MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / arch / arm / vfp / vfp.h
blob98e0f526e9c20b0d2804de64caa97d13fe372273
1 /*
2 * linux/arch/arm/vfp/vfp.h
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
14 if (shift) {
15 if (shift < 32)
16 val = val >> shift | ((val << (32 - shift)) != 0);
17 else
18 val = val != 0;
20 return val;
23 static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
25 if (shift) {
26 if (shift < 64)
27 val = val >> shift | ((val << (64 - shift)) != 0);
28 else
29 val = val != 0;
31 return val;
34 static inline u32 vfp_hi64to32jamming(u64 val)
36 u32 v;
38 asm(
39 "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t"
40 "movcc %0, %R1\n\t"
41 "orrcs %0, %R1, #1"
42 : "=r" (v) : "r" (val) : "cc");
44 return v;
47 static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
49 asm( "adds %Q0, %Q2, %Q4\n\t"
50 "adcs %R0, %R2, %R4\n\t"
51 "adcs %Q1, %Q3, %Q5\n\t"
52 "adc %R1, %R3, %R5"
53 : "=r" (nl), "=r" (nh)
54 : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
55 : "cc");
56 *resh = nh;
57 *resl = nl;
60 static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
62 asm( "subs %Q0, %Q2, %Q4\n\t"
63 "sbcs %R0, %R2, %R4\n\t"
64 "sbcs %Q1, %Q3, %Q5\n\t"
65 "sbc %R1, %R3, %R5\n\t"
66 : "=r" (nl), "=r" (nh)
67 : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
68 : "cc");
69 *resh = nh;
70 *resl = nl;
73 static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
75 u32 nh, nl, mh, ml;
76 u64 rh, rma, rmb, rl;
78 nl = n;
79 ml = m;
80 rl = (u64)nl * ml;
82 nh = n >> 32;
83 rma = (u64)nh * ml;
85 mh = m >> 32;
86 rmb = (u64)nl * mh;
87 rma += rmb;
89 rh = (u64)nh * mh;
90 rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
92 rma <<= 32;
93 rl += rma;
94 rh += (rl < rma);
96 *resl = rl;
97 *resh = rh;
100 static inline void shift64left(u64 *resh, u64 *resl, u64 n)
102 *resh = n >> 63;
103 *resl = n << 1;
106 static inline u64 vfp_hi64multiply64(u64 n, u64 m)
108 u64 rh, rl;
109 mul64to128(&rh, &rl, n, m);
110 return rh | (rl != 0);
113 static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
115 u64 mh, ml, remh, reml, termh, terml, z;
117 if (nh >= m)
118 return ~0ULL;
119 mh = m >> 32;
120 z = (mh << 32 <= nh) ? 0xffffffff00000000ULL : (nh / mh) << 32;
121 mul64to128(&termh, &terml, m, z);
122 sub128(&remh, &reml, nh, nl, termh, terml);
123 ml = m << 32;
124 while ((s64)remh < 0) {
125 z -= 0x100000000ULL;
126 add128(&remh, &reml, remh, reml, mh, ml);
128 remh = (remh << 32) | (reml >> 32);
129 z |= (mh << 32 <= remh) ? 0xffffffff : remh / mh;
130 return z;
134 * Operations on unpacked elements
136 #define vfp_sign_negate(sign) (sign ^ 0x8000)
139 * Single-precision
141 struct vfp_single {
142 s16 exponent;
143 u16 sign;
144 u32 significand;
147 extern s32 vfp_get_float(unsigned int reg);
148 extern void vfp_put_float(unsigned int reg, s32 val);
151 * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
152 * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
153 * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
154 * which are not propagated to the float upon packing.
156 #define VFP_SINGLE_MANTISSA_BITS (23)
157 #define VFP_SINGLE_EXPONENT_BITS (8)
158 #define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
159 #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
162 * The bit in an unpacked float which indicates that it is a quiet NaN
164 #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
167 * Operations on packed single-precision numbers
169 #define vfp_single_packed_sign(v) ((v) & 0x80000000)
170 #define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
171 #define vfp_single_packed_abs(v) ((v) & ~0x80000000)
172 #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
173 #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
176 * Unpack a single-precision float. Note that this returns the magnitude
177 * of the single-precision float mantissa with the 1. if necessary,
178 * aligned to bit 30.
180 static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
182 u32 significand;
184 s->sign = vfp_single_packed_sign(val) >> 16,
185 s->exponent = vfp_single_packed_exponent(val);
187 significand = (u32) val;
188 significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
189 if (s->exponent && s->exponent != 255)
190 significand |= 0x40000000;
191 s->significand = significand;
195 * Re-pack a single-precision float. This assumes that the float is
196 * already normalised such that the MSB is bit 30, _not_ bit 31.
198 static inline s32 vfp_single_pack(struct vfp_single *s)
200 u32 val;
201 val = (s->sign << 16) +
202 (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
203 (s->significand >> VFP_SINGLE_LOW_BITS);
204 return (s32)val;
207 #define VFP_NUMBER (1<<0)
208 #define VFP_ZERO (1<<1)
209 #define VFP_DENORMAL (1<<2)
210 #define VFP_INFINITY (1<<3)
211 #define VFP_NAN (1<<4)
212 #define VFP_NAN_SIGNAL (1<<5)
214 #define VFP_QNAN (VFP_NAN)
215 #define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL)
217 static inline int vfp_single_type(struct vfp_single *s)
219 int type = VFP_NUMBER;
220 if (s->exponent == 255) {
221 if (s->significand == 0)
222 type = VFP_INFINITY;
223 else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
224 type = VFP_QNAN;
225 else
226 type = VFP_SNAN;
227 } else if (s->exponent == 0) {
228 if (s->significand == 0)
229 type |= VFP_ZERO;
230 else
231 type |= VFP_DENORMAL;
233 return type;
236 #ifndef DEBUG
237 #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
238 u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
239 #else
240 u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
241 #endif
244 * Double-precision
246 struct vfp_double {
247 s16 exponent;
248 u16 sign;
249 u64 significand;
252 extern u64 vfp_get_double(unsigned int reg);
253 extern void vfp_put_double(unsigned int reg, u64 val);
255 #define VFP_DOUBLE_MANTISSA_BITS (52)
256 #define VFP_DOUBLE_EXPONENT_BITS (11)
257 #define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
258 #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
261 * The bit in an unpacked double which indicates that it is a quiet NaN
263 #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
266 * Operations on packed single-precision numbers
268 #define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
269 #define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
270 #define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
271 #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
272 #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
275 * Unpack a double-precision float. Note that this returns the magnitude
276 * of the double-precision float mantissa with the 1. if necessary,
277 * aligned to bit 62.
279 static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
281 u64 significand;
283 s->sign = vfp_double_packed_sign(val) >> 48;
284 s->exponent = vfp_double_packed_exponent(val);
286 significand = (u64) val;
287 significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
288 if (s->exponent && s->exponent != 2047)
289 significand |= (1ULL << 62);
290 s->significand = significand;
294 * Re-pack a double-precision float. This assumes that the float is
295 * already normalised such that the MSB is bit 30, _not_ bit 31.
297 static inline s64 vfp_double_pack(struct vfp_double *s)
299 u64 val;
300 val = ((u64)s->sign << 48) +
301 ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
302 (s->significand >> VFP_DOUBLE_LOW_BITS);
303 return (s64)val;
306 static inline int vfp_double_type(struct vfp_double *s)
308 int type = VFP_NUMBER;
309 if (s->exponent == 2047) {
310 if (s->significand == 0)
311 type = VFP_INFINITY;
312 else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
313 type = VFP_QNAN;
314 else
315 type = VFP_SNAN;
316 } else if (s->exponent == 0) {
317 if (s->significand == 0)
318 type |= VFP_ZERO;
319 else
320 type |= VFP_DENORMAL;
322 return type;
325 u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
328 * System registers
330 extern u32 vfp_get_sys(unsigned int reg);
331 extern void vfp_put_sys(unsigned int reg, u32 val);
333 u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);