MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / arch / x86_64 / kernel / time.c
blobee941842d7102acb06ad7e6d61e951d2430f53eb
1 /*
2 * linux/arch/x86-64/kernel/time.c
4 * "High Precision Event Timer" based timekeeping.
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/irq.h>
22 #include <linux/time.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/device.h>
26 #include <linux/sysdev.h>
27 #include <linux/bcd.h>
28 #include <linux/kallsyms.h>
29 #include <asm/8253pit.h>
30 #include <asm/pgtable.h>
31 #include <asm/vsyscall.h>
32 #include <asm/timex.h>
33 #include <asm/proto.h>
34 #include <asm/hpet.h>
35 #include <asm/sections.h>
36 #include <linux/cpufreq.h>
37 #ifdef CONFIG_X86_LOCAL_APIC
38 #include <asm/apic.h>
39 #endif
41 u64 jiffies_64 = INITIAL_JIFFIES;
43 EXPORT_SYMBOL(jiffies_64);
45 #ifdef CONFIG_CPU_FREQ
46 static void cpufreq_delayed_get(void);
47 #endif
49 extern int using_apic_timer;
51 spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED;
52 spinlock_t i8253_lock = SPIN_LOCK_UNLOCKED;
54 static int nohpet __initdata = 0;
56 #undef HPET_HACK_ENABLE_DANGEROUS
59 unsigned int cpu_khz; /* TSC clocks / usec, not used here */
60 unsigned long hpet_period; /* fsecs / HPET clock */
61 unsigned long hpet_tick; /* HPET clocks / interrupt */
62 unsigned long vxtime_hz = PIT_TICK_RATE;
63 int report_lost_ticks; /* command line option */
64 unsigned long long monotonic_base;
66 struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
68 volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
69 unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
70 struct timespec __xtime __section_xtime;
71 struct timezone __sys_tz __section_sys_tz;
73 static inline void rdtscll_sync(unsigned long *tsc)
75 #ifdef CONFIG_SMP
76 sync_core();
77 #endif
78 rdtscll(*tsc);
82 * do_gettimeoffset() returns microseconds since last timer interrupt was
83 * triggered by hardware. A memory read of HPET is slower than a register read
84 * of TSC, but much more reliable. It's also synchronized to the timer
85 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
86 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
87 * This is not a problem, because jiffies hasn't updated either. They are bound
88 * together by xtime_lock.
91 static inline unsigned int do_gettimeoffset_tsc(void)
93 unsigned long t;
94 unsigned long x;
95 rdtscll_sync(&t);
96 if (t < vxtime.last_tsc) t = vxtime.last_tsc; /* hack */
97 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> 32;
98 return x;
101 static inline unsigned int do_gettimeoffset_hpet(void)
103 return ((hpet_readl(HPET_COUNTER) - vxtime.last) * vxtime.quot) >> 32;
106 unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
109 * This version of gettimeofday() has microsecond resolution and better than
110 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
111 * MHz) HPET timer.
114 void do_gettimeofday(struct timeval *tv)
116 unsigned long seq, t;
117 unsigned int sec, usec;
119 do {
120 seq = read_seqbegin(&xtime_lock);
122 sec = xtime.tv_sec;
123 usec = xtime.tv_nsec / 1000;
125 /* i386 does some correction here to keep the clock
126 monotonous even when ntpd is fixing drift.
127 But they didn't work for me, there is a non monotonic
128 clock anyways with ntp.
129 I dropped all corrections now until a real solution can
130 be found. Note when you fix it here you need to do the same
131 in arch/x86_64/kernel/vsyscall.c and export all needed
132 variables in vmlinux.lds. -AK */
134 t = (jiffies - wall_jiffies) * (1000000L / HZ) +
135 do_gettimeoffset();
136 usec += t;
138 } while (read_seqretry(&xtime_lock, seq));
140 tv->tv_sec = sec + usec / 1000000;
141 tv->tv_usec = usec % 1000000;
144 EXPORT_SYMBOL(do_gettimeofday);
147 * settimeofday() first undoes the correction that gettimeofday would do
148 * on the time, and then saves it. This is ugly, but has been like this for
149 * ages already.
152 int do_settimeofday(struct timespec *tv)
154 time_t wtm_sec, sec = tv->tv_sec;
155 long wtm_nsec, nsec = tv->tv_nsec;
157 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
158 return -EINVAL;
160 write_seqlock_irq(&xtime_lock);
162 nsec -= do_gettimeoffset() * 1000 +
163 (jiffies - wall_jiffies) * (NSEC_PER_SEC/HZ);
165 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
166 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
168 set_normalized_timespec(&xtime, sec, nsec);
169 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
171 time_adjust = 0; /* stop active adjtime() */
172 time_status |= STA_UNSYNC;
173 time_maxerror = NTP_PHASE_LIMIT;
174 time_esterror = NTP_PHASE_LIMIT;
176 write_sequnlock_irq(&xtime_lock);
177 clock_was_set();
178 return 0;
181 EXPORT_SYMBOL(do_settimeofday);
183 unsigned long profile_pc(struct pt_regs *regs)
185 unsigned long pc = instruction_pointer(regs);
187 /* Assume the lock function has either no stack frame or only a single word.
188 This checks if the address on the stack looks like a kernel text address.
189 There is a small window for false hits, but in that case the tick
190 is just accounted to the spinlock function.
191 Better would be to write these functions in assembler again
192 and check exactly. */
193 if (in_lock_functions(pc)) {
194 char *v = *(char **)regs->rsp;
195 if ((v >= _stext && v <= _etext) ||
196 (v >= _sinittext && v <= _einittext) ||
197 (v >= (char *)MODULES_VADDR && v <= (char *)MODULES_END))
198 return (unsigned long)v;
199 return ((unsigned long *)regs->rsp)[1];
201 return pc;
203 EXPORT_SYMBOL(profile_pc);
206 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
207 * ms after the second nowtime has started, because when nowtime is written
208 * into the registers of the CMOS clock, it will jump to the next second
209 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
210 * sheet for details.
213 static void set_rtc_mmss(unsigned long nowtime)
215 int real_seconds, real_minutes, cmos_minutes;
216 unsigned char control, freq_select;
219 * IRQs are disabled when we're called from the timer interrupt,
220 * no need for spin_lock_irqsave()
223 spin_lock(&rtc_lock);
226 * Tell the clock it's being set and stop it.
229 control = CMOS_READ(RTC_CONTROL);
230 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
232 freq_select = CMOS_READ(RTC_FREQ_SELECT);
233 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
235 cmos_minutes = CMOS_READ(RTC_MINUTES);
236 BCD_TO_BIN(cmos_minutes);
239 * since we're only adjusting minutes and seconds, don't interfere with hour
240 * overflow. This avoids messing with unknown time zones but requires your RTC
241 * not to be off by more than 15 minutes. Since we're calling it only when
242 * our clock is externally synchronized using NTP, this shouldn't be a problem.
245 real_seconds = nowtime % 60;
246 real_minutes = nowtime / 60;
247 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
248 real_minutes += 30; /* correct for half hour time zone */
249 real_minutes %= 60;
251 #if 0
252 /* AMD 8111 is a really bad time keeper and hits this regularly.
253 It probably was an attempt to avoid screwing up DST, but ignore
254 that for now. */
255 if (abs(real_minutes - cmos_minutes) >= 30) {
256 printk(KERN_WARNING "time.c: can't update CMOS clock "
257 "from %d to %d\n", cmos_minutes, real_minutes);
258 } else
259 #endif
262 BIN_TO_BCD(real_seconds);
263 BIN_TO_BCD(real_minutes);
264 CMOS_WRITE(real_seconds, RTC_SECONDS);
265 CMOS_WRITE(real_minutes, RTC_MINUTES);
269 * The following flags have to be released exactly in this order, otherwise the
270 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
271 * not reset the oscillator and will not update precisely 500 ms later. You
272 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
273 * believes data sheets anyway ... -- Markus Kuhn
276 CMOS_WRITE(control, RTC_CONTROL);
277 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
279 spin_unlock(&rtc_lock);
283 /* monotonic_clock(): returns # of nanoseconds passed since time_init()
284 * Note: This function is required to return accurate
285 * time even in the absence of multiple timer ticks.
287 unsigned long long monotonic_clock(void)
289 unsigned long seq;
290 u32 last_offset, this_offset, offset;
291 unsigned long long base;
293 if (vxtime.mode == VXTIME_HPET) {
294 do {
295 seq = read_seqbegin(&xtime_lock);
297 last_offset = vxtime.last;
298 base = monotonic_base;
299 this_offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
301 } while (read_seqretry(&xtime_lock, seq));
302 offset = (this_offset - last_offset);
303 offset *=(NSEC_PER_SEC/HZ)/hpet_tick;
304 return base + offset;
305 }else{
306 do {
307 seq = read_seqbegin(&xtime_lock);
309 last_offset = vxtime.last_tsc;
310 base = monotonic_base;
311 } while (read_seqretry(&xtime_lock, seq));
312 sync_core();
313 rdtscll(this_offset);
314 offset = (this_offset - last_offset)*1000/cpu_khz;
315 return base + offset;
320 EXPORT_SYMBOL(monotonic_clock);
322 static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
324 static long lost_count;
325 static int warned;
327 if (report_lost_ticks) {
328 printk(KERN_WARNING "time.c: Lost %d timer "
329 "tick(s)! ", lost);
330 print_symbol("rip %s)\n", regs->rip);
333 if (lost_count == 100 && !warned) {
334 printk(KERN_WARNING
335 "warning: many lost ticks.\n"
336 KERN_WARNING "Your time source seems to be instable or "
337 "some driver is hogging interupts\n");
338 print_symbol("rip %s\n", regs->rip);
339 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
340 printk(KERN_WARNING "Falling back to HPET\n");
341 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
342 vxtime.mode = VXTIME_HPET;
343 do_gettimeoffset = do_gettimeoffset_hpet;
345 /* else should fall back to PIT, but code missing. */
346 warned = 1;
347 } else
348 lost_count++;
350 #ifdef CONFIG_CPU_FREQ
351 /* In some cases the CPU can change frequency without us noticing
352 (like going into thermal throttle)
353 Give cpufreq a change to catch up. */
354 if ((lost_count+1) % 25 == 0) {
355 cpufreq_delayed_get();
357 #endif
360 static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
362 static unsigned long rtc_update = 0;
363 unsigned long tsc;
364 int delay, offset = 0, lost = 0;
367 * Here we are in the timer irq handler. We have irqs locally disabled (so we
368 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
369 * on the other CPU, so we need a lock. We also need to lock the vsyscall
370 * variables, because both do_timer() and us change them -arca+vojtech
373 write_seqlock(&xtime_lock);
375 if (vxtime.hpet_address) {
376 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
377 delay = hpet_readl(HPET_COUNTER) - offset;
378 } else {
379 spin_lock(&i8253_lock);
380 outb_p(0x00, 0x43);
381 delay = inb_p(0x40);
382 delay |= inb(0x40) << 8;
383 spin_unlock(&i8253_lock);
384 delay = LATCH - 1 - delay;
387 rdtscll_sync(&tsc);
389 if (vxtime.mode == VXTIME_HPET) {
390 if (offset - vxtime.last > hpet_tick) {
391 lost = (offset - vxtime.last) / hpet_tick - 1;
394 monotonic_base +=
395 (offset - vxtime.last)*(NSEC_PER_SEC/HZ) / hpet_tick;
397 vxtime.last = offset;
398 } else {
399 offset = (((tsc - vxtime.last_tsc) *
400 vxtime.tsc_quot) >> 32) - (USEC_PER_SEC / HZ);
402 if (offset < 0)
403 offset = 0;
405 if (offset > (USEC_PER_SEC / HZ)) {
406 lost = offset / (USEC_PER_SEC / HZ);
407 offset %= (USEC_PER_SEC / HZ);
410 monotonic_base += (tsc - vxtime.last_tsc)*1000000/cpu_khz ;
412 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
414 if ((((tsc - vxtime.last_tsc) *
415 vxtime.tsc_quot) >> 32) < offset)
416 vxtime.last_tsc = tsc -
417 (((long) offset << 32) / vxtime.tsc_quot) - 1;
420 if (lost > 0) {
421 handle_lost_ticks(lost, regs);
422 jiffies += lost;
426 * Do the timer stuff.
429 do_timer(regs);
432 * In the SMP case we use the local APIC timer interrupt to do the profiling,
433 * except when we simulate SMP mode on a uniprocessor system, in that case we
434 * have to call the local interrupt handler.
437 #ifndef CONFIG_X86_LOCAL_APIC
438 profile_tick(CPU_PROFILING, regs);
439 #else
440 if (!using_apic_timer)
441 smp_local_timer_interrupt(regs);
442 #endif
445 * If we have an externally synchronized Linux clock, then update CMOS clock
446 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
447 * closest to exactly 500 ms before the next second. If the update fails, we
448 * don't care, as it'll be updated on the next turn, and the problem (time way
449 * off) isn't likely to go away much sooner anyway.
452 if ((~time_status & STA_UNSYNC) && xtime.tv_sec > rtc_update &&
453 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
454 set_rtc_mmss(xtime.tv_sec);
455 rtc_update = xtime.tv_sec + 660;
458 write_sequnlock(&xtime_lock);
460 return IRQ_HANDLED;
463 static unsigned int cyc2ns_scale;
464 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
466 static inline void set_cyc2ns_scale(unsigned long cpu_mhz)
468 cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz;
471 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
473 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
476 unsigned long long sched_clock(void)
478 unsigned long a = 0;
480 #if 0
481 /* Don't do a HPET read here. Using TSC always is much faster
482 and HPET may not be mapped yet when the scheduler first runs.
483 Disadvantage is a small drift between CPUs in some configurations,
484 but that should be tolerable. */
485 if (__vxtime.mode == VXTIME_HPET)
486 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> 32;
487 #endif
489 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
490 which means it is not completely exact and may not be monotonous between
491 CPUs. But the errors should be too small to matter for scheduling
492 purposes. */
494 rdtscll(a);
495 return cycles_2_ns(a);
498 unsigned long get_cmos_time(void)
500 unsigned int timeout, year, mon, day, hour, min, sec;
501 unsigned char last, this;
502 unsigned long flags;
505 * The Linux interpretation of the CMOS clock register contents: When the
506 * Update-In-Progress (UIP) flag goes from 1 to 0, the RTC registers show the
507 * second which has precisely just started. Waiting for this can take up to 1
508 * second, we timeout approximately after 2.4 seconds on a machine with
509 * standard 8.3 MHz ISA bus.
512 spin_lock_irqsave(&rtc_lock, flags);
514 timeout = 1000000;
515 last = this = 0;
517 while (timeout && last && !this) {
518 last = this;
519 this = CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP;
520 timeout--;
524 * Here we are safe to assume the registers won't change for a whole second, so
525 * we just go ahead and read them.
528 sec = CMOS_READ(RTC_SECONDS);
529 min = CMOS_READ(RTC_MINUTES);
530 hour = CMOS_READ(RTC_HOURS);
531 day = CMOS_READ(RTC_DAY_OF_MONTH);
532 mon = CMOS_READ(RTC_MONTH);
533 year = CMOS_READ(RTC_YEAR);
535 spin_unlock_irqrestore(&rtc_lock, flags);
538 * We know that x86-64 always uses BCD format, no need to check the config
539 * register.
542 BCD_TO_BIN(sec);
543 BCD_TO_BIN(min);
544 BCD_TO_BIN(hour);
545 BCD_TO_BIN(day);
546 BCD_TO_BIN(mon);
547 BCD_TO_BIN(year);
550 * This will work up to Dec 31, 2069.
553 if ((year += 1900) < 1970)
554 year += 100;
556 return mktime(year, mon, day, hour, min, sec);
559 #ifdef CONFIG_CPU_FREQ
561 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
562 changes.
564 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
565 not that important because current Opteron setups do not support
566 scaling on SMP anyroads.
568 Should fix up last_tsc too. Currently gettimeofday in the
569 first tick after the change will be slightly wrong. */
571 #include <linux/workqueue.h>
573 static unsigned int cpufreq_delayed_issched = 0;
574 static unsigned int cpufreq_init = 0;
575 static struct work_struct cpufreq_delayed_get_work;
577 static void handle_cpufreq_delayed_get(void *v)
579 unsigned int cpu;
580 for_each_online_cpu(cpu) {
581 cpufreq_get(cpu);
583 cpufreq_delayed_issched = 0;
586 /* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
587 * to verify the CPU frequency the timing core thinks the CPU is running
588 * at is still correct.
590 static void cpufreq_delayed_get(void)
592 static int warned;
593 if (cpufreq_init && !cpufreq_delayed_issched) {
594 cpufreq_delayed_issched = 1;
595 if (!warned) {
596 warned = 1;
597 printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n");
599 schedule_work(&cpufreq_delayed_get_work);
603 static unsigned int ref_freq = 0;
604 static unsigned long loops_per_jiffy_ref = 0;
606 static unsigned long cpu_khz_ref = 0;
608 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
609 void *data)
611 struct cpufreq_freqs *freq = data;
612 unsigned long *lpj, dummy;
614 lpj = &dummy;
615 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
616 #ifdef CONFIG_SMP
617 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
618 #else
619 lpj = &boot_cpu_data.loops_per_jiffy;
620 #endif
624 if (!ref_freq) {
625 ref_freq = freq->old;
626 loops_per_jiffy_ref = *lpj;
627 cpu_khz_ref = cpu_khz;
629 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
630 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
631 (val == CPUFREQ_RESUMECHANGE)) {
632 *lpj =
633 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
635 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
636 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
637 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
640 set_cyc2ns_scale(cpu_khz_ref / 1000);
642 return 0;
645 static struct notifier_block time_cpufreq_notifier_block = {
646 .notifier_call = time_cpufreq_notifier
649 static int __init cpufreq_tsc(void)
651 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
652 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
653 CPUFREQ_TRANSITION_NOTIFIER))
654 cpufreq_init = 1;
655 return 0;
658 core_initcall(cpufreq_tsc);
660 #endif
663 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
664 * it to the HPET timer of known frequency.
667 #define TICK_COUNT 100000000
669 static unsigned int __init hpet_calibrate_tsc(void)
671 int tsc_start, hpet_start;
672 int tsc_now, hpet_now;
673 unsigned long flags;
675 local_irq_save(flags);
676 local_irq_disable();
678 hpet_start = hpet_readl(HPET_COUNTER);
679 rdtscl(tsc_start);
681 do {
682 local_irq_disable();
683 hpet_now = hpet_readl(HPET_COUNTER);
684 sync_core();
685 rdtscl(tsc_now);
686 local_irq_restore(flags);
687 } while ((tsc_now - tsc_start) < TICK_COUNT &&
688 (hpet_now - hpet_start) < TICK_COUNT);
690 return (tsc_now - tsc_start) * 1000000000L
691 / ((hpet_now - hpet_start) * hpet_period / 1000);
696 * pit_calibrate_tsc() uses the speaker output (channel 2) of
697 * the PIT. This is better than using the timer interrupt output,
698 * because we can read the value of the speaker with just one inb(),
699 * where we need three i/o operations for the interrupt channel.
700 * We count how many ticks the TSC does in 50 ms.
703 static unsigned int __init pit_calibrate_tsc(void)
705 unsigned long start, end;
706 unsigned long flags;
708 spin_lock_irqsave(&i8253_lock, flags);
710 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
712 outb(0xb0, 0x43);
713 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
714 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
715 rdtscll(start);
716 sync_core();
717 while ((inb(0x61) & 0x20) == 0);
718 sync_core();
719 rdtscll(end);
721 spin_unlock_irqrestore(&i8253_lock, flags);
723 return (end - start) / 50;
726 static int hpet_init(void)
728 unsigned int cfg, id;
730 if (!vxtime.hpet_address)
731 return -1;
732 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
733 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
736 * Read the period, compute tick and quotient.
739 id = hpet_readl(HPET_ID);
741 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER) ||
742 !(id & HPET_ID_LEGSUP))
743 return -1;
745 hpet_period = hpet_readl(HPET_PERIOD);
746 if (hpet_period < 100000 || hpet_period > 100000000)
747 return -1;
749 hpet_tick = (1000000000L * (USEC_PER_SEC / HZ) + hpet_period / 2) /
750 hpet_period;
753 * Stop the timers and reset the main counter.
756 cfg = hpet_readl(HPET_CFG);
757 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
758 hpet_writel(cfg, HPET_CFG);
759 hpet_writel(0, HPET_COUNTER);
760 hpet_writel(0, HPET_COUNTER + 4);
763 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
764 * and period also hpet_tick.
767 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
768 HPET_TN_32BIT, HPET_T0_CFG);
769 hpet_writel(hpet_tick, HPET_T0_CMP);
770 hpet_writel(hpet_tick, HPET_T0_CMP); /* AK: why twice? */
773 * Go!
776 cfg |= HPET_CFG_ENABLE | HPET_CFG_LEGACY;
777 hpet_writel(cfg, HPET_CFG);
779 return 0;
782 void __init pit_init(void)
784 unsigned long flags;
786 spin_lock_irqsave(&i8253_lock, flags);
787 outb_p(0x34, 0x43); /* binary, mode 2, LSB/MSB, ch 0 */
788 outb_p(LATCH & 0xff, 0x40); /* LSB */
789 outb_p(LATCH >> 8, 0x40); /* MSB */
790 spin_unlock_irqrestore(&i8253_lock, flags);
793 int __init time_setup(char *str)
795 report_lost_ticks = 1;
796 return 1;
799 static struct irqaction irq0 = {
800 timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL
803 extern void __init config_acpi_tables(void);
805 void __init time_init(void)
807 char *timename;
809 #ifdef HPET_HACK_ENABLE_DANGEROUS
810 if (!vxtime.hpet_address) {
811 printk(KERN_WARNING "time.c: WARNING: Enabling HPET base "
812 "manually!\n");
813 outl(0x800038a0, 0xcf8);
814 outl(0xff000001, 0xcfc);
815 outl(0x800038a0, 0xcf8);
816 vxtime.hpet_address = inl(0xcfc) & 0xfffffffe;
817 printk(KERN_WARNING "time.c: WARNING: Enabled HPET "
818 "at %#lx.\n", vxtime.hpet_address);
820 #endif
821 if (nohpet)
822 vxtime.hpet_address = 0;
824 xtime.tv_sec = get_cmos_time();
825 xtime.tv_nsec = 0;
827 set_normalized_timespec(&wall_to_monotonic,
828 -xtime.tv_sec, -xtime.tv_nsec);
830 if (!hpet_init()) {
831 vxtime_hz = (1000000000000000L + hpet_period / 2) /
832 hpet_period;
833 cpu_khz = hpet_calibrate_tsc();
834 timename = "HPET";
835 } else {
836 pit_init();
837 cpu_khz = pit_calibrate_tsc();
838 timename = "PIT";
841 printk(KERN_INFO "time.c: Using %ld.%06ld MHz %s timer.\n",
842 vxtime_hz / 1000000, vxtime_hz % 1000000, timename);
843 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
844 cpu_khz / 1000, cpu_khz % 1000);
845 vxtime.mode = VXTIME_TSC;
846 vxtime.quot = (1000000L << 32) / vxtime_hz;
847 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
848 vxtime.hz = vxtime_hz;
849 rdtscll_sync(&vxtime.last_tsc);
850 setup_irq(0, &irq0);
852 set_cyc2ns_scale(cpu_khz / 1000);
855 void __init time_init_smp(void)
857 char *timetype;
859 if (vxtime.hpet_address) {
860 timetype = "HPET";
861 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
862 vxtime.mode = VXTIME_HPET;
863 do_gettimeoffset = do_gettimeoffset_hpet;
864 } else {
865 timetype = "PIT/TSC";
866 vxtime.mode = VXTIME_TSC;
868 printk(KERN_INFO "time.c: Using %s based timekeeping.\n", timetype);
871 __setup("report_lost_ticks", time_setup);
873 static long clock_cmos_diff;
875 static int time_suspend(struct sys_device *dev, u32 state)
878 * Estimate time zone so that set_time can update the clock
880 clock_cmos_diff = -get_cmos_time();
881 clock_cmos_diff += get_seconds();
882 return 0;
885 static int time_resume(struct sys_device *dev)
887 unsigned long flags;
888 unsigned long sec = get_cmos_time() + clock_cmos_diff;
889 write_seqlock_irqsave(&xtime_lock,flags);
890 xtime.tv_sec = sec;
891 xtime.tv_nsec = 0;
892 write_sequnlock_irqrestore(&xtime_lock,flags);
893 return 0;
896 static struct sysdev_class pit_sysclass = {
897 .resume = time_resume,
898 .suspend = time_suspend,
899 set_kset_name("pit"),
903 /* XXX this driverfs stuff should probably go elsewhere later -john */
904 static struct sys_device device_i8253 = {
905 .id = 0,
906 .cls = &pit_sysclass,
909 static int time_init_device(void)
911 int error = sysdev_class_register(&pit_sysclass);
912 if (!error)
913 error = sysdev_register(&device_i8253);
914 return error;
917 device_initcall(time_init_device);
919 #ifdef CONFIG_HPET_EMULATE_RTC
920 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
921 * is enabled, we support RTC interrupt functionality in software.
922 * RTC has 3 kinds of interrupts:
923 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
924 * is updated
925 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
926 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
927 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
928 * (1) and (2) above are implemented using polling at a frequency of
929 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
930 * overhead. (DEFAULT_RTC_INT_FREQ)
931 * For (3), we use interrupts at 64Hz or user specified periodic
932 * frequency, whichever is higher.
934 #include <linux/mc146818rtc.h>
935 #include <linux/rtc.h>
937 extern irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs);
939 #define DEFAULT_RTC_INT_FREQ 64
940 #define RTC_NUM_INTS 1
942 static unsigned long UIE_on;
943 static unsigned long prev_update_sec;
945 static unsigned long AIE_on;
946 static struct rtc_time alarm_time;
948 static unsigned long PIE_on;
949 static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
950 static unsigned long PIE_count;
952 static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
954 int is_hpet_enabled(void)
956 return vxtime.hpet_address != 0;
960 * Timer 1 for RTC, we do not use periodic interrupt feature,
961 * even if HPET supports periodic interrupts on Timer 1.
962 * The reason being, to set up a periodic interrupt in HPET, we need to
963 * stop the main counter. And if we do that everytime someone diables/enables
964 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
965 * So, for the time being, simulate the periodic interrupt in software.
967 * hpet_rtc_timer_init() is called for the first time and during subsequent
968 * interuppts reinit happens through hpet_rtc_timer_reinit().
970 int hpet_rtc_timer_init(void)
972 unsigned int cfg, cnt;
973 unsigned long flags;
975 if (!is_hpet_enabled())
976 return 0;
978 * Set the counter 1 and enable the interrupts.
980 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
981 hpet_rtc_int_freq = PIE_freq;
982 else
983 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
985 local_irq_save(flags);
986 cnt = hpet_readl(HPET_COUNTER);
987 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
988 hpet_writel(cnt, HPET_T1_CMP);
989 local_irq_restore(flags);
991 cfg = hpet_readl(HPET_T1_CFG);
992 cfg |= HPET_TN_ENABLE | HPET_TN_SETVAL | HPET_TN_32BIT;
993 hpet_writel(cfg, HPET_T1_CFG);
995 return 1;
998 static void hpet_rtc_timer_reinit(void)
1000 unsigned int cfg, cnt;
1002 if (!(PIE_on | AIE_on | UIE_on))
1003 return;
1005 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1006 hpet_rtc_int_freq = PIE_freq;
1007 else
1008 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1010 /* It is more accurate to use the comparator value than current count.*/
1011 cnt = hpet_readl(HPET_T1_CMP);
1012 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
1013 hpet_writel(cnt, HPET_T1_CMP);
1015 cfg = hpet_readl(HPET_T1_CFG);
1016 cfg |= HPET_TN_ENABLE | HPET_TN_SETVAL | HPET_TN_32BIT;
1017 hpet_writel(cfg, HPET_T1_CFG);
1019 return;
1023 * The functions below are called from rtc driver.
1024 * Return 0 if HPET is not being used.
1025 * Otherwise do the necessary changes and return 1.
1027 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1029 if (!is_hpet_enabled())
1030 return 0;
1032 if (bit_mask & RTC_UIE)
1033 UIE_on = 0;
1034 if (bit_mask & RTC_PIE)
1035 PIE_on = 0;
1036 if (bit_mask & RTC_AIE)
1037 AIE_on = 0;
1039 return 1;
1042 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1044 int timer_init_reqd = 0;
1046 if (!is_hpet_enabled())
1047 return 0;
1049 if (!(PIE_on | AIE_on | UIE_on))
1050 timer_init_reqd = 1;
1052 if (bit_mask & RTC_UIE) {
1053 UIE_on = 1;
1055 if (bit_mask & RTC_PIE) {
1056 PIE_on = 1;
1057 PIE_count = 0;
1059 if (bit_mask & RTC_AIE) {
1060 AIE_on = 1;
1063 if (timer_init_reqd)
1064 hpet_rtc_timer_init();
1066 return 1;
1069 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1071 if (!is_hpet_enabled())
1072 return 0;
1074 alarm_time.tm_hour = hrs;
1075 alarm_time.tm_min = min;
1076 alarm_time.tm_sec = sec;
1078 return 1;
1081 int hpet_set_periodic_freq(unsigned long freq)
1083 if (!is_hpet_enabled())
1084 return 0;
1086 PIE_freq = freq;
1087 PIE_count = 0;
1089 return 1;
1092 int hpet_rtc_dropped_irq(void)
1094 if (!is_hpet_enabled())
1095 return 0;
1097 return 1;
1100 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1102 struct rtc_time curr_time;
1103 unsigned long rtc_int_flag = 0;
1104 int call_rtc_interrupt = 0;
1106 hpet_rtc_timer_reinit();
1108 if (UIE_on | AIE_on) {
1109 rtc_get_rtc_time(&curr_time);
1111 if (UIE_on) {
1112 if (curr_time.tm_sec != prev_update_sec) {
1113 /* Set update int info, call real rtc int routine */
1114 call_rtc_interrupt = 1;
1115 rtc_int_flag = RTC_UF;
1116 prev_update_sec = curr_time.tm_sec;
1119 if (PIE_on) {
1120 PIE_count++;
1121 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1122 /* Set periodic int info, call real rtc int routine */
1123 call_rtc_interrupt = 1;
1124 rtc_int_flag |= RTC_PF;
1125 PIE_count = 0;
1128 if (AIE_on) {
1129 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1130 (curr_time.tm_min == alarm_time.tm_min) &&
1131 (curr_time.tm_hour == alarm_time.tm_hour)) {
1132 /* Set alarm int info, call real rtc int routine */
1133 call_rtc_interrupt = 1;
1134 rtc_int_flag |= RTC_AF;
1137 if (call_rtc_interrupt) {
1138 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1139 rtc_interrupt(rtc_int_flag, dev_id, regs);
1141 return IRQ_HANDLED;
1143 #endif
1147 static int __init nohpet_setup(char *s)
1149 nohpet = 1;
1150 return 0;
1153 __setup("nohpet", nohpet_setup);