MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / arch / x86_64 / kernel / smp.c
blob269ef092f75726295f17d30b721424adf4d980d5
1 /*
2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 * (c) 2002,2003 Andi Kleen, SuSE Labs.
8 * This code is released under the GNU General Public License version 2 or
9 * later.
12 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/irq.h>
16 #include <linux/delay.h>
17 #include <linux/spinlock.h>
18 #include <linux/smp_lock.h>
19 #include <linux/smp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mc146818rtc.h>
22 #include <linux/interrupt.h>
24 #include <asm/mtrr.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlbflush.h>
29 * the following functions deal with sending IPIs between CPUs.
31 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
34 static inline unsigned int __prepare_ICR (unsigned int shortcut, int vector)
36 unsigned int icr = APIC_DM_FIXED | shortcut | vector | APIC_DEST_LOGICAL;
37 if (vector == KDB_VECTOR)
38 icr = (icr & (~APIC_VECTOR_MASK)) | APIC_DM_NMI;
39 return icr;
42 static inline int __prepare_ICR2 (unsigned int mask)
44 return SET_APIC_DEST_FIELD(mask);
47 static inline void __send_IPI_shortcut(unsigned int shortcut, int vector)
50 * Subtle. In the case of the 'never do double writes' workaround
51 * we have to lock out interrupts to be safe. As we don't care
52 * of the value read we use an atomic rmw access to avoid costly
53 * cli/sti. Otherwise we use an even cheaper single atomic write
54 * to the APIC.
56 unsigned int cfg;
59 * Wait for idle.
61 apic_wait_icr_idle();
64 * No need to touch the target chip field
66 cfg = __prepare_ICR(shortcut, vector);
69 * Send the IPI. The write to APIC_ICR fires this off.
71 apic_write_around(APIC_ICR, cfg);
74 static inline void send_IPI_allbutself(int vector)
77 * if there are no other CPUs in the system then
78 * we get an APIC send error if we try to broadcast.
79 * thus we have to avoid sending IPIs in this case.
81 if (num_online_cpus() > 1)
82 __send_IPI_shortcut(APIC_DEST_ALLBUT, vector);
85 static inline void send_IPI_all(int vector)
87 __send_IPI_shortcut(APIC_DEST_ALLINC, vector);
90 void send_IPI_self(int vector)
92 __send_IPI_shortcut(APIC_DEST_SELF, vector);
95 static inline void send_IPI_mask(cpumask_t cpumask, int vector)
97 unsigned long mask = cpus_addr(cpumask)[0];
98 unsigned long cfg;
99 unsigned long flags;
101 local_save_flags(flags);
102 local_irq_disable();
105 * Wait for idle.
107 apic_wait_icr_idle();
110 * prepare target chip field
112 cfg = __prepare_ICR2(mask);
113 apic_write_around(APIC_ICR2, cfg);
116 * program the ICR
118 cfg = __prepare_ICR(0, vector);
121 * Send the IPI. The write to APIC_ICR fires this off.
123 apic_write_around(APIC_ICR, cfg);
124 local_irq_restore(flags);
128 * Smarter SMP flushing macros.
129 * c/o Linus Torvalds.
131 * These mean you can really definitely utterly forget about
132 * writing to user space from interrupts. (Its not allowed anyway).
134 * Optimizations Manfred Spraul <manfred@colorfullife.com>
137 static cpumask_t flush_cpumask;
138 static struct mm_struct * flush_mm;
139 static unsigned long flush_va;
140 static spinlock_t tlbstate_lock = SPIN_LOCK_UNLOCKED;
141 #define FLUSH_ALL 0xffffffff
144 * We cannot call mmdrop() because we are in interrupt context,
145 * instead update mm->cpu_vm_mask.
147 static inline void leave_mm (unsigned long cpu)
149 if (read_pda(mmu_state) == TLBSTATE_OK)
150 BUG();
151 clear_bit(cpu, &read_pda(active_mm)->cpu_vm_mask);
152 __flush_tlb();
157 * The flush IPI assumes that a thread switch happens in this order:
158 * [cpu0: the cpu that switches]
159 * 1) switch_mm() either 1a) or 1b)
160 * 1a) thread switch to a different mm
161 * 1a1) clear_bit(cpu, &old_mm->cpu_vm_mask);
162 * Stop ipi delivery for the old mm. This is not synchronized with
163 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
164 * for the wrong mm, and in the worst case we perform a superfluous
165 * tlb flush.
166 * 1a2) set cpu mmu_state to TLBSTATE_OK
167 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
168 * was in lazy tlb mode.
169 * 1a3) update cpu active_mm
170 * Now cpu0 accepts tlb flushes for the new mm.
171 * 1a4) set_bit(cpu, &new_mm->cpu_vm_mask);
172 * Now the other cpus will send tlb flush ipis.
173 * 1a4) change cr3.
174 * 1b) thread switch without mm change
175 * cpu active_mm is correct, cpu0 already handles
176 * flush ipis.
177 * 1b1) set cpu mmu_state to TLBSTATE_OK
178 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
179 * Atomically set the bit [other cpus will start sending flush ipis],
180 * and test the bit.
181 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
182 * 2) switch %%esp, ie current
184 * The interrupt must handle 2 special cases:
185 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
186 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
187 * runs in kernel space, the cpu could load tlb entries for user space
188 * pages.
190 * The good news is that cpu mmu_state is local to each cpu, no
191 * write/read ordering problems.
195 * TLB flush IPI:
197 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
198 * 2) Leave the mm if we are in the lazy tlb mode.
201 asmlinkage void smp_invalidate_interrupt (void)
203 unsigned long cpu;
205 cpu = get_cpu();
207 if (!cpu_isset(cpu, flush_cpumask))
208 goto out;
210 * This was a BUG() but until someone can quote me the
211 * line from the intel manual that guarantees an IPI to
212 * multiple CPUs is retried _only_ on the erroring CPUs
213 * its staying as a return
215 * BUG();
218 if (flush_mm == read_pda(active_mm)) {
219 if (read_pda(mmu_state) == TLBSTATE_OK) {
220 if (flush_va == FLUSH_ALL)
221 local_flush_tlb();
222 else
223 __flush_tlb_one(flush_va);
224 } else
225 leave_mm(cpu);
227 ack_APIC_irq();
228 cpu_clear(cpu, flush_cpumask);
230 out:
231 put_cpu_no_resched();
234 static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
235 unsigned long va)
237 cpumask_t tmp;
239 * A couple of (to be removed) sanity checks:
241 * - we do not send IPIs to not-yet booted CPUs.
242 * - current CPU must not be in mask
243 * - mask must exist :)
245 BUG_ON(cpus_empty(cpumask));
246 cpus_and(tmp, cpumask, cpu_online_map);
247 BUG_ON(!cpus_equal(tmp, cpumask));
248 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
249 if (!mm)
250 BUG();
253 * I'm not happy about this global shared spinlock in the
254 * MM hot path, but we'll see how contended it is.
255 * Temporarily this turns IRQs off, so that lockups are
256 * detected by the NMI watchdog.
258 spin_lock(&tlbstate_lock);
260 flush_mm = mm;
261 flush_va = va;
262 cpus_or(flush_cpumask, cpumask, flush_cpumask);
265 * We have to send the IPI only to
266 * CPUs affected.
268 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
270 while (!cpus_empty(flush_cpumask))
271 mb(); /* nothing. lockup detection does not belong here */;
273 flush_mm = NULL;
274 flush_va = 0;
275 spin_unlock(&tlbstate_lock);
278 void flush_tlb_current_task(void)
280 struct mm_struct *mm = current->mm;
281 cpumask_t cpu_mask;
283 preempt_disable();
284 cpu_mask = mm->cpu_vm_mask;
285 cpu_clear(smp_processor_id(), cpu_mask);
287 local_flush_tlb();
288 if (!cpus_empty(cpu_mask))
289 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
290 preempt_enable();
293 void flush_tlb_mm (struct mm_struct * mm)
295 cpumask_t cpu_mask;
297 preempt_disable();
298 cpu_mask = mm->cpu_vm_mask;
299 cpu_clear(smp_processor_id(), cpu_mask);
301 if (current->active_mm == mm) {
302 if (current->mm)
303 local_flush_tlb();
304 else
305 leave_mm(smp_processor_id());
307 if (!cpus_empty(cpu_mask))
308 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
310 preempt_enable();
313 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
315 struct mm_struct *mm = vma->vm_mm;
316 cpumask_t cpu_mask;
318 preempt_disable();
319 cpu_mask = mm->cpu_vm_mask;
320 cpu_clear(smp_processor_id(), cpu_mask);
322 if (current->active_mm == mm) {
323 if(current->mm)
324 __flush_tlb_one(va);
325 else
326 leave_mm(smp_processor_id());
329 if (!cpus_empty(cpu_mask))
330 flush_tlb_others(cpu_mask, mm, va);
332 preempt_enable();
335 static void do_flush_tlb_all(void* info)
337 unsigned long cpu = smp_processor_id();
339 __flush_tlb_all();
340 if (read_pda(mmu_state) == TLBSTATE_LAZY)
341 leave_mm(cpu);
344 void flush_tlb_all(void)
346 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
349 void smp_kdb_stop(void)
351 send_IPI_allbutself(KDB_VECTOR);
355 * this function sends a 'reschedule' IPI to another CPU.
356 * it goes straight through and wastes no time serializing
357 * anything. Worst case is that we lose a reschedule ...
360 void smp_send_reschedule(int cpu)
362 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
366 * Structure and data for smp_call_function(). This is designed to minimise
367 * static memory requirements. It also looks cleaner.
369 static spinlock_t call_lock = SPIN_LOCK_UNLOCKED;
371 struct call_data_struct {
372 void (*func) (void *info);
373 void *info;
374 atomic_t started;
375 atomic_t finished;
376 int wait;
379 static struct call_data_struct * call_data;
382 * this function sends a 'generic call function' IPI to all other CPUs
383 * in the system.
385 static void __smp_call_function (void (*func) (void *info), void *info,
386 int nonatomic, int wait)
388 struct call_data_struct data;
389 int cpus = num_online_cpus()-1;
391 if (!cpus)
392 return;
394 data.func = func;
395 data.info = info;
396 atomic_set(&data.started, 0);
397 data.wait = wait;
398 if (wait)
399 atomic_set(&data.finished, 0);
401 call_data = &data;
402 wmb();
403 /* Send a message to all other CPUs and wait for them to respond */
404 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
406 /* Wait for response */
407 while (atomic_read(&data.started) != cpus)
408 barrier();
410 if (wait)
411 while (atomic_read(&data.finished) != cpus)
412 barrier();
416 * smp_call_function - run a function on all other CPUs.
417 * @func: The function to run. This must be fast and non-blocking.
418 * @info: An arbitrary pointer to pass to the function.
419 * @nonatomic: currently unused.
420 * @wait: If true, wait (atomically) until function has completed on other
421 * CPUs.
423 * Returns 0 on success, else a negative status code. Does not return until
424 * remote CPUs are nearly ready to execute func or are or have executed.
426 * You must not call this function with disabled interrupts or from a
427 * hardware interrupt handler or from a bottom half handler.
428 * Actually there are a few legal cases, like panic.
430 int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
431 int wait)
433 spin_lock(&call_lock);
434 __smp_call_function(func,info,nonatomic,wait);
435 spin_unlock(&call_lock);
436 return 0;
439 void smp_stop_cpu(void)
442 * Remove this CPU:
444 cpu_clear(smp_processor_id(), cpu_online_map);
445 local_irq_disable();
446 disable_local_APIC();
447 local_irq_enable();
450 static void smp_really_stop_cpu(void *dummy)
452 smp_stop_cpu();
453 for (;;)
454 asm("hlt");
457 void smp_send_stop(void)
459 int nolock = 0;
460 /* Don't deadlock on the call lock in panic */
461 if (!spin_trylock(&call_lock)) {
462 udelay(100);
463 /* ignore locking because we have paniced anyways */
464 nolock = 1;
466 __smp_call_function(smp_really_stop_cpu, NULL, 1, 0);
467 if (!nolock)
468 spin_unlock(&call_lock);
469 smp_stop_cpu();
473 * Reschedule call back. Nothing to do,
474 * all the work is done automatically when
475 * we return from the interrupt.
477 asmlinkage void smp_reschedule_interrupt(void)
479 ack_APIC_irq();
482 asmlinkage void smp_call_function_interrupt(void)
484 void (*func) (void *info) = call_data->func;
485 void *info = call_data->info;
486 int wait = call_data->wait;
488 ack_APIC_irq();
490 * Notify initiating CPU that I've grabbed the data and am
491 * about to execute the function
493 mb();
494 atomic_inc(&call_data->started);
496 * At this point the info structure may be out of scope unless wait==1
498 irq_enter();
499 (*func)(info);
500 irq_exit();
501 if (wait) {
502 mb();
503 atomic_inc(&call_data->finished);