4 * AES Cipher Algorithm.
6 * Based on Brian Gladman's code.
9 * Alexander Kjeldaas <astor@fast.no>
10 * Herbert Valerio Riedel <hvr@hvrlab.org>
11 * Kyle McMartin <kyle@debian.org>
12 * Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * ---------------------------------------------------------------------------
20 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
21 * All rights reserved.
25 * The free distribution and use of this software in both source and binary
26 * form is allowed (with or without changes) provided that:
28 * 1. distributions of this source code include the above copyright
29 * notice, this list of conditions and the following disclaimer;
31 * 2. distributions in binary form include the above copyright
32 * notice, this list of conditions and the following disclaimer
33 * in the documentation and/or other associated materials;
35 * 3. the copyright holder's name is not used to endorse products
36 * built using this software without specific written permission.
38 * ALTERNATIVELY, provided that this notice is retained in full, this product
39 * may be distributed under the terms of the GNU General Public License (GPL),
40 * in which case the provisions of the GPL apply INSTEAD OF those given above.
44 * This software is provided 'as is' with no explicit or implied warranties
45 * in respect of its properties, including, but not limited to, correctness
46 * and/or fitness for purpose.
47 * ---------------------------------------------------------------------------
50 /* Some changes from the Gladman version:
51 s/RIJNDAEL(e_key)/E_KEY/g
52 s/RIJNDAEL(d_key)/D_KEY/g
55 #include <linux/module.h>
56 #include <linux/init.h>
57 #include <linux/types.h>
58 #include <linux/errno.h>
59 #include <linux/crypto.h>
60 #include <asm/byteorder.h>
62 #define AES_MIN_KEY_SIZE 16
63 #define AES_MAX_KEY_SIZE 32
65 #define AES_BLOCK_SIZE 16
68 u32
generic_rotr32 (const u32 x
, const unsigned bits
)
70 const unsigned n
= bits
% 32;
71 return (x
>> n
) | (x
<< (32 - n
));
75 u32
generic_rotl32 (const u32 x
, const unsigned bits
)
77 const unsigned n
= bits
% 32;
78 return (x
<< n
) | (x
>> (32 - n
));
81 #define rotl generic_rotl32
82 #define rotr generic_rotr32
85 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
88 byte(const u32 x
, const unsigned n
)
93 #define u32_in(x) le32_to_cpu(*(const u32 *)(x))
94 #define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from))
105 static u8 pow_tab
[256] __initdata
;
106 static u8 log_tab
[256] __initdata
;
107 static u8 sbx_tab
[256] __initdata
;
108 static u8 isb_tab
[256] __initdata
;
109 static u32 rco_tab
[10];
110 static u32 ft_tab
[4][256];
111 static u32 it_tab
[4][256];
113 static u32 fl_tab
[4][256];
114 static u32 il_tab
[4][256];
116 static inline u8 __init
119 u8 aa
= log_tab
[a
], cc
= aa
+ log_tab
[b
];
121 return pow_tab
[cc
+ (cc
< aa
? 1 : 0)];
124 #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
126 #define f_rn(bo, bi, n, k) \
127 bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
128 ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
129 ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
130 ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
132 #define i_rn(bo, bi, n, k) \
133 bo[n] = it_tab[0][byte(bi[n],0)] ^ \
134 it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
135 it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
136 it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
139 ( fl_tab[0][byte(x, 0)] ^ \
140 fl_tab[1][byte(x, 1)] ^ \
141 fl_tab[2][byte(x, 2)] ^ \
142 fl_tab[3][byte(x, 3)] )
144 #define f_rl(bo, bi, n, k) \
145 bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
146 fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
147 fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
148 fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
150 #define i_rl(bo, bi, n, k) \
151 bo[n] = il_tab[0][byte(bi[n],0)] ^ \
152 il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
153 il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
154 il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
162 /* log and power tables for GF(2**8) finite field with
163 0x011b as modular polynomial - the simplest primitive
164 root is 0x03, used here to generate the tables */
166 for (i
= 0, p
= 1; i
< 256; ++i
) {
170 p
^= (p
<< 1) ^ (p
& 0x80 ? 0x01b : 0);
175 for (i
= 0, p
= 1; i
< 10; ++i
) {
178 p
= (p
<< 1) ^ (p
& 0x80 ? 0x01b : 0);
181 for (i
= 0; i
< 256; ++i
) {
182 p
= (i
? pow_tab
[255 - log_tab
[i
]] : 0);
183 q
= ((p
>> 7) | (p
<< 1)) ^ ((p
>> 6) | (p
<< 2));
184 p
^= 0x63 ^ q
^ ((q
>> 6) | (q
<< 2));
189 for (i
= 0; i
< 256; ++i
) {
194 fl_tab
[1][i
] = rotl (t
, 8);
195 fl_tab
[2][i
] = rotl (t
, 16);
196 fl_tab
[3][i
] = rotl (t
, 24);
198 t
= ((u32
) ff_mult (2, p
)) |
200 ((u32
) p
<< 16) | ((u32
) ff_mult (3, p
) << 24);
203 ft_tab
[1][i
] = rotl (t
, 8);
204 ft_tab
[2][i
] = rotl (t
, 16);
205 ft_tab
[3][i
] = rotl (t
, 24);
211 il_tab
[1][i
] = rotl (t
, 8);
212 il_tab
[2][i
] = rotl (t
, 16);
213 il_tab
[3][i
] = rotl (t
, 24);
215 t
= ((u32
) ff_mult (14, p
)) |
216 ((u32
) ff_mult (9, p
) << 8) |
217 ((u32
) ff_mult (13, p
) << 16) |
218 ((u32
) ff_mult (11, p
) << 24);
221 it_tab
[1][i
] = rotl (t
, 8);
222 it_tab
[2][i
] = rotl (t
, 16);
223 it_tab
[3][i
] = rotl (t
, 24);
227 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
229 #define imix_col(y,x) \
235 (y) ^= rotr(u ^ t, 8) ^ \
239 /* initialise the key schedule from the user supplied key */
242 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
243 t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
244 t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
245 t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
246 t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
250 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
251 t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
252 t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
253 t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
254 t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
255 t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
256 t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
260 { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
261 t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
262 t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
263 t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
264 t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
265 t = E_KEY[8 * i + 4] ^ ls_box(t); \
266 E_KEY[8 * i + 12] = t; \
267 t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
268 t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
269 t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
273 aes_set_key(void *ctx_arg
, const u8
*in_key
, unsigned int key_len
, u32
*flags
)
275 struct aes_ctx
*ctx
= ctx_arg
;
278 if (key_len
!= 16 && key_len
!= 24 && key_len
!= 32) {
279 *flags
|= CRYPTO_TFM_RES_BAD_KEY_LEN
;
283 ctx
->key_length
= key_len
;
285 E_KEY
[0] = u32_in (in_key
);
286 E_KEY
[1] = u32_in (in_key
+ 4);
287 E_KEY
[2] = u32_in (in_key
+ 8);
288 E_KEY
[3] = u32_in (in_key
+ 12);
293 for (i
= 0; i
< 10; ++i
)
298 E_KEY
[4] = u32_in (in_key
+ 16);
299 t
= E_KEY
[5] = u32_in (in_key
+ 20);
300 for (i
= 0; i
< 8; ++i
)
305 E_KEY
[4] = u32_in (in_key
+ 16);
306 E_KEY
[5] = u32_in (in_key
+ 20);
307 E_KEY
[6] = u32_in (in_key
+ 24);
308 t
= E_KEY
[7] = u32_in (in_key
+ 28);
309 for (i
= 0; i
< 7; ++i
)
319 for (i
= 4; i
< key_len
+ 24; ++i
) {
320 imix_col (D_KEY
[i
], E_KEY
[i
]);
326 /* encrypt a block of text */
328 #define f_nround(bo, bi, k) \
329 f_rn(bo, bi, 0, k); \
330 f_rn(bo, bi, 1, k); \
331 f_rn(bo, bi, 2, k); \
332 f_rn(bo, bi, 3, k); \
335 #define f_lround(bo, bi, k) \
336 f_rl(bo, bi, 0, k); \
337 f_rl(bo, bi, 1, k); \
338 f_rl(bo, bi, 2, k); \
341 static void aes_encrypt(void *ctx_arg
, u8
*out
, const u8
*in
)
343 const struct aes_ctx
*ctx
= ctx_arg
;
345 const u32
*kp
= E_KEY
+ 4;
347 b0
[0] = u32_in (in
) ^ E_KEY
[0];
348 b0
[1] = u32_in (in
+ 4) ^ E_KEY
[1];
349 b0
[2] = u32_in (in
+ 8) ^ E_KEY
[2];
350 b0
[3] = u32_in (in
+ 12) ^ E_KEY
[3];
352 if (ctx
->key_length
> 24) {
353 f_nround (b1
, b0
, kp
);
354 f_nround (b0
, b1
, kp
);
357 if (ctx
->key_length
> 16) {
358 f_nround (b1
, b0
, kp
);
359 f_nround (b0
, b1
, kp
);
362 f_nround (b1
, b0
, kp
);
363 f_nround (b0
, b1
, kp
);
364 f_nround (b1
, b0
, kp
);
365 f_nround (b0
, b1
, kp
);
366 f_nround (b1
, b0
, kp
);
367 f_nround (b0
, b1
, kp
);
368 f_nround (b1
, b0
, kp
);
369 f_nround (b0
, b1
, kp
);
370 f_nround (b1
, b0
, kp
);
371 f_lround (b0
, b1
, kp
);
373 u32_out (out
, b0
[0]);
374 u32_out (out
+ 4, b0
[1]);
375 u32_out (out
+ 8, b0
[2]);
376 u32_out (out
+ 12, b0
[3]);
379 /* decrypt a block of text */
381 #define i_nround(bo, bi, k) \
382 i_rn(bo, bi, 0, k); \
383 i_rn(bo, bi, 1, k); \
384 i_rn(bo, bi, 2, k); \
385 i_rn(bo, bi, 3, k); \
388 #define i_lround(bo, bi, k) \
389 i_rl(bo, bi, 0, k); \
390 i_rl(bo, bi, 1, k); \
391 i_rl(bo, bi, 2, k); \
394 static void aes_decrypt(void *ctx_arg
, u8
*out
, const u8
*in
)
396 const struct aes_ctx
*ctx
= ctx_arg
;
398 const int key_len
= ctx
->key_length
;
399 const u32
*kp
= D_KEY
+ key_len
+ 20;
401 b0
[0] = u32_in (in
) ^ E_KEY
[key_len
+ 24];
402 b0
[1] = u32_in (in
+ 4) ^ E_KEY
[key_len
+ 25];
403 b0
[2] = u32_in (in
+ 8) ^ E_KEY
[key_len
+ 26];
404 b0
[3] = u32_in (in
+ 12) ^ E_KEY
[key_len
+ 27];
407 i_nround (b1
, b0
, kp
);
408 i_nround (b0
, b1
, kp
);
412 i_nround (b1
, b0
, kp
);
413 i_nround (b0
, b1
, kp
);
416 i_nround (b1
, b0
, kp
);
417 i_nround (b0
, b1
, kp
);
418 i_nround (b1
, b0
, kp
);
419 i_nround (b0
, b1
, kp
);
420 i_nround (b1
, b0
, kp
);
421 i_nround (b0
, b1
, kp
);
422 i_nround (b1
, b0
, kp
);
423 i_nround (b0
, b1
, kp
);
424 i_nround (b1
, b0
, kp
);
425 i_lround (b0
, b1
, kp
);
427 u32_out (out
, b0
[0]);
428 u32_out (out
+ 4, b0
[1]);
429 u32_out (out
+ 8, b0
[2]);
430 u32_out (out
+ 12, b0
[3]);
434 static struct crypto_alg aes_alg
= {
436 .cra_flags
= CRYPTO_ALG_TYPE_CIPHER
,
437 .cra_blocksize
= AES_BLOCK_SIZE
,
438 .cra_ctxsize
= sizeof(struct aes_ctx
),
439 .cra_module
= THIS_MODULE
,
440 .cra_list
= LIST_HEAD_INIT(aes_alg
.cra_list
),
443 .cia_min_keysize
= AES_MIN_KEY_SIZE
,
444 .cia_max_keysize
= AES_MAX_KEY_SIZE
,
445 .cia_setkey
= aes_set_key
,
446 .cia_encrypt
= aes_encrypt
,
447 .cia_decrypt
= aes_decrypt
452 static int __init
aes_init(void)
455 return crypto_register_alg(&aes_alg
);
458 static void __exit
aes_fini(void)
460 crypto_unregister_alg(&aes_alg
);
463 module_init(aes_init
);
464 module_exit(aes_fini
);
466 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
467 MODULE_LICENSE("Dual BSD/GPL");