2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency
= 5000000ULL;
38 unsigned int normalized_sysctl_sched_latency
= 5000000ULL;
41 * Minimal preemption granularity for CPU-bound tasks:
42 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
44 unsigned int sysctl_sched_min_granularity
= 1000000ULL;
45 unsigned int normalized_sysctl_sched_min_granularity
= 1000000ULL;
48 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
50 static unsigned int sched_nr_latency
= 5;
53 * After fork, child runs first. If set to 0 (default) then
54 * parent will (try to) run first.
56 unsigned int sysctl_sched_child_runs_first __read_mostly
;
59 * sys_sched_yield() compat mode
61 * This option switches the agressive yield implementation of the
62 * old scheduler back on.
64 unsigned int __read_mostly sysctl_sched_compat_yield
;
67 * SCHED_OTHER wake-up granularity.
68 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
70 * This option delays the preemption effects of decoupled workloads
71 * and reduces their over-scheduling. Synchronous workloads will still
72 * have immediate wakeup/sleep latencies.
74 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
75 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
77 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
79 static const struct sched_class fair_sched_class
;
81 /**************************************************************
82 * CFS operations on generic schedulable entities:
85 #ifdef CONFIG_FAIR_GROUP_SCHED
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
96 static inline struct task_struct
*task_of(struct sched_entity
*se
)
98 #ifdef CONFIG_SCHED_DEBUG
99 WARN_ON_ONCE(!entity_is_task(se
));
101 return container_of(se
, struct task_struct
, se
);
104 /* Walk up scheduling entities hierarchy */
105 #define for_each_sched_entity(se) \
106 for (; se; se = se->parent)
108 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
113 /* runqueue on which this entity is (to be) queued */
114 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
119 /* runqueue "owned" by this group */
120 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
125 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
126 * another cpu ('this_cpu')
128 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
130 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
133 /* Iterate thr' all leaf cfs_rq's on a runqueue */
134 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
135 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
137 /* Do the two (enqueued) entities belong to the same group ? */
139 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
141 if (se
->cfs_rq
== pse
->cfs_rq
)
147 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
152 /* return depth at which a sched entity is present in the hierarchy */
153 static inline int depth_se(struct sched_entity
*se
)
157 for_each_sched_entity(se
)
164 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
166 int se_depth
, pse_depth
;
169 * preemption test can be made between sibling entities who are in the
170 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
171 * both tasks until we find their ancestors who are siblings of common
175 /* First walk up until both entities are at same depth */
176 se_depth
= depth_se(*se
);
177 pse_depth
= depth_se(*pse
);
179 while (se_depth
> pse_depth
) {
181 *se
= parent_entity(*se
);
184 while (pse_depth
> se_depth
) {
186 *pse
= parent_entity(*pse
);
189 while (!is_same_group(*se
, *pse
)) {
190 *se
= parent_entity(*se
);
191 *pse
= parent_entity(*pse
);
195 #else /* !CONFIG_FAIR_GROUP_SCHED */
197 static inline struct task_struct
*task_of(struct sched_entity
*se
)
199 return container_of(se
, struct task_struct
, se
);
202 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
204 return container_of(cfs_rq
, struct rq
, cfs
);
207 #define entity_is_task(se) 1
209 #define for_each_sched_entity(se) \
210 for (; se; se = NULL)
212 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
214 return &task_rq(p
)->cfs
;
217 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
219 struct task_struct
*p
= task_of(se
);
220 struct rq
*rq
= task_rq(p
);
225 /* runqueue "owned" by this group */
226 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
231 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
233 return &cpu_rq(this_cpu
)->cfs
;
236 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
237 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
240 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
245 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
251 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
255 #endif /* CONFIG_FAIR_GROUP_SCHED */
258 /**************************************************************
259 * Scheduling class tree data structure manipulation methods:
262 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
264 s64 delta
= (s64
)(vruntime
- min_vruntime
);
266 min_vruntime
= vruntime
;
271 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
273 s64 delta
= (s64
)(vruntime
- min_vruntime
);
275 min_vruntime
= vruntime
;
280 static inline int entity_before(struct sched_entity
*a
,
281 struct sched_entity
*b
)
283 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
286 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
288 return se
->vruntime
- cfs_rq
->min_vruntime
;
291 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
293 u64 vruntime
= cfs_rq
->min_vruntime
;
296 vruntime
= cfs_rq
->curr
->vruntime
;
298 if (cfs_rq
->rb_leftmost
) {
299 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
304 vruntime
= se
->vruntime
;
306 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
309 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
313 * Enqueue an entity into the rb-tree:
315 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
317 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
318 struct rb_node
*parent
= NULL
;
319 struct sched_entity
*entry
;
320 s64 key
= entity_key(cfs_rq
, se
);
324 * Find the right place in the rbtree:
328 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
330 * We dont care about collisions. Nodes with
331 * the same key stay together.
333 if (key
< entity_key(cfs_rq
, entry
)) {
334 link
= &parent
->rb_left
;
336 link
= &parent
->rb_right
;
342 * Maintain a cache of leftmost tree entries (it is frequently
346 cfs_rq
->rb_leftmost
= &se
->run_node
;
348 rb_link_node(&se
->run_node
, parent
, link
);
349 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
352 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
354 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
355 struct rb_node
*next_node
;
357 next_node
= rb_next(&se
->run_node
);
358 cfs_rq
->rb_leftmost
= next_node
;
361 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
364 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
366 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
371 return rb_entry(left
, struct sched_entity
, run_node
);
374 static struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
376 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
381 return rb_entry(last
, struct sched_entity
, run_node
);
384 /**************************************************************
385 * Scheduling class statistics methods:
388 #ifdef CONFIG_SCHED_DEBUG
389 int sched_nr_latency_handler(struct ctl_table
*table
, int write
,
390 void __user
*buffer
, size_t *lenp
,
393 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
398 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
399 sysctl_sched_min_granularity
);
408 static inline unsigned long
409 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
411 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
412 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
418 * The idea is to set a period in which each task runs once.
420 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
421 * this period because otherwise the slices get too small.
423 * p = (nr <= nl) ? l : l*nr/nl
425 static u64
__sched_period(unsigned long nr_running
)
427 u64 period
= sysctl_sched_latency
;
428 unsigned long nr_latency
= sched_nr_latency
;
430 if (unlikely(nr_running
> nr_latency
)) {
431 period
= sysctl_sched_min_granularity
;
432 period
*= nr_running
;
439 * We calculate the wall-time slice from the period by taking a part
440 * proportional to the weight.
444 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
446 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
448 for_each_sched_entity(se
) {
449 struct load_weight
*load
;
450 struct load_weight lw
;
452 cfs_rq
= cfs_rq_of(se
);
453 load
= &cfs_rq
->load
;
455 if (unlikely(!se
->on_rq
)) {
458 update_load_add(&lw
, se
->load
.weight
);
461 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
467 * We calculate the vruntime slice of a to be inserted task
471 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
473 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
477 * Update the current task's runtime statistics. Skip current tasks that
478 * are not in our scheduling class.
481 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
482 unsigned long delta_exec
)
484 unsigned long delta_exec_weighted
;
486 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
488 curr
->sum_exec_runtime
+= delta_exec
;
489 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
490 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
492 curr
->vruntime
+= delta_exec_weighted
;
493 update_min_vruntime(cfs_rq
);
496 static void update_curr(struct cfs_rq
*cfs_rq
)
498 struct sched_entity
*curr
= cfs_rq
->curr
;
499 u64 now
= rq_of(cfs_rq
)->clock_task
;
500 unsigned long delta_exec
;
506 * Get the amount of time the current task was running
507 * since the last time we changed load (this cannot
508 * overflow on 32 bits):
510 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
514 __update_curr(cfs_rq
, curr
, delta_exec
);
515 curr
->exec_start
= now
;
517 if (entity_is_task(curr
)) {
518 struct task_struct
*curtask
= task_of(curr
);
520 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
521 cpuacct_charge(curtask
, delta_exec
);
522 account_group_exec_runtime(curtask
, delta_exec
);
527 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
529 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
533 * Task is being enqueued - update stats:
535 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
538 * Are we enqueueing a waiting task? (for current tasks
539 * a dequeue/enqueue event is a NOP)
541 if (se
!= cfs_rq
->curr
)
542 update_stats_wait_start(cfs_rq
, se
);
546 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
548 schedstat_set(se
->wait_max
, max(se
->wait_max
,
549 rq_of(cfs_rq
)->clock
- se
->wait_start
));
550 schedstat_set(se
->wait_count
, se
->wait_count
+ 1);
551 schedstat_set(se
->wait_sum
, se
->wait_sum
+
552 rq_of(cfs_rq
)->clock
- se
->wait_start
);
553 #ifdef CONFIG_SCHEDSTATS
554 if (entity_is_task(se
)) {
555 trace_sched_stat_wait(task_of(se
),
556 rq_of(cfs_rq
)->clock
- se
->wait_start
);
559 schedstat_set(se
->wait_start
, 0);
563 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
566 * Mark the end of the wait period if dequeueing a
569 if (se
!= cfs_rq
->curr
)
570 update_stats_wait_end(cfs_rq
, se
);
574 * We are picking a new current task - update its stats:
577 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
580 * We are starting a new run period:
582 se
->exec_start
= rq_of(cfs_rq
)->clock_task
;
585 /**************************************************
586 * Scheduling class queueing methods:
589 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
591 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
593 cfs_rq
->task_weight
+= weight
;
597 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
603 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
605 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
606 if (!parent_entity(se
))
607 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
608 if (entity_is_task(se
)) {
609 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
610 list_add(&se
->group_node
, &cfs_rq
->tasks
);
612 cfs_rq
->nr_running
++;
617 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
619 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
620 if (!parent_entity(se
))
621 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
622 if (entity_is_task(se
)) {
623 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
624 list_del_init(&se
->group_node
);
626 cfs_rq
->nr_running
--;
630 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
632 #ifdef CONFIG_SCHEDSTATS
633 struct task_struct
*tsk
= NULL
;
635 if (entity_is_task(se
))
638 if (se
->sleep_start
) {
639 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
644 if (unlikely(delta
> se
->sleep_max
))
645 se
->sleep_max
= delta
;
648 se
->sum_sleep_runtime
+= delta
;
651 account_scheduler_latency(tsk
, delta
>> 10, 1);
652 trace_sched_stat_sleep(tsk
, delta
);
655 if (se
->block_start
) {
656 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
661 if (unlikely(delta
> se
->block_max
))
662 se
->block_max
= delta
;
665 se
->sum_sleep_runtime
+= delta
;
668 if (tsk
->in_iowait
) {
669 se
->iowait_sum
+= delta
;
671 trace_sched_stat_iowait(tsk
, delta
);
675 * Blocking time is in units of nanosecs, so shift by
676 * 20 to get a milliseconds-range estimation of the
677 * amount of time that the task spent sleeping:
679 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
680 profile_hits(SLEEP_PROFILING
,
681 (void *)get_wchan(tsk
),
684 account_scheduler_latency(tsk
, delta
>> 10, 0);
690 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
692 #ifdef CONFIG_SCHED_DEBUG
693 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
698 if (d
> 3*sysctl_sched_latency
)
699 schedstat_inc(cfs_rq
, nr_spread_over
);
704 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
706 u64 vruntime
= cfs_rq
->min_vruntime
;
709 * The 'current' period is already promised to the current tasks,
710 * however the extra weight of the new task will slow them down a
711 * little, place the new task so that it fits in the slot that
712 * stays open at the end.
714 if (initial
&& sched_feat(START_DEBIT
))
715 vruntime
+= sched_vslice(cfs_rq
, se
);
717 /* sleeps up to a single latency don't count. */
718 if (!initial
&& sched_feat(FAIR_SLEEPERS
)) {
719 unsigned long thresh
= sysctl_sched_latency
;
722 * Convert the sleeper threshold into virtual time.
723 * SCHED_IDLE is a special sub-class. We care about
724 * fairness only relative to other SCHED_IDLE tasks,
725 * all of which have the same weight.
727 if (sched_feat(NORMALIZED_SLEEPER
) && (!entity_is_task(se
) ||
728 task_of(se
)->policy
!= SCHED_IDLE
))
729 thresh
= calc_delta_fair(thresh
, se
);
732 * Halve their sleep time's effect, to allow
733 * for a gentler effect of sleepers:
735 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
741 /* ensure we never gain time by being placed backwards. */
742 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
744 se
->vruntime
= vruntime
;
747 #define ENQUEUE_WAKEUP 1
748 #define ENQUEUE_MIGRATE 2
751 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
754 * Update the normalized vruntime before updating min_vruntime
755 * through callig update_curr().
757 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_MIGRATE
))
758 se
->vruntime
+= cfs_rq
->min_vruntime
;
761 * Update run-time statistics of the 'current'.
764 account_entity_enqueue(cfs_rq
, se
);
766 if (flags
& ENQUEUE_WAKEUP
) {
767 place_entity(cfs_rq
, se
, 0);
768 enqueue_sleeper(cfs_rq
, se
);
771 update_stats_enqueue(cfs_rq
, se
);
772 check_spread(cfs_rq
, se
);
773 if (se
!= cfs_rq
->curr
)
774 __enqueue_entity(cfs_rq
, se
);
777 static void __clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
779 if (!se
|| cfs_rq
->last
== se
)
782 if (!se
|| cfs_rq
->next
== se
)
786 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
788 for_each_sched_entity(se
)
789 __clear_buddies(cfs_rq_of(se
), se
);
793 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
796 * Update run-time statistics of the 'current'.
800 update_stats_dequeue(cfs_rq
, se
);
802 #ifdef CONFIG_SCHEDSTATS
803 if (entity_is_task(se
)) {
804 struct task_struct
*tsk
= task_of(se
);
806 if (tsk
->state
& TASK_INTERRUPTIBLE
)
807 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
808 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
809 se
->block_start
= rq_of(cfs_rq
)->clock
;
814 clear_buddies(cfs_rq
, se
);
816 if (se
!= cfs_rq
->curr
)
817 __dequeue_entity(cfs_rq
, se
);
818 account_entity_dequeue(cfs_rq
, se
);
819 update_min_vruntime(cfs_rq
);
822 * Normalize the entity after updating the min_vruntime because the
823 * update can refer to the ->curr item and we need to reflect this
824 * movement in our normalized position.
827 se
->vruntime
-= cfs_rq
->min_vruntime
;
831 * Preempt the current task with a newly woken task if needed:
834 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
836 unsigned long ideal_runtime
, delta_exec
;
838 ideal_runtime
= sched_slice(cfs_rq
, curr
);
839 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
840 if (delta_exec
> ideal_runtime
) {
841 resched_task(rq_of(cfs_rq
)->curr
);
843 * The current task ran long enough, ensure it doesn't get
844 * re-elected due to buddy favours.
846 clear_buddies(cfs_rq
, curr
);
851 * Ensure that a task that missed wakeup preemption by a
852 * narrow margin doesn't have to wait for a full slice.
853 * This also mitigates buddy induced latencies under load.
855 if (!sched_feat(WAKEUP_PREEMPT
))
858 if (delta_exec
< sysctl_sched_min_granularity
)
861 if (cfs_rq
->nr_running
> 1) {
862 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
863 s64 delta
= curr
->vruntime
- se
->vruntime
;
868 if (delta
> ideal_runtime
)
869 resched_task(rq_of(cfs_rq
)->curr
);
874 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
876 /* 'current' is not kept within the tree. */
879 * Any task has to be enqueued before it get to execute on
880 * a CPU. So account for the time it spent waiting on the
883 update_stats_wait_end(cfs_rq
, se
);
884 __dequeue_entity(cfs_rq
, se
);
887 update_stats_curr_start(cfs_rq
, se
);
889 #ifdef CONFIG_SCHEDSTATS
891 * Track our maximum slice length, if the CPU's load is at
892 * least twice that of our own weight (i.e. dont track it
893 * when there are only lesser-weight tasks around):
895 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
896 se
->slice_max
= max(se
->slice_max
,
897 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
900 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
904 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
906 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
908 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
909 struct sched_entity
*left
= se
;
911 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
915 * Prefer last buddy, try to return the CPU to a preempted task.
917 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
920 clear_buddies(cfs_rq
, se
);
925 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
928 * If still on the runqueue then deactivate_task()
929 * was not called and update_curr() has to be done:
934 check_spread(cfs_rq
, prev
);
936 update_stats_wait_start(cfs_rq
, prev
);
937 /* Put 'current' back into the tree. */
938 __enqueue_entity(cfs_rq
, prev
);
944 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
947 * Update run-time statistics of the 'current'.
951 #ifdef CONFIG_SCHED_HRTICK
953 * queued ticks are scheduled to match the slice, so don't bother
954 * validating it and just reschedule.
957 resched_task(rq_of(cfs_rq
)->curr
);
961 * don't let the period tick interfere with the hrtick preemption
963 if (!sched_feat(DOUBLE_TICK
) &&
964 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
968 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
969 check_preempt_tick(cfs_rq
, curr
);
972 /**************************************************
973 * CFS operations on tasks:
976 #ifdef CONFIG_SCHED_HRTICK
977 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
979 struct sched_entity
*se
= &p
->se
;
980 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
982 WARN_ON(task_rq(p
) != rq
);
984 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
985 u64 slice
= sched_slice(cfs_rq
, se
);
986 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
987 s64 delta
= slice
- ran
;
996 * Don't schedule slices shorter than 10000ns, that just
997 * doesn't make sense. Rely on vruntime for fairness.
1000 delta
= max_t(s64
, 10000LL, delta
);
1002 hrtick_start(rq
, delta
);
1007 * called from enqueue/dequeue and updates the hrtick when the
1008 * current task is from our class and nr_running is low enough
1011 static void hrtick_update(struct rq
*rq
)
1013 struct task_struct
*curr
= rq
->curr
;
1015 if (curr
->sched_class
!= &fair_sched_class
)
1018 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
1019 hrtick_start_fair(rq
, curr
);
1021 #else /* !CONFIG_SCHED_HRTICK */
1023 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1027 static inline void hrtick_update(struct rq
*rq
)
1033 * The enqueue_task method is called before nr_running is
1034 * increased. Here we update the fair scheduling stats and
1035 * then put the task into the rbtree:
1038 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
, bool head
)
1040 struct cfs_rq
*cfs_rq
;
1041 struct sched_entity
*se
= &p
->se
;
1045 flags
|= ENQUEUE_WAKEUP
;
1046 if (p
->state
== TASK_WAKING
)
1047 flags
|= ENQUEUE_MIGRATE
;
1049 for_each_sched_entity(se
) {
1052 cfs_rq
= cfs_rq_of(se
);
1053 enqueue_entity(cfs_rq
, se
, flags
);
1054 flags
= ENQUEUE_WAKEUP
;
1061 * The dequeue_task method is called before nr_running is
1062 * decreased. We remove the task from the rbtree and
1063 * update the fair scheduling stats:
1065 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1067 struct cfs_rq
*cfs_rq
;
1068 struct sched_entity
*se
= &p
->se
;
1070 for_each_sched_entity(se
) {
1071 cfs_rq
= cfs_rq_of(se
);
1072 dequeue_entity(cfs_rq
, se
, sleep
);
1073 /* Don't dequeue parent if it has other entities besides us */
1074 if (cfs_rq
->load
.weight
)
1083 * sched_yield() support is very simple - we dequeue and enqueue.
1085 * If compat_yield is turned on then we requeue to the end of the tree.
1087 static void yield_task_fair(struct rq
*rq
)
1089 struct task_struct
*curr
= rq
->curr
;
1090 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1091 struct sched_entity
*rightmost
, *se
= &curr
->se
;
1094 * Are we the only task in the tree?
1096 if (unlikely(cfs_rq
->nr_running
== 1))
1099 clear_buddies(cfs_rq
, se
);
1101 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
1102 update_rq_clock(rq
);
1104 * Update run-time statistics of the 'current'.
1106 update_curr(cfs_rq
);
1111 * Find the rightmost entry in the rbtree:
1113 rightmost
= __pick_last_entity(cfs_rq
);
1115 * Already in the rightmost position?
1117 if (unlikely(!rightmost
|| entity_before(rightmost
, se
)))
1121 * Minimally necessary key value to be last in the tree:
1122 * Upon rescheduling, sched_class::put_prev_task() will place
1123 * 'current' within the tree based on its new key value.
1125 se
->vruntime
= rightmost
->vruntime
+ 1;
1130 static void task_waking_fair(struct rq
*rq
, struct task_struct
*p
)
1132 struct sched_entity
*se
= &p
->se
;
1133 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1135 se
->vruntime
-= cfs_rq
->min_vruntime
;
1138 #ifdef CONFIG_FAIR_GROUP_SCHED
1140 * effective_load() calculates the load change as seen from the root_task_group
1142 * Adding load to a group doesn't make a group heavier, but can cause movement
1143 * of group shares between cpus. Assuming the shares were perfectly aligned one
1144 * can calculate the shift in shares.
1146 * The problem is that perfectly aligning the shares is rather expensive, hence
1147 * we try to avoid doing that too often - see update_shares(), which ratelimits
1150 * We compensate this by not only taking the current delta into account, but
1151 * also considering the delta between when the shares were last adjusted and
1154 * We still saw a performance dip, some tracing learned us that between
1155 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1156 * significantly. Therefore try to bias the error in direction of failing
1157 * the affine wakeup.
1160 static long effective_load(struct task_group
*tg
, int cpu
,
1163 struct sched_entity
*se
= tg
->se
[cpu
];
1169 * By not taking the decrease of shares on the other cpu into
1170 * account our error leans towards reducing the affine wakeups.
1172 if (!wl
&& sched_feat(ASYM_EFF_LOAD
))
1175 for_each_sched_entity(se
) {
1176 long S
, rw
, s
, a
, b
;
1180 * Instead of using this increment, also add the difference
1181 * between when the shares were last updated and now.
1183 more_w
= se
->my_q
->load
.weight
- se
->my_q
->rq_weight
;
1187 S
= se
->my_q
->tg
->shares
;
1188 s
= se
->my_q
->shares
;
1189 rw
= se
->my_q
->rq_weight
;
1200 * Assume the group is already running and will
1201 * thus already be accounted for in the weight.
1203 * That is, moving shares between CPUs, does not
1204 * alter the group weight.
1214 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
1215 unsigned long wl
, unsigned long wg
)
1222 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
1224 struct task_struct
*curr
= current
;
1225 unsigned long this_load
, load
;
1226 int idx
, this_cpu
, prev_cpu
;
1227 unsigned long tl_per_task
;
1228 struct task_group
*tg
;
1229 unsigned long weight
;
1233 this_cpu
= smp_processor_id();
1234 prev_cpu
= task_cpu(p
);
1235 load
= source_load(prev_cpu
, idx
);
1236 this_load
= target_load(this_cpu
, idx
);
1239 if (sched_feat(SYNC_LESS
) &&
1240 (curr
->se
.avg_overlap
> sysctl_sched_migration_cost
||
1241 p
->se
.avg_overlap
> sysctl_sched_migration_cost
))
1244 if (sched_feat(SYNC_MORE
) &&
1245 (curr
->se
.avg_overlap
< sysctl_sched_migration_cost
&&
1246 p
->se
.avg_overlap
< sysctl_sched_migration_cost
))
1251 * If sync wakeup then subtract the (maximum possible)
1252 * effect of the currently running task from the load
1253 * of the current CPU:
1257 tg
= task_group(current
);
1258 weight
= current
->se
.load
.weight
;
1260 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
1261 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
1265 weight
= p
->se
.load
.weight
;
1268 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1269 * due to the sync cause above having dropped this_load to 0, we'll
1270 * always have an imbalance, but there's really nothing you can do
1271 * about that, so that's good too.
1273 * Otherwise check if either cpus are near enough in load to allow this
1274 * task to be woken on this_cpu.
1277 unsigned long this_eff_load
, prev_eff_load
;
1279 this_eff_load
= 100;
1280 this_eff_load
*= power_of(prev_cpu
);
1281 this_eff_load
*= this_load
+
1282 effective_load(tg
, this_cpu
, weight
, weight
);
1284 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
1285 prev_eff_load
*= power_of(this_cpu
);
1286 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
1288 balanced
= this_eff_load
<= prev_eff_load
;
1295 * If the currently running task will sleep within
1296 * a reasonable amount of time then attract this newly
1299 if (sync
&& balanced
)
1302 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1303 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1306 (this_load
<= load
&&
1307 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
1309 * This domain has SD_WAKE_AFFINE and
1310 * p is cache cold in this domain, and
1311 * there is no bad imbalance.
1313 schedstat_inc(sd
, ttwu_move_affine
);
1314 schedstat_inc(p
, se
.nr_wakeups_affine
);
1322 * find_idlest_group finds and returns the least busy CPU group within the
1325 static struct sched_group
*
1326 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
1327 int this_cpu
, int load_idx
)
1329 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1330 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1331 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1334 unsigned long load
, avg_load
;
1338 /* Skip over this group if it has no CPUs allowed */
1339 if (!cpumask_intersects(sched_group_cpus(group
),
1343 local_group
= cpumask_test_cpu(this_cpu
,
1344 sched_group_cpus(group
));
1346 /* Tally up the load of all CPUs in the group */
1349 for_each_cpu(i
, sched_group_cpus(group
)) {
1350 /* Bias balancing toward cpus of our domain */
1352 load
= source_load(i
, load_idx
);
1354 load
= target_load(i
, load_idx
);
1359 /* Adjust by relative CPU power of the group */
1360 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1363 this_load
= avg_load
;
1365 } else if (avg_load
< min_load
) {
1366 min_load
= avg_load
;
1369 } while (group
= group
->next
, group
!= sd
->groups
);
1371 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1377 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1380 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1382 unsigned long load
, min_load
= ULONG_MAX
;
1386 /* Traverse only the allowed CPUs */
1387 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
1388 load
= weighted_cpuload(i
);
1390 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1400 * Try and locate an idle CPU in the sched_domain.
1402 static int select_idle_sibling(struct task_struct
*p
, int target
)
1404 int cpu
= smp_processor_id();
1405 int prev_cpu
= task_cpu(p
);
1406 struct sched_domain
*sd
;
1410 * If the task is going to be woken-up on this cpu and if it is
1411 * already idle, then it is the right target.
1413 if (target
== cpu
&& idle_cpu(cpu
))
1417 * If the task is going to be woken-up on the cpu where it previously
1418 * ran and if it is currently idle, then it the right target.
1420 if (target
== prev_cpu
&& idle_cpu(prev_cpu
))
1424 * Otherwise, iterate the domains and find an elegible idle cpu.
1426 for_each_domain(target
, sd
) {
1427 if (!(sd
->flags
& SD_SHARE_PKG_RESOURCES
))
1430 for_each_cpu_and(i
, sched_domain_span(sd
), &p
->cpus_allowed
) {
1438 * Lets stop looking for an idle sibling when we reached
1439 * the domain that spans the current cpu and prev_cpu.
1441 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
)) &&
1442 cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
1450 * sched_balance_self: balance the current task (running on cpu) in domains
1451 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1454 * Balance, ie. select the least loaded group.
1456 * Returns the target CPU number, or the same CPU if no balancing is needed.
1458 * preempt must be disabled.
1461 select_task_rq_fair(struct rq
*rq
, struct task_struct
*p
, int sd_flag
, int wake_flags
)
1463 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
1464 int cpu
= smp_processor_id();
1465 int prev_cpu
= task_cpu(p
);
1467 int want_affine
= 0;
1469 int sync
= wake_flags
& WF_SYNC
;
1471 if (sd_flag
& SD_BALANCE_WAKE
) {
1472 if (sched_feat(AFFINE_WAKEUPS
) &&
1473 cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1478 for_each_domain(cpu
, tmp
) {
1479 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
1483 * If power savings logic is enabled for a domain, see if we
1484 * are not overloaded, if so, don't balance wider.
1486 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
1487 unsigned long power
= 0;
1488 unsigned long nr_running
= 0;
1489 unsigned long capacity
;
1492 for_each_cpu(i
, sched_domain_span(tmp
)) {
1493 power
+= power_of(i
);
1494 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
1497 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
1499 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1502 if (nr_running
< capacity
)
1507 * If both cpu and prev_cpu are part of this domain,
1508 * cpu is a valid SD_WAKE_AFFINE target.
1510 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
1511 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
1516 if (!want_sd
&& !want_affine
)
1519 if (!(tmp
->flags
& sd_flag
))
1526 #ifdef CONFIG_FAIR_GROUP_SCHED
1527 if (sched_feat(LB_SHARES_UPDATE
)) {
1529 * Pick the largest domain to update shares over
1532 if (affine_sd
&& (!tmp
|| affine_sd
->span_weight
> sd
->span_weight
))
1536 spin_unlock(&rq
->lock
);
1538 spin_lock(&rq
->lock
);
1544 if (cpu
== prev_cpu
|| wake_affine(affine_sd
, p
, sync
))
1545 return select_idle_sibling(p
, cpu
);
1547 return select_idle_sibling(p
, prev_cpu
);
1551 int load_idx
= sd
->forkexec_idx
;
1552 struct sched_group
*group
;
1555 if (!(sd
->flags
& sd_flag
)) {
1560 if (sd_flag
& SD_BALANCE_WAKE
)
1561 load_idx
= sd
->wake_idx
;
1563 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
1569 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
1570 if (new_cpu
== -1 || new_cpu
== cpu
) {
1571 /* Now try balancing at a lower domain level of cpu */
1576 /* Now try balancing at a lower domain level of new_cpu */
1578 weight
= sd
->span_weight
;
1580 for_each_domain(cpu
, tmp
) {
1581 if (weight
<= tmp
->span_weight
)
1583 if (tmp
->flags
& sd_flag
)
1586 /* while loop will break here if sd == NULL */
1591 #endif /* CONFIG_SMP */
1594 * Adaptive granularity
1596 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1597 * with the limit of wakeup_gran -- when it never does a wakeup.
1599 * So the smaller avg_wakeup is the faster we want this task to preempt,
1600 * but we don't want to treat the preemptee unfairly and therefore allow it
1601 * to run for at least the amount of time we'd like to run.
1603 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1605 * NOTE: we use *nr_running to scale with load, this nicely matches the
1606 * degrading latency on load.
1608 static unsigned long
1609 adaptive_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1611 u64 this_run
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1612 u64 expected_wakeup
= 2*se
->avg_wakeup
* cfs_rq_of(se
)->nr_running
;
1615 if (this_run
< expected_wakeup
)
1616 gran
= expected_wakeup
- this_run
;
1618 return min_t(s64
, gran
, sysctl_sched_wakeup_granularity
);
1621 static unsigned long
1622 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1624 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1626 if (cfs_rq_of(curr
)->curr
&& sched_feat(ADAPTIVE_GRAN
))
1627 gran
= adaptive_gran(curr
, se
);
1630 * Since its curr running now, convert the gran from real-time
1631 * to virtual-time in his units.
1633 if (sched_feat(ASYM_GRAN
)) {
1635 * By using 'se' instead of 'curr' we penalize light tasks, so
1636 * they get preempted easier. That is, if 'se' < 'curr' then
1637 * the resulting gran will be larger, therefore penalizing the
1638 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1639 * be smaller, again penalizing the lighter task.
1641 * This is especially important for buddies when the leftmost
1642 * task is higher priority than the buddy.
1644 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
1645 gran
= calc_delta_fair(gran
, se
);
1647 if (unlikely(curr
->load
.weight
!= NICE_0_LOAD
))
1648 gran
= calc_delta_fair(gran
, curr
);
1655 * Should 'se' preempt 'curr'.
1669 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1671 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1676 gran
= wakeup_gran(curr
, se
);
1683 static void set_last_buddy(struct sched_entity
*se
)
1685 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1686 for_each_sched_entity(se
)
1687 cfs_rq_of(se
)->last
= se
;
1691 static void set_next_buddy(struct sched_entity
*se
)
1693 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1694 for_each_sched_entity(se
)
1695 cfs_rq_of(se
)->next
= se
;
1700 * Preempt the current task with a newly woken task if needed:
1702 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1704 struct task_struct
*curr
= rq
->curr
;
1705 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1706 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1707 int sync
= wake_flags
& WF_SYNC
;
1708 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
1710 update_curr(cfs_rq
);
1712 if (unlikely(rt_prio(p
->prio
))) {
1717 if (unlikely(p
->sched_class
!= &fair_sched_class
))
1720 if (unlikely(se
== pse
))
1723 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
))
1724 set_next_buddy(pse
);
1727 * We can come here with TIF_NEED_RESCHED already set from new task
1730 if (test_tsk_need_resched(curr
))
1734 * Batch and idle tasks do not preempt (their preemption is driven by
1737 if (unlikely(p
->policy
!= SCHED_NORMAL
))
1740 /* Idle tasks are by definition preempted by everybody. */
1741 if (unlikely(curr
->policy
== SCHED_IDLE
)) {
1746 if ((sched_feat(WAKEUP_SYNC
) && sync
) ||
1747 (sched_feat(WAKEUP_OVERLAP
) &&
1748 (se
->avg_overlap
< sysctl_sched_migration_cost
&&
1749 pse
->avg_overlap
< sysctl_sched_migration_cost
))) {
1754 if (sched_feat(WAKEUP_RUNNING
)) {
1755 if (pse
->avg_running
< se
->avg_running
) {
1756 set_next_buddy(pse
);
1762 if (!sched_feat(WAKEUP_PREEMPT
))
1765 find_matching_se(&se
, &pse
);
1769 if (wakeup_preempt_entity(se
, pse
) == 1) {
1772 * Only set the backward buddy when the current task is still
1773 * on the rq. This can happen when a wakeup gets interleaved
1774 * with schedule on the ->pre_schedule() or idle_balance()
1775 * point, either of which can * drop the rq lock.
1777 * Also, during early boot the idle thread is in the fair class,
1778 * for obvious reasons its a bad idea to schedule back to it.
1780 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
1782 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
1787 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1789 struct task_struct
*p
;
1790 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1791 struct sched_entity
*se
;
1793 if (unlikely(!cfs_rq
->nr_running
))
1797 se
= pick_next_entity(cfs_rq
);
1798 set_next_entity(cfs_rq
, se
);
1799 cfs_rq
= group_cfs_rq(se
);
1803 hrtick_start_fair(rq
, p
);
1809 * Account for a descheduled task:
1811 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1813 struct sched_entity
*se
= &prev
->se
;
1814 struct cfs_rq
*cfs_rq
;
1816 for_each_sched_entity(se
) {
1817 cfs_rq
= cfs_rq_of(se
);
1818 put_prev_entity(cfs_rq
, se
);
1823 /**************************************************
1824 * Fair scheduling class load-balancing methods:
1828 * Load-balancing iterator. Note: while the runqueue stays locked
1829 * during the whole iteration, the current task might be
1830 * dequeued so the iterator has to be dequeue-safe. Here we
1831 * achieve that by always pre-iterating before returning
1834 static struct task_struct
*
1835 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct list_head
*next
)
1837 struct task_struct
*p
= NULL
;
1838 struct sched_entity
*se
;
1840 if (next
== &cfs_rq
->tasks
)
1843 se
= list_entry(next
, struct sched_entity
, group_node
);
1845 cfs_rq
->balance_iterator
= next
->next
;
1850 static struct task_struct
*load_balance_start_fair(void *arg
)
1852 struct cfs_rq
*cfs_rq
= arg
;
1854 return __load_balance_iterator(cfs_rq
, cfs_rq
->tasks
.next
);
1857 static struct task_struct
*load_balance_next_fair(void *arg
)
1859 struct cfs_rq
*cfs_rq
= arg
;
1861 return __load_balance_iterator(cfs_rq
, cfs_rq
->balance_iterator
);
1864 static unsigned long
1865 __load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1866 unsigned long max_load_move
, struct sched_domain
*sd
,
1867 enum cpu_idle_type idle
, int *all_pinned
, int *this_best_prio
,
1868 struct cfs_rq
*cfs_rq
)
1870 struct rq_iterator cfs_rq_iterator
;
1872 cfs_rq_iterator
.start
= load_balance_start_fair
;
1873 cfs_rq_iterator
.next
= load_balance_next_fair
;
1874 cfs_rq_iterator
.arg
= cfs_rq
;
1876 return balance_tasks(this_rq
, this_cpu
, busiest
,
1877 max_load_move
, sd
, idle
, all_pinned
,
1878 this_best_prio
, &cfs_rq_iterator
);
1881 #ifdef CONFIG_FAIR_GROUP_SCHED
1882 static unsigned long
1883 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1884 unsigned long max_load_move
,
1885 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1886 int *all_pinned
, int *this_best_prio
)
1888 long rem_load_move
= max_load_move
;
1889 int busiest_cpu
= cpu_of(busiest
);
1890 struct task_group
*tg
;
1893 update_h_load(busiest_cpu
);
1895 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
1896 struct cfs_rq
*busiest_cfs_rq
= tg
->cfs_rq
[busiest_cpu
];
1897 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
1898 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
1899 u64 rem_load
, moved_load
;
1904 if (!busiest_cfs_rq
->task_weight
)
1907 rem_load
= (u64
)rem_load_move
* busiest_weight
;
1908 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
1910 moved_load
= __load_balance_fair(this_rq
, this_cpu
, busiest
,
1911 rem_load
, sd
, idle
, all_pinned
, this_best_prio
,
1912 tg
->cfs_rq
[busiest_cpu
]);
1917 moved_load
*= busiest_h_load
;
1918 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
1920 rem_load_move
-= moved_load
;
1921 if (rem_load_move
< 0)
1926 return max_load_move
- rem_load_move
;
1929 static unsigned long
1930 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1931 unsigned long max_load_move
,
1932 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1933 int *all_pinned
, int *this_best_prio
)
1935 return __load_balance_fair(this_rq
, this_cpu
, busiest
,
1936 max_load_move
, sd
, idle
, all_pinned
,
1937 this_best_prio
, &busiest
->cfs
);
1942 move_one_task_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1943 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1945 struct cfs_rq
*busy_cfs_rq
;
1946 struct rq_iterator cfs_rq_iterator
;
1948 cfs_rq_iterator
.start
= load_balance_start_fair
;
1949 cfs_rq_iterator
.next
= load_balance_next_fair
;
1951 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1953 * pass busy_cfs_rq argument into
1954 * load_balance_[start|next]_fair iterators
1956 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1957 if (iter_move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
,
1965 static void rq_online_fair(struct rq
*rq
)
1970 static void rq_offline_fair(struct rq
*rq
)
1975 #endif /* CONFIG_SMP */
1978 * scheduler tick hitting a task of our scheduling class:
1980 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
1982 struct cfs_rq
*cfs_rq
;
1983 struct sched_entity
*se
= &curr
->se
;
1985 for_each_sched_entity(se
) {
1986 cfs_rq
= cfs_rq_of(se
);
1987 entity_tick(cfs_rq
, se
, queued
);
1992 * called on fork with the child task as argument from the parent's context
1993 * - child not yet on the tasklist
1994 * - preemption disabled
1996 static void task_fork_fair(struct task_struct
*p
)
1998 struct cfs_rq
*cfs_rq
= task_cfs_rq(current
);
1999 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
2000 int this_cpu
= smp_processor_id();
2001 struct rq
*rq
= this_rq();
2002 unsigned long flags
;
2004 spin_lock_irqsave(&rq
->lock
, flags
);
2006 update_rq_clock(rq
);
2008 if (unlikely(task_cpu(p
) != this_cpu
)) {
2010 __set_task_cpu(p
, this_cpu
);
2014 update_curr(cfs_rq
);
2017 se
->vruntime
= curr
->vruntime
;
2018 place_entity(cfs_rq
, se
, 1);
2020 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
2022 * Upon rescheduling, sched_class::put_prev_task() will place
2023 * 'current' within the tree based on its new key value.
2025 swap(curr
->vruntime
, se
->vruntime
);
2026 resched_task(rq
->curr
);
2029 se
->vruntime
-= cfs_rq
->min_vruntime
;
2031 spin_unlock_irqrestore(&rq
->lock
, flags
);
2035 * Priority of the task has changed. Check to see if we preempt
2038 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
2039 int oldprio
, int running
)
2042 * Reschedule if we are currently running on this runqueue and
2043 * our priority decreased, or if we are not currently running on
2044 * this runqueue and our priority is higher than the current's
2047 if (p
->prio
> oldprio
)
2048 resched_task(rq
->curr
);
2050 check_preempt_curr(rq
, p
, 0);
2054 * We switched to the sched_fair class.
2056 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
2060 * We were most likely switched from sched_rt, so
2061 * kick off the schedule if running, otherwise just see
2062 * if we can still preempt the current task.
2065 resched_task(rq
->curr
);
2067 check_preempt_curr(rq
, p
, 0);
2070 /* Account for a task changing its policy or group.
2072 * This routine is mostly called to set cfs_rq->curr field when a task
2073 * migrates between groups/classes.
2075 static void set_curr_task_fair(struct rq
*rq
)
2077 struct sched_entity
*se
= &rq
->curr
->se
;
2079 for_each_sched_entity(se
)
2080 set_next_entity(cfs_rq_of(se
), se
);
2083 #ifdef CONFIG_FAIR_GROUP_SCHED
2084 static void task_move_group_fair(struct task_struct
*p
, int on_rq
)
2087 * If the task was not on the rq at the time of this cgroup movement
2088 * it must have been asleep, sleeping tasks keep their ->vruntime
2089 * absolute on their old rq until wakeup (needed for the fair sleeper
2090 * bonus in place_entity()).
2092 * If it was on the rq, we've just 'preempted' it, which does convert
2093 * ->vruntime to a relative base.
2095 * Make sure both cases convert their relative position when migrating
2096 * to another cgroup's rq. This does somewhat interfere with the
2097 * fair sleeper stuff for the first placement, but who cares.
2100 p
->se
.vruntime
-= cfs_rq_of(&p
->se
)->min_vruntime
;
2101 set_task_rq(p
, task_cpu(p
));
2103 p
->se
.vruntime
+= cfs_rq_of(&p
->se
)->min_vruntime
;
2107 unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
2109 struct sched_entity
*se
= &task
->se
;
2110 unsigned int rr_interval
= 0;
2113 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2116 if (rq
->cfs
.load
.weight
)
2117 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
2123 * All the scheduling class methods:
2125 static const struct sched_class fair_sched_class
= {
2126 .next
= &idle_sched_class
,
2127 .enqueue_task
= enqueue_task_fair
,
2128 .dequeue_task
= dequeue_task_fair
,
2129 .yield_task
= yield_task_fair
,
2131 .check_preempt_curr
= check_preempt_wakeup
,
2133 .pick_next_task
= pick_next_task_fair
,
2134 .put_prev_task
= put_prev_task_fair
,
2137 .select_task_rq
= select_task_rq_fair
,
2139 .load_balance
= load_balance_fair
,
2140 .move_one_task
= move_one_task_fair
,
2141 .rq_online
= rq_online_fair
,
2142 .rq_offline
= rq_offline_fair
,
2144 .task_waking
= task_waking_fair
,
2147 .set_curr_task
= set_curr_task_fair
,
2148 .task_tick
= task_tick_fair
,
2149 .task_fork
= task_fork_fair
,
2151 .prio_changed
= prio_changed_fair
,
2152 .switched_to
= switched_to_fair
,
2154 .get_rr_interval
= get_rr_interval_fair
,
2156 #ifdef CONFIG_FAIR_GROUP_SCHED
2157 .task_move_group
= task_move_group_fair
,
2161 #ifdef CONFIG_SCHED_DEBUG
2162 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
2164 struct cfs_rq
*cfs_rq
;
2167 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
2168 print_cfs_rq(m
, cpu
, cfs_rq
);