries(inode, depth);
427 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
428 error_msg = "too large eh_max";
429 goto corrupted;
431 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
432 error_msg = "invalid eh_entries";
433 goto corrupted;
435 if (!ext4_valid_extent_entries(inode, eh, depth)) {
436 error_msg = "invalid extent entries";
437 goto corrupted;
439 return 0;
441 corrupted:
442 ext4_error(inode->i_sb, function,
443 "bad header/extent in inode #%lu: %s - magic %x, "
444 "entries %u, max %u(%u), depth %u(%u)",
445 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
446 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
447 max, le16_to_cpu(eh->eh_depth), depth);
449 return -EIO;
452 #define ext4_ext_check(inode, eh, depth) \
453 __ext4_ext_check(__func__, inode, eh, depth)
455 int ext4_ext_check_inode(struct inode *inode)
457 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
460 #ifdef EXT_DEBUG
461 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
463 int k, l = path->p_depth;
465 ext_debug("path:");
466 for (k = 0; k <= l; k++, path++) {
467 if (path->p_idx) {
468 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
469 idx_pblock(path->p_idx));
470 } else if (path->p_ext) {
471 ext_debug(" %d:[%d]%d:%llu ",
472 le32_to_cpu(path->p_ext->ee_block),
473 ext4_ext_is_uninitialized(path->p_ext),
474 ext4_ext_get_actual_len(path->p_ext),
475 ext_pblock(path->p_ext));
476 } else
477 ext_debug(" []");
479 ext_debug("\n");
482 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
484 int depth = ext_depth(inode);
485 struct ext4_extent_header *eh;
486 struct ext4_extent *ex;
487 int i;
489 if (!path)
490 return;
492 eh = path[depth].p_hdr;
493 ex = EXT_FIRST_EXTENT(eh);
495 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
497 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
498 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
499 ext4_ext_is_uninitialized(ex),
500 ext4_ext_get_actual_len(ex), ext_pblock(ex));
502 ext_debug("\n");
504 #else
505 #define ext4_ext_show_path(inode, path)
506 #define ext4_ext_show_leaf(inode, path)
507 #endif
509 void ext4_ext_drop_refs(struct ext4_ext_path *path)
511 int depth = path->p_depth;
512 int i;
514 for (i = 0; i <= depth; i++, path++)
515 if (path->p_bh) {
516 brelse(path->p_bh);
517 path->p_bh = NULL;
522 * ext4_ext_binsearch_idx:
523 * binary search for the closest index of the given block
524 * the header must be checked before calling this
526 static void
527 ext4_ext_binsearch_idx(struct inode *inode,
528 struct ext4_ext_path *path, ext4_lblk_t block)
530 struct ext4_extent_header *eh = path->p_hdr;
531 struct ext4_extent_idx *r, *l, *m;
534 ext_debug("binsearch for %u(idx): ", block);
536 l = EXT_FIRST_INDEX(eh) + 1;
537 r = EXT_LAST_INDEX(eh);
538 while (l <= r) {
539 m = l + (r - l) / 2;
540 if (block < le32_to_cpu(m->ei_block))
541 r = m - 1;
542 else
543 l = m + 1;
544 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
545 m, le32_to_cpu(m->ei_block),
546 r, le32_to_cpu(r->ei_block));
549 path->p_idx = l - 1;
550 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
551 idx_pblock(path->p_idx));
553 #ifdef CHECK_BINSEARCH
555 struct ext4_extent_idx *chix, *ix;
556 int k;
558 chix = ix = EXT_FIRST_INDEX(eh);
559 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
560 if (k != 0 &&
561 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
562 printk(KERN_DEBUG "k=%d, ix=0x%p, "
563 "first=0x%p\n", k,
564 ix, EXT_FIRST_INDEX(eh));
565 printk(KERN_DEBUG "%u <= %u\n",
566 le32_to_cpu(ix->ei_block),
567 le32_to_cpu(ix[-1].ei_block));
569 BUG_ON(k && le32_to_cpu(ix->ei_block)
570 <= le32_to_cpu(ix[-1].ei_block));
571 if (block < le32_to_cpu(ix->ei_block))
572 break;
573 chix = ix;
575 BUG_ON(chix != path->p_idx);
577 #endif
582 * ext4_ext_binsearch:
583 * binary search for closest extent of the given block
584 * the header must be checked before calling this
586 static void
587 ext4_ext_binsearch(struct inode *inode,
588 struct ext4_ext_path *path, ext4_lblk_t block)
590 struct ext4_extent_header *eh = path->p_hdr;
591 struct ext4_extent *r, *l, *m;
593 if (eh->eh_entries == 0) {
595 * this leaf is empty:
596 * we get such a leaf in split/add case
598 return;
601 ext_debug("binsearch for %u: ", block);
603 l = EXT_FIRST_EXTENT(eh) + 1;
604 r = EXT_LAST_EXTENT(eh);
606 while (l <= r) {
607 m = l + (r - l) / 2;
608 if (block < le32_to_cpu(m->ee_block))
609 r = m - 1;
610 else
611 l = m + 1;
612 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
613 m, le32_to_cpu(m->ee_block),
614 r, le32_to_cpu(r->ee_block));
617 path->p_ext = l - 1;
618 ext_debug(" -> %d:%llu:[%d]%d ",
619 le32_to_cpu(path->p_ext->ee_block),
620 ext_pblock(path->p_ext),
621 ext4_ext_is_uninitialized(path->p_ext),
622 ext4_ext_get_actual_len(path->p_ext));
624 #ifdef CHECK_BINSEARCH
626 struct ext4_extent *chex, *ex;
627 int k;
629 chex = ex = EXT_FIRST_EXTENT(eh);
630 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
631 BUG_ON(k && le32_to_cpu(ex->ee_block)
632 <= le32_to_cpu(ex[-1].ee_block));
633 if (block < le32_to_cpu(ex->ee_block))
634 break;
635 chex = ex;
637 BUG_ON(chex != path->p_ext);
639 #endif
643 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
645 struct ext4_extent_header *eh;
647 eh = ext_inode_hdr(inode);
648 eh->eh_depth = 0;
649 eh->eh_entries = 0;
650 eh->eh_magic = EXT4_EXT_MAGIC;
651 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
652 ext4_mark_inode_dirty(handle, inode);
653 ext4_ext_invalidate_cache(inode);
654 return 0;
657 struct ext4_ext_path *
658 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
659 struct ext4_ext_path *path)
661 struct ext4_extent_header *eh;
662 struct buffer_head *bh;
663 short int depth, i, ppos = 0, alloc = 0;
665 eh = ext_inode_hdr(inode);
666 depth = ext_depth(inode);
668 /* account possible depth increase */
669 if (!path) {
670 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
671 GFP_NOFS);
672 if (!path)
673 return ERR_PTR(-ENOMEM);
674 alloc = 1;
676 path[0].p_hdr = eh;
677 path[0].p_bh = NULL;
679 i = depth;
680 /* walk through the tree */
681 while (i) {
682 int need_to_validate = 0;
684 ext_debug("depth %d: num %d, max %d\n",
685 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
687 ext4_ext_binsearch_idx(inode, path + ppos, block);
688 path[ppos].p_block = idx_pblock(path[ppos].p_idx);
689 path[ppos].p_depth = i;
690 path[ppos].p_ext = NULL;
692 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
693 if (unlikely(!bh))
694 goto err;
695 if (!bh_uptodate_or_lock(bh)) {
696 if (bh_submit_read(bh) < 0) {
697 put_bh(bh);
698 goto err;
700 /* validate the extent entries */
701 need_to_validate = 1;
703 eh = ext_block_hdr(bh);
704 ppos++;
705 BUG_ON(ppos > depth);
706 path[ppos].p_bh = bh;
707 path[ppos].p_hdr = eh;
708 i--;
710 if (need_to_validate && ext4_ext_check(inode, eh, i))
711 goto err;
714 path[ppos].p_depth = i;
715 path[ppos].p_ext = NULL;
716 path[ppos].p_idx = NULL;
718 /* find extent */
719 ext4_ext_binsearch(inode, path + ppos, block);
720 /* if not an empty leaf */
721 if (path[ppos].p_ext)
722 path[ppos].p_block = ext_pblock(path[ppos].p_ext);
724 ext4_ext_show_path(inode, path);
726 return path;
728 err:
729 ext4_ext_drop_refs(path);
730 if (alloc)
731 kfree(path);
732 return ERR_PTR(-EIO);
736 * ext4_ext_insert_index:
737 * insert new index [@logical;@ptr] into the block at @curp;
738 * check where to insert: before @curp or after @curp
740 int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
741 struct ext4_ext_path *curp,
742 int logical, ext4_fsblk_t ptr)
744 struct ext4_extent_idx *ix;
745 int len, err;
747 err = ext4_ext_get_access(handle, inode, curp);
748 if (err)
749 return err;
751 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
752 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
753 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
754 /* insert after */
755 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
756 len = (len - 1) * sizeof(struct ext4_extent_idx);
757 len = len < 0 ? 0 : len;
758 ext_debug("insert new index %d after: %llu. "
759 "move %d from 0x%p to 0x%p\n",
760 logical, ptr, len,
761 (curp->p_idx + 1), (curp->p_idx + 2));
762 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
764 ix = curp->p_idx + 1;
765 } else {
766 /* insert before */
767 len = len * sizeof(struct ext4_extent_idx);
768 len = len < 0 ? 0 : len;
769 ext_debug("insert new index %d before: %llu. "
770 "move %d from 0x%p to 0x%p\n",
771 logical, ptr, len,
772 curp->p_idx, (curp->p_idx + 1));
773 memmove(curp->p_idx + 1, curp->p_idx, len);
774 ix = curp->p_idx;
777 ix->ei_block = cpu_to_le32(logical);
778 ext4_idx_store_pblock(ix, ptr);
779 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
781 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
782 > le16_to_cpu(curp->p_hdr->eh_max));
783 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
785 err = ext4_ext_dirty(handle, inode, curp);
786 ext4_std_error(inode->i_sb, err);
788 return err;
792 * ext4_ext_split:
793 * inserts new subtree into the path, using free index entry
794 * at depth @at:
795 * - allocates all needed blocks (new leaf and all intermediate index blocks)
796 * - makes decision where to split
797 * - moves remaining extents and index entries (right to the split point)
798 * into the newly allocated blocks
799 * - initializes subtree
801 static int ext4_ext_split(handle_t *handle, struct inode *inode,
802 struct ext4_ext_path *path,
803 struct ext4_extent *newext, int at)
805 struct buffer_head *bh = NULL;
806 int depth = ext_depth(inode);
807 struct ext4_extent_header *neh;
808 struct ext4_extent_idx *fidx;
809 struct ext4_extent *ex;
810 int i = at, k, m, a;
811 ext4_fsblk_t newblock, oldblock;
812 __le32 border;
813 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
814 int err = 0;
816 /* make decision: where to split? */
817 /* FIXME: now decision is simplest: at current extent */
819 /* if current leaf will be split, then we should use
820 * border from split point */
821 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
822 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
823 border = path[depth].p_ext[1].ee_block;
824 ext_debug("leaf will be split."
825 " next leaf starts at %d\n",
826 le32_to_cpu(border));
827 } else {
828 border = newext->ee_block;
829 ext_debug("leaf will be added."
830 " next leaf starts at %d\n",
831 le32_to_cpu(border));
835 * If error occurs, then we break processing
836 * and mark filesystem read-only. index won't
837 * be inserted and tree will be in consistent
838 * state. Next mount will repair buffers too.
842 * Get array to track all allocated blocks.
843 * We need this to handle errors and free blocks
844 * upon them.
846 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
847 if (!ablocks)
848 return -ENOMEM;
850 /* allocate all needed blocks */
851 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
852 for (a = 0; a < depth - at; a++) {
853 newblock = ext4_ext_new_meta_block(handle, inode, path,
854 newext, &err);
855 if (newblock == 0)
856 goto cleanup;
857 ablocks[a] = newblock;
860 /* initialize new leaf */
861 newblock = ablocks[--a];
862 BUG_ON(newblock == 0);
863 bh = sb_getblk(inode->i_sb, newblock);
864 if (!bh) {
865 err = -EIO;
866 goto cleanup;
868 lock_buffer(bh);
870 err = ext4_journal_get_create_access(handle, bh);
871 if (err)
872 goto cleanup;
874 neh = ext_block_hdr(bh);
875 neh->eh_entries = 0;
876 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
877 neh->eh_magic = EXT4_EXT_MAGIC;
878 neh->eh_depth = 0;
879 ex = EXT_FIRST_EXTENT(neh);
881 /* move remainder of path[depth] to the new leaf */
882 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
883 /* start copy from next extent */
884 /* TODO: we could do it by single memmove */
885 m = 0;
886 path[depth].p_ext++;
887 while (path[depth].p_ext <=
888 EXT_MAX_EXTENT(path[depth].p_hdr)) {
889 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
890 le32_to_cpu(path[depth].p_ext->ee_block),
891 ext_pblock(path[depth].p_ext),
892 ext4_ext_is_uninitialized(path[depth].p_ext),
893 ext4_ext_get_actual_len(path[depth].p_ext),
894 newblock);
895 /*memmove(ex++, path[depth].p_ext++,
896 sizeof(struct ext4_extent));
897 neh->eh_entries++;*/
898 path[depth].p_ext++;
899 m++;
901 if (m) {
902 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
903 le16_add_cpu(&neh->eh_entries, m);
906 set_buffer_uptodate(bh);
907 unlock_buffer(bh);
909 err = ext4_handle_dirty_metadata(handle, inode, bh);
910 if (err)
911 goto cleanup;
912 brelse(bh);
913 bh = NULL;
915 /* correct old leaf */
916 if (m) {
917 err = ext4_ext_get_access(handle, inode, path + depth);
918 if (err)
919 goto cleanup;
920 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
921 err = ext4_ext_dirty(handle, inode, path + depth);
922 if (err)
923 goto cleanup;
927 /* create intermediate indexes */
928 k = depth - at - 1;
929 BUG_ON(k < 0);
930 if (k)
931 ext_debug("create %d intermediate indices\n", k);
932 /* insert new index into current index block */
933 /* current depth stored in i var */
934 i = depth - 1;
935 while (k--) {
936 oldblock = newblock;
937 newblock = ablocks[--a];
938 bh = sb_getblk(inode->i_sb, newblock);
939 if (!bh) {
940 err = -EIO;
941 goto cleanup;
943 lock_buffer(bh);
945 err = ext4_journal_get_create_access(handle, bh);
946 if (err)
947 goto cleanup;
949 neh = ext_block_hdr(bh);
950 neh->eh_entries = cpu_to_le16(1);
951 neh->eh_magic = EXT4_EXT_MAGIC;
952 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
953 neh->eh_depth = cpu_to_le16(depth - i);
954 fidx = EXT_FIRST_INDEX(neh);
955 fidx->ei_block = border;
956 ext4_idx_store_pblock(fidx, oldblock);
958 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
959 i, newblock, le32_to_cpu(border), oldblock);
960 /* copy indexes */
961 m = 0;
962 path[i].p_idx++;
964 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
965 EXT_MAX_INDEX(path[i].p_hdr));
966 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
967 EXT_LAST_INDEX(path[i].p_hdr));
968 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
969 ext_debug("%d: move %d:%llu in new index %llu\n", i,
970 le32_to_cpu(path[i].p_idx->ei_block),
971 idx_pblock(path[i].p_idx),
972 newblock);
973 /*memmove(++fidx, path[i].p_idx++,
974 sizeof(struct ext4_extent_idx));
975 neh->eh_entries++;
976 BUG_ON(neh->eh_entries > neh->eh_max);*/
977 path[i].p_idx++;
978 m++;
980 if (m) {
981 memmove(++fidx, path[i].p_idx - m,
982 sizeof(struct ext4_extent_idx) * m);
983 le16_add_cpu(&neh->eh_entries, m);
985 set_buffer_uptodate(bh);
986 unlock_buffer(bh);
988 err = ext4_handle_dirty_metadata(handle, inode, bh);
989 if (err)
990 goto cleanup;
991 brelse(bh);
992 bh = NULL;
994 /* correct old index */
995 if (m) {
996 err = ext4_ext_get_access(handle, inode, path + i);
997 if (err)
998 goto cleanup;
999 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1000 err = ext4_ext_dirty(handle, inode, path + i);
1001 if (err)
1002 goto cleanup;
1005 i--;
1008 /* insert new index */
1009 err = ext4_ext_insert_index(handle, inode, path + at,
1010 le32_to_cpu(border), newblock);
1012 cleanup:
1013 if (bh) {
1014 if (buffer_locked(bh))
1015 unlock_buffer(bh);
1016 brelse(bh);
1019 if (err) {
1020 /* free all allocated blocks in error case */
1021 for (i = 0; i < depth; i++) {
1022 if (!ablocks[i])
1023 continue;
1024 ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
1027 kfree(ablocks);
1029 return err;
1033 * ext4_ext_grow_indepth:
1034 * implements tree growing procedure:
1035 * - allocates new block
1036 * - moves top-level data (index block or leaf) into the new block
1037 * - initializes new top-level, creating index that points to the
1038 * just created block
1040 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1041 struct ext4_ext_path *path,
1042 struct ext4_extent *newext)
1044 struct ext4_ext_path *curp = path;
1045 struct ext4_extent_header *neh;
1046 struct ext4_extent_idx *fidx;
1047 struct buffer_head *bh;
1048 ext4_fsblk_t newblock;
1049 int err = 0;
1051 newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1052 if (newblock == 0)
1053 return err;
1055 bh = sb_getblk(inode->i_sb, newblock);
1056 if (!bh) {
1057 err = -EIO;
1058 ext4_std_error(inode->i_sb, err);
1059 return err;
1061 lock_buffer(bh);
1063 err = ext4_journal_get_create_access(handle, bh);
1064 if (err) {
1065 unlock_buffer(bh);
1066 goto out;
1069 /* move top-level index/leaf into new block */
1070 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1072 /* set size of new block */
1073 neh = ext_block_hdr(bh);
1074 /* old root could have indexes or leaves
1075 * so calculate e_max right way */
1076 if (ext_depth(inode))
1077 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1078 else
1079 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1080 neh->eh_magic = EXT4_EXT_MAGIC;
1081 set_buffer_uptodate(bh);
1082 unlock_buffer(bh);
1084 err = ext4_handle_dirty_metadata(handle, inode, bh);
1085 if (err)
1086 goto out;
1088 /* create index in new top-level index: num,max,pointer */
1089 err = ext4_ext_get_access(handle, inode, curp);
1090 if (err)
1091 goto out;
1093 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1094 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1095 curp->p_hdr->eh_entries = cpu_to_le16(1);
1096 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1098 if (path[0].p_hdr->eh_depth)
1099 curp->p_idx->ei_block =
1100 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1101 else
1102 curp->p_idx->ei_block =
1103 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1104 ext4_idx_store_pblock(curp->p_idx, newblock);
1106 neh = ext_inode_hdr(inode);
1107 fidx = EXT_FIRST_INDEX(neh);
1108 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1109 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1110 le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
1112 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1113 err = ext4_ext_dirty(handle, inode, curp);
1114 out:
1115 brelse(bh);
1117 return err;
1121 * ext4_ext_create_new_leaf:
1122 * finds empty index and adds new leaf.
1123 * if no free index is found, then it requests in-depth growing.
1125 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1126 struct ext4_ext_path *path,
1127 struct ext4_extent *newext)
1129 struct ext4_ext_path *curp;
1130 int depth, i, err = 0;
1132 repeat:
1133 i = depth = ext_depth(inode);
1135 /* walk up to the tree and look for free index entry */
1136 curp = path + depth;
1137 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1138 i--;
1139 curp--;
1142 /* we use already allocated block for index block,
1143 * so subsequent data blocks should be contiguous */
1144 if (EXT_HAS_FREE_INDEX(curp)) {
1145 /* if we found index with free entry, then use that
1146 * entry: create all needed subtree and add new leaf */
1147 err = ext4_ext_split(handle, inode, path, newext, i);
1148 if (err)
1149 goto out;
1151 /* refill path */
1152 ext4_ext_drop_refs(path);
1153 path = ext4_ext_find_extent(inode,
1154 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1155 path);
1156 if (IS_ERR(path))
1157 err = PTR_ERR(path);
1158 } else {
1159 /* tree is full, time to grow in depth */
1160 err = ext4_ext_grow_indepth(handle, inode, path, newext);
1161 if (err)
1162 goto out;
1164 /* refill path */
1165 ext4_ext_drop_refs(path);
1166 path = ext4_ext_find_extent(inode,
1167 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1168 path);
1169 if (IS_ERR(path)) {
1170 err = PTR_ERR(path);
1171 goto out;
1175 * only first (depth 0 -> 1) produces free space;
1176 * in all other cases we have to split the grown tree
1178 depth = ext_depth(inode);
1179 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1180 /* now we need to split */
1181 goto repeat;
1185 out:
1186 return err;
1190 * search the closest allocated block to the left for *logical
1191 * and returns it at @logical + it's physical address at @phys
1192 * if *logical is the smallest allocated block, the function
1193 * returns 0 at @phys
1194 * return value contains 0 (success) or error code
1197 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1198 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1200 struct ext4_extent_idx *ix;
1201 struct ext4_extent *ex;
1202 int depth, ee_len;
1204 BUG_ON(path == NULL);
1205 depth = path->p_depth;
1206 *phys = 0;
1208 if (depth == 0 && path->p_ext == NULL)
1209 return 0;
1211 /* usually extent in the path covers blocks smaller
1212 * then *logical, but it can be that extent is the
1213 * first one in the file */
1215 ex = path[depth].p_ext;
1216 ee_len = ext4_ext_get_actual_len(ex);
1217 if (*logical < le32_to_cpu(ex->ee_block)) {
1218 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1219 while (--depth >= 0) {
1220 ix = path[depth].p_idx;
1221 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1223 return 0;
1226 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1228 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1229 *phys = ext_pblock(ex) + ee_len - 1;
1230 return 0;
1234 * search the closest allocated block to the right for *logical
1235 * and returns it at @logical + it's physical address at @phys
1236 * if *logical is the smallest allocated block, the function
1237 * returns 0 at @phys
1238 * return value contains 0 (success) or error code
1241 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1242 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1244 struct buffer_head *bh = NULL;
1245 struct ext4_extent_header *eh;
1246 struct ext4_extent_idx *ix;
1247 struct ext4_extent *ex;
1248 ext4_fsblk_t block;
1249 int depth; /* Note, NOT eh_depth; depth from top of tree */
1250 int ee_len;
1252 BUG_ON(path == NULL);
1253 depth = path->p_depth;
1254 *phys = 0;
1256 if (depth == 0 && path->p_ext == NULL)
1257 return 0;
1259 /* usually extent in the path covers blocks smaller
1260 * then *logical, but it can be that extent is the
1261 * first one in the file */
1263 ex = path[depth].p_ext;
1264 ee_len = ext4_ext_get_actual_len(ex);
1265 if (*logical < le32_to_cpu(ex->ee_block)) {
1266 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1267 while (--depth >= 0) {
1268 ix = path[depth].p_idx;
1269 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1271 *logical = le32_to_cpu(ex->ee_block);
1272 *phys = ext_pblock(ex);
1273 return 0;
1276 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1278 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1279 /* next allocated block in this leaf */
1280 ex++;
1281 *logical = le32_to_cpu(ex->ee_block);
1282 *phys = ext_pblock(ex);
1283 return 0;
1286 /* go up and search for index to the right */
1287 while (--depth >= 0) {
1288 ix = path[depth].p_idx;
1289 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1290 goto got_index;
1293 /* we've gone up to the root and found no index to the right */
1294 return 0;
1296 got_index:
1297 /* we've found index to the right, let's
1298 * follow it and find the closest allocated
1299 * block to the right */
1300 ix++;
1301 block = idx_pblock(ix);
1302 while (++depth < path->p_depth) {
1303 bh = sb_bread(inode->i_sb, block);
1304 if (bh == NULL)
1305 return -EIO;
1306 eh = ext_block_hdr(bh);
1307 /* subtract from p_depth to get proper eh_depth */
1308 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1309 put_bh(bh);
1310 return -EIO;
1312 ix = EXT_FIRST_INDEX(eh);
1313 block = idx_pblock(ix);
1314 put_bh(bh);
1317 bh = sb_bread(inode->i_sb, block);
1318 if (bh == NULL)
1319 return -EIO;
1320 eh = ext_block_hdr(bh);
1321 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1322 put_bh(bh);
1323 return -EIO;
1325 ex = EXT_FIRST_EXTENT(eh);
1326 *logical = le32_to_cpu(ex->ee_block);
1327 *phys = ext_pblock(ex);
1328 put_bh(bh);
1329 return 0;
1333 * ext4_ext_next_allocated_block:
1334 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1335 * NOTE: it considers block number from index entry as
1336 * allocated block. Thus, index entries have to be consistent
1337 * with leaves.
1339 static ext4_lblk_t
1340 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1342 int depth;
1344 BUG_ON(path == NULL);
1345 depth = path->p_depth;
1347 if (depth == 0 && path->p_ext == NULL)
1348 return EXT_MAX_BLOCK;
1350 while (depth >= 0) {
1351 if (depth == path->p_depth) {
1352 /* leaf */
1353 if (path[depth].p_ext !=
1354 EXT_LAST_EXTENT(path[depth].p_hdr))
1355 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1356 } else {
1357 /* index */
1358 if (path[depth].p_idx !=
1359 EXT_LAST_INDEX(path[depth].p_hdr))
1360 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1362 depth--;
1365 return EXT_MAX_BLOCK;
1369 * ext4_ext_next_leaf_block:
1370 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1372 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1373 struct ext4_ext_path *path)
1375 int depth;
1377 BUG_ON(path == NULL);
1378 depth = path->p_depth;
1380 /* zero-tree has no leaf blocks at all */
1381 if (depth == 0)
1382 return EXT_MAX_BLOCK;
1384 /* go to index block */
1385 depth--;
1387 while (depth >= 0) {
1388 if (path[depth].p_idx !=
1389 EXT_LAST_INDEX(path[depth].p_hdr))
1390 return (ext4_lblk_t)
1391 le32_to_cpu(path[depth].p_idx[1].ei_block);
1392 depth--;
1395 return EXT_MAX_BLOCK;
1399 * ext4_ext_correct_indexes:
1400 * if leaf gets modified and modified extent is first in the leaf,
1401 * then we have to correct all indexes above.
1402 * TODO: do we need to correct tree in all cases?
1404 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1405 struct ext4_ext_path *path)
1407 struct ext4_extent_header *eh;
1408 int depth = ext_depth(inode);
1409 struct ext4_extent *ex;
1410 __le32 border;
1411 int k, err = 0;
1413 eh = path[depth].p_hdr;
1414 ex = path[depth].p_ext;
1415 BUG_ON(ex == NULL);
1416 BUG_ON(eh == NULL);
1418 if (depth == 0) {
1419 /* there is no tree at all */
1420 return 0;
1423 if (ex != EXT_FIRST_EXTENT(eh)) {
1424 /* we correct tree if first leaf got modified only */
1425 return 0;
1429 * TODO: we need correction if border is smaller than current one
1431 k = depth - 1;
1432 border = path[depth].p_ext->ee_block;
1433 err = ext4_ext_get_access(handle, inode, path + k);
1434 if (err)
1435 return err;
1436 path[k].p_idx->ei_block = border;
1437 err = ext4_ext_dirty(handle, inode, path + k);
1438 if (err)
1439 return err;
1441 while (k--) {
1442 /* change all left-side indexes */
1443 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1444 break;
1445 err = ext4_ext_get_access(handle, inode, path + k);
1446 if (err)
1447 break;
1448 path[k].p_idx->ei_block = border;
1449 err = ext4_ext_dirty(handle, inode, path + k);
1450 if (err)
1451 break;
1454 return err;
1458 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1459 struct ext4_extent *ex2)
1461 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1464 * Make sure that either both extents are uninitialized, or
1465 * both are _not_.
1467 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1468 return 0;
1470 if (ext4_ext_is_uninitialized(ex1))
1471 max_len = EXT_UNINIT_MAX_LEN;
1472 else
1473 max_len = EXT_INIT_MAX_LEN;
1475 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1476 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1478 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1479 le32_to_cpu(ex2->ee_block))
1480 return 0;
1483 * To allow future support for preallocated extents to be added
1484 * as an RO_COMPAT feature, refuse to merge to extents if
1485 * this can result in the top bit of ee_len being set.
1487 if (ext1_ee_len + ext2_ee_len > max_len)
1488 return 0;
1489 #ifdef AGGRESSIVE_TEST
1490 if (ext1_ee_len >= 4)
1491 return 0;
1492 #endif
1494 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1495 return 1;
1496 return 0;
1500 * This function tries to merge the "ex" extent to the next extent in the tree.
1501 * It always tries to merge towards right. If you want to merge towards
1502 * left, pass "ex - 1" as argument instead of "ex".
1503 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1504 * 1 if they got merged.
1506 int ext4_ext_try_to_merge(struct inode *inode,
1507 struct ext4_ext_path *path,
1508 struct ext4_extent *ex)
1510 struct ext4_extent_header *eh;
1511 unsigned int depth, len;
1512 int merge_done = 0;
1513 int uninitialized = 0;
1515 depth = ext_depth(inode);
1516 BUG_ON(path[depth].p_hdr == NULL);
1517 eh = path[depth].p_hdr;
1519 while (ex < EXT_LAST_EXTENT(eh)) {
1520 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1521 break;
1522 /* merge with next extent! */
1523 if (ext4_ext_is_uninitialized(ex))
1524 uninitialized = 1;
1525 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1526 + ext4_ext_get_actual_len(ex + 1));
1527 if (uninitialized)
1528 ext4_ext_mark_uninitialized(ex);
1530 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1531 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1532 * sizeof(struct ext4_extent);
1533 memmove(ex + 1, ex + 2, len);
1535 le16_add_cpu(&eh->eh_entries, -1);
1536 merge_done = 1;
1537 WARN_ON(eh->eh_entries == 0);
1538 if (!eh->eh_entries)
1539 ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1540 "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1543 return merge_done;
1547 * check if a portion of the "newext" extent overlaps with an
1548 * existing extent.
1550 * If there is an overlap discovered, it updates the length of the newext
1551 * such that there will be no overlap, and then returns 1.
1552 * If there is no overlap found, it returns 0.
1554 unsigned int ext4_ext_check_overlap(struct inode *inode,
1555 struct ext4_extent *newext,
1556 struct ext4_ext_path *path)
1558 ext4_lblk_t b1, b2;
1559 unsigned int depth, len1;
1560 unsigned int ret = 0;
1562 b1 = le32_to_cpu(newext->ee_block);
1563 len1 = ext4_ext_get_actual_len(newext);
1564 depth = ext_depth(inode);
1565 if (!path[depth].p_ext)
1566 goto out;
1567 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1570 * get the next allocated block if the extent in the path
1571 * is before the requested block(s)
1573 if (b2 < b1) {
1574 b2 = ext4_ext_next_allocated_block(path);
1575 if (b2 == EXT_MAX_BLOCK)
1576 goto out;
1579 /* check for wrap through zero on extent logical start block*/
1580 if (b1 + len1 < b1) {
1581 len1 = EXT_MAX_BLOCK - b1;
1582 newext->ee_len = cpu_to_le16(len1);
1583 ret = 1;
1586 /* check for overlap */
1587 if (b1 + len1 > b2) {
1588 newext->ee_len = cpu_to_le16(b2 - b1);
1589 ret = 1;
1591 out:
1592 return ret;
1596 * ext4_ext_insert_extent:
1597 * tries to merge requsted extent into the existing extent or
1598 * inserts requested extent as new one into the tree,
1599 * creating new leaf in the no-space case.
1601 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1602 struct ext4_ext_path *path,
1603 struct ext4_extent *newext, int flag)
1605 struct ext4_extent_header *eh;
1606 struct ext4_extent *ex, *fex;
1607 struct ext4_extent *nearex; /* nearest extent */
1608 struct ext4_ext_path *npath = NULL;
1609 int depth, len, err;
1610 ext4_lblk_t next;
1611 unsigned uninitialized = 0;
1613 BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1614 depth = ext_depth(inode);
1615 ex = path[depth].p_ext;
1616 BUG_ON(path[depth].p_hdr == NULL);
1618 /* try to insert block into found extent and return */
1619 if (ex && (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT)
1620 && ext4_can_extents_be_merged(inode, ex, newext)) {
1621 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1622 ext4_ext_is_uninitialized(newext),
1623 ext4_ext_get_actual_len(newext),
1624 le32_to_cpu(ex->ee_block),
1625 ext4_ext_is_uninitialized(ex),
1626 ext4_ext_get_actual_len(ex), ext_pblock(ex));
1627 err = ext4_ext_get_access(handle, inode, path + depth);
1628 if (err)
1629 return err;
1632 * ext4_can_extents_be_merged should have checked that either
1633 * both extents are uninitialized, or both aren't. Thus we
1634 * need to check only one of them here.
1636 if (ext4_ext_is_uninitialized(ex))
1637 uninitialized = 1;
1638 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1639 + ext4_ext_get_actual_len(newext));
1640 if (uninitialized)
1641 ext4_ext_mark_uninitialized(ex);
1642 eh = path[depth].p_hdr;
1643 nearex = ex;
1644 goto merge;
1647 repeat:
1648 depth = ext_depth(inode);
1649 eh = path[depth].p_hdr;
1650 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1651 goto has_space;
1653 /* probably next leaf has space for us? */
1654 fex = EXT_LAST_EXTENT(eh);
1655 next = ext4_ext_next_leaf_block(inode, path);
1656 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1657 && next != EXT_MAX_BLOCK) {
1658 ext_debug("next leaf block - %d\n", next);
1659 BUG_ON(npath != NULL);
1660 npath = ext4_ext_find_extent(inode, next, NULL);
1661 if (IS_ERR(npath))
1662 return PTR_ERR(npath);
1663 BUG_ON(npath->p_depth != path->p_depth);
1664 eh = npath[depth].p_hdr;
1665 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1666 ext_debug("next leaf isnt full(%d)\n",
1667 le16_to_cpu(eh->eh_entries));
1668 path = npath;
1669 goto repeat;
1671 ext_debug("next leaf has no free space(%d,%d)\n",
1672 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1676 * There is no free space in the found leaf.
1677 * We're gonna add a new leaf in the tree.
1679 err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1680 if (err)
1681 goto cleanup;
1682 depth = ext_depth(inode);
1683 eh = path[depth].p_hdr;
1685 has_space:
1686 nearex = path[depth].p_ext;
1688 err = ext4_ext_get_access(handle, inode, path + depth);
1689 if (err)
1690 goto cleanup;
1692 if (!nearex) {
1693 /* there is no extent in this leaf, create first one */
1694 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1695 le32_to_cpu(newext->ee_block),
1696 ext_pblock(newext),
1697 ext4_ext_is_uninitialized(newext),
1698 ext4_ext_get_actual_len(newext));
1699 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1700 } else if (le32_to_cpu(newext->ee_block)
1701 > le32_to_cpu(nearex->ee_block)) {
1702 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1703 if (nearex != EXT_LAST_EXTENT(eh)) {
1704 len = EXT_MAX_EXTENT(eh) - nearex;
1705 len = (len - 1) * sizeof(struct ext4_extent);
1706 len = len < 0 ? 0 : len;
1707 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1708 "move %d from 0x%p to 0x%p\n",
1709 le32_to_cpu(newext->ee_block),
1710 ext_pblock(newext),
1711 ext4_ext_is_uninitialized(newext),
1712 ext4_ext_get_actual_len(newext),
1713 nearex, len, nearex + 1, nearex + 2);
1714 memmove(nearex + 2, nearex + 1, len);
1716 path[depth].p_ext = nearex + 1;
1717 } else {
1718 BUG_ON(newext->ee_block == nearex->ee_block);
1719 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1720 len = len < 0 ? 0 : len;
1721 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1722 "move %d from 0x%p to 0x%p\n",
1723 le32_to_cpu(newext->ee_block),
1724 ext_pblock(newext),
1725 ext4_ext_is_uninitialized(newext),
1726 ext4_ext_get_actual_len(newext),
1727 nearex, len, nearex + 1, nearex + 2);
1728 memmove(nearex + 1, nearex, len);
1729 path[depth].p_ext = nearex;
1732 le16_add_cpu(&eh->eh_entries, 1);
1733 nearex = path[depth].p_ext;
1734 nearex->ee_block = newext->ee_block;
1735 ext4_ext_store_pblock(nearex, ext_pblock(newext));
1736 nearex->ee_len = newext->ee_len;
1738 merge:
1739 /* try to merge extents to the right */
1740 if (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT)
1741 ext4_ext_try_to_merge(inode, path, nearex);
1743 /* try to merge extents to the left */
1745 /* time to correct all indexes above */
1746 err = ext4_ext_correct_indexes(handle, inode, path);
1747 if (err)
1748 goto cleanup;
1750 err = ext4_ext_dirty(handle, inode, path + depth);
1752 cleanup:
1753 if (npath) {
1754 ext4_ext_drop_refs(npath);
1755 kfree(npath);
1757 ext4_ext_invalidate_cache(inode);
1758 return err;
1761 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1762 ext4_lblk_t num, ext_prepare_callback func,
1763 void *cbdata)
1765 struct ext4_ext_path *path = NULL;
1766 struct ext4_ext_cache cbex;
1767 struct ext4_extent *ex;
1768 ext4_lblk_t next, start = 0, end = 0;
1769 ext4_lblk_t last = block + num;
1770 int depth, exists, err = 0;
1772 BUG_ON(func == NULL);
1773 BUG_ON(inode == NULL);
1775 while (block < last && block != EXT_MAX_BLOCK) {
1776 num = last - block;
1777 /* find extent for this block */
1778 down_read(&EXT4_I(inode)->i_data_sem);
1779 path = ext4_ext_find_extent(inode, block, path);
1780 up_read(&EXT4_I(inode)->i_data_sem);
1781 if (IS_ERR(path)) {
1782 err = PTR_ERR(path);
1783 path = NULL;
1784 break;
1787 depth = ext_depth(inode);
1788 BUG_ON(path[depth].p_hdr == NULL);
1789 ex = path[depth].p_ext;
1790 next = ext4_ext_next_allocated_block(path);
1792 exists = 0;
1793 if (!ex) {
1794 /* there is no extent yet, so try to allocate
1795 * all requested space */
1796 start = block;
1797 end = block + num;
1798 } else if (le32_to_cpu(ex->ee_block) > block) {
1799 /* need to allocate space before found extent */
1800 start = block;
1801 end = le32_to_cpu(ex->ee_block);
1802 if (block + num < end)
1803 end = block + num;
1804 } else if (block >= le32_to_cpu(ex->ee_block)
1805 + ext4_ext_get_actual_len(ex)) {
1806 /* need to allocate space after found extent */
1807 start = block;
1808 end = block + num;
1809 if (end >= next)
1810 end = next;
1811 } else if (block >= le32_to_cpu(ex->ee_block)) {
1813 * some part of requested space is covered
1814 * by found extent
1816 start = block;
1817 end = le32_to_cpu(ex->ee_block)
1818 + ext4_ext_get_actual_len(ex);
1819 if (block + num < end)
1820 end = block + num;
1821 exists = 1;
1822 } else {
1823 BUG();
1825 BUG_ON(end <= start);
1827 if (!exists) {
1828 cbex.ec_block = start;
1829 cbex.ec_len = end - start;
1830 cbex.ec_start = 0;
1831 cbex.ec_type = EXT4_EXT_CACHE_GAP;
1832 } else {
1833 cbex.ec_block = le32_to_cpu(ex->ee_block);
1834 cbex.ec_len = ext4_ext_get_actual_len(ex);
1835 cbex.ec_start = ext_pblock(ex);
1836 cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1839 BUG_ON(cbex.ec_len == 0);
1840 err = func(inode, path, &cbex, ex, cbdata);
1841 ext4_ext_drop_refs(path);
1843 if (err < 0)
1844 break;
1846 if (err == EXT_REPEAT)
1847 continue;
1848 else if (err == EXT_BREAK) {
1849 err = 0;
1850 break;
1853 if (ext_depth(inode) != depth) {
1854 /* depth was changed. we have to realloc path */
1855 kfree(path);
1856 path = NULL;
1859 block = cbex.ec_block + cbex.ec_len;
1862 if (path) {
1863 ext4_ext_drop_refs(path);
1864 kfree(path);
1867 return err;
1870 static void
1871 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1872 __u32 len, ext4_fsblk_t start, int type)
1874 struct ext4_ext_cache *cex;
1875 BUG_ON(len == 0);
1876 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1877 cex = &EXT4_I(inode)->i_cached_extent;
1878 cex->ec_type = type;
1879 cex->ec_block = block;
1880 cex->ec_len = len;
1881 cex->ec_start = start;
1882 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1886 * ext4_ext_put_gap_in_cache:
1887 * calculate boundaries of the gap that the requested block fits into
1888 * and cache this gap
1890 static void
1891 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1892 ext4_lblk_t block)
1894 int depth = ext_depth(inode);
1895 unsigned long len;
1896 ext4_lblk_t lblock;
1897 struct ext4_extent *ex;
1899 ex = path[depth].p_ext;
1900 if (ex == NULL) {
1901 /* there is no extent yet, so gap is [0;-] */
1902 lblock = 0;
1903 len = EXT_MAX_BLOCK;
1904 ext_debug("cache gap(whole file):");
1905 } else if (block < le32_to_cpu(ex->ee_block)) {
1906 lblock = block;
1907 len = le32_to_cpu(ex->ee_block) - block;
1908 ext_debug("cache gap(before): %u [%u:%u]",
1909 block,
1910 le32_to_cpu(ex->ee_block),
1911 ext4_ext_get_actual_len(ex));
1912 } else if (block >= le32_to_cpu(ex->ee_block)
1913 + ext4_ext_get_actual_len(ex)) {
1914 ext4_lblk_t next;
1915 lblock = le32_to_cpu(ex->ee_block)
1916 + ext4_ext_get_actual_len(ex);
1918 next = ext4_ext_next_allocated_block(path);
1919 ext_debug("cache gap(after): [%u:%u] %u",
1920 le32_to_cpu(ex->ee_block),
1921 ext4_ext_get_actual_len(ex),
1922 block);
1923 BUG_ON(next == lblock);
1924 len = next - lblock;
1925 } else {
1926 lblock = len = 0;
1927 BUG();
1930 ext_debug(" -> %u:%lu\n", lblock, len);
1931 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1934 static int
1935 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1936 struct ext4_extent *ex)
1938 struct ext4_ext_cache *cex;
1939 int ret = EXT4_EXT_CACHE_NO;
1942 * We borrow i_block_reservation_lock to protect i_cached_extent
1944 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1945 cex = &EXT4_I(inode)->i_cached_extent;
1947 /* has cache valid data? */
1948 if (cex->ec_type == EXT4_EXT_CACHE_NO)
1949 goto errout;
1951 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1952 cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1953 if (in_range(block, cex->ec_block, cex->ec_len)) {
1954 ex->ee_block = cpu_to_le32(cex->ec_block);
1955 ext4_ext_store_pblock(ex, cex->ec_start);
1956 ex->ee_len = cpu_to_le16(cex->ec_len);
1957 ext_debug("%u cached by %u:%u:%llu\n",
1958 block,
1959 cex->ec_block, cex->ec_len, cex->ec_start);
1960 ret = cex->ec_type;
1962 errout:
1963 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1964 return ret;
1968 * ext4_ext_rm_idx:
1969 * removes index from the index block.
1970 * It's used in truncate case only, thus all requests are for
1971 * last index in the block only.
1973 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1974 struct ext4_ext_path *path)
1976 struct buffer_head *bh;
1977 int err;
1978 ext4_fsblk_t leaf;
1980 /* free index block */
1981 path--;
1982 leaf = idx_pblock(path->p_idx);
1983 BUG_ON(path->p_hdr->eh_entries == 0);
1984 err = ext4_ext_get_access(handle, inode, path);
1985 if (err)
1986 return err;
1987 le16_add_cpu(&path->p_hdr->eh_entries, -1);
1988 err = ext4_ext_dirty(handle, inode, path);
1989 if (err)
1990 return err;
1991 ext_debug("index is empty, remove it, free block %llu\n", leaf);
1992 bh = sb_find_get_block(inode->i_sb, leaf);
1993 ext4_forget(handle, 1, inode, bh, leaf);
1994 ext4_free_blocks(handle, inode, leaf, 1, 1);
1995 return err;
1999 * ext4_ext_calc_credits_for_single_extent:
2000 * This routine returns max. credits that needed to insert an extent
2001 * to the extent tree.
2002 * When pass the actual path, the caller should calculate credits
2003 * under i_data_sem.
2005 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2006 struct ext4_ext_path *path)
2008 if (path) {
2009 int depth = ext_depth(inode);
2010 int ret = 0;
2012 /* probably there is space in leaf? */
2013 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2014 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2017 * There are some space in the leaf tree, no
2018 * need to account for leaf block credit
2020 * bitmaps and block group descriptor blocks
2021 * and other metadat blocks still need to be
2022 * accounted.
2024 /* 1 bitmap, 1 block group descriptor */
2025 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2026 return ret;
2030 return ext4_chunk_trans_blocks(inode, nrblocks);
2034 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2036 * if nrblocks are fit in a single extent (chunk flag is 1), then
2037 * in the worse case, each tree level index/leaf need to be changed
2038 * if the tree split due to insert a new extent, then the old tree
2039 * index/leaf need to be updated too
2041 * If the nrblocks are discontiguous, they could cause
2042 * the whole tree split more than once, but this is really rare.
2044 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2046 int index;
2047 int depth = ext_depth(inode);
2049 if (chunk)
2050 index = depth * 2;
2051 else
2052 index = depth * 3;
2054 return index;
2057 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2058 struct ext4_extent *ex,
2059 ext4_lblk_t from, ext4_lblk_t to)
2061 struct buffer_head *bh;
2062 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2063 int i, metadata = 0;
2065 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2066 metadata = 1;
2067 #ifdef EXTENTS_STATS
2069 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2070 spin_lock(&sbi->s_ext_stats_lock);
2071 sbi->s_ext_blocks += ee_len;
2072 sbi->s_ext_extents++;
2073 if (ee_len < sbi->s_ext_min)
2074 sbi->s_ext_min = ee_len;
2075 if (ee_len > sbi->s_ext_max)
2076 sbi->s_ext_max = ee_len;
2077 if (ext_depth(inode) > sbi->s_depth_max)
2078 sbi->s_depth_max = ext_depth(inode);
2079 spin_unlock(&sbi->s_ext_stats_lock);
2081 #endif
2082 if (from >= le32_to_cpu(ex->ee_block)
2083 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2084 /* tail removal */
2085 ext4_lblk_t num;
2086 ext4_fsblk_t start;
2088 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2089 start = ext_pblock(ex) + ee_len - num;
2090 ext_debug("free last %u blocks starting %llu\n", num, start);
2091 for (i = 0; i < num; i++) {
2092 bh = sb_find_get_block(inode->i_sb, start + i);
2093 ext4_forget(handle, metadata, inode, bh, start + i);
2095 ext4_free_blocks(handle, inode, start, num, metadata);
2096 } else if (from == le32_to_cpu(ex->ee_block)
2097 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2098 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2099 from, to, le32_to_cpu(ex->ee_block), ee_len);
2100 } else {
2101 printk(KERN_INFO "strange request: removal(2) "
2102 "%u-%u from %u:%u\n",
2103 from, to, le32_to_cpu(ex->ee_block), ee_len);
2105 return 0;
2108 static int
2109 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2110 struct ext4_ext_path *path, ext4_lblk_t start)
2112 int err = 0, correct_index = 0;
2113 int depth = ext_depth(inode), credits;
2114 struct ext4_extent_header *eh;
2115 ext4_lblk_t a, b, block;
2116 unsigned num;
2117 ext4_lblk_t ex_ee_block;
2118 unsigned short ex_ee_len;
2119 unsigned uninitialized = 0;
2120 struct ext4_extent *ex;
2122 /* the header must be checked already in ext4_ext_remove_space() */
2123 ext_debug("truncate since %u in leaf\n", start);
2124 if (!path[depth].p_hdr)
2125 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2126 eh = path[depth].p_hdr;
2127 BUG_ON(eh == NULL);
2129 /* find where to start removing */
2130 ex = EXT_LAST_EXTENT(eh);
2132 ex_ee_block = le32_to_cpu(ex->ee_block);
2133 ex_ee_len = ext4_ext_get_actual_len(ex);
2135 while (ex >= EXT_FIRST_EXTENT(eh) &&
2136 ex_ee_block + ex_ee_len > start) {
2138 if (ext4_ext_is_uninitialized(ex))
2139 uninitialized = 1;
2140 else
2141 uninitialized = 0;
2143 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2144 uninitialized, ex_ee_len);
2145 path[depth].p_ext = ex;
2147 a = ex_ee_block > start ? ex_ee_block : start;
2148 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2149 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2151 ext_debug(" border %u:%u\n", a, b);
2153 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2154 block = 0;
2155 num = 0;
2156 BUG();
2157 } else if (a != ex_ee_block) {
2158 /* remove tail of the extent */
2159 block = ex_ee_block;
2160 num = a - block;
2161 } else if (b != ex_ee_block + ex_ee_len - 1) {
2162 /* remove head of the extent */
2163 block = a;
2164 num = b - a;
2165 /* there is no "make a hole" API yet */
2166 BUG();
2167 } else {
2168 /* remove whole extent: excellent! */
2169 block = ex_ee_block;
2170 num = 0;
2171 BUG_ON(a != ex_ee_block);
2172 BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2176 * 3 for leaf, sb, and inode plus 2 (bmap and group
2177 * descriptor) for each block group; assume two block
2178 * groups plus ex_ee_len/blocks_per_block_group for
2179 * the worst case
2181 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2182 if (ex == EXT_FIRST_EXTENT(eh)) {
2183 correct_index = 1;
2184 credits += (ext_depth(inode)) + 1;
2186 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2188 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2189 if (err)
2190 goto out;
2192 err = ext4_ext_get_access(handle, inode, path + depth);
2193 if (err)
2194 goto out;
2196 err = ext4_remove_blocks(handle, inode, ex, a, b);
2197 if (err)
2198 goto out;
2200 if (num == 0) {
2201 /* this extent is removed; mark slot entirely unused */
2202 ext4_ext_store_pblock(ex, 0);
2203 le16_add_cpu(&eh->eh_entries, -1);
2206 ex->ee_block = cpu_to_le32(block);
2207 ex->ee_len = cpu_to_le16(num);
2209 * Do not mark uninitialized if all the blocks in the
2210 * extent have been removed.
2212 if (uninitialized && num)
2213 ext4_ext_mark_uninitialized(ex);
2215 err = ext4_ext_dirty(handle, inode, path + depth);
2216 if (err)
2217 goto out;
2219 ext_debug("new extent: %u:%u:%llu\n", block, num,
2220 ext_pblock(ex));
2221 ex--;
2222 ex_ee_block = le32_to_cpu(ex->ee_block);
2223 ex_ee_len = ext4_ext_get_actual_len(ex);
2226 if (correct_index && eh->eh_entries)
2227 err = ext4_ext_correct_indexes(handle, inode, path);
2229 /* if this leaf is free, then we should
2230 * remove it from index block above */
2231 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2232 err = ext4_ext_rm_idx(handle, inode, path + depth);
2234 out:
2235 return err;
2239 * ext4_ext_more_to_rm:
2240 * returns 1 if current index has to be freed (even partial)
2242 static int
2243 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2245 BUG_ON(path->p_idx == NULL);
2247 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2248 return 0;
2251 * if truncate on deeper level happened, it wasn't partial,
2252 * so we have to consider current index for truncation
2254 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2255 return 0;
2256 return 1;
2259 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2261 struct super_block *sb = inode->i_sb;
2262 int depth = ext_depth(inode);
2263 struct ext4_ext_path *path;
2264 handle_t *handle;
2265 int i, err;
2267 ext_debug("truncate since %u\n", start);
2269 /* probably first extent we're gonna free will be last in block */
2270 handle = ext4_journal_start(inode, depth + 1);
2271 if (IS_ERR(handle))
2272 return PTR_ERR(handle);
2274 again:
2275 ext4_ext_invalidate_cache(inode);
2278 * We start scanning from right side, freeing all the blocks
2279 * after i_size and walking into the tree depth-wise.
2281 depth = ext_depth(inode);
2282 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2283 if (path == NULL) {
2284 ext4_journal_stop(handle);
2285 return -ENOMEM;
2287 path[0].p_depth = depth;
2288 path[0].p_hdr = ext_inode_hdr(inode);
2289 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2290 err = -EIO;
2291 goto out;
2293 i = err = 0;
2295 while (i >= 0 && err == 0) {
2296 if (i == depth) {
2297 /* this is leaf block */
2298 err = ext4_ext_rm_leaf(handle, inode, path, start);
2299 /* root level has p_bh == NULL, brelse() eats this */
2300 brelse(path[i].p_bh);
2301 path[i].p_bh = NULL;
2302 i--;
2303 continue;
2306 /* this is index block */
2307 if (!path[i].p_hdr) {
2308 ext_debug("initialize header\n");
2309 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2312 if (!path[i].p_idx) {
2313 /* this level hasn't been touched yet */
2314 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2315 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2316 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2317 path[i].p_hdr,
2318 le16_to_cpu(path[i].p_hdr->eh_entries));
2319 } else {
2320 /* we were already here, see at next index */
2321 path[i].p_idx--;
2324 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2325 i, EXT_FIRST_INDEX(path[i].p_hdr),
2326 path[i].p_idx);
2327 if (ext4_ext_more_to_rm(path + i)) {
2328 struct buffer_head *bh;
2329 /* go to the next level */
2330 ext_debug("move to level %d (block %llu)\n",
2331 i + 1, idx_pblock(path[i].p_idx));
2332 memset(path + i + 1, 0, sizeof(*path));
2333 bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2334 if (!bh) {
2335 /* should we reset i_size? */
2336 err = -EIO;
2337 break;
2339 if (WARN_ON(i + 1 > depth)) {
2340 err = -EIO;
2341 break;
2343 if (ext4_ext_check(inode, ext_block_hdr(bh),
2344 depth - i - 1)) {
2345 err = -EIO;
2346 break;
2348 path[i + 1].p_bh = bh;
2350 /* save actual number of indexes since this
2351 * number is changed at the next iteration */
2352 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2353 i++;
2354 } else {
2355 /* we finished processing this index, go up */
2356 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2357 /* index is empty, remove it;
2358 * handle must be already prepared by the
2359 * truncatei_leaf() */
2360 err = ext4_ext_rm_idx(handle, inode, path + i);
2362 /* root level has p_bh == NULL, brelse() eats this */
2363 brelse(path[i].p_bh);
2364 path[i].p_bh = NULL;
2365 i--;
2366 ext_debug("return to level %d\n", i);
2370 /* TODO: flexible tree reduction should be here */
2371 if (path->p_hdr->eh_entries == 0) {
2373 * truncate to zero freed all the tree,
2374 * so we need to correct eh_depth
2376 err = ext4_ext_get_access(handle, inode, path);
2377 if (err == 0) {
2378 ext_inode_hdr(inode)->eh_depth = 0;
2379 ext_inode_hdr(inode)->eh_max =
2380 cpu_to_le16(ext4_ext_space_root(inode, 0));
2381 err = ext4_ext_dirty(handle, inode, path);
2384 out:
2385 ext4_ext_drop_refs(path);
2386 kfree(path);
2387 if (err == -EAGAIN)
2388 goto again;
2389 ext4_journal_stop(handle);
2391 return err;
2395 * called at mount time
2397 void ext4_ext_init(struct super_block *sb)
2400 * possible initialization would be here
2403 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2404 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2405 printk(KERN_INFO "EXT4-fs: file extents enabled");
2406 #ifdef AGGRESSIVE_TEST
2407 printk(", aggressive tests");
2408 #endif
2409 #ifdef CHECK_BINSEARCH
2410 printk(", check binsearch");
2411 #endif
2412 #ifdef EXTENTS_STATS
2413 printk(", stats");
2414 #endif
2415 printk("\n");
2416 #endif
2417 #ifdef EXTENTS_STATS
2418 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2419 EXT4_SB(sb)->s_ext_min = 1 << 30;
2420 EXT4_SB(sb)->s_ext_max = 0;
2421 #endif
2426 * called at umount time
2428 void ext4_ext_release(struct super_block *sb)
2430 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2431 return;
2433 #ifdef EXTENTS_STATS
2434 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2435 struct ext4_sb_info *sbi = EXT4_SB(sb);
2436 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2437 sbi->s_ext_blocks, sbi->s_ext_extents,
2438 sbi->s_ext_blocks / sbi->s_ext_extents);
2439 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2440 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2442 #endif
2445 static void bi_complete(struct bio *bio, int error)
2447 complete((struct completion *)bio->bi_private);
2450 /* FIXME!! we need to try to merge to left or right after zero-out */
2451 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2453 int ret;
2454 struct bio *bio;
2455 int blkbits, blocksize;
2456 sector_t ee_pblock;
2457 struct completion event;
2458 unsigned int ee_len, len, done, offset;
2461 blkbits = inode->i_blkbits;
2462 blocksize = inode->i_sb->s_blocksize;
2463 ee_len = ext4_ext_get_actual_len(ex);
2464 ee_pblock = ext_pblock(ex);
2466 /* convert ee_pblock to 512 byte sectors */
2467 ee_pblock = ee_pblock << (blkbits - 9);
2469 while (ee_len > 0) {
2471 if (ee_len > BIO_MAX_PAGES)
2472 len = BIO_MAX_PAGES;
2473 else
2474 len = ee_len;
2476 bio = bio_alloc(GFP_NOIO, len);
2477 if (!bio)
2478 return -ENOMEM;
2480 bio->bi_sector = ee_pblock;
2481 bio->bi_bdev = inode->i_sb->s_bdev;
2483 done = 0;
2484 offset = 0;
2485 while (done < len) {
2486 ret = bio_add_page(bio, ZERO_PAGE(0),
2487 blocksize, offset);
2488 if (ret != blocksize) {
2490 * We can't add any more pages because of
2491 * hardware limitations. Start a new bio.
2493 break;
2495 done++;
2496 offset += blocksize;
2497 if (offset >= PAGE_CACHE_SIZE)
2498 offset = 0;
2501 init_completion(&event);
2502 bio->bi_private = &event;
2503 bio->bi_end_io = bi_complete;
2504 submit_bio(WRITE, bio);
2505 wait_for_completion(&event);
2507 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2508 bio_put(bio);
2509 return -EIO;
2511 bio_put(bio);
2512 ee_len -= done;
2513 ee_pblock += done << (blkbits - 9);
2515 return 0;
2518 #define EXT4_EXT_ZERO_LEN 7
2520 * This function is called by ext4_ext_get_blocks() if someone tries to write
2521 * to an uninitialized extent. It may result in splitting the uninitialized
2522 * extent into multiple extents (upto three - one initialized and two
2523 * uninitialized).
2524 * There are three possibilities:
2525 * a> There is no split required: Entire extent should be initialized
2526 * b> Splits in two extents: Write is happening at either end of the extent
2527 * c> Splits in three extents: Somone is writing in middle of the extent
2529 static int ext4_ext_convert_to_initialized(handle_t *handle,
2530 struct inode *inode,
2531 struct ext4_ext_path *path,
2532 ext4_lblk_t iblock,
2533 unsigned int max_blocks)
2535 struct ext4_extent *ex, newex, orig_ex;
2536 struct ext4_extent *ex1 = NULL;
2537 struct ext4_extent *ex2 = NULL;
2538 struct ext4_extent *ex3 = NULL;
2539 struct ext4_extent_header *eh;
2540 ext4_lblk_t ee_block, eof_block;
2541 unsigned int allocated, ee_len, depth;
2542 ext4_fsblk_t newblock;
2543 int err = 0;
2544 int ret = 0;
2545 int may_zeroout;
2547 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2548 "block %llu, max_blocks %u\n", inode->i_ino,
2549 (unsigned long long)iblock, max_blocks);
2551 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2552 inode->i_sb->s_blocksize_bits;
2553 if (eof_block < iblock + max_blocks)
2554 eof_block = iblock + max_blocks;
2556 depth = ext_depth(inode);
2557 eh = path[depth].p_hdr;
2558 ex = path[depth].p_ext;
2559 ee_block = le32_to_cpu(ex->ee_block);
2560 ee_len = ext4_ext_get_actual_len(ex);
2561 allocated = ee_len - (iblock - ee_block);
2562 newblock = iblock - ee_block + ext_pblock(ex);
2564 ex2 = ex;
2565 orig_ex.ee_block = ex->ee_block;
2566 orig_ex.ee_len = cpu_to_le16(ee_len);
2567 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2570 * It is safe to convert extent to initialized via explicit
2571 * zeroout only if extent is fully insde i_size or new_size.
2573 may_zeroout = ee_block + ee_len <= eof_block;
2575 err = ext4_ext_get_access(handle, inode, path + depth);
2576 if (err)
2577 goto out;
2578 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2579 if (ee_len <= 2*EXT4_EXT_ZERO_LEN && may_zeroout) {
2580 err = ext4_ext_zeroout(inode, &orig_ex);
2581 if (err)
2582 goto fix_extent_len;
2583 /* update the extent length and mark as initialized */
2584 ex->ee_block = orig_ex.ee_block;
2585 ex->ee_len = orig_ex.ee_len;
2586 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2587 ext4_ext_dirty(handle, inode, path + depth);
2588 /* zeroed the full extent */
2589 return allocated;
2592 /* ex1: ee_block to iblock - 1 : uninitialized */
2593 if (iblock > ee_block) {
2594 ex1 = ex;
2595 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2596 ext4_ext_mark_uninitialized(ex1);
2597 ext4_ext_dirty(handle, inode, path + depth);
2598 ex2 = &newex;
2601 * for sanity, update the length of the ex2 extent before
2602 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2603 * overlap of blocks.
2605 if (!ex1 && allocated > max_blocks)
2606 ex2->ee_len = cpu_to_le16(max_blocks);
2607 /* ex3: to ee_block + ee_len : uninitialised */
2608 if (allocated > max_blocks) {
2609 unsigned int newdepth;
2610 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2611 if (allocated <= EXT4_EXT_ZERO_LEN && may_zeroout) {
2613 * iblock == ee_block is handled by the zerouout
2614 * at the beginning.
2615 * Mark first half uninitialized.
2616 * Mark second half initialized and zero out the
2617 * initialized extent
2619 ex->ee_block = orig_ex.ee_block;
2620 ex->ee_len = cpu_to_le16(ee_len - allocated);
2621 ext4_ext_mark_uninitialized(ex);
2622 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2623 ext4_ext_dirty(handle, inode, path + depth);
2625 ex3 = &newex;
2626 ex3->ee_block = cpu_to_le32(iblock);
2627 ext4_ext_store_pblock(ex3, newblock);
2628 ex3->ee_len = cpu_to_le16(allocated);
2629 err = ext4_ext_insert_extent(handle, inode, path,
2630 ex3, 0);
2631 if (err == -ENOSPC) {
2632 err = ext4_ext_zeroout(inode, &orig_ex);
2633 if (err)
2634 goto fix_extent_len;
2635 ex->ee_block = orig_ex.ee_block;
2636 ex->ee_len = orig_ex.ee_len;
2637 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2638 ext4_ext_dirty(handle, inode, path + depth);
2639 /* blocks available from iblock */
2640 return allocated;
2642 } else if (err)
2643 goto fix_extent_len;
2646 * We need to zero out the second half because
2647 * an fallocate request can update file size and
2648 * converting the second half to initialized extent
2649 * implies that we can leak some junk data to user
2650 * space.
2652 err = ext4_ext_zeroout(inode, ex3);
2653 if (err) {
2655 * We should actually mark the
2656 * second half as uninit and return error
2657 * Insert would have changed the extent
2659 depth = ext_depth(inode);
2660 ext4_ext_drop_refs(path);
2661 path = ext4_ext_find_extent(inode,
2662 iblock, path);
2663 if (IS_ERR(path)) {
2664 err = PTR_ERR(path);
2665 return err;
2667 /* get the second half extent details */
2668 ex = path[depth].p_ext;
2669 err = ext4_ext_get_access(handle, inode,
2670 path + depth);
2671 if (err)
2672 return err;
2673 ext4_ext_mark_uninitialized(ex);
2674 ext4_ext_dirty(handle, inode, path + depth);
2675 return err;
2678 /* zeroed the second half */
2679 return allocated;
2681 ex3 = &newex;
2682 ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2683 ext4_ext_store_pblock(ex3, newblock + max_blocks);
2684 ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2685 ext4_ext_mark_uninitialized(ex3);
2686 err = ext4_ext_insert_extent(handle, inode, path, ex3, 0);
2687 if (err == -ENOSPC && may_zeroout) {
2688 err = ext4_ext_zeroout(inode, &orig_ex);
2689 if (err)
2690 goto fix_extent_len;
2691 /* update the extent length and mark as initialized */
2692 ex->ee_block = orig_ex.ee_block;
2693 ex->ee_len = orig_ex.ee_len;
2694 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2695 ext4_ext_dirty(handle, inode, path + depth);
2696 /* zeroed the full extent */
2697 /* blocks available from iblock */
2698 return allocated;
2700 } else if (err)
2701 goto fix_extent_len;
2703 * The depth, and hence eh & ex might change
2704 * as part of the insert above.
2706 newdepth = ext_depth(inode);
2708 * update the extent length after successful insert of the
2709 * split extent
2711 ee_len -= ext4_ext_get_actual_len(ex3);
2712 orig_ex.ee_len = cpu_to_le16(ee_len);
2713 may_zeroout = ee_block + ee_len <= eof_block;
2715 depth = newdepth;
2716 ext4_ext_drop_refs(path);
2717 path = ext4_ext_find_extent(inode, iblock, path);
2718 if (IS_ERR(path)) {
2719 err = PTR_ERR(path);
2720 goto out;
2722 eh = path[depth].p_hdr;
2723 ex = path[depth].p_ext;
2724 if (ex2 != &newex)
2725 ex2 = ex;
2727 err = ext4_ext_get_access(handle, inode, path + depth);
2728 if (err)
2729 goto out;
2731 allocated = max_blocks;
2733 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2734 * to insert a extent in the middle zerout directly
2735 * otherwise give the extent a chance to merge to left
2737 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2738 iblock != ee_block && may_zeroout) {
2739 err = ext4_ext_zeroout(inode, &orig_ex);
2740 if (err)
2741 goto fix_extent_len;
2742 /* update the extent length and mark as initialized */
2743 ex->ee_block = orig_ex.ee_block;
2744 ex->ee_len = orig_ex.ee_len;
2745 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2746 ext4_ext_dirty(handle, inode, path + depth);
2747 /* zero out the first half */
2748 /* blocks available from iblock */
2749 return allocated;
2753 * If there was a change of depth as part of the
2754 * insertion of ex3 above, we need to update the length
2755 * of the ex1 extent again here
2757 if (ex1 && ex1 != ex) {
2758 ex1 = ex;
2759 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2760 ext4_ext_mark_uninitialized(ex1);
2761 ex2 = &newex;
2763 /* ex2: iblock to iblock + maxblocks-1 : initialised */
2764 ex2->ee_block = cpu_to_le32(iblock);
2765 ext4_ext_store_pblock(ex2, newblock);
2766 ex2->ee_len = cpu_to_le16(allocated);
2767 if (ex2 != ex)
2768 goto insert;
2770 * New (initialized) extent starts from the first block
2771 * in the current extent. i.e., ex2 == ex
2772 * We have to see if it can be merged with the extent
2773 * on the left.
2775 if (ex2 > EXT_FIRST_EXTENT(eh)) {
2777 * To merge left, pass "ex2 - 1" to try_to_merge(),
2778 * since it merges towards right _only_.
2780 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2781 if (ret) {
2782 err = ext4_ext_correct_indexes(handle, inode, path);
2783 if (err)
2784 goto out;
2785 depth = ext_depth(inode);
2786 ex2--;
2790 * Try to Merge towards right. This might be required
2791 * only when the whole extent is being written to.
2792 * i.e. ex2 == ex and ex3 == NULL.
2794 if (!ex3) {
2795 ret = ext4_ext_try_to_merge(inode, path, ex2);
2796 if (ret) {
2797 err = ext4_ext_correct_indexes(handle, inode, path);
2798 if (err)
2799 goto out;
2802 /* Mark modified extent as dirty */
2803 err = ext4_ext_dirty(handle, inode, path + depth);
2804 goto out;
2805 insert:
2806 err = ext4_ext_insert_extent(handle, inode, path, &newex, 0);
2807 if (err == -ENOSPC && may_zeroout) {
2808 err = ext4_ext_zeroout(inode, &orig_ex);
2809 if (err)
2810 goto fix_extent_len;
2811 /* update the extent length and mark as initialized */
2812 ex->ee_block = orig_ex.ee_block;
2813 ex->ee_len = orig_ex.ee_len;
2814 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2815 ext4_ext_dirty(handle, inode, path + depth);
2816 /* zero out the first half */
2817 return allocated;
2818 } else if (err)
2819 goto fix_extent_len;
2820 out:
2821 ext4_ext_show_leaf(inode, path);
2822 return err ? err : allocated;
2824 fix_extent_len:
2825 ex->ee_block = orig_ex.ee_block;
2826 ex->ee_len = orig_ex.ee_len;
2827 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2828 ext4_ext_mark_uninitialized(ex);
2829 ext4_ext_dirty(handle, inode, path + depth);
2830 return err;
2834 * This function is called by ext4_ext_get_blocks() from
2835 * ext4_get_blocks_dio_write() when DIO to write
2836 * to an uninitialized extent.
2838 * Writing to an uninitized extent may result in splitting the uninitialized
2839 * extent into multiple /intialized unintialized extents (up to three)
2840 * There are three possibilities:
2841 * a> There is no split required: Entire extent should be uninitialized
2842 * b> Splits in two extents: Write is happening at either end of the extent
2843 * c> Splits in three extents: Somone is writing in middle of the extent
2845 * One of more index blocks maybe needed if the extent tree grow after
2846 * the unintialized extent split. To prevent ENOSPC occur at the IO
2847 * complete, we need to split the uninitialized extent before DIO submit
2848 * the IO. The uninitilized extent called at this time will be split
2849 * into three uninitialized extent(at most). After IO complete, the part
2850 * being filled will be convert to initialized by the end_io callback function
2851 * via ext4_convert_unwritten_extents().
2853 * Returns the size of uninitialized extent to be written on success.
2855 static int ext4_split_unwritten_extents(handle_t *handle,
2856 struct inode *inode,
2857 struct ext4_ext_path *path,
2858 ext4_lblk_t iblock,
2859 unsigned int max_blocks,
2860 int flags)
2862 struct ext4_extent *ex, newex, orig_ex;
2863 struct ext4_extent *ex1 = NULL;
2864 struct ext4_extent *ex2 = NULL;
2865 struct ext4_extent *ex3 = NULL;
2866 struct ext4_extent_header *eh;
2867 ext4_lblk_t ee_block, eof_block;
2868 unsigned int allocated, ee_len, depth;
2869 ext4_fsblk_t newblock;
2870 int err = 0;
2871 int may_zeroout;
2873 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
2874 "block %llu, max_blocks %u\n", inode->i_ino,
2875 (unsigned long long)iblock, max_blocks);
2877 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2878 inode->i_sb->s_blocksize_bits;
2879 if (eof_block < iblock + max_blocks)
2880 eof_block = iblock + max_blocks;
2882 depth = ext_depth(inode);
2883 eh = path[depth].p_hdr;
2884 ex = path[depth].p_ext;
2885 ee_block = le32_to_cpu(ex->ee_block);
2886 ee_len = ext4_ext_get_actual_len(ex);
2887 allocated = ee_len - (iblock - ee_block);
2888 newblock = iblock - ee_block + ext_pblock(ex);
2890 ex2 = ex;
2891 orig_ex.ee_block = ex->ee_block;
2892 orig_ex.ee_len = cpu_to_le16(ee_len);
2893 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2896 * It is safe to convert extent to initialized via explicit
2897 * zeroout only if extent is fully insde i_size or new_size.
2899 may_zeroout = ee_block + ee_len <= eof_block;
2902 * If the uninitialized extent begins at the same logical
2903 * block where the write begins, and the write completely
2904 * covers the extent, then we don't need to split it.
2906 if ((iblock == ee_block) && (allocated <= max_blocks))
2907 return allocated;
2909 err = ext4_ext_get_access(handle, inode, path + depth);
2910 if (err)
2911 goto out;
2912 /* ex1: ee_block to iblock - 1 : uninitialized */
2913 if (iblock > ee_block) {
2914 ex1 = ex;
2915 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2916 ext4_ext_mark_uninitialized(ex1);
2917 ex2 = &newex;
2920 * for sanity, update the length of the ex2 extent before
2921 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2922 * overlap of blocks.
2924 if (!ex1 && allocated > max_blocks)
2925 ex2->ee_len = cpu_to_le16(max_blocks);
2926 /* ex3: to ee_block + ee_len : uninitialised */
2927 if (allocated > max_blocks) {
2928 unsigned int newdepth;
2929 ex3 = &newex;
2930 ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2931 ext4_ext_store_pblock(ex3, newblock + max_blocks);
2932 ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2933 ext4_ext_mark_uninitialized(ex3);
2934 err = ext4_ext_insert_extent(handle, inode, path, ex3, flags);
2935 if (err == -ENOSPC && may_zeroout) {
2936 err = ext4_ext_zeroout(inode, &orig_ex);
2937 if (err)
2938 goto fix_extent_len;
2939 /* update the extent length and mark as initialized */
2940 ex->ee_block = orig_ex.ee_block;
2941 ex->ee_len = orig_ex.ee_len;
2942 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2943 ext4_ext_dirty(handle, inode, path + depth);
2944 /* zeroed the full extent */
2945 /* blocks available from iblock */
2946 return allocated;
2948 } else if (err)
2949 goto fix_extent_len;
2951 * The depth, and hence eh & ex might change
2952 * as part of the insert above.
2954 newdepth = ext_depth(inode);
2956 * update the extent length after successful insert of the
2957 * split extent
2959 ee_len -= ext4_ext_get_actual_len(ex3);
2960 orig_ex.ee_len = cpu_to_le16(ee_len);
2961 may_zeroout = ee_block + ee_len <= eof_block;
2963 depth = newdepth;
2964 ext4_ext_drop_refs(path);
2965 path = ext4_ext_find_extent(inode, iblock, path);
2966 if (IS_ERR(path)) {
2967 err = PTR_ERR(path);
2968 goto out;
2970 eh = path[depth].p_hdr;
2971 ex = path[depth].p_ext;
2972 if (ex2 != &newex)
2973 ex2 = ex;
2975 err = ext4_ext_get_access(handle, inode, path + depth);
2976 if (err)
2977 goto out;
2979 allocated = max_blocks;
2982 * If there was a change of depth as part of the
2983 * insertion of ex3 above, we need to update the length
2984 * of the ex1 extent again here
2986 if (ex1 && ex1 != ex) {
2987 ex1 = ex;
2988 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2989 ext4_ext_mark_uninitialized(ex1);
2990 ex2 = &newex;
2993 * ex2: iblock to iblock + maxblocks-1 : to be direct IO written,
2994 * uninitialised still.
2996 ex2->ee_block = cpu_to_le32(iblock);
2997 ext4_ext_store_pblock(ex2, newblock);
2998 ex2->ee_len = cpu_to_le16(allocated);
2999 ext4_ext_mark_uninitialized(ex2);
3000 if (ex2 != ex)
3001 goto insert;
3002 /* Mark modified extent as dirty */
3003 err = ext4_ext_dirty(handle, inode, path + depth);
3004 ext_debug("out here\n");
3005 goto out;
3006 insert:
3007 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3008 if (err == -ENOSPC && may_zeroout) {
3009 err = ext4_ext_zeroout(inode, &orig_ex);
3010 if (err)
3011 goto fix_extent_len;
3012 /* update the extent length and mark as initialized */
3013 ex->ee_block = orig_ex.ee_block;
3014 ex->ee_len = orig_ex.ee_len;
3015 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
3016 ext4_ext_dirty(handle, inode, path + depth);
3017 /* zero out the first half */
3018 return allocated;
3019 } else if (err)
3020 goto fix_extent_len;
3021 out:
3022 ext4_ext_show_leaf(inode, path);
3023 return err ? err : allocated;
3025 fix_extent_len:
3026 ex->ee_block = orig_ex.ee_block;
3027 ex->ee_len = orig_ex.ee_len;
3028 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
3029 ext4_ext_mark_uninitialized(ex);
3030 ext4_ext_dirty(handle, inode, path + depth);
3031 return err;
3033 static int ext4_convert_unwritten_extents_dio(handle_t *handle,
3034 struct inode *inode,
3035 struct ext4_ext_path *path)
3037 struct ext4_extent *ex;
3038 struct ext4_extent_header *eh;
3039 int depth;
3040 int err = 0;
3041 int ret = 0;
3043 depth = ext_depth(inode);
3044 eh = path[depth].p_hdr;
3045 ex = path[depth].p_ext;
3047 err = ext4_ext_get_access(handle, inode, path + depth);
3048 if (err)
3049 goto out;
3050 /* first mark the extent as initialized */
3051 ext4_ext_mark_initialized(ex);
3054 * We have to see if it can be merged with the extent
3055 * on the left.
3057 if (ex > EXT_FIRST_EXTENT(eh)) {
3059 * To merge left, pass "ex - 1" to try_to_merge(),
3060 * since it merges towards right _only_.
3062 ret = ext4_ext_try_to_merge(inode, path, ex - 1);
3063 if (ret) {
3064 err = ext4_ext_correct_indexes(handle, inode, path);
3065 if (err)
3066 goto out;
3067 depth = ext_depth(inode);
3068 ex--;
3072 * Try to Merge towards right.
3074 ret = ext4_ext_try_to_merge(inode, path, ex);
3075 if (ret) {
3076 err = ext4_ext_correct_indexes(handle, inode, path);
3077 if (err)
3078 goto out;
3079 depth = ext_depth(inode);
3081 /* Mark modified extent as dirty */
3082 err = ext4_ext_dirty(handle, inode, path + depth);
3083 out:
3084 ext4_ext_show_leaf(inode, path);
3085 return err;
3088 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3089 sector_t block, int count)
3091 int i;
3092 for (i = 0; i < count; i++)
3093 unmap_underlying_metadata(bdev, block + i);
3096 static int
3097 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3098 ext4_lblk_t iblock, unsigned int max_blocks,
3099 struct ext4_ext_path *path, int flags,
3100 unsigned int allocated, struct buffer_head *bh_result,
3101 ext4_fsblk_t newblock)
3103 int ret = 0;
3104 int err = 0;
3105 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3107 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3108 "block %llu, max_blocks %u, flags %d, allocated %u",
3109 inode->i_ino, (unsigned long long)iblock, max_blocks,
3110 flags, allocated);
3111 ext4_ext_show_leaf(inode, path);
3113 /* DIO get_block() before submit the IO, split the extent */
3114 if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) {
3115 ret = ext4_split_unwritten_extents(handle,
3116 inode, path, iblock,
3117 max_blocks, flags);
3119 * Flag the inode(non aio case) or end_io struct (aio case)
3120 * that this IO needs to convertion to written when IO is
3121 * completed
3123 if (io)
3124 io->flag = DIO_AIO_UNWRITTEN;
3125 else
3126 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3127 goto out;
3129 /* async DIO end_io complete, convert the filled extent to written */
3130 if (flags == EXT4_GET_BLOCKS_DIO_CONVERT_EXT) {
3131 ret = ext4_convert_unwritten_extents_dio(handle, inode,
3132 path);
3133 if (ret >= 0)
3134 ext4_update_inode_fsync_trans(handle, inode, 1);
3135 goto out2;
3137 /* buffered IO case */
3139 * repeat fallocate creation request
3140 * we already have an unwritten extent
3142 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3143 goto map_out;
3145 /* buffered READ or buffered write_begin() lookup */
3146 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3148 * We have blocks reserved already. We
3149 * return allocated blocks so that delalloc
3150 * won't do block reservation for us. But
3151 * the buffer head will be unmapped so that
3152 * a read from the block returns 0s.
3154 set_buffer_unwritten(bh_result);
3155 goto out1;
3158 /* buffered write, writepage time, convert*/
3159 ret = ext4_ext_convert_to_initialized(handle, inode,
3160 path, iblock,
3161 max_blocks);
3162 if (ret >= 0)
3163 ext4_update_inode_fsync_trans(handle, inode, 1);
3164 out:
3165 if (ret <= 0) {
3166 err = ret;
3167 goto out2;
3168 } else
3169 allocated = ret;
3170 set_buffer_new(bh_result);
3172 * if we allocated more blocks than requested
3173 * we need to make sure we unmap the extra block
3174 * allocated. The actual needed block will get
3175 * unmapped later when we find the buffer_head marked
3176 * new.
3178 if (allocated > max_blocks) {
3179 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3180 newblock + max_blocks,
3181 allocated - max_blocks);
3182 allocated = max_blocks;
3186 * If we have done fallocate with the offset that is already
3187 * delayed allocated, we would have block reservation
3188 * and quota reservation done in the delayed write path.
3189 * But fallocate would have already updated quota and block
3190 * count for this offset. So cancel these reservation
3192 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3193 ext4_da_update_reserve_space(inode, allocated, 0);
3195 map_out:
3196 set_buffer_mapped(bh_result);
3197 out1:
3198 if (allocated > max_blocks)
3199 allocated = max_blocks;
3200 ext4_ext_show_leaf(inode, path);
3201 bh_result->b_bdev = inode->i_sb->s_bdev;
3202 bh_result->b_blocknr = newblock;
3203 out2:
3204 if (path) {
3205 ext4_ext_drop_refs(path);
3206 kfree(path);
3208 return err ? err : allocated;
3211 * Block allocation/map/preallocation routine for extents based files
3214 * Need to be called with
3215 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3216 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3218 * return > 0, number of of blocks already mapped/allocated
3219 * if create == 0 and these are pre-allocated blocks
3220 * buffer head is unmapped
3221 * otherwise blocks are mapped
3223 * return = 0, if plain look up failed (blocks have not been allocated)
3224 * buffer head is unmapped
3226 * return < 0, error case.
3228 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
3229 ext4_lblk_t iblock,
3230 unsigned int max_blocks, struct buffer_head *bh_result,
3231 int flags)
3233 struct ext4_ext_path *path = NULL;
3234 struct ext4_extent_header *eh;
3235 struct ext4_extent newex, *ex, *last_ex;
3236 ext4_fsblk_t newblock;
3237 int i, err = 0, depth, ret, cache_type;
3238 unsigned int allocated = 0;
3239 struct ext4_allocation_request ar;
3240 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3242 __clear_bit(BH_New, &bh_result->b_state);
3243 ext_debug("blocks %u/%u requested for inode %lu\n",
3244 iblock, max_blocks, inode->i_ino);
3246 /* check in cache */
3247 cache_type = ext4_ext_in_cache(inode, iblock, &newex);
3248 if (cache_type) {
3249 if (cache_type == EXT4_EXT_CACHE_GAP) {
3250 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3252 * block isn't allocated yet and
3253 * user doesn't want to allocate it
3255 goto out2;
3257 /* we should allocate requested block */
3258 } else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
3259 /* block is already allocated */
3260 newblock = iblock
3261 - le32_to_cpu(newex.ee_block)
3262 + ext_pblock(&newex);
3263 /* number of remaining blocks in the extent */
3264 allocated = ext4_ext_get_actual_len(&newex) -
3265 (iblock - le32_to_cpu(newex.ee_block));
3266 goto out;
3267 } else {
3268 BUG();
3272 /* find extent for this block */
3273 path = ext4_ext_find_extent(inode, iblock, NULL);
3274 if (IS_ERR(path)) {
3275 err = PTR_ERR(path);
3276 path = NULL;
3277 goto out2;
3280 depth = ext_depth(inode);
3283 * consistent leaf must not be empty;
3284 * this situation is possible, though, _during_ tree modification;
3285 * this is why assert can't be put in ext4_ext_find_extent()
3287 if (path[depth].p_ext == NULL && depth != 0) {
3288 ext4_error(inode->i_sb, __func__, "bad extent address "
3289 "inode: %lu, iblock: %lu, depth: %d",
3290 inode->i_ino, (unsigned long) iblock, depth);
3291 err = -EIO;
3292 goto out2;
3294 eh = path[depth].p_hdr;
3296 ex = path[depth].p_ext;
3297 if (ex) {
3298 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3299 ext4_fsblk_t ee_start = ext_pblock(ex);
3300 unsigned short ee_len;
3303 * Uninitialized extents are treated as holes, except that
3304 * we split out initialized portions during a write.
3306 ee_len = ext4_ext_get_actual_len(ex);
3307 /* if found extent covers block, simply return it */
3308 if (in_range(iblock, ee_block, ee_len)) {
3309 newblock = iblock - ee_block + ee_start;
3310 /* number of remaining blocks in the extent */
3311 allocated = ee_len - (iblock - ee_block);
3312 ext_debug("%u fit into %u:%d -> %llu\n", iblock,
3313 ee_block, ee_len, newblock);
3315 /* Do not put uninitialized extent in the cache */
3316 if (!ext4_ext_is_uninitialized(ex)) {
3317 ext4_ext_put_in_cache(inode, ee_block,
3318 ee_len, ee_start,
3319 EXT4_EXT_CACHE_EXTENT);
3320 goto out;
3322 ret = ext4_ext_handle_uninitialized_extents(handle,
3323 inode, iblock, max_blocks, path,
3324 flags, allocated, bh_result, newblock);
3325 return ret;
3330 * requested block isn't allocated yet;
3331 * we couldn't try to create block if create flag is zero
3333 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3335 * put just found gap into cache to speed up
3336 * subsequent requests
3338 ext4_ext_put_gap_in_cache(inode, path, iblock);
3339 goto out2;
3342 * Okay, we need to do block allocation.
3345 /* find neighbour allocated blocks */
3346 ar.lleft = iblock;
3347 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3348 if (err)
3349 goto out2;
3350 ar.lright = iblock;
3351 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3352 if (err)
3353 goto out2;
3356 * See if request is beyond maximum number of blocks we can have in
3357 * a single extent. For an initialized extent this limit is
3358 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3359 * EXT_UNINIT_MAX_LEN.
3361 if (max_blocks > EXT_INIT_MAX_LEN &&
3362 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3363 max_blocks = EXT_INIT_MAX_LEN;
3364 else if (max_blocks > EXT_UNINIT_MAX_LEN &&
3365 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3366 max_blocks = EXT_UNINIT_MAX_LEN;
3368 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
3369 newex.ee_block = cpu_to_le32(iblock);
3370 newex.ee_len = cpu_to_le16(max_blocks);
3371 err = ext4_ext_check_overlap(inode, &newex, path);
3372 if (err)
3373 allocated = ext4_ext_get_actual_len(&newex);
3374 else
3375 allocated = max_blocks;
3377 /* allocate new block */
3378 ar.inode = inode;
3379 ar.goal = ext4_ext_find_goal(inode, path, iblock);
3380 ar.logical = iblock;
3381 ar.len = allocated;
3382 if (S_ISREG(inode->i_mode))
3383 ar.flags = EXT4_MB_HINT_DATA;
3384 else
3385 /* disable in-core preallocation for non-regular files */
3386 ar.flags = 0;
3387 newblock = ext4_mb_new_blocks(handle, &ar, &err);
3388 if (!newblock)
3389 goto out2;
3390 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3391 ar.goal, newblock, allocated);
3393 /* try to insert new extent into found leaf and return */
3394 ext4_ext_store_pblock(&newex, newblock);
3395 newex.ee_len = cpu_to_le16(ar.len);
3396 /* Mark uninitialized */
3397 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3398 ext4_ext_mark_uninitialized(&newex);
3400 * io_end structure was created for every async
3401 * direct IO write to the middle of the file.
3402 * To avoid unecessary convertion for every aio dio rewrite
3403 * to the mid of file, here we flag the IO that is really
3404 * need the convertion.
3405 * For non asycn direct IO case, flag the inode state
3406 * that we need to perform convertion when IO is done.
3408 if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) {
3409 if (io)
3410 io->flag = DIO_AIO_UNWRITTEN;
3411 else
3412 ext4_set_inode_state(inode,
3413 EXT4_STATE_DIO_UNWRITTEN);
3417 if (unlikely(ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))) {
3418 if (unlikely(!eh->eh_entries)) {
3419 ext4_error(inode->i_sb, __func__,
3420 "inode#%lu, eh->eh_entries = 0 and "
3421 "EOFBLOCKS_FL set", inode->i_ino);
3422 err = -EIO;
3423 goto out2;
3425 last_ex = EXT_LAST_EXTENT(eh);
3427 * If the current leaf block was reached by looking at
3428 * the last index block all the way down the tree, and
3429 * we are extending the inode beyond the last extent
3430 * in the current leaf block, then clear the
3431 * EOFBLOCKS_FL flag.
3433 for (i = depth-1; i >= 0; i--) {
3434 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3435 break;
3437 if ((i < 0) &&
3438 (iblock + ar.len > le32_to_cpu(last_ex->ee_block) +
3439 ext4_ext_get_actual_len(last_ex)))
3440 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3442 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3443 if (err) {
3444 /* free data blocks we just allocated */
3445 /* not a good idea to call discard here directly,
3446 * but otherwise we'd need to call it every free() */
3447 ext4_discard_preallocations(inode);
3448 ext4_free_blocks(handle, inode, ext_pblock(&newex),
3449 ext4_ext_get_actual_len(&newex), 0);
3450 goto out2;
3453 /* previous routine could use block we allocated */
3454 newblock = ext_pblock(&newex);
3455 allocated = ext4_ext_get_actual_len(&newex);
3456 if (allocated > max_blocks)
3457 allocated = max_blocks;
3458 set_buffer_new(bh_result);
3461 * Update reserved blocks/metadata blocks after successful
3462 * block allocation which had been deferred till now.
3464 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3465 ext4_da_update_reserve_space(inode, allocated, 1);
3468 * Cache the extent and update transaction to commit on fdatasync only
3469 * when it is _not_ an uninitialized extent.
3471 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3472 ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
3473 EXT4_EXT_CACHE_EXTENT);
3474 ext4_update_inode_fsync_trans(handle, inode, 1);
3475 } else
3476 ext4_update_inode_fsync_trans(handle, inode, 0);
3477 out:
3478 if (allocated > max_blocks)
3479 allocated = max_blocks;
3480 ext4_ext_show_leaf(inode, path);
3481 set_buffer_mapped(bh_result);
3482 bh_result->b_bdev = inode->i_sb->s_bdev;
3483 bh_result->b_blocknr = newblock;
3484 out2:
3485 if (path) {
3486 ext4_ext_drop_refs(path);
3487 kfree(path);
3489 return err ? err : allocated;
3492 void ext4_ext_truncate(struct inode *inode)
3494 struct address_space *mapping = inode->i_mapping;
3495 struct super_block *sb = inode->i_sb;
3496 ext4_lblk_t last_block;
3497 handle_t *handle;
3498 int err = 0;
3501 * probably first extent we're gonna free will be last in block
3503 err = ext4_writepage_trans_blocks(inode);
3504 handle = ext4_journal_start(inode, err);
3505 if (IS_ERR(handle))
3506 return;
3508 if (inode->i_size & (sb->s_blocksize - 1))
3509 ext4_block_truncate_page(handle, mapping, inode->i_size);
3511 if (ext4_orphan_add(handle, inode))
3512 goto out_stop;
3514 down_write(&EXT4_I(inode)->i_data_sem);
3515 ext4_ext_invalidate_cache(inode);
3517 ext4_discard_preallocations(inode);
3520 * TODO: optimization is possible here.
3521 * Probably we need not scan at all,
3522 * because page truncation is enough.
3525 /* we have to know where to truncate from in crash case */
3526 EXT4_I(inode)->i_disksize = inode->i_size;
3527 ext4_mark_inode_dirty(handle, inode);
3529 last_block = (inode->i_size + sb->s_blocksize - 1)
3530 >> EXT4_BLOCK_SIZE_BITS(sb);
3531 err = ext4_ext_remove_space(inode, last_block);
3533 /* In a multi-transaction truncate, we only make the final
3534 * transaction synchronous.
3536 if (IS_SYNC(inode))
3537 ext4_handle_sync(handle);
3539 out_stop:
3540 up_write(&EXT4_I(inode)->i_data_sem);
3542 * If this was a simple ftruncate() and the file will remain alive,
3543 * then we need to clear up the orphan record which we created above.
3544 * However, if this was a real unlink then we were called by
3545 * ext4_delete_inode(), and we allow that function to clean up the
3546 * orphan info for us.
3548 if (inode->i_nlink)
3549 ext4_orphan_del(handle, inode);
3551 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3552 ext4_mark_inode_dirty(handle, inode);
3553 ext4_journal_stop(handle);
3556 static void ext4_falloc_update_inode(struct inode *inode,
3557 int mode, loff_t new_size, int update_ctime)
3559 struct timespec now;
3561 if (update_ctime) {
3562 now = current_fs_time(inode->i_sb);
3563 if (!timespec_equal(&inode->i_ctime, &now))
3564 inode->i_ctime = now;
3567 * Update only when preallocation was requested beyond
3568 * the file size.
3570 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3571 if (new_size > i_size_read(inode))
3572 i_size_write(inode, new_size);
3573 if (new_size > EXT4_I(inode)->i_disksize)
3574 ext4_update_i_disksize(inode, new_size);
3575 } else {
3577 * Mark that we allocate beyond EOF so the subsequent truncate
3578 * can proceed even if the new size is the same as i_size.
3580 if (new_size > i_size_read(inode))
3581 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3587 * preallocate space for a file. This implements ext4's fallocate inode
3588 * operation, which gets called from sys_fallocate system call.
3589 * For block-mapped files, posix_fallocate should fall back to the method
3590 * of writing zeroes to the required new blocks (the same behavior which is
3591 * expected for file systems which do not support fallocate() system call).
3593 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3595 handle_t *handle;
3596 ext4_lblk_t block;
3597 loff_t new_size;
3598 unsigned int max_blocks;
3599 int ret = 0;
3600 int ret2 = 0;
3601 int retries = 0;
3602 struct buffer_head map_bh;
3603 unsigned int credits, blkbits = inode->i_blkbits;
3606 * currently supporting (pre)allocate mode for extent-based
3607 * files _only_
3609 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3610 return -EOPNOTSUPP;
3612 /* preallocation to directories is currently not supported */
3613 if (S_ISDIR(inode->i_mode))
3614 return -ENODEV;
3616 block = offset >> blkbits;
3618 * We can't just convert len to max_blocks because
3619 * If blocksize = 4096 offset = 3072 and len = 2048
3621 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3622 - block;
3624 * credits to insert 1 extent into extent tree
3626 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3627 mutex_lock(&inode->i_mutex);
3628 ret = inode_newsize_ok(inode, (len + offset));
3629 if (ret) {
3630 mutex_unlock(&inode->i_mutex);
3631 return ret;
3633 retry:
3634 while (ret >= 0 && ret < max_blocks) {
3635 block = block + ret;
3636 max_blocks = max_blocks - ret;
3637 handle = ext4_journal_start(inode, credits);
3638 if (IS_ERR(handle)) {
3639 ret = PTR_ERR(handle);
3640 break;
3642 map_bh.b_state = 0;
3643 ret = ext4_get_blocks(handle, inode, block,
3644 max_blocks, &map_bh,
3645 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3646 if (ret <= 0) {
3647 #ifdef EXT4FS_DEBUG
3648 WARN_ON(ret <= 0);
3649 printk(KERN_ERR "%s: ext4_ext_get_blocks "
3650 "returned error inode#%lu, block=%u, "
3651 "max_blocks=%u", __func__,
3652 inode->i_ino, block, max_blocks);
3653 #endif
3654 ext4_mark_inode_dirty(handle, inode);
3655 ret2 = ext4_journal_stop(handle);
3656 break;
3658 if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3659 blkbits) >> blkbits))
3660 new_size = offset + len;
3661 else
3662 new_size = (block + ret) << blkbits;
3664 ext4_falloc_update_inode(inode, mode, new_size,
3665 buffer_new(&map_bh));
3666 ext4_mark_inode_dirty(handle, inode);
3667 ret2 = ext4_journal_stop(handle);
3668 if (ret2)
3669 break;
3671 if (ret == -ENOSPC &&
3672 ext4_should_retry_alloc(inode->i_sb, &retries)) {
3673 ret = 0;
3674 goto retry;
3676 mutex_unlock(&inode->i_mutex);
3677 return ret > 0 ? ret2 : ret;
3681 * This function convert a range of blocks to written extents
3682 * The caller of this function will pass the start offset and the size.
3683 * all unwritten extents within this range will be converted to
3684 * written extents.
3686 * This function is called from the direct IO end io call back
3687 * function, to convert the fallocated extents after IO is completed.
3688 * Returns 0 on success.
3690 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3691 ssize_t len)
3693 handle_t *handle;
3694 ext4_lblk_t block;
3695 unsigned int max_blocks;
3696 int ret = 0;
3697 int ret2 = 0;
3698 struct buffer_head map_bh;
3699 unsigned int credits, blkbits = inode->i_blkbits;
3701 block = offset >> blkbits;
3703 * We can't just convert len to max_blocks because
3704 * If blocksize = 4096 offset = 3072 and len = 2048
3706 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3707 - block;
3709 * credits to insert 1 extent into extent tree
3711 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3712 while (ret >= 0 && ret < max_blocks) {
3713 block = block + ret;
3714 max_blocks = max_blocks - ret;
3715 handle = ext4_journal_start(inode, credits);
3716 if (IS_ERR(handle)) {
3717 ret = PTR_ERR(handle);
3718 break;
3720 map_bh.b_state = 0;
3721 ret = ext4_get_blocks(handle, inode, block,
3722 max_blocks, &map_bh,
3723 EXT4_GET_BLOCKS_DIO_CONVERT_EXT);
3724 if (ret <= 0) {
3725 WARN_ON(ret <= 0);
3726 printk(KERN_ERR "%s: ext4_ext_get_blocks "
3727 "returned error inode#%lu, block=%u, "
3728 "max_blocks=%u", __func__,
3729 inode->i_ino, block, max_blocks);
3731 ext4_mark_inode_dirty(handle, inode);
3732 ret2 = ext4_journal_stop(handle);
3733 if (ret <= 0 || ret2 )
3734 break;
3736 return ret > 0 ? ret2 : ret;
3739 * Callback function called for each extent to gather FIEMAP information.
3741 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3742 struct ext4_ext_cache *newex, struct ext4_extent *ex,
3743 void *data)
3745 struct fiemap_extent_info *fieinfo = data;
3746 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
3747 __u64 logical;
3748 __u64 physical;
3749 __u64 length;
3750 __u32 flags = 0;
3751 int error;
3753 logical = (__u64)newex->ec_block << blksize_bits;
3755 if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3756 pgoff_t offset;
3757 struct page *page;
3758 struct buffer_head *bh = NULL;
3760 offset = logical >> PAGE_SHIFT;
3761 page = find_get_page(inode->i_mapping, offset);
3762 if (!page || !page_has_buffers(page))
3763 return EXT_CONTINUE;
3765 bh = page_buffers(page);
3767 if (!bh)
3768 return EXT_CONTINUE;
3770 if (buffer_delay(bh)) {
3771 flags |= FIEMAP_EXTENT_DELALLOC;
3772 page_cache_release(page);
3773 } else {
3774 page_cache_release(page);
3775 return EXT_CONTINUE;
3779 physical = (__u64)newex->ec_start << blksize_bits;
3780 length = (__u64)newex->ec_len << blksize_bits;
3782 if (ex && ext4_ext_is_uninitialized(ex))
3783 flags |= FIEMAP_EXTENT_UNWRITTEN;
3786 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3788 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3789 * this also indicates no more allocated blocks.
3791 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3793 if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
3794 newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
3795 loff_t size = i_size_read(inode);
3796 loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
3798 flags |= FIEMAP_EXTENT_LAST;
3799 if ((flags & FIEMAP_EXTENT_DELALLOC) &&
3800 logical+length > size)
3801 length = (size - logical + bs - 1) & ~(bs-1);
3804 error = fiemap_fill_next_extent(fieinfo, logical, physical,
3805 length, flags);
3806 if (error < 0)
3807 return error;
3808 if (error == 1)
3809 return EXT_BREAK;
3811 return EXT_CONTINUE;
3814 /* fiemap flags we can handle specified here */
3815 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3817 static int ext4_xattr_fiemap(struct inode *inode,
3818 struct fiemap_extent_info *fieinfo)
3820 __u64 physical = 0;
3821 __u64 length;
3822 __u32 flags = FIEMAP_EXTENT_LAST;
3823 int blockbits = inode->i_sb->s_blocksize_bits;
3824 int error = 0;
3826 /* in-inode? */
3827 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
3828 struct ext4_iloc iloc;
3829 int offset; /* offset of xattr in inode */
3831 error = ext4_get_inode_loc(inode, &iloc);
3832 if (error)
3833 return error;
3834 physical = iloc.bh->b_blocknr << blockbits;
3835 offset = EXT4_GOOD_OLD_INODE_SIZE +
3836 EXT4_I(inode)->i_extra_isize;
3837 physical += offset;
3838 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3839 flags |= FIEMAP_EXTENT_DATA_INLINE;
3840 brelse(iloc.bh);
3841 } else { /* external block */
3842 physical = EXT4_I(inode)->i_file_acl << blockbits;
3843 length = inode->i_sb->s_blocksize;
3846 if (physical)
3847 error = fiemap_fill_next_extent(fieinfo, 0, physical,
3848 length, flags);
3849 return (error < 0 ? error : 0);
3852 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3853 __u64 start, __u64 len)
3855 ext4_lblk_t start_blk;
3856 int error = 0;
3858 /* fallback to generic here if not in extents fmt */
3859 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3860 return generic_block_fiemap(inode, fieinfo, start, len,
3861 ext4_get_block);
3863 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3864 return -EBADR;
3866 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3867 error = ext4_xattr_fiemap(inode, fieinfo);
3868 } else {
3869 ext4_lblk_t len_blks;
3870 __u64 last_blk;
3872 start_blk = start >> inode->i_sb->s_blocksize_bits;
3873 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
3874 if (last_blk >= EXT_MAX_BLOCK)
3875 last_blk = EXT_MAX_BLOCK-1;
3876 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
3879 * Walk the extent tree gathering extent information.
3880 * ext4_ext_fiemap_cb will push extents back to user.
3882 error = ext4_ext_walk_space(inode, start_blk, len_blks,
3883 ext4_ext_fiemap_cb, fieinfo);
3886 return error;