2 * linux/arch/arm/vfp/vfpsingle.c
4 * This code is derived in part from John R. Housers softfloat library, which
5 * carries the following notice:
7 * ===========================================================================
8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9 * Arithmetic Package, Release 2.
11 * Written by John R. Hauser. This work was made possible in part by the
12 * International Computer Science Institute, located at Suite 600, 1947 Center
13 * Street, Berkeley, California 94704. Funding was partially provided by the
14 * National Science Foundation under grant MIP-9311980. The original version
15 * of this code was written as part of a project to build a fixed-point vector
16 * processor in collaboration with the University of California at Berkeley,
17 * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 * arithmetic/softfloat.html'.
21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
27 * Derivative works are acceptable, even for commercial purposes, so long as
28 * (1) they include prominent notice that the work is derivative, and (2) they
29 * include prominent notice akin to these three paragraphs for those parts of
30 * this code that are retained.
31 * ===========================================================================
33 #include <linux/kernel.h>
34 #include <asm/bitops.h>
35 #include <asm/ptrace.h>
41 static struct vfp_single vfp_single_default_qnan
= {
44 .significand
= VFP_SINGLE_SIGNIFICAND_QNAN
,
47 static void vfp_single_dump(const char *str
, struct vfp_single
*s
)
49 pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
50 str
, s
->sign
!= 0, s
->exponent
, s
->significand
);
53 static void vfp_single_normalise_denormal(struct vfp_single
*vs
)
55 int bits
= 31 - fls(vs
->significand
);
57 vfp_single_dump("normalise_denormal: in", vs
);
60 vs
->exponent
-= bits
- 1;
61 vs
->significand
<<= bits
;
64 vfp_single_dump("normalise_denormal: out", vs
);
68 #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
69 u32
__vfp_single_normaliseround(int sd
, struct vfp_single
*vs
, u32 fpscr
, u32 exceptions
)
71 u32
vfp_single_normaliseround(int sd
, struct vfp_single
*vs
, u32 fpscr
, u32 exceptions
, const char *func
)
74 u32 significand
, incr
, rmode
;
75 int exponent
, shift
, underflow
;
77 vfp_single_dump("pack: in", vs
);
80 * Infinities and NaNs are a special case.
82 if (vs
->exponent
== 255 && (vs
->significand
== 0 || exceptions
))
88 if (vs
->significand
== 0) {
93 exponent
= vs
->exponent
;
94 significand
= vs
->significand
;
97 * Normalise first. Note that we shift the significand up to
98 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
101 shift
= 32 - fls(significand
);
102 if (shift
< 32 && shift
) {
104 significand
<<= shift
;
108 vs
->exponent
= exponent
;
109 vs
->significand
= significand
;
110 vfp_single_dump("pack: normalised", vs
);
116 underflow
= exponent
< 0;
118 significand
= vfp_shiftright32jamming(significand
, -exponent
);
121 vs
->exponent
= exponent
;
122 vs
->significand
= significand
;
123 vfp_single_dump("pack: tiny number", vs
);
125 if (!(significand
& ((1 << (VFP_SINGLE_LOW_BITS
+ 1)) - 1)))
130 * Select rounding increment.
133 rmode
= fpscr
& FPSCR_RMODE_MASK
;
135 if (rmode
== FPSCR_ROUND_NEAREST
) {
136 incr
= 1 << VFP_SINGLE_LOW_BITS
;
137 if ((significand
& (1 << (VFP_SINGLE_LOW_BITS
+ 1))) == 0)
139 } else if (rmode
== FPSCR_ROUND_TOZERO
) {
141 } else if ((rmode
== FPSCR_ROUND_PLUSINF
) ^ (vs
->sign
!= 0))
142 incr
= (1 << (VFP_SINGLE_LOW_BITS
+ 1)) - 1;
144 pr_debug("VFP: rounding increment = 0x%08x\n", incr
);
147 * Is our rounding going to overflow?
149 if ((significand
+ incr
) < significand
) {
151 significand
= (significand
>> 1) | (significand
& 1);
154 vs
->exponent
= exponent
;
155 vs
->significand
= significand
;
156 vfp_single_dump("pack: overflow", vs
);
161 * If any of the low bits (which will be shifted out of the
162 * number) are non-zero, the result is inexact.
164 if (significand
& ((1 << (VFP_SINGLE_LOW_BITS
+ 1)) - 1))
165 exceptions
|= FPSCR_IXC
;
175 if (exponent
>= 254) {
176 exceptions
|= FPSCR_OFC
| FPSCR_IXC
;
179 vs
->significand
= 0x7fffffff;
181 vs
->exponent
= 255; /* infinity */
185 if (significand
>> (VFP_SINGLE_LOW_BITS
+ 1) == 0)
187 if (exponent
|| significand
> 0x80000000)
190 exceptions
|= FPSCR_UFC
;
191 vs
->exponent
= exponent
;
192 vs
->significand
= significand
>> 1;
196 vfp_single_dump("pack: final", vs
);
198 s32 d
= vfp_single_pack(vs
);
199 pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func
,
201 vfp_put_float(sd
, d
);
208 * Propagate the NaN, setting exceptions if it is signalling.
209 * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
212 vfp_propagate_nan(struct vfp_single
*vsd
, struct vfp_single
*vsn
,
213 struct vfp_single
*vsm
, u32 fpscr
)
215 struct vfp_single
*nan
;
218 tn
= vfp_single_type(vsn
);
221 tm
= vfp_single_type(vsm
);
223 if (fpscr
& FPSCR_DEFAULT_NAN
)
225 * Default NaN mode - always returns a quiet NaN
227 nan
= &vfp_single_default_qnan
;
230 * Contemporary mode - select the first signalling
231 * NAN, or if neither are signalling, the first
234 if (tn
== VFP_SNAN
|| (tm
!= VFP_SNAN
&& tn
== VFP_QNAN
))
239 * Make the NaN quiet.
241 nan
->significand
|= VFP_SINGLE_SIGNIFICAND_QNAN
;
247 * If one was a signalling NAN, raise invalid operation.
249 return tn
== VFP_SNAN
|| tm
== VFP_SNAN
? FPSCR_IOC
: 0x100;
254 * Extended operations
256 static u32
vfp_single_fabs(int sd
, int unused
, s32 m
, u32 fpscr
)
258 vfp_put_float(sd
, vfp_single_packed_abs(m
));
262 static u32
vfp_single_fcpy(int sd
, int unused
, s32 m
, u32 fpscr
)
264 vfp_put_float(sd
, m
);
268 static u32
vfp_single_fneg(int sd
, int unused
, s32 m
, u32 fpscr
)
270 vfp_put_float(sd
, vfp_single_packed_negate(m
));
274 static const u16 sqrt_oddadjust
[] = {
275 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
276 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
279 static const u16 sqrt_evenadjust
[] = {
280 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
281 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
284 u32
vfp_estimate_sqrt_significand(u32 exponent
, u32 significand
)
289 if ((significand
& 0xc0000000) != 0x40000000) {
290 printk(KERN_WARNING
"VFP: estimate_sqrt: invalid significand\n");
293 a
= significand
<< 1;
294 index
= (a
>> 27) & 15;
296 z
= 0x4000 + (a
>> 17) - sqrt_oddadjust
[index
];
297 z
= ((a
/ z
) << 14) + (z
<< 15);
300 z
= 0x8000 + (a
>> 17) - sqrt_evenadjust
[index
];
302 z
= (z
>= 0x20000) ? 0xffff8000 : (z
<< 15);
306 return (u32
)(((u64
)a
<< 31) / z
) + (z
>> 1);
309 static u32
vfp_single_fsqrt(int sd
, int unused
, s32 m
, u32 fpscr
)
311 struct vfp_single vsm
, vsd
;
314 vfp_single_unpack(&vsm
, m
);
315 tm
= vfp_single_type(&vsm
);
316 if (tm
& (VFP_NAN
|VFP_INFINITY
)) {
317 struct vfp_single
*vsp
= &vsd
;
320 ret
= vfp_propagate_nan(vsp
, &vsm
, NULL
, fpscr
);
321 else if (vsm
.sign
== 0) {
327 vsp
= &vfp_single_default_qnan
;
330 vfp_put_float(sd
, vfp_single_pack(vsp
));
335 * sqrt(+/- 0) == +/- 0
341 * Normalise a denormalised number
343 if (tm
& VFP_DENORMAL
)
344 vfp_single_normalise_denormal(&vsm
);
352 vfp_single_dump("sqrt", &vsm
);
355 * Estimate the square root.
358 vsd
.exponent
= ((vsm
.exponent
- 127) >> 1) + 127;
359 vsd
.significand
= vfp_estimate_sqrt_significand(vsm
.exponent
, vsm
.significand
) + 2;
361 vfp_single_dump("sqrt estimate", &vsd
);
366 if ((vsd
.significand
& VFP_SINGLE_LOW_BITS_MASK
) <= 5) {
367 if (vsd
.significand
< 2) {
368 vsd
.significand
= 0xffffffff;
372 vsm
.significand
<<= !(vsm
.exponent
& 1);
373 term
= (u64
)vsd
.significand
* vsd
.significand
;
374 rem
= ((u64
)vsm
.significand
<< 32) - term
;
376 pr_debug("VFP: term=%016llx rem=%016llx\n", term
, rem
);
379 vsd
.significand
-= 1;
380 rem
+= ((u64
)vsd
.significand
<< 1) | 1;
382 vsd
.significand
|= rem
!= 0;
385 vsd
.significand
= vfp_shiftright32jamming(vsd
.significand
, 1);
387 return vfp_single_normaliseround(sd
, &vsd
, fpscr
, 0, "fsqrt");
396 static u32
vfp_compare(int sd
, int signal_on_qnan
, s32 m
, u32 fpscr
)
401 d
= vfp_get_float(sd
);
402 if (vfp_single_packed_exponent(m
) == 255 && vfp_single_packed_mantissa(m
)) {
403 ret
|= FPSCR_C
| FPSCR_V
;
404 if (signal_on_qnan
|| !(vfp_single_packed_mantissa(m
) & (1 << (VFP_SINGLE_MANTISSA_BITS
- 1))))
406 * Signalling NaN, or signalling on quiet NaN
411 if (vfp_single_packed_exponent(d
) == 255 && vfp_single_packed_mantissa(d
)) {
412 ret
|= FPSCR_C
| FPSCR_V
;
413 if (signal_on_qnan
|| !(vfp_single_packed_mantissa(d
) & (1 << (VFP_SINGLE_MANTISSA_BITS
- 1))))
415 * Signalling NaN, or signalling on quiet NaN
421 if (d
== m
|| vfp_single_packed_abs(d
| m
) == 0) {
425 ret
|= FPSCR_Z
| FPSCR_C
;
426 } else if (vfp_single_packed_sign(d
^ m
)) {
430 if (vfp_single_packed_sign(d
))
432 * d is negative, so d < m
437 * d is positive, so d > m
440 } else if ((vfp_single_packed_sign(d
) != 0) ^ (d
< m
)) {
445 } else if ((vfp_single_packed_sign(d
) != 0) ^ (d
> m
)) {
455 static u32
vfp_single_fcmp(int sd
, int unused
, s32 m
, u32 fpscr
)
457 return vfp_compare(sd
, 0, m
, fpscr
);
460 static u32
vfp_single_fcmpe(int sd
, int unused
, s32 m
, u32 fpscr
)
462 return vfp_compare(sd
, 1, m
, fpscr
);
465 static u32
vfp_single_fcmpz(int sd
, int unused
, s32 m
, u32 fpscr
)
467 return vfp_compare(sd
, 0, 0, fpscr
);
470 static u32
vfp_single_fcmpez(int sd
, int unused
, s32 m
, u32 fpscr
)
472 return vfp_compare(sd
, 1, 0, fpscr
);
475 static u32
vfp_single_fcvtd(int dd
, int unused
, s32 m
, u32 fpscr
)
477 struct vfp_single vsm
;
478 struct vfp_double vdd
;
482 vfp_single_unpack(&vsm
, m
);
484 tm
= vfp_single_type(&vsm
);
487 * If we have a signalling NaN, signal invalid operation.
490 exceptions
= FPSCR_IOC
;
492 if (tm
& VFP_DENORMAL
)
493 vfp_single_normalise_denormal(&vsm
);
496 vdd
.significand
= (u64
)vsm
.significand
<< 32;
499 * If we have an infinity or NaN, the exponent must be 2047.
501 if (tm
& (VFP_INFINITY
|VFP_NAN
)) {
504 vdd
.significand
|= VFP_DOUBLE_SIGNIFICAND_QNAN
;
506 } else if (tm
& VFP_ZERO
)
509 vdd
.exponent
= vsm
.exponent
+ (1023 - 127);
512 * Technically, if bit 0 of dd is set, this is an invalid
513 * instruction. However, we ignore this for efficiency.
515 return vfp_double_normaliseround(dd
, &vdd
, fpscr
, exceptions
, "fcvtd");
518 vfp_put_double(dd
, vfp_double_pack(&vdd
));
522 static u32
vfp_single_fuito(int sd
, int unused
, s32 m
, u32 fpscr
)
524 struct vfp_single vs
;
527 vs
.exponent
= 127 + 31 - 1;
528 vs
.significand
= (u32
)m
;
530 return vfp_single_normaliseround(sd
, &vs
, fpscr
, 0, "fuito");
533 static u32
vfp_single_fsito(int sd
, int unused
, s32 m
, u32 fpscr
)
535 struct vfp_single vs
;
537 vs
.sign
= (m
& 0x80000000) >> 16;
538 vs
.exponent
= 127 + 31 - 1;
539 vs
.significand
= vs
.sign
? -m
: m
;
541 return vfp_single_normaliseround(sd
, &vs
, fpscr
, 0, "fsito");
544 static u32
vfp_single_ftoui(int sd
, int unused
, s32 m
, u32 fpscr
)
546 struct vfp_single vsm
;
547 u32 d
, exceptions
= 0;
548 int rmode
= fpscr
& FPSCR_RMODE_MASK
;
551 vfp_single_unpack(&vsm
, m
);
552 vfp_single_dump("VSM", &vsm
);
555 * Do we have a denormalised number?
557 tm
= vfp_single_type(&vsm
);
558 if (tm
& VFP_DENORMAL
)
559 exceptions
|= FPSCR_IDC
;
564 if (vsm
.exponent
>= 127 + 32) {
565 d
= vsm
.sign
? 0 : 0xffffffff;
566 exceptions
= FPSCR_IOC
;
567 } else if (vsm
.exponent
>= 127 - 1) {
568 int shift
= 127 + 31 - vsm
.exponent
;
572 * 2^0 <= m < 2^32-2^8
574 d
= (vsm
.significand
<< 1) >> shift
;
575 rem
= vsm
.significand
<< (33 - shift
);
577 if (rmode
== FPSCR_ROUND_NEAREST
) {
581 } else if (rmode
== FPSCR_ROUND_TOZERO
) {
583 } else if ((rmode
== FPSCR_ROUND_PLUSINF
) ^ (vsm
.sign
!= 0)) {
587 if ((rem
+ incr
) < rem
) {
591 exceptions
|= FPSCR_IOC
;
596 exceptions
|= FPSCR_IOC
;
598 exceptions
|= FPSCR_IXC
;
601 if (vsm
.exponent
| vsm
.significand
) {
602 exceptions
|= FPSCR_IXC
;
603 if (rmode
== FPSCR_ROUND_PLUSINF
&& vsm
.sign
== 0)
605 else if (rmode
== FPSCR_ROUND_MINUSINF
&& vsm
.sign
) {
607 exceptions
|= FPSCR_IOC
;
612 pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd
, d
, exceptions
);
614 vfp_put_float(sd
, d
);
619 static u32
vfp_single_ftouiz(int sd
, int unused
, s32 m
, u32 fpscr
)
621 return vfp_single_ftoui(sd
, unused
, m
, FPSCR_ROUND_TOZERO
);
624 static u32
vfp_single_ftosi(int sd
, int unused
, s32 m
, u32 fpscr
)
626 struct vfp_single vsm
;
627 u32 d
, exceptions
= 0;
628 int rmode
= fpscr
& FPSCR_RMODE_MASK
;
630 vfp_single_unpack(&vsm
, m
);
631 vfp_single_dump("VSM", &vsm
);
634 * Do we have a denormalised number?
636 if (vfp_single_type(&vsm
) & VFP_DENORMAL
)
637 exceptions
|= FPSCR_IDC
;
639 if (vsm
.exponent
>= 127 + 32) {
641 * m >= 2^31-2^7: invalid
646 exceptions
|= FPSCR_IOC
;
647 } else if (vsm
.exponent
>= 127 - 1) {
648 int shift
= 127 + 31 - vsm
.exponent
;
651 /* 2^0 <= m <= 2^31-2^7 */
652 d
= (vsm
.significand
<< 1) >> shift
;
653 rem
= vsm
.significand
<< (33 - shift
);
655 if (rmode
== FPSCR_ROUND_NEAREST
) {
659 } else if (rmode
== FPSCR_ROUND_TOZERO
) {
661 } else if ((rmode
== FPSCR_ROUND_PLUSINF
) ^ (vsm
.sign
!= 0)) {
665 if ((rem
+ incr
) < rem
&& d
< 0xffffffff)
667 if (d
> 0x7fffffff + (vsm
.sign
!= 0)) {
668 d
= 0x7fffffff + (vsm
.sign
!= 0);
669 exceptions
|= FPSCR_IOC
;
671 exceptions
|= FPSCR_IXC
;
677 if (vsm
.exponent
| vsm
.significand
) {
678 exceptions
|= FPSCR_IXC
;
679 if (rmode
== FPSCR_ROUND_PLUSINF
&& vsm
.sign
== 0)
681 else if (rmode
== FPSCR_ROUND_MINUSINF
&& vsm
.sign
)
686 pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd
, d
, exceptions
);
688 vfp_put_float(sd
, (s32
)d
);
693 static u32
vfp_single_ftosiz(int sd
, int unused
, s32 m
, u32 fpscr
)
695 return vfp_single_ftosi(sd
, unused
, m
, FPSCR_ROUND_TOZERO
);
698 static u32 (* const fop_extfns
[32])(int sd
, int unused
, s32 m
, u32 fpscr
) = {
699 [FEXT_TO_IDX(FEXT_FCPY
)] = vfp_single_fcpy
,
700 [FEXT_TO_IDX(FEXT_FABS
)] = vfp_single_fabs
,
701 [FEXT_TO_IDX(FEXT_FNEG
)] = vfp_single_fneg
,
702 [FEXT_TO_IDX(FEXT_FSQRT
)] = vfp_single_fsqrt
,
703 [FEXT_TO_IDX(FEXT_FCMP
)] = vfp_single_fcmp
,
704 [FEXT_TO_IDX(FEXT_FCMPE
)] = vfp_single_fcmpe
,
705 [FEXT_TO_IDX(FEXT_FCMPZ
)] = vfp_single_fcmpz
,
706 [FEXT_TO_IDX(FEXT_FCMPEZ
)] = vfp_single_fcmpez
,
707 [FEXT_TO_IDX(FEXT_FCVT
)] = vfp_single_fcvtd
,
708 [FEXT_TO_IDX(FEXT_FUITO
)] = vfp_single_fuito
,
709 [FEXT_TO_IDX(FEXT_FSITO
)] = vfp_single_fsito
,
710 [FEXT_TO_IDX(FEXT_FTOUI
)] = vfp_single_ftoui
,
711 [FEXT_TO_IDX(FEXT_FTOUIZ
)] = vfp_single_ftouiz
,
712 [FEXT_TO_IDX(FEXT_FTOSI
)] = vfp_single_ftosi
,
713 [FEXT_TO_IDX(FEXT_FTOSIZ
)] = vfp_single_ftosiz
,
721 vfp_single_fadd_nonnumber(struct vfp_single
*vsd
, struct vfp_single
*vsn
,
722 struct vfp_single
*vsm
, u32 fpscr
)
724 struct vfp_single
*vsp
;
728 tn
= vfp_single_type(vsn
);
729 tm
= vfp_single_type(vsm
);
731 if (tn
& tm
& VFP_INFINITY
) {
733 * Two infinities. Are they different signs?
735 if (vsn
->sign
^ vsm
->sign
) {
737 * different signs -> invalid
739 exceptions
= FPSCR_IOC
;
740 vsp
= &vfp_single_default_qnan
;
743 * same signs -> valid
747 } else if (tn
& VFP_INFINITY
&& tm
& VFP_NUMBER
) {
749 * One infinity and one number -> infinity
754 * 'n' is a NaN of some type
756 return vfp_propagate_nan(vsd
, vsn
, vsm
, fpscr
);
763 vfp_single_add(struct vfp_single
*vsd
, struct vfp_single
*vsn
,
764 struct vfp_single
*vsm
, u32 fpscr
)
768 if (vsn
->significand
& 0x80000000 ||
769 vsm
->significand
& 0x80000000) {
770 pr_info("VFP: bad FP values in %s\n", __func__
);
771 vfp_single_dump("VSN", vsn
);
772 vfp_single_dump("VSM", vsm
);
776 * Ensure that 'n' is the largest magnitude number. Note that
777 * if 'n' and 'm' have equal exponents, we do not swap them.
778 * This ensures that NaN propagation works correctly.
780 if (vsn
->exponent
< vsm
->exponent
) {
781 struct vfp_single
*t
= vsn
;
787 * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
788 * infinity or a NaN here.
790 if (vsn
->exponent
== 255)
791 return vfp_single_fadd_nonnumber(vsd
, vsn
, vsm
, fpscr
);
794 * We have two proper numbers, where 'vsn' is the larger magnitude.
796 * Copy 'n' to 'd' before doing the arithmetic.
801 * Align both numbers.
803 exp_diff
= vsn
->exponent
- vsm
->exponent
;
804 m_sig
= vfp_shiftright32jamming(vsm
->significand
, exp_diff
);
807 * If the signs are different, we are really subtracting.
809 if (vsn
->sign
^ vsm
->sign
) {
810 m_sig
= vsn
->significand
- m_sig
;
811 if ((s32
)m_sig
< 0) {
812 vsd
->sign
= vfp_sign_negate(vsd
->sign
);
814 } else if (m_sig
== 0) {
815 vsd
->sign
= (fpscr
& FPSCR_RMODE_MASK
) ==
816 FPSCR_ROUND_MINUSINF
? 0x8000 : 0;
819 m_sig
= vsn
->significand
+ m_sig
;
821 vsd
->significand
= m_sig
;
827 vfp_single_multiply(struct vfp_single
*vsd
, struct vfp_single
*vsn
, struct vfp_single
*vsm
, u32 fpscr
)
829 vfp_single_dump("VSN", vsn
);
830 vfp_single_dump("VSM", vsm
);
833 * Ensure that 'n' is the largest magnitude number. Note that
834 * if 'n' and 'm' have equal exponents, we do not swap them.
835 * This ensures that NaN propagation works correctly.
837 if (vsn
->exponent
< vsm
->exponent
) {
838 struct vfp_single
*t
= vsn
;
841 pr_debug("VFP: swapping M <-> N\n");
844 vsd
->sign
= vsn
->sign
^ vsm
->sign
;
847 * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
849 if (vsn
->exponent
== 255) {
850 if (vsn
->significand
|| (vsm
->exponent
== 255 && vsm
->significand
))
851 return vfp_propagate_nan(vsd
, vsn
, vsm
, fpscr
);
852 if ((vsm
->exponent
| vsm
->significand
) == 0) {
853 *vsd
= vfp_single_default_qnan
;
856 vsd
->exponent
= vsn
->exponent
;
857 vsd
->significand
= 0;
862 * If 'm' is zero, the result is always zero. In this case,
863 * 'n' may be zero or a number, but it doesn't matter which.
865 if ((vsm
->exponent
| vsm
->significand
) == 0) {
867 vsd
->significand
= 0;
872 * We add 2 to the destination exponent for the same reason as
873 * the addition case - though this time we have +1 from each
876 vsd
->exponent
= vsn
->exponent
+ vsm
->exponent
- 127 + 2;
877 vsd
->significand
= vfp_hi64to32jamming((u64
)vsn
->significand
* vsm
->significand
);
879 vfp_single_dump("VSD", vsd
);
883 #define NEG_MULTIPLY (1 << 0)
884 #define NEG_SUBTRACT (1 << 1)
887 vfp_single_multiply_accumulate(int sd
, int sn
, s32 m
, u32 fpscr
, u32 negate
, char *func
)
889 struct vfp_single vsd
, vsp
, vsn
, vsm
;
893 v
= vfp_get_float(sn
);
894 pr_debug("VFP: s%u = %08x\n", sn
, v
);
895 vfp_single_unpack(&vsn
, v
);
896 if (vsn
.exponent
== 0 && vsn
.significand
)
897 vfp_single_normalise_denormal(&vsn
);
899 vfp_single_unpack(&vsm
, m
);
900 if (vsm
.exponent
== 0 && vsm
.significand
)
901 vfp_single_normalise_denormal(&vsm
);
903 exceptions
= vfp_single_multiply(&vsp
, &vsn
, &vsm
, fpscr
);
904 if (negate
& NEG_MULTIPLY
)
905 vsp
.sign
= vfp_sign_negate(vsp
.sign
);
907 v
= vfp_get_float(sd
);
908 pr_debug("VFP: s%u = %08x\n", sd
, v
);
909 vfp_single_unpack(&vsn
, v
);
910 if (negate
& NEG_SUBTRACT
)
911 vsn
.sign
= vfp_sign_negate(vsn
.sign
);
913 exceptions
|= vfp_single_add(&vsd
, &vsn
, &vsp
, fpscr
);
915 return vfp_single_normaliseround(sd
, &vsd
, fpscr
, exceptions
, func
);
919 * Standard operations
923 * sd = sd + (sn * sm)
925 static u32
vfp_single_fmac(int sd
, int sn
, s32 m
, u32 fpscr
)
927 return vfp_single_multiply_accumulate(sd
, sn
, m
, fpscr
, 0, "fmac");
931 * sd = sd - (sn * sm)
933 static u32
vfp_single_fnmac(int sd
, int sn
, s32 m
, u32 fpscr
)
935 return vfp_single_multiply_accumulate(sd
, sn
, m
, fpscr
, NEG_MULTIPLY
, "fnmac");
939 * sd = -sd + (sn * sm)
941 static u32
vfp_single_fmsc(int sd
, int sn
, s32 m
, u32 fpscr
)
943 return vfp_single_multiply_accumulate(sd
, sn
, m
, fpscr
, NEG_SUBTRACT
, "fmsc");
947 * sd = -sd - (sn * sm)
949 static u32
vfp_single_fnmsc(int sd
, int sn
, s32 m
, u32 fpscr
)
951 return vfp_single_multiply_accumulate(sd
, sn
, m
, fpscr
, NEG_SUBTRACT
| NEG_MULTIPLY
, "fnmsc");
957 static u32
vfp_single_fmul(int sd
, int sn
, s32 m
, u32 fpscr
)
959 struct vfp_single vsd
, vsn
, vsm
;
961 s32 n
= vfp_get_float(sn
);
963 pr_debug("VFP: s%u = %08x\n", sn
, n
);
965 vfp_single_unpack(&vsn
, n
);
966 if (vsn
.exponent
== 0 && vsn
.significand
)
967 vfp_single_normalise_denormal(&vsn
);
969 vfp_single_unpack(&vsm
, m
);
970 if (vsm
.exponent
== 0 && vsm
.significand
)
971 vfp_single_normalise_denormal(&vsm
);
973 exceptions
= vfp_single_multiply(&vsd
, &vsn
, &vsm
, fpscr
);
974 return vfp_single_normaliseround(sd
, &vsd
, fpscr
, exceptions
, "fmul");
980 static u32
vfp_single_fnmul(int sd
, int sn
, s32 m
, u32 fpscr
)
982 struct vfp_single vsd
, vsn
, vsm
;
984 s32 n
= vfp_get_float(sn
);
986 pr_debug("VFP: s%u = %08x\n", sn
, n
);
988 vfp_single_unpack(&vsn
, n
);
989 if (vsn
.exponent
== 0 && vsn
.significand
)
990 vfp_single_normalise_denormal(&vsn
);
992 vfp_single_unpack(&vsm
, m
);
993 if (vsm
.exponent
== 0 && vsm
.significand
)
994 vfp_single_normalise_denormal(&vsm
);
996 exceptions
= vfp_single_multiply(&vsd
, &vsn
, &vsm
, fpscr
);
997 vsd
.sign
= vfp_sign_negate(vsd
.sign
);
998 return vfp_single_normaliseround(sd
, &vsd
, fpscr
, exceptions
, "fnmul");
1004 static u32
vfp_single_fadd(int sd
, int sn
, s32 m
, u32 fpscr
)
1006 struct vfp_single vsd
, vsn
, vsm
;
1008 s32 n
= vfp_get_float(sn
);
1010 pr_debug("VFP: s%u = %08x\n", sn
, n
);
1013 * Unpack and normalise denormals.
1015 vfp_single_unpack(&vsn
, n
);
1016 if (vsn
.exponent
== 0 && vsn
.significand
)
1017 vfp_single_normalise_denormal(&vsn
);
1019 vfp_single_unpack(&vsm
, m
);
1020 if (vsm
.exponent
== 0 && vsm
.significand
)
1021 vfp_single_normalise_denormal(&vsm
);
1023 exceptions
= vfp_single_add(&vsd
, &vsn
, &vsm
, fpscr
);
1025 return vfp_single_normaliseround(sd
, &vsd
, fpscr
, exceptions
, "fadd");
1031 static u32
vfp_single_fsub(int sd
, int sn
, s32 m
, u32 fpscr
)
1034 * Subtraction is addition with one sign inverted.
1036 return vfp_single_fadd(sd
, sn
, vfp_single_packed_negate(m
), fpscr
);
1042 static u32
vfp_single_fdiv(int sd
, int sn
, s32 m
, u32 fpscr
)
1044 struct vfp_single vsd
, vsn
, vsm
;
1046 s32 n
= vfp_get_float(sn
);
1049 pr_debug("VFP: s%u = %08x\n", sn
, n
);
1051 vfp_single_unpack(&vsn
, n
);
1052 vfp_single_unpack(&vsm
, m
);
1054 vsd
.sign
= vsn
.sign
^ vsm
.sign
;
1056 tn
= vfp_single_type(&vsn
);
1057 tm
= vfp_single_type(&vsm
);
1072 * If n and m are infinity, the result is invalid
1073 * If n and m are zero, the result is invalid
1075 if (tm
& tn
& (VFP_INFINITY
|VFP_ZERO
))
1079 * If n is infinity, the result is infinity
1081 if (tn
& VFP_INFINITY
)
1085 * If m is zero, raise div0 exception
1091 * If m is infinity, or n is zero, the result is zero
1093 if (tm
& VFP_INFINITY
|| tn
& VFP_ZERO
)
1096 if (tn
& VFP_DENORMAL
)
1097 vfp_single_normalise_denormal(&vsn
);
1098 if (tm
& VFP_DENORMAL
)
1099 vfp_single_normalise_denormal(&vsm
);
1102 * Ok, we have two numbers, we can perform division.
1104 vsd
.exponent
= vsn
.exponent
- vsm
.exponent
+ 127 - 1;
1105 vsm
.significand
<<= 1;
1106 if (vsm
.significand
<= (2 * vsn
.significand
)) {
1107 vsn
.significand
>>= 1;
1110 vsd
.significand
= ((u64
)vsn
.significand
<< 32) / vsm
.significand
;
1111 if ((vsd
.significand
& 0x3f) == 0)
1112 vsd
.significand
|= ((u64
)vsm
.significand
* vsd
.significand
!= (u64
)vsn
.significand
<< 32);
1114 return vfp_single_normaliseround(sd
, &vsd
, fpscr
, 0, "fdiv");
1117 exceptions
= vfp_propagate_nan(&vsd
, &vsn
, &vsm
, fpscr
);
1119 vfp_put_float(sd
, vfp_single_pack(&vsd
));
1123 exceptions
= vfp_propagate_nan(&vsd
, &vsm
, &vsn
, fpscr
);
1128 vsd
.significand
= 0;
1132 exceptions
= FPSCR_DZC
;
1135 vsd
.significand
= 0;
1139 vfp_put_float(sd
, vfp_single_pack(&vfp_single_default_qnan
));
1143 static u32 (* const fop_fns
[16])(int sd
, int sn
, s32 m
, u32 fpscr
) = {
1144 [FOP_TO_IDX(FOP_FMAC
)] = vfp_single_fmac
,
1145 [FOP_TO_IDX(FOP_FNMAC
)] = vfp_single_fnmac
,
1146 [FOP_TO_IDX(FOP_FMSC
)] = vfp_single_fmsc
,
1147 [FOP_TO_IDX(FOP_FNMSC
)] = vfp_single_fnmsc
,
1148 [FOP_TO_IDX(FOP_FMUL
)] = vfp_single_fmul
,
1149 [FOP_TO_IDX(FOP_FNMUL
)] = vfp_single_fnmul
,
1150 [FOP_TO_IDX(FOP_FADD
)] = vfp_single_fadd
,
1151 [FOP_TO_IDX(FOP_FSUB
)] = vfp_single_fsub
,
1152 [FOP_TO_IDX(FOP_FDIV
)] = vfp_single_fdiv
,
1155 #define FREG_BANK(x) ((x) & 0x18)
1156 #define FREG_IDX(x) ((x) & 7)
1158 u32
vfp_single_cpdo(u32 inst
, u32 fpscr
)
1160 u32 op
= inst
& FOP_MASK
;
1162 unsigned int sd
= vfp_get_sd(inst
);
1163 unsigned int sn
= vfp_get_sn(inst
);
1164 unsigned int sm
= vfp_get_sm(inst
);
1165 unsigned int vecitr
, veclen
, vecstride
;
1166 u32 (*fop
)(int, int, s32
, u32
);
1168 veclen
= fpscr
& FPSCR_LENGTH_MASK
;
1169 vecstride
= 1 + ((fpscr
& FPSCR_STRIDE_MASK
) == FPSCR_STRIDE_MASK
);
1172 * If destination bank is zero, vector length is always '1'.
1173 * ARM DDI0100F C5.1.3, C5.3.2.
1175 if (FREG_BANK(sd
) == 0)
1178 pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride
,
1179 (veclen
>> FPSCR_LENGTH_BIT
) + 1);
1181 fop
= (op
== FOP_EXT
) ? fop_extfns
[sn
] : fop_fns
[FOP_TO_IDX(op
)];
1185 for (vecitr
= 0; vecitr
<= veclen
; vecitr
+= 1 << FPSCR_LENGTH_BIT
) {
1186 s32 m
= vfp_get_float(sm
);
1190 pr_debug("VFP: itr%d (s%u) = op[%u] (s%u=%08x)\n",
1191 vecitr
>> FPSCR_LENGTH_BIT
, sd
, sn
, sm
, m
);
1193 pr_debug("VFP: itr%d (s%u) = (s%u) op[%u] (s%u=%08x)\n",
1194 vecitr
>> FPSCR_LENGTH_BIT
, sd
, sn
,
1195 FOP_TO_IDX(op
), sm
, m
);
1197 except
= fop(sd
, sn
, m
, fpscr
);
1198 pr_debug("VFP: itr%d: exceptions=%08x\n",
1199 vecitr
>> FPSCR_LENGTH_BIT
, except
);
1201 exceptions
|= except
;
1204 * This ensures that comparisons only operate on scalars;
1205 * comparisons always return with one FPSCR status bit set.
1207 if (except
& (FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
))
1211 * CHECK: It appears to be undefined whether we stop when
1212 * we encounter an exception. We continue.
1215 sd
= FREG_BANK(sd
) + ((FREG_IDX(sd
) + vecstride
) & 7);
1216 sn
= FREG_BANK(sn
) + ((FREG_IDX(sn
) + vecstride
) & 7);
1217 if (FREG_BANK(sm
) != 0)
1218 sm
= FREG_BANK(sm
) + ((FREG_IDX(sm
) + vecstride
) & 7);