MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / net / acenic.c
blobcc56ca3ac02a85b8c7f42783c9a89d341926dd1e
1 /*
2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * Additional credits:
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44 * endian systems.
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
49 * driver init path.
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/version.h>
57 #include <linux/types.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/pci.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/mm.h>
68 #include <linux/highmem.h>
69 #include <linux/sockios.h>
71 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72 #include <linux/if_vlan.h>
73 #endif
75 #ifdef SIOCETHTOOL
76 #include <linux/ethtool.h>
77 #endif
79 #include <net/sock.h>
80 #include <net/ip.h>
82 #include <asm/system.h>
83 #include <asm/io.h>
84 #include <asm/irq.h>
85 #include <asm/byteorder.h>
86 #include <asm/uaccess.h>
89 #define DRV_NAME "acenic"
91 #undef INDEX_DEBUG
93 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
94 #define ACE_IS_TIGON_I(ap) 0
95 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
96 #else
97 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
98 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
99 #endif
101 #ifndef PCI_VENDOR_ID_ALTEON
102 #define PCI_VENDOR_ID_ALTEON 0x12ae
103 #endif
104 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
105 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
106 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
107 #endif
108 #ifndef PCI_DEVICE_ID_3COM_3C985
109 #define PCI_DEVICE_ID_3COM_3C985 0x0001
110 #endif
111 #ifndef PCI_VENDOR_ID_NETGEAR
112 #define PCI_VENDOR_ID_NETGEAR 0x1385
113 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
114 #endif
115 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
116 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
117 #endif
121 * Farallon used the DEC vendor ID by mistake and they seem not
122 * to care - stinky!
124 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
125 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
126 #endif
127 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
128 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
129 #endif
130 #ifndef PCI_VENDOR_ID_SGI
131 #define PCI_VENDOR_ID_SGI 0x10a9
132 #endif
133 #ifndef PCI_DEVICE_ID_SGI_ACENIC
134 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
135 #endif
137 static struct pci_device_id acenic_pci_tbl[] = {
138 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
139 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
140 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
141 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
142 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
143 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
144 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
145 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
146 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
147 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
149 * Farallon used the DEC vendor ID on their cards incorrectly,
150 * then later Alteon's ID.
152 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
153 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
154 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
155 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
156 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
157 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
160 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
162 #ifndef SET_NETDEV_DEV
163 #define SET_NETDEV_DEV(net, pdev) do{} while(0)
164 #endif
166 #if LINUX_VERSION_CODE >= 0x2051c
167 #define ace_sync_irq(irq) synchronize_irq(irq)
168 #else
169 #define ace_sync_irq(irq) synchronize_irq()
170 #endif
172 #ifndef offset_in_page
173 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
174 #endif
176 #define ACE_MAX_MOD_PARMS 8
177 #define BOARD_IDX_STATIC 0
178 #define BOARD_IDX_OVERFLOW -1
180 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
181 defined(NETIF_F_HW_VLAN_RX)
182 #define ACENIC_DO_VLAN 1
183 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
184 #else
185 #define ACENIC_DO_VLAN 0
186 #define ACE_RCB_VLAN_FLAG 0
187 #endif
189 #include "acenic.h"
192 * These must be defined before the firmware is included.
194 #define MAX_TEXT_LEN 96*1024
195 #define MAX_RODATA_LEN 8*1024
196 #define MAX_DATA_LEN 2*1024
198 #include "acenic_firmware.h"
200 #ifndef tigon2FwReleaseLocal
201 #define tigon2FwReleaseLocal 0
202 #endif
205 * This driver currently supports Tigon I and Tigon II based cards
206 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
207 * GA620. The driver should also work on the SGI, DEC and Farallon
208 * versions of the card, however I have not been able to test that
209 * myself.
211 * This card is really neat, it supports receive hardware checksumming
212 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
213 * firmware. Also the programming interface is quite neat, except for
214 * the parts dealing with the i2c eeprom on the card ;-)
216 * Using jumbo frames:
218 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
219 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
220 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
221 * interface number and <MTU> being the MTU value.
223 * Module parameters:
225 * When compiled as a loadable module, the driver allows for a number
226 * of module parameters to be specified. The driver supports the
227 * following module parameters:
229 * trace=<val> - Firmware trace level. This requires special traced
230 * firmware to replace the firmware supplied with
231 * the driver - for debugging purposes only.
233 * link=<val> - Link state. Normally you want to use the default link
234 * parameters set by the driver. This can be used to
235 * override these in case your switch doesn't negotiate
236 * the link properly. Valid values are:
237 * 0x0001 - Force half duplex link.
238 * 0x0002 - Do not negotiate line speed with the other end.
239 * 0x0010 - 10Mbit/sec link.
240 * 0x0020 - 100Mbit/sec link.
241 * 0x0040 - 1000Mbit/sec link.
242 * 0x0100 - Do not negotiate flow control.
243 * 0x0200 - Enable RX flow control Y
244 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
245 * Default value is 0x0270, ie. enable link+flow
246 * control negotiation. Negotiating the highest
247 * possible link speed with RX flow control enabled.
249 * When disabling link speed negotiation, only one link
250 * speed is allowed to be specified!
252 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
253 * to wait for more packets to arive before
254 * interrupting the host, from the time the first
255 * packet arrives.
257 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
258 * to wait for more packets to arive in the transmit ring,
259 * before interrupting the host, after transmitting the
260 * first packet in the ring.
262 * max_tx_desc=<val> - maximum number of transmit descriptors
263 * (packets) transmitted before interrupting the host.
265 * max_rx_desc=<val> - maximum number of receive descriptors
266 * (packets) received before interrupting the host.
268 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
269 * increments of the NIC's on board memory to be used for
270 * transmit and receive buffers. For the 1MB NIC app. 800KB
271 * is available, on the 1/2MB NIC app. 300KB is available.
272 * 68KB will always be available as a minimum for both
273 * directions. The default value is a 50/50 split.
274 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
275 * operations, default (1) is to always disable this as
276 * that is what Alteon does on NT. I have not been able
277 * to measure any real performance differences with
278 * this on my systems. Set <val>=0 if you want to
279 * enable these operations.
281 * If you use more than one NIC, specify the parameters for the
282 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
283 * run tracing on NIC #2 but not on NIC #1 and #3.
285 * TODO:
287 * - Proper multicast support.
288 * - NIC dump support.
289 * - More tuning parameters.
291 * The mini ring is not used under Linux and I am not sure it makes sense
292 * to actually use it.
294 * New interrupt handler strategy:
296 * The old interrupt handler worked using the traditional method of
297 * replacing an skbuff with a new one when a packet arrives. However
298 * the rx rings do not need to contain a static number of buffer
299 * descriptors, thus it makes sense to move the memory allocation out
300 * of the main interrupt handler and do it in a bottom half handler
301 * and only allocate new buffers when the number of buffers in the
302 * ring is below a certain threshold. In order to avoid starving the
303 * NIC under heavy load it is however necessary to force allocation
304 * when hitting a minimum threshold. The strategy for alloction is as
305 * follows:
307 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
308 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
309 * the buffers in the interrupt handler
310 * RX_RING_THRES - maximum number of buffers in the rx ring
311 * RX_MINI_THRES - maximum number of buffers in the mini ring
312 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
314 * One advantagous side effect of this allocation approach is that the
315 * entire rx processing can be done without holding any spin lock
316 * since the rx rings and registers are totally independent of the tx
317 * ring and its registers. This of course includes the kmalloc's of
318 * new skb's. Thus start_xmit can run in parallel with rx processing
319 * and the memory allocation on SMP systems.
321 * Note that running the skb reallocation in a bottom half opens up
322 * another can of races which needs to be handled properly. In
323 * particular it can happen that the interrupt handler tries to run
324 * the reallocation while the bottom half is either running on another
325 * CPU or was interrupted on the same CPU. To get around this the
326 * driver uses bitops to prevent the reallocation routines from being
327 * reentered.
329 * TX handling can also be done without holding any spin lock, wheee
330 * this is fun! since tx_ret_csm is only written to by the interrupt
331 * handler. The case to be aware of is when shutting down the device
332 * and cleaning up where it is necessary to make sure that
333 * start_xmit() is not running while this is happening. Well DaveM
334 * informs me that this case is already protected against ... bye bye
335 * Mr. Spin Lock, it was nice to know you.
337 * TX interrupts are now partly disabled so the NIC will only generate
338 * TX interrupts for the number of coal ticks, not for the number of
339 * TX packets in the queue. This should reduce the number of TX only,
340 * ie. when no RX processing is done, interrupts seen.
344 * Threshold values for RX buffer allocation - the low water marks for
345 * when to start refilling the rings are set to 75% of the ring
346 * sizes. It seems to make sense to refill the rings entirely from the
347 * intrrupt handler once it gets below the panic threshold, that way
348 * we don't risk that the refilling is moved to another CPU when the
349 * one running the interrupt handler just got the slab code hot in its
350 * cache.
352 #define RX_RING_SIZE 72
353 #define RX_MINI_SIZE 64
354 #define RX_JUMBO_SIZE 48
356 #define RX_PANIC_STD_THRES 16
357 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
358 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
359 #define RX_PANIC_MINI_THRES 12
360 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
361 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
362 #define RX_PANIC_JUMBO_THRES 6
363 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
364 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
368 * Size of the mini ring entries, basically these just should be big
369 * enough to take TCP ACKs
371 #define ACE_MINI_SIZE 100
373 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
374 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
375 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
378 * There seems to be a magic difference in the effect between 995 and 996
379 * but little difference between 900 and 995 ... no idea why.
381 * There is now a default set of tuning parameters which is set, depending
382 * on whether or not the user enables Jumbo frames. It's assumed that if
383 * Jumbo frames are enabled, the user wants optimal tuning for that case.
385 #define DEF_TX_COAL 400 /* 996 */
386 #define DEF_TX_MAX_DESC 60 /* was 40 */
387 #define DEF_RX_COAL 120 /* 1000 */
388 #define DEF_RX_MAX_DESC 25
389 #define DEF_TX_RATIO 21 /* 24 */
391 #define DEF_JUMBO_TX_COAL 20
392 #define DEF_JUMBO_TX_MAX_DESC 60
393 #define DEF_JUMBO_RX_COAL 30
394 #define DEF_JUMBO_RX_MAX_DESC 6
395 #define DEF_JUMBO_TX_RATIO 21
397 #if tigon2FwReleaseLocal < 20001118
399 * Standard firmware and early modifications duplicate
400 * IRQ load without this flag (coal timer is never reset).
401 * Note that with this flag tx_coal should be less than
402 * time to xmit full tx ring.
403 * 400usec is not so bad for tx ring size of 128.
405 #define TX_COAL_INTS_ONLY 1 /* worth it */
406 #else
408 * With modified firmware, this is not necessary, but still useful.
410 #define TX_COAL_INTS_ONLY 1
411 #endif
413 #define DEF_TRACE 0
414 #define DEF_STAT (2 * TICKS_PER_SEC)
417 static int link[ACE_MAX_MOD_PARMS];
418 static int trace[ACE_MAX_MOD_PARMS];
419 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
420 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
421 static int max_tx_desc[ACE_MAX_MOD_PARMS];
422 static int max_rx_desc[ACE_MAX_MOD_PARMS];
423 static int tx_ratio[ACE_MAX_MOD_PARMS];
424 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
426 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
427 MODULE_LICENSE("GPL");
428 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
430 static int num_params;
431 module_param_array(link, int, num_params, 0);
432 module_param_array(trace, int, num_params, 0);
433 module_param_array(tx_coal_tick, int, num_params, 0);
434 module_param_array(max_tx_desc, int, num_params, 0);
435 module_param_array(rx_coal_tick, int, num_params, 0);
436 module_param_array(max_rx_desc, int, num_params, 0);
437 module_param_array(tx_ratio, int, num_params, 0);
438 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
439 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
440 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
441 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
442 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
443 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
444 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
447 static char version[] __initdata =
448 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
449 " http://home.cern.ch/~jes/gige/acenic.html\n";
451 static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
452 static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
453 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
455 static struct ethtool_ops ace_ethtool_ops = {
456 .get_settings = ace_get_settings,
457 .set_settings = ace_set_settings,
458 .get_drvinfo = ace_get_drvinfo,
461 static int __devinit acenic_probe_one(struct pci_dev *pdev,
462 const struct pci_device_id *id)
464 struct net_device *dev;
465 struct ace_private *ap;
466 static int boards_found;
468 dev = alloc_etherdev(sizeof(struct ace_private));
469 if (dev == NULL) {
470 printk(KERN_ERR "acenic: Unable to allocate "
471 "net_device structure!\n");
472 return -ENOMEM;
475 SET_MODULE_OWNER(dev);
476 SET_NETDEV_DEV(dev, &pdev->dev);
478 ap = dev->priv;
479 ap->pdev = pdev;
480 ap->name = pci_name(pdev);
482 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
483 #if ACENIC_DO_VLAN
484 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
485 dev->vlan_rx_register = ace_vlan_rx_register;
486 dev->vlan_rx_kill_vid = ace_vlan_rx_kill_vid;
487 #endif
488 if (1) {
489 static void ace_watchdog(struct net_device *dev);
490 dev->tx_timeout = &ace_watchdog;
491 dev->watchdog_timeo = 5*HZ;
494 dev->open = &ace_open;
495 dev->stop = &ace_close;
496 dev->hard_start_xmit = &ace_start_xmit;
497 dev->get_stats = &ace_get_stats;
498 dev->set_multicast_list = &ace_set_multicast_list;
499 SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
500 dev->set_mac_address = &ace_set_mac_addr;
501 dev->change_mtu = &ace_change_mtu;
503 /* we only display this string ONCE */
504 if (!boards_found)
505 printk(version);
507 if (pci_enable_device(pdev))
508 goto fail_free_netdev;
511 * Enable master mode before we start playing with the
512 * pci_command word since pci_set_master() will modify
513 * it.
515 pci_set_master(pdev);
517 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
519 /* OpenFirmware on Mac's does not set this - DOH.. */
520 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
521 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
522 "access - was not enabled by BIOS/Firmware\n",
523 ap->name);
524 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
525 pci_write_config_word(ap->pdev, PCI_COMMAND,
526 ap->pci_command);
527 wmb();
530 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
531 if (ap->pci_latency <= 0x40) {
532 ap->pci_latency = 0x40;
533 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
537 * Remap the regs into kernel space - this is abuse of
538 * dev->base_addr since it was means for I/O port
539 * addresses but who gives a damn.
541 dev->base_addr = pci_resource_start(pdev, 0);
542 ap->regs = (struct ace_regs *)ioremap(dev->base_addr, 0x4000);
543 if (!ap->regs) {
544 printk(KERN_ERR "%s: Unable to map I/O register, "
545 "AceNIC %i will be disabled.\n",
546 ap->name, boards_found);
547 goto fail_free_netdev;
550 switch(pdev->vendor) {
551 case PCI_VENDOR_ID_ALTEON:
552 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
553 printk(KERN_INFO "%s: Farallon PN9100-T ",
554 ap->name);
555 } else {
556 printk(KERN_INFO "%s: Alteon AceNIC ",
557 ap->name);
559 break;
560 case PCI_VENDOR_ID_3COM:
561 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
562 break;
563 case PCI_VENDOR_ID_NETGEAR:
564 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
565 break;
566 case PCI_VENDOR_ID_DEC:
567 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
568 printk(KERN_INFO "%s: Farallon PN9000-SX ",
569 ap->name);
570 break;
572 case PCI_VENDOR_ID_SGI:
573 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
574 break;
575 default:
576 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
577 break;
580 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
581 #ifdef __sparc__
582 printk("irq %s\n", __irq_itoa(pdev->irq));
583 #else
584 printk("irq %i\n", pdev->irq);
585 #endif
587 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
588 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
589 printk(KERN_ERR "%s: Driver compiled without Tigon I"
590 " support - NIC disabled\n", dev->name);
591 goto fail_uninit;
593 #endif
595 if (ace_allocate_descriptors(dev))
596 goto fail_free_netdev;
598 #ifdef MODULE
599 if (boards_found >= ACE_MAX_MOD_PARMS)
600 ap->board_idx = BOARD_IDX_OVERFLOW;
601 else
602 ap->board_idx = boards_found;
603 #else
604 ap->board_idx = BOARD_IDX_STATIC;
605 #endif
607 if (ace_init(dev))
608 goto fail_free_netdev;
610 if (register_netdev(dev)) {
611 printk(KERN_ERR "acenic: device registration failed\n");
612 goto fail_uninit;
614 ap->name = dev->name;
616 if (ap->pci_using_dac)
617 dev->features |= NETIF_F_HIGHDMA;
619 pci_set_drvdata(pdev, dev);
621 boards_found++;
622 return 0;
624 fail_uninit:
625 ace_init_cleanup(dev);
626 fail_free_netdev:
627 free_netdev(dev);
628 return -ENODEV;
631 static void __devexit acenic_remove_one(struct pci_dev *pdev)
633 struct net_device *dev = pci_get_drvdata(pdev);
634 struct ace_private *ap = netdev_priv(dev);
635 struct ace_regs *regs = ap->regs;
636 short i;
638 unregister_netdev(dev);
640 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
641 if (ap->version >= 2)
642 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
645 * This clears any pending interrupts
647 writel(1, &regs->Mb0Lo);
648 readl(&regs->CpuCtrl); /* flush */
651 * Make sure no other CPUs are processing interrupts
652 * on the card before the buffers are being released.
653 * Otherwise one might experience some `interesting'
654 * effects.
656 * Then release the RX buffers - jumbo buffers were
657 * already released in ace_close().
659 ace_sync_irq(dev->irq);
661 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
662 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
664 if (skb) {
665 struct ring_info *ringp;
666 dma_addr_t mapping;
668 ringp = &ap->skb->rx_std_skbuff[i];
669 mapping = pci_unmap_addr(ringp, mapping);
670 pci_unmap_page(ap->pdev, mapping,
671 ACE_STD_BUFSIZE,
672 PCI_DMA_FROMDEVICE);
674 ap->rx_std_ring[i].size = 0;
675 ap->skb->rx_std_skbuff[i].skb = NULL;
676 dev_kfree_skb(skb);
680 if (ap->version >= 2) {
681 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
682 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
684 if (skb) {
685 struct ring_info *ringp;
686 dma_addr_t mapping;
688 ringp = &ap->skb->rx_mini_skbuff[i];
689 mapping = pci_unmap_addr(ringp,mapping);
690 pci_unmap_page(ap->pdev, mapping,
691 ACE_MINI_BUFSIZE,
692 PCI_DMA_FROMDEVICE);
694 ap->rx_mini_ring[i].size = 0;
695 ap->skb->rx_mini_skbuff[i].skb = NULL;
696 dev_kfree_skb(skb);
701 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
702 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
703 if (skb) {
704 struct ring_info *ringp;
705 dma_addr_t mapping;
707 ringp = &ap->skb->rx_jumbo_skbuff[i];
708 mapping = pci_unmap_addr(ringp, mapping);
709 pci_unmap_page(ap->pdev, mapping,
710 ACE_JUMBO_BUFSIZE,
711 PCI_DMA_FROMDEVICE);
713 ap->rx_jumbo_ring[i].size = 0;
714 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
715 dev_kfree_skb(skb);
719 ace_init_cleanup(dev);
720 free_netdev(dev);
723 static struct pci_driver acenic_pci_driver = {
724 .name = "acenic",
725 .id_table = acenic_pci_tbl,
726 .probe = acenic_probe_one,
727 .remove = __devexit_p(acenic_remove_one),
730 static int __init acenic_init(void)
732 return pci_module_init(&acenic_pci_driver);
735 static void __exit acenic_exit(void)
737 pci_unregister_driver(&acenic_pci_driver);
740 module_init(acenic_init);
741 module_exit(acenic_exit);
743 static void ace_free_descriptors(struct net_device *dev)
745 struct ace_private *ap = netdev_priv(dev);
746 int size;
748 if (ap->rx_std_ring != NULL) {
749 size = (sizeof(struct rx_desc) *
750 (RX_STD_RING_ENTRIES +
751 RX_JUMBO_RING_ENTRIES +
752 RX_MINI_RING_ENTRIES +
753 RX_RETURN_RING_ENTRIES));
754 pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
755 ap->rx_ring_base_dma);
756 ap->rx_std_ring = NULL;
757 ap->rx_jumbo_ring = NULL;
758 ap->rx_mini_ring = NULL;
759 ap->rx_return_ring = NULL;
761 if (ap->evt_ring != NULL) {
762 size = (sizeof(struct event) * EVT_RING_ENTRIES);
763 pci_free_consistent(ap->pdev, size, ap->evt_ring,
764 ap->evt_ring_dma);
765 ap->evt_ring = NULL;
767 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
768 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
769 pci_free_consistent(ap->pdev, size, ap->tx_ring,
770 ap->tx_ring_dma);
772 ap->tx_ring = NULL;
774 if (ap->evt_prd != NULL) {
775 pci_free_consistent(ap->pdev, sizeof(u32),
776 (void *)ap->evt_prd, ap->evt_prd_dma);
777 ap->evt_prd = NULL;
779 if (ap->rx_ret_prd != NULL) {
780 pci_free_consistent(ap->pdev, sizeof(u32),
781 (void *)ap->rx_ret_prd,
782 ap->rx_ret_prd_dma);
783 ap->rx_ret_prd = NULL;
785 if (ap->tx_csm != NULL) {
786 pci_free_consistent(ap->pdev, sizeof(u32),
787 (void *)ap->tx_csm, ap->tx_csm_dma);
788 ap->tx_csm = NULL;
793 static int ace_allocate_descriptors(struct net_device *dev)
795 struct ace_private *ap = netdev_priv(dev);
796 int size;
798 size = (sizeof(struct rx_desc) *
799 (RX_STD_RING_ENTRIES +
800 RX_JUMBO_RING_ENTRIES +
801 RX_MINI_RING_ENTRIES +
802 RX_RETURN_RING_ENTRIES));
804 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
805 &ap->rx_ring_base_dma);
806 if (ap->rx_std_ring == NULL)
807 goto fail;
809 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
810 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
811 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
813 size = (sizeof(struct event) * EVT_RING_ENTRIES);
815 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
817 if (ap->evt_ring == NULL)
818 goto fail;
821 * Only allocate a host TX ring for the Tigon II, the Tigon I
822 * has to use PCI registers for this ;-(
824 if (!ACE_IS_TIGON_I(ap)) {
825 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
827 ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
828 &ap->tx_ring_dma);
830 if (ap->tx_ring == NULL)
831 goto fail;
834 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
835 &ap->evt_prd_dma);
836 if (ap->evt_prd == NULL)
837 goto fail;
839 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
840 &ap->rx_ret_prd_dma);
841 if (ap->rx_ret_prd == NULL)
842 goto fail;
844 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
845 &ap->tx_csm_dma);
846 if (ap->tx_csm == NULL)
847 goto fail;
849 return 0;
851 fail:
852 /* Clean up. */
853 ace_init_cleanup(dev);
854 return 1;
859 * Generic cleanup handling data allocated during init. Used when the
860 * module is unloaded or if an error occurs during initialization
862 static void ace_init_cleanup(struct net_device *dev)
864 struct ace_private *ap;
866 ap = netdev_priv(dev);
868 ace_free_descriptors(dev);
870 if (ap->info)
871 pci_free_consistent(ap->pdev, sizeof(struct ace_info),
872 ap->info, ap->info_dma);
873 if (ap->skb)
874 kfree(ap->skb);
875 if (ap->trace_buf)
876 kfree(ap->trace_buf);
878 if (dev->irq)
879 free_irq(dev->irq, dev);
881 iounmap(ap->regs);
886 * Commands are considered to be slow.
888 static inline void ace_issue_cmd(struct ace_regs *regs, struct cmd *cmd)
890 u32 idx;
892 idx = readl(&regs->CmdPrd);
894 writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
895 idx = (idx + 1) % CMD_RING_ENTRIES;
897 writel(idx, &regs->CmdPrd);
901 static int __init ace_init(struct net_device *dev)
903 struct ace_private *ap;
904 struct ace_regs *regs;
905 struct ace_info *info = NULL;
906 struct pci_dev *pdev;
907 unsigned long myjif;
908 u64 tmp_ptr;
909 u32 tig_ver, mac1, mac2, tmp, pci_state;
910 int board_idx, ecode = 0;
911 short i;
912 unsigned char cache_size;
914 ap = netdev_priv(dev);
915 regs = ap->regs;
917 board_idx = ap->board_idx;
920 * aman@sgi.com - its useful to do a NIC reset here to
921 * address the `Firmware not running' problem subsequent
922 * to any crashes involving the NIC
924 writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
925 readl(&regs->HostCtrl); /* PCI write posting */
926 udelay(5);
929 * Don't access any other registers before this point!
931 #ifdef __BIG_ENDIAN
933 * This will most likely need BYTE_SWAP once we switch
934 * to using __raw_writel()
936 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
937 &regs->HostCtrl);
938 #else
939 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
940 &regs->HostCtrl);
941 #endif
942 readl(&regs->HostCtrl); /* PCI write posting */
945 * Stop the NIC CPU and clear pending interrupts
947 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
948 readl(&regs->CpuCtrl); /* PCI write posting */
949 writel(0, &regs->Mb0Lo);
951 tig_ver = readl(&regs->HostCtrl) >> 28;
953 switch(tig_ver){
954 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
955 case 4:
956 case 5:
957 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
958 tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor,
959 tigonFwReleaseFix);
960 writel(0, &regs->LocalCtrl);
961 ap->version = 1;
962 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
963 break;
964 #endif
965 case 6:
966 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
967 tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor,
968 tigon2FwReleaseFix);
969 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
970 readl(&regs->CpuBCtrl); /* PCI write posting */
972 * The SRAM bank size does _not_ indicate the amount
973 * of memory on the card, it controls the _bank_ size!
974 * Ie. a 1MB AceNIC will have two banks of 512KB.
976 writel(SRAM_BANK_512K, &regs->LocalCtrl);
977 writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
978 ap->version = 2;
979 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
980 break;
981 default:
982 printk(KERN_WARNING " Unsupported Tigon version detected "
983 "(%i)\n", tig_ver);
984 ecode = -ENODEV;
985 goto init_error;
989 * ModeStat _must_ be set after the SRAM settings as this change
990 * seems to corrupt the ModeStat and possible other registers.
991 * The SRAM settings survive resets and setting it to the same
992 * value a second time works as well. This is what caused the
993 * `Firmware not running' problem on the Tigon II.
995 #ifdef __BIG_ENDIAN
996 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
997 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
998 #else
999 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
1000 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
1001 #endif
1002 readl(&regs->ModeStat); /* PCI write posting */
1004 mac1 = 0;
1005 for(i = 0; i < 4; i++) {
1006 mac1 = mac1 << 8;
1007 tmp = read_eeprom_byte(dev, 0x8c+i);
1008 if (tmp < 0) {
1009 ecode = -EIO;
1010 goto init_error;
1011 } else
1012 mac1 |= (tmp & 0xff);
1014 mac2 = 0;
1015 for(i = 4; i < 8; i++) {
1016 mac2 = mac2 << 8;
1017 tmp = read_eeprom_byte(dev, 0x8c+i);
1018 if (tmp < 0) {
1019 ecode = -EIO;
1020 goto init_error;
1021 } else
1022 mac2 |= (tmp & 0xff);
1025 writel(mac1, &regs->MacAddrHi);
1026 writel(mac2, &regs->MacAddrLo);
1028 printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
1029 (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff,
1030 (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff);
1032 dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1033 dev->dev_addr[1] = mac1 & 0xff;
1034 dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1035 dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1036 dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1037 dev->dev_addr[5] = mac2 & 0xff;
1040 * Looks like this is necessary to deal with on all architectures,
1041 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1042 * Ie. having two NICs in the machine, one will have the cache
1043 * line set at boot time, the other will not.
1045 pdev = ap->pdev;
1046 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1047 cache_size <<= 2;
1048 if (cache_size != SMP_CACHE_BYTES) {
1049 printk(KERN_INFO " PCI cache line size set incorrectly "
1050 "(%i bytes) by BIOS/FW, ", cache_size);
1051 if (cache_size > SMP_CACHE_BYTES)
1052 printk("expecting %i\n", SMP_CACHE_BYTES);
1053 else {
1054 printk("correcting to %i\n", SMP_CACHE_BYTES);
1055 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1056 SMP_CACHE_BYTES >> 2);
1060 pci_state = readl(&regs->PciState);
1061 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1062 "latency: %i clks\n",
1063 (pci_state & PCI_32BIT) ? 32 : 64,
1064 (pci_state & PCI_66MHZ) ? 66 : 33,
1065 ap->pci_latency);
1068 * Set the max DMA transfer size. Seems that for most systems
1069 * the performance is better when no MAX parameter is
1070 * set. However for systems enabling PCI write and invalidate,
1071 * DMA writes must be set to the L1 cache line size to get
1072 * optimal performance.
1074 * The default is now to turn the PCI write and invalidate off
1075 * - that is what Alteon does for NT.
1077 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1078 if (ap->version >= 2) {
1079 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1081 * Tuning parameters only supported for 8 cards
1083 if (board_idx == BOARD_IDX_OVERFLOW ||
1084 dis_pci_mem_inval[board_idx]) {
1085 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1086 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1087 pci_write_config_word(pdev, PCI_COMMAND,
1088 ap->pci_command);
1089 printk(KERN_INFO " Disabling PCI memory "
1090 "write and invalidate\n");
1092 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1093 printk(KERN_INFO " PCI memory write & invalidate "
1094 "enabled by BIOS, enabling counter measures\n");
1096 switch(SMP_CACHE_BYTES) {
1097 case 16:
1098 tmp |= DMA_WRITE_MAX_16;
1099 break;
1100 case 32:
1101 tmp |= DMA_WRITE_MAX_32;
1102 break;
1103 case 64:
1104 tmp |= DMA_WRITE_MAX_64;
1105 break;
1106 case 128:
1107 tmp |= DMA_WRITE_MAX_128;
1108 break;
1109 default:
1110 printk(KERN_INFO " Cache line size %i not "
1111 "supported, PCI write and invalidate "
1112 "disabled\n", SMP_CACHE_BYTES);
1113 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1114 pci_write_config_word(pdev, PCI_COMMAND,
1115 ap->pci_command);
1120 #ifdef __sparc__
1122 * On this platform, we know what the best dma settings
1123 * are. We use 64-byte maximum bursts, because if we
1124 * burst larger than the cache line size (or even cross
1125 * a 64byte boundary in a single burst) the UltraSparc
1126 * PCI controller will disconnect at 64-byte multiples.
1128 * Read-multiple will be properly enabled above, and when
1129 * set will give the PCI controller proper hints about
1130 * prefetching.
1132 tmp &= ~DMA_READ_WRITE_MASK;
1133 tmp |= DMA_READ_MAX_64;
1134 tmp |= DMA_WRITE_MAX_64;
1135 #endif
1136 #ifdef __alpha__
1137 tmp &= ~DMA_READ_WRITE_MASK;
1138 tmp |= DMA_READ_MAX_128;
1140 * All the docs say MUST NOT. Well, I did.
1141 * Nothing terrible happens, if we load wrong size.
1142 * Bit w&i still works better!
1144 tmp |= DMA_WRITE_MAX_128;
1145 #endif
1146 writel(tmp, &regs->PciState);
1148 #if 0
1150 * The Host PCI bus controller driver has to set FBB.
1151 * If all devices on that PCI bus support FBB, then the controller
1152 * can enable FBB support in the Host PCI Bus controller (or on
1153 * the PCI-PCI bridge if that applies).
1154 * -ggg
1157 * I have received reports from people having problems when this
1158 * bit is enabled.
1160 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1161 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1162 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1163 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1165 #endif
1168 * Configure DMA attributes.
1170 if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) {
1171 ap->pci_using_dac = 1;
1172 } else if (!pci_set_dma_mask(pdev, 0xffffffffULL)) {
1173 ap->pci_using_dac = 0;
1174 } else {
1175 ecode = -ENODEV;
1176 goto init_error;
1180 * Initialize the generic info block and the command+event rings
1181 * and the control blocks for the transmit and receive rings
1182 * as they need to be setup once and for all.
1184 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1185 &ap->info_dma))) {
1186 ecode = -EAGAIN;
1187 goto init_error;
1189 ap->info = info;
1192 * Get the memory for the skb rings.
1194 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1195 ecode = -EAGAIN;
1196 goto init_error;
1199 ecode = request_irq(pdev->irq, ace_interrupt, SA_SHIRQ,
1200 DRV_NAME, dev);
1201 if (ecode) {
1202 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1203 DRV_NAME, pdev->irq);
1204 goto init_error;
1205 } else
1206 dev->irq = pdev->irq;
1208 #ifdef INDEX_DEBUG
1209 spin_lock_init(&ap->debug_lock);
1210 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1211 ap->last_std_rx = 0;
1212 ap->last_mini_rx = 0;
1213 #endif
1215 memset(ap->info, 0, sizeof(struct ace_info));
1216 memset(ap->skb, 0, sizeof(struct ace_skb));
1218 ace_load_firmware(dev);
1219 ap->fw_running = 0;
1221 tmp_ptr = ap->info_dma;
1222 writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1223 writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1225 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1227 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1228 info->evt_ctrl.flags = 0;
1230 *(ap->evt_prd) = 0;
1231 wmb();
1232 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1233 writel(0, &regs->EvtCsm);
1235 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1236 info->cmd_ctrl.flags = 0;
1237 info->cmd_ctrl.max_len = 0;
1239 for (i = 0; i < CMD_RING_ENTRIES; i++)
1240 writel(0, &regs->CmdRng[i]);
1242 writel(0, &regs->CmdPrd);
1243 writel(0, &regs->CmdCsm);
1245 tmp_ptr = ap->info_dma;
1246 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1247 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1249 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1250 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1251 info->rx_std_ctrl.flags =
1252 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1254 memset(ap->rx_std_ring, 0,
1255 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1257 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1258 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1260 ap->rx_std_skbprd = 0;
1261 atomic_set(&ap->cur_rx_bufs, 0);
1263 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1264 (ap->rx_ring_base_dma +
1265 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1266 info->rx_jumbo_ctrl.max_len = 0;
1267 info->rx_jumbo_ctrl.flags =
1268 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1270 memset(ap->rx_jumbo_ring, 0,
1271 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1273 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1274 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1276 ap->rx_jumbo_skbprd = 0;
1277 atomic_set(&ap->cur_jumbo_bufs, 0);
1279 memset(ap->rx_mini_ring, 0,
1280 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1282 if (ap->version >= 2) {
1283 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1284 (ap->rx_ring_base_dma +
1285 (sizeof(struct rx_desc) *
1286 (RX_STD_RING_ENTRIES +
1287 RX_JUMBO_RING_ENTRIES))));
1288 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1289 info->rx_mini_ctrl.flags =
1290 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
1292 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1293 ap->rx_mini_ring[i].flags =
1294 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1295 } else {
1296 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1297 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1298 info->rx_mini_ctrl.max_len = 0;
1301 ap->rx_mini_skbprd = 0;
1302 atomic_set(&ap->cur_mini_bufs, 0);
1304 set_aceaddr(&info->rx_return_ctrl.rngptr,
1305 (ap->rx_ring_base_dma +
1306 (sizeof(struct rx_desc) *
1307 (RX_STD_RING_ENTRIES +
1308 RX_JUMBO_RING_ENTRIES +
1309 RX_MINI_RING_ENTRIES))));
1310 info->rx_return_ctrl.flags = 0;
1311 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1313 memset(ap->rx_return_ring, 0,
1314 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1316 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1317 *(ap->rx_ret_prd) = 0;
1319 writel(TX_RING_BASE, &regs->WinBase);
1321 if (ACE_IS_TIGON_I(ap)) {
1322 ap->tx_ring = (struct tx_desc *)regs->Window;
1323 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES *
1324 sizeof(struct tx_desc) / 4); i++) {
1325 writel(0, (unsigned long)ap->tx_ring + i * 4);
1328 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1329 } else {
1330 memset(ap->tx_ring, 0,
1331 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1333 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1336 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1337 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1340 * The Tigon I does not like having the TX ring in host memory ;-(
1342 if (!ACE_IS_TIGON_I(ap))
1343 tmp |= RCB_FLG_TX_HOST_RING;
1344 #if TX_COAL_INTS_ONLY
1345 tmp |= RCB_FLG_COAL_INT_ONLY;
1346 #endif
1347 info->tx_ctrl.flags = tmp;
1349 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1352 * Potential item for tuning parameter
1354 #if 0 /* NO */
1355 writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1356 writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1357 #else
1358 writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1359 writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1360 #endif
1362 writel(0, &regs->MaskInt);
1363 writel(1, &regs->IfIdx);
1364 #if 0
1366 * McKinley boxes do not like us fiddling with AssistState
1367 * this early
1369 writel(1, &regs->AssistState);
1370 #endif
1372 writel(DEF_STAT, &regs->TuneStatTicks);
1373 writel(DEF_TRACE, &regs->TuneTrace);
1375 ace_set_rxtx_parms(dev, 0);
1377 if (board_idx == BOARD_IDX_OVERFLOW) {
1378 printk(KERN_WARNING "%s: more than %i NICs detected, "
1379 "ignoring module parameters!\n",
1380 ap->name, ACE_MAX_MOD_PARMS);
1381 } else if (board_idx >= 0) {
1382 if (tx_coal_tick[board_idx])
1383 writel(tx_coal_tick[board_idx],
1384 &regs->TuneTxCoalTicks);
1385 if (max_tx_desc[board_idx])
1386 writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1388 if (rx_coal_tick[board_idx])
1389 writel(rx_coal_tick[board_idx],
1390 &regs->TuneRxCoalTicks);
1391 if (max_rx_desc[board_idx])
1392 writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1394 if (trace[board_idx])
1395 writel(trace[board_idx], &regs->TuneTrace);
1397 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1398 writel(tx_ratio[board_idx], &regs->TxBufRat);
1402 * Default link parameters
1404 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1405 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1406 if(ap->version >= 2)
1407 tmp |= LNK_TX_FLOW_CTL_Y;
1410 * Override link default parameters
1412 if ((board_idx >= 0) && link[board_idx]) {
1413 int option = link[board_idx];
1415 tmp = LNK_ENABLE;
1417 if (option & 0x01) {
1418 printk(KERN_INFO "%s: Setting half duplex link\n",
1419 ap->name);
1420 tmp &= ~LNK_FULL_DUPLEX;
1422 if (option & 0x02)
1423 tmp &= ~LNK_NEGOTIATE;
1424 if (option & 0x10)
1425 tmp |= LNK_10MB;
1426 if (option & 0x20)
1427 tmp |= LNK_100MB;
1428 if (option & 0x40)
1429 tmp |= LNK_1000MB;
1430 if ((option & 0x70) == 0) {
1431 printk(KERN_WARNING "%s: No media speed specified, "
1432 "forcing auto negotiation\n", ap->name);
1433 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1434 LNK_100MB | LNK_10MB;
1436 if ((option & 0x100) == 0)
1437 tmp |= LNK_NEG_FCTL;
1438 else
1439 printk(KERN_INFO "%s: Disabling flow control "
1440 "negotiation\n", ap->name);
1441 if (option & 0x200)
1442 tmp |= LNK_RX_FLOW_CTL_Y;
1443 if ((option & 0x400) && (ap->version >= 2)) {
1444 printk(KERN_INFO "%s: Enabling TX flow control\n",
1445 ap->name);
1446 tmp |= LNK_TX_FLOW_CTL_Y;
1450 ap->link = tmp;
1451 writel(tmp, &regs->TuneLink);
1452 if (ap->version >= 2)
1453 writel(tmp, &regs->TuneFastLink);
1455 if (ACE_IS_TIGON_I(ap))
1456 writel(tigonFwStartAddr, &regs->Pc);
1457 if (ap->version == 2)
1458 writel(tigon2FwStartAddr, &regs->Pc);
1460 writel(0, &regs->Mb0Lo);
1463 * Set tx_csm before we start receiving interrupts, otherwise
1464 * the interrupt handler might think it is supposed to process
1465 * tx ints before we are up and running, which may cause a null
1466 * pointer access in the int handler.
1468 ap->cur_rx = 0;
1469 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1471 wmb();
1472 ace_set_txprd(regs, ap, 0);
1473 writel(0, &regs->RxRetCsm);
1476 * Zero the stats before starting the interface
1478 memset(&ap->stats, 0, sizeof(ap->stats));
1481 * Enable DMA engine now.
1482 * If we do this sooner, Mckinley box pukes.
1483 * I assume it's because Tigon II DMA engine wants to check
1484 * *something* even before the CPU is started.
1486 writel(1, &regs->AssistState); /* enable DMA */
1489 * Start the NIC CPU
1491 writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1492 readl(&regs->CpuCtrl);
1495 * Wait for the firmware to spin up - max 3 seconds.
1497 myjif = jiffies + 3 * HZ;
1498 while (time_before(jiffies, myjif) && !ap->fw_running)
1499 cpu_relax();
1501 if (!ap->fw_running) {
1502 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1504 ace_dump_trace(ap);
1505 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1506 readl(&regs->CpuCtrl);
1508 /* aman@sgi.com - account for badly behaving firmware/NIC:
1509 * - have observed that the NIC may continue to generate
1510 * interrupts for some reason; attempt to stop it - halt
1511 * second CPU for Tigon II cards, and also clear Mb0
1512 * - if we're a module, we'll fail to load if this was
1513 * the only GbE card in the system => if the kernel does
1514 * see an interrupt from the NIC, code to handle it is
1515 * gone and OOps! - so free_irq also
1517 if (ap->version >= 2)
1518 writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1519 &regs->CpuBCtrl);
1520 writel(0, &regs->Mb0Lo);
1521 readl(&regs->Mb0Lo);
1523 ecode = -EBUSY;
1524 goto init_error;
1528 * We load the ring here as there seem to be no way to tell the
1529 * firmware to wipe the ring without re-initializing it.
1531 if (!test_and_set_bit(0, &ap->std_refill_busy))
1532 ace_load_std_rx_ring(ap, RX_RING_SIZE);
1533 else
1534 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1535 ap->name);
1536 if (ap->version >= 2) {
1537 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1538 ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
1539 else
1540 printk(KERN_ERR "%s: Someone is busy refilling "
1541 "the RX mini ring\n", ap->name);
1543 return 0;
1545 init_error:
1546 ace_init_cleanup(dev);
1547 return ecode;
1551 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1553 struct ace_private *ap;
1554 struct ace_regs *regs;
1555 int board_idx;
1557 ap = netdev_priv(dev);
1558 regs = ap->regs;
1560 board_idx = ap->board_idx;
1562 if (board_idx >= 0) {
1563 if (!jumbo) {
1564 if (!tx_coal_tick[board_idx])
1565 writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1566 if (!max_tx_desc[board_idx])
1567 writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1568 if (!rx_coal_tick[board_idx])
1569 writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1570 if (!max_rx_desc[board_idx])
1571 writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1572 if (!tx_ratio[board_idx])
1573 writel(DEF_TX_RATIO, &regs->TxBufRat);
1574 } else {
1575 if (!tx_coal_tick[board_idx])
1576 writel(DEF_JUMBO_TX_COAL,
1577 &regs->TuneTxCoalTicks);
1578 if (!max_tx_desc[board_idx])
1579 writel(DEF_JUMBO_TX_MAX_DESC,
1580 &regs->TuneMaxTxDesc);
1581 if (!rx_coal_tick[board_idx])
1582 writel(DEF_JUMBO_RX_COAL,
1583 &regs->TuneRxCoalTicks);
1584 if (!max_rx_desc[board_idx])
1585 writel(DEF_JUMBO_RX_MAX_DESC,
1586 &regs->TuneMaxRxDesc);
1587 if (!tx_ratio[board_idx])
1588 writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1594 static void ace_watchdog(struct net_device *data)
1596 struct net_device *dev = data;
1597 struct ace_private *ap = netdev_priv(dev);
1598 struct ace_regs *regs = ap->regs;
1601 * We haven't received a stats update event for more than 2.5
1602 * seconds and there is data in the transmit queue, thus we
1603 * asume the card is stuck.
1605 if (*ap->tx_csm != ap->tx_ret_csm) {
1606 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1607 dev->name, (unsigned int)readl(&regs->HostCtrl));
1608 /* This can happen due to ieee flow control. */
1609 } else {
1610 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1611 dev->name);
1612 #if 0
1613 netif_wake_queue(dev);
1614 #endif
1619 static void ace_tasklet(unsigned long dev)
1621 struct ace_private *ap = ((struct net_device *)dev)->priv;
1622 int cur_size;
1624 cur_size = atomic_read(&ap->cur_rx_bufs);
1625 if ((cur_size < RX_LOW_STD_THRES) &&
1626 !test_and_set_bit(0, &ap->std_refill_busy)) {
1627 #ifdef DEBUG
1628 printk("refilling buffers (current %i)\n", cur_size);
1629 #endif
1630 ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
1633 if (ap->version >= 2) {
1634 cur_size = atomic_read(&ap->cur_mini_bufs);
1635 if ((cur_size < RX_LOW_MINI_THRES) &&
1636 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1637 #ifdef DEBUG
1638 printk("refilling mini buffers (current %i)\n",
1639 cur_size);
1640 #endif
1641 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
1645 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1646 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1647 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1648 #ifdef DEBUG
1649 printk("refilling jumbo buffers (current %i)\n", cur_size);
1650 #endif
1651 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
1653 ap->tasklet_pending = 0;
1658 * Copy the contents of the NIC's trace buffer to kernel memory.
1660 static void ace_dump_trace(struct ace_private *ap)
1662 #if 0
1663 if (!ap->trace_buf)
1664 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1665 return;
1666 #endif
1671 * Load the standard rx ring.
1673 * Loading rings is safe without holding the spin lock since this is
1674 * done only before the device is enabled, thus no interrupts are
1675 * generated and by the interrupt handler/tasklet handler.
1677 static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
1679 struct ace_regs *regs;
1680 short i, idx;
1682 regs = ap->regs;
1684 prefetchw(&ap->cur_rx_bufs);
1686 idx = ap->rx_std_skbprd;
1688 for (i = 0; i < nr_bufs; i++) {
1689 struct sk_buff *skb;
1690 struct rx_desc *rd;
1691 dma_addr_t mapping;
1693 skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1694 if (!skb)
1695 break;
1697 skb_reserve(skb, NET_IP_ALIGN);
1698 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1699 offset_in_page(skb->data),
1700 ACE_STD_BUFSIZE,
1701 PCI_DMA_FROMDEVICE);
1702 ap->skb->rx_std_skbuff[idx].skb = skb;
1703 pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1704 mapping, mapping);
1706 rd = &ap->rx_std_ring[idx];
1707 set_aceaddr(&rd->addr, mapping);
1708 rd->size = ACE_STD_BUFSIZE;
1709 rd->idx = idx;
1710 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1713 if (!i)
1714 goto error_out;
1716 atomic_add(i, &ap->cur_rx_bufs);
1717 ap->rx_std_skbprd = idx;
1719 if (ACE_IS_TIGON_I(ap)) {
1720 struct cmd cmd;
1721 cmd.evt = C_SET_RX_PRD_IDX;
1722 cmd.code = 0;
1723 cmd.idx = ap->rx_std_skbprd;
1724 ace_issue_cmd(regs, &cmd);
1725 } else {
1726 writel(idx, &regs->RxStdPrd);
1727 wmb();
1730 out:
1731 clear_bit(0, &ap->std_refill_busy);
1732 return;
1734 error_out:
1735 printk(KERN_INFO "Out of memory when allocating "
1736 "standard receive buffers\n");
1737 goto out;
1741 static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
1743 struct ace_regs *regs;
1744 short i, idx;
1746 regs = ap->regs;
1748 prefetchw(&ap->cur_mini_bufs);
1750 idx = ap->rx_mini_skbprd;
1751 for (i = 0; i < nr_bufs; i++) {
1752 struct sk_buff *skb;
1753 struct rx_desc *rd;
1754 dma_addr_t mapping;
1756 skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1757 if (!skb)
1758 break;
1760 skb_reserve(skb, NET_IP_ALIGN);
1761 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1762 offset_in_page(skb->data),
1763 ACE_MINI_BUFSIZE,
1764 PCI_DMA_FROMDEVICE);
1765 ap->skb->rx_mini_skbuff[idx].skb = skb;
1766 pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1767 mapping, mapping);
1769 rd = &ap->rx_mini_ring[idx];
1770 set_aceaddr(&rd->addr, mapping);
1771 rd->size = ACE_MINI_BUFSIZE;
1772 rd->idx = idx;
1773 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1776 if (!i)
1777 goto error_out;
1779 atomic_add(i, &ap->cur_mini_bufs);
1781 ap->rx_mini_skbprd = idx;
1783 writel(idx, &regs->RxMiniPrd);
1784 wmb();
1786 out:
1787 clear_bit(0, &ap->mini_refill_busy);
1788 return;
1789 error_out:
1790 printk(KERN_INFO "Out of memory when allocating "
1791 "mini receive buffers\n");
1792 goto out;
1797 * Load the jumbo rx ring, this may happen at any time if the MTU
1798 * is changed to a value > 1500.
1800 static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
1802 struct ace_regs *regs;
1803 short i, idx;
1805 regs = ap->regs;
1807 idx = ap->rx_jumbo_skbprd;
1809 for (i = 0; i < nr_bufs; i++) {
1810 struct sk_buff *skb;
1811 struct rx_desc *rd;
1812 dma_addr_t mapping;
1814 skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1815 if (!skb)
1816 break;
1818 skb_reserve(skb, NET_IP_ALIGN);
1819 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1820 offset_in_page(skb->data),
1821 ACE_JUMBO_BUFSIZE,
1822 PCI_DMA_FROMDEVICE);
1823 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1824 pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1825 mapping, mapping);
1827 rd = &ap->rx_jumbo_ring[idx];
1828 set_aceaddr(&rd->addr, mapping);
1829 rd->size = ACE_JUMBO_BUFSIZE;
1830 rd->idx = idx;
1831 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1834 if (!i)
1835 goto error_out;
1837 atomic_add(i, &ap->cur_jumbo_bufs);
1838 ap->rx_jumbo_skbprd = idx;
1840 if (ACE_IS_TIGON_I(ap)) {
1841 struct cmd cmd;
1842 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1843 cmd.code = 0;
1844 cmd.idx = ap->rx_jumbo_skbprd;
1845 ace_issue_cmd(regs, &cmd);
1846 } else {
1847 writel(idx, &regs->RxJumboPrd);
1848 wmb();
1851 out:
1852 clear_bit(0, &ap->jumbo_refill_busy);
1853 return;
1854 error_out:
1855 if (net_ratelimit())
1856 printk(KERN_INFO "Out of memory when allocating "
1857 "jumbo receive buffers\n");
1858 goto out;
1863 * All events are considered to be slow (RX/TX ints do not generate
1864 * events) and are handled here, outside the main interrupt handler,
1865 * to reduce the size of the handler.
1867 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1869 struct ace_private *ap;
1871 ap = netdev_priv(dev);
1873 while (evtcsm != evtprd) {
1874 switch (ap->evt_ring[evtcsm].evt) {
1875 case E_FW_RUNNING:
1876 printk(KERN_INFO "%s: Firmware up and running\n",
1877 ap->name);
1878 ap->fw_running = 1;
1879 wmb();
1880 break;
1881 case E_STATS_UPDATED:
1882 break;
1883 case E_LNK_STATE:
1885 u16 code = ap->evt_ring[evtcsm].code;
1886 switch (code) {
1887 case E_C_LINK_UP:
1889 u32 state = readl(&ap->regs->GigLnkState);
1890 printk(KERN_WARNING "%s: Optical link UP "
1891 "(%s Duplex, Flow Control: %s%s)\n",
1892 ap->name,
1893 state & LNK_FULL_DUPLEX ? "Full":"Half",
1894 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1895 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1896 break;
1898 case E_C_LINK_DOWN:
1899 printk(KERN_WARNING "%s: Optical link DOWN\n",
1900 ap->name);
1901 break;
1902 case E_C_LINK_10_100:
1903 printk(KERN_WARNING "%s: 10/100BaseT link "
1904 "UP\n", ap->name);
1905 break;
1906 default:
1907 printk(KERN_ERR "%s: Unknown optical link "
1908 "state %02x\n", ap->name, code);
1910 break;
1912 case E_ERROR:
1913 switch(ap->evt_ring[evtcsm].code) {
1914 case E_C_ERR_INVAL_CMD:
1915 printk(KERN_ERR "%s: invalid command error\n",
1916 ap->name);
1917 break;
1918 case E_C_ERR_UNIMP_CMD:
1919 printk(KERN_ERR "%s: unimplemented command "
1920 "error\n", ap->name);
1921 break;
1922 case E_C_ERR_BAD_CFG:
1923 printk(KERN_ERR "%s: bad config error\n",
1924 ap->name);
1925 break;
1926 default:
1927 printk(KERN_ERR "%s: unknown error %02x\n",
1928 ap->name, ap->evt_ring[evtcsm].code);
1930 break;
1931 case E_RESET_JUMBO_RNG:
1933 int i;
1934 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1935 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1936 ap->rx_jumbo_ring[i].size = 0;
1937 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1938 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1939 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1943 if (ACE_IS_TIGON_I(ap)) {
1944 struct cmd cmd;
1945 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1946 cmd.code = 0;
1947 cmd.idx = 0;
1948 ace_issue_cmd(ap->regs, &cmd);
1949 } else {
1950 writel(0, &((ap->regs)->RxJumboPrd));
1951 wmb();
1954 ap->jumbo = 0;
1955 ap->rx_jumbo_skbprd = 0;
1956 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1957 ap->name);
1958 clear_bit(0, &ap->jumbo_refill_busy);
1959 break;
1961 default:
1962 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1963 ap->name, ap->evt_ring[evtcsm].evt);
1965 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1968 return evtcsm;
1972 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1974 struct ace_private *ap = netdev_priv(dev);
1975 u32 idx;
1976 int mini_count = 0, std_count = 0;
1978 idx = rxretcsm;
1980 prefetchw(&ap->cur_rx_bufs);
1981 prefetchw(&ap->cur_mini_bufs);
1983 while (idx != rxretprd) {
1984 struct ring_info *rip;
1985 struct sk_buff *skb;
1986 struct rx_desc *rxdesc, *retdesc;
1987 u32 skbidx;
1988 int bd_flags, desc_type, mapsize;
1989 u16 csum;
1992 /* make sure the rx descriptor isn't read before rxretprd */
1993 if (idx == rxretcsm)
1994 rmb();
1996 retdesc = &ap->rx_return_ring[idx];
1997 skbidx = retdesc->idx;
1998 bd_flags = retdesc->flags;
1999 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
2001 switch(desc_type) {
2003 * Normal frames do not have any flags set
2005 * Mini and normal frames arrive frequently,
2006 * so use a local counter to avoid doing
2007 * atomic operations for each packet arriving.
2009 case 0:
2010 rip = &ap->skb->rx_std_skbuff[skbidx];
2011 mapsize = ACE_STD_BUFSIZE;
2012 rxdesc = &ap->rx_std_ring[skbidx];
2013 std_count++;
2014 break;
2015 case BD_FLG_JUMBO:
2016 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
2017 mapsize = ACE_JUMBO_BUFSIZE;
2018 rxdesc = &ap->rx_jumbo_ring[skbidx];
2019 atomic_dec(&ap->cur_jumbo_bufs);
2020 break;
2021 case BD_FLG_MINI:
2022 rip = &ap->skb->rx_mini_skbuff[skbidx];
2023 mapsize = ACE_MINI_BUFSIZE;
2024 rxdesc = &ap->rx_mini_ring[skbidx];
2025 mini_count++;
2026 break;
2027 default:
2028 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
2029 "returned by NIC\n", dev->name,
2030 retdesc->flags);
2031 goto error;
2034 skb = rip->skb;
2035 rip->skb = NULL;
2036 pci_unmap_page(ap->pdev,
2037 pci_unmap_addr(rip, mapping),
2038 mapsize,
2039 PCI_DMA_FROMDEVICE);
2040 skb_put(skb, retdesc->size);
2043 * Fly baby, fly!
2045 csum = retdesc->tcp_udp_csum;
2047 skb->dev = dev;
2048 skb->protocol = eth_type_trans(skb, dev);
2051 * Instead of forcing the poor tigon mips cpu to calculate
2052 * pseudo hdr checksum, we do this ourselves.
2054 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2055 skb->csum = htons(csum);
2056 skb->ip_summed = CHECKSUM_HW;
2057 } else {
2058 skb->ip_summed = CHECKSUM_NONE;
2061 /* send it up */
2062 #if ACENIC_DO_VLAN
2063 if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
2064 vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
2065 } else
2066 #endif
2067 netif_rx(skb);
2069 dev->last_rx = jiffies;
2070 ap->stats.rx_packets++;
2071 ap->stats.rx_bytes += retdesc->size;
2073 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2076 atomic_sub(std_count, &ap->cur_rx_bufs);
2077 if (!ACE_IS_TIGON_I(ap))
2078 atomic_sub(mini_count, &ap->cur_mini_bufs);
2080 out:
2082 * According to the documentation RxRetCsm is obsolete with
2083 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2085 if (ACE_IS_TIGON_I(ap)) {
2086 struct ace_regs *regs = ap->regs;
2087 writel(idx, &regs->RxRetCsm);
2089 ap->cur_rx = idx;
2091 return;
2092 error:
2093 idx = rxretprd;
2094 goto out;
2098 static inline void ace_tx_int(struct net_device *dev,
2099 u32 txcsm, u32 idx)
2101 struct ace_private *ap = netdev_priv(dev);
2103 do {
2104 struct sk_buff *skb;
2105 dma_addr_t mapping;
2106 struct tx_ring_info *info;
2108 info = ap->skb->tx_skbuff + idx;
2109 skb = info->skb;
2110 mapping = pci_unmap_addr(info, mapping);
2112 if (mapping) {
2113 pci_unmap_page(ap->pdev, mapping,
2114 pci_unmap_len(info, maplen),
2115 PCI_DMA_TODEVICE);
2116 pci_unmap_addr_set(info, mapping, 0);
2119 if (skb) {
2120 ap->stats.tx_packets++;
2121 ap->stats.tx_bytes += skb->len;
2122 dev_kfree_skb_irq(skb);
2123 info->skb = NULL;
2126 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2127 } while (idx != txcsm);
2129 if (netif_queue_stopped(dev))
2130 netif_wake_queue(dev);
2132 wmb();
2133 ap->tx_ret_csm = txcsm;
2135 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2137 * We could try to make it before. In this case we would get
2138 * the following race condition: hard_start_xmit on other cpu
2139 * enters after we advanced tx_ret_csm and fills space,
2140 * which we have just freed, so that we make illegal device wakeup.
2141 * There is no good way to workaround this (at entry
2142 * to ace_start_xmit detects this condition and prevents
2143 * ring corruption, but it is not a good workaround.)
2145 * When tx_ret_csm is advanced after, we wake up device _only_
2146 * if we really have some space in ring (though the core doing
2147 * hard_start_xmit can see full ring for some period and has to
2148 * synchronize.) Superb.
2149 * BUT! We get another subtle race condition. hard_start_xmit
2150 * may think that ring is full between wakeup and advancing
2151 * tx_ret_csm and will stop device instantly! It is not so bad.
2152 * We are guaranteed that there is something in ring, so that
2153 * the next irq will resume transmission. To speedup this we could
2154 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2155 * (see ace_start_xmit).
2157 * Well, this dilemma exists in all lock-free devices.
2158 * We, following scheme used in drivers by Donald Becker,
2159 * select the least dangerous.
2160 * --ANK
2165 static irqreturn_t ace_interrupt(int irq, void *dev_id, struct pt_regs *ptregs)
2167 struct ace_private *ap;
2168 struct ace_regs *regs;
2169 struct net_device *dev = (struct net_device *)dev_id;
2170 u32 idx;
2171 u32 txcsm, rxretcsm, rxretprd;
2172 u32 evtcsm, evtprd;
2174 ap = netdev_priv(dev);
2175 regs = ap->regs;
2178 * In case of PCI shared interrupts or spurious interrupts,
2179 * we want to make sure it is actually our interrupt before
2180 * spending any time in here.
2182 if (!(readl(&regs->HostCtrl) & IN_INT))
2183 return IRQ_NONE;
2186 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2187 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2188 * writel(0, &regs->Mb0Lo).
2190 * "IRQ avoidance" recommended in docs applies to IRQs served
2191 * threads and it is wrong even for that case.
2193 writel(0, &regs->Mb0Lo);
2194 readl(&regs->Mb0Lo);
2197 * There is no conflict between transmit handling in
2198 * start_xmit and receive processing, thus there is no reason
2199 * to take a spin lock for RX handling. Wait until we start
2200 * working on the other stuff - hey we don't need a spin lock
2201 * anymore.
2203 rxretprd = *ap->rx_ret_prd;
2204 rxretcsm = ap->cur_rx;
2206 if (rxretprd != rxretcsm)
2207 ace_rx_int(dev, rxretprd, rxretcsm);
2209 txcsm = *ap->tx_csm;
2210 idx = ap->tx_ret_csm;
2212 if (txcsm != idx) {
2214 * If each skb takes only one descriptor this check degenerates
2215 * to identity, because new space has just been opened.
2216 * But if skbs are fragmented we must check that this index
2217 * update releases enough of space, otherwise we just
2218 * wait for device to make more work.
2220 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2221 ace_tx_int(dev, txcsm, idx);
2224 evtcsm = readl(&regs->EvtCsm);
2225 evtprd = *ap->evt_prd;
2227 if (evtcsm != evtprd) {
2228 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2229 writel(evtcsm, &regs->EvtCsm);
2233 * This has to go last in the interrupt handler and run with
2234 * the spin lock released ... what lock?
2236 if (netif_running(dev)) {
2237 int cur_size;
2238 int run_tasklet = 0;
2240 cur_size = atomic_read(&ap->cur_rx_bufs);
2241 if (cur_size < RX_LOW_STD_THRES) {
2242 if ((cur_size < RX_PANIC_STD_THRES) &&
2243 !test_and_set_bit(0, &ap->std_refill_busy)) {
2244 #ifdef DEBUG
2245 printk("low on std buffers %i\n", cur_size);
2246 #endif
2247 ace_load_std_rx_ring(ap,
2248 RX_RING_SIZE - cur_size);
2249 } else
2250 run_tasklet = 1;
2253 if (!ACE_IS_TIGON_I(ap)) {
2254 cur_size = atomic_read(&ap->cur_mini_bufs);
2255 if (cur_size < RX_LOW_MINI_THRES) {
2256 if ((cur_size < RX_PANIC_MINI_THRES) &&
2257 !test_and_set_bit(0,
2258 &ap->mini_refill_busy)) {
2259 #ifdef DEBUG
2260 printk("low on mini buffers %i\n",
2261 cur_size);
2262 #endif
2263 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
2264 } else
2265 run_tasklet = 1;
2269 if (ap->jumbo) {
2270 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2271 if (cur_size < RX_LOW_JUMBO_THRES) {
2272 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2273 !test_and_set_bit(0,
2274 &ap->jumbo_refill_busy)){
2275 #ifdef DEBUG
2276 printk("low on jumbo buffers %i\n",
2277 cur_size);
2278 #endif
2279 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
2280 } else
2281 run_tasklet = 1;
2284 if (run_tasklet && !ap->tasklet_pending) {
2285 ap->tasklet_pending = 1;
2286 tasklet_schedule(&ap->ace_tasklet);
2290 return IRQ_HANDLED;
2294 #if ACENIC_DO_VLAN
2295 static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2297 struct ace_private *ap = netdev_priv(dev);
2298 unsigned long flags;
2300 local_irq_save(flags);
2301 ace_mask_irq(dev);
2303 ap->vlgrp = grp;
2305 ace_unmask_irq(dev);
2306 local_irq_restore(flags);
2310 static void ace_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
2312 struct ace_private *ap = netdev_priv(dev);
2313 unsigned long flags;
2315 local_irq_save(flags);
2316 ace_mask_irq(dev);
2318 if (ap->vlgrp)
2319 ap->vlgrp->vlan_devices[vid] = NULL;
2321 ace_unmask_irq(dev);
2322 local_irq_restore(flags);
2324 #endif /* ACENIC_DO_VLAN */
2327 static int ace_open(struct net_device *dev)
2329 struct ace_private *ap;
2330 struct ace_regs *regs;
2331 struct cmd cmd;
2333 ap = netdev_priv(dev);
2334 regs = ap->regs;
2336 if (!(ap->fw_running)) {
2337 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2338 return -EBUSY;
2341 writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2343 cmd.evt = C_CLEAR_STATS;
2344 cmd.code = 0;
2345 cmd.idx = 0;
2346 ace_issue_cmd(regs, &cmd);
2348 cmd.evt = C_HOST_STATE;
2349 cmd.code = C_C_STACK_UP;
2350 cmd.idx = 0;
2351 ace_issue_cmd(regs, &cmd);
2353 if (ap->jumbo &&
2354 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2355 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2357 if (dev->flags & IFF_PROMISC) {
2358 cmd.evt = C_SET_PROMISC_MODE;
2359 cmd.code = C_C_PROMISC_ENABLE;
2360 cmd.idx = 0;
2361 ace_issue_cmd(regs, &cmd);
2363 ap->promisc = 1;
2364 }else
2365 ap->promisc = 0;
2366 ap->mcast_all = 0;
2368 #if 0
2369 cmd.evt = C_LNK_NEGOTIATION;
2370 cmd.code = 0;
2371 cmd.idx = 0;
2372 ace_issue_cmd(regs, &cmd);
2373 #endif
2375 netif_start_queue(dev);
2378 * Setup the bottom half rx ring refill handler
2380 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2381 return 0;
2385 static int ace_close(struct net_device *dev)
2387 struct ace_private *ap;
2388 struct ace_regs *regs;
2389 struct cmd cmd;
2390 unsigned long flags;
2391 short i;
2394 * Without (or before) releasing irq and stopping hardware, this
2395 * is an absolute non-sense, by the way. It will be reset instantly
2396 * by the first irq.
2398 netif_stop_queue(dev);
2400 ap = netdev_priv(dev);
2401 regs = ap->regs;
2403 if (ap->promisc) {
2404 cmd.evt = C_SET_PROMISC_MODE;
2405 cmd.code = C_C_PROMISC_DISABLE;
2406 cmd.idx = 0;
2407 ace_issue_cmd(regs, &cmd);
2408 ap->promisc = 0;
2411 cmd.evt = C_HOST_STATE;
2412 cmd.code = C_C_STACK_DOWN;
2413 cmd.idx = 0;
2414 ace_issue_cmd(regs, &cmd);
2416 tasklet_kill(&ap->ace_tasklet);
2419 * Make sure one CPU is not processing packets while
2420 * buffers are being released by another.
2423 local_irq_save(flags);
2424 ace_mask_irq(dev);
2426 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2427 struct sk_buff *skb;
2428 dma_addr_t mapping;
2429 struct tx_ring_info *info;
2431 info = ap->skb->tx_skbuff + i;
2432 skb = info->skb;
2433 mapping = pci_unmap_addr(info, mapping);
2435 if (mapping) {
2436 if (ACE_IS_TIGON_I(ap)) {
2437 writel(0, &ap->tx_ring[i].addr.addrhi);
2438 writel(0, &ap->tx_ring[i].addr.addrlo);
2439 writel(0, &ap->tx_ring[i].flagsize);
2440 } else
2441 memset(ap->tx_ring + i, 0,
2442 sizeof(struct tx_desc));
2443 pci_unmap_page(ap->pdev, mapping,
2444 pci_unmap_len(info, maplen),
2445 PCI_DMA_TODEVICE);
2446 pci_unmap_addr_set(info, mapping, 0);
2448 if (skb) {
2449 dev_kfree_skb(skb);
2450 info->skb = NULL;
2454 if (ap->jumbo) {
2455 cmd.evt = C_RESET_JUMBO_RNG;
2456 cmd.code = 0;
2457 cmd.idx = 0;
2458 ace_issue_cmd(regs, &cmd);
2461 ace_unmask_irq(dev);
2462 local_irq_restore(flags);
2464 return 0;
2468 static inline dma_addr_t
2469 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2470 struct sk_buff *tail, u32 idx)
2472 dma_addr_t mapping;
2473 struct tx_ring_info *info;
2475 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2476 offset_in_page(skb->data),
2477 skb->len, PCI_DMA_TODEVICE);
2479 info = ap->skb->tx_skbuff + idx;
2480 info->skb = tail;
2481 pci_unmap_addr_set(info, mapping, mapping);
2482 pci_unmap_len_set(info, maplen, skb->len);
2483 return mapping;
2487 static inline void
2488 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2489 u32 flagsize, u32 vlan_tag)
2491 #if !USE_TX_COAL_NOW
2492 flagsize &= ~BD_FLG_COAL_NOW;
2493 #endif
2495 if (ACE_IS_TIGON_I(ap)) {
2496 writel(addr >> 32, &desc->addr.addrhi);
2497 writel(addr & 0xffffffff, &desc->addr.addrlo);
2498 writel(flagsize, &desc->flagsize);
2499 #if ACENIC_DO_VLAN
2500 writel(vlan_tag, &desc->vlanres);
2501 #endif
2502 } else {
2503 desc->addr.addrhi = addr >> 32;
2504 desc->addr.addrlo = addr;
2505 desc->flagsize = flagsize;
2506 #if ACENIC_DO_VLAN
2507 desc->vlanres = vlan_tag;
2508 #endif
2513 static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev)
2515 struct ace_private *ap = netdev_priv(dev);
2516 struct ace_regs *regs = ap->regs;
2517 struct tx_desc *desc;
2518 u32 idx, flagsize;
2520 restart:
2521 idx = ap->tx_prd;
2523 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2524 goto overflow;
2526 #if MAX_SKB_FRAGS
2527 if (!skb_shinfo(skb)->nr_frags)
2528 #endif
2530 dma_addr_t mapping;
2531 u32 vlan_tag = 0;
2533 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2534 flagsize = (skb->len << 16) | (BD_FLG_END);
2535 if (skb->ip_summed == CHECKSUM_HW)
2536 flagsize |= BD_FLG_TCP_UDP_SUM;
2537 #if ACENIC_DO_VLAN
2538 if (vlan_tx_tag_present(skb)) {
2539 flagsize |= BD_FLG_VLAN_TAG;
2540 vlan_tag = vlan_tx_tag_get(skb);
2542 #endif
2543 desc = ap->tx_ring + idx;
2544 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2546 /* Look at ace_tx_int for explanations. */
2547 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2548 flagsize |= BD_FLG_COAL_NOW;
2550 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2552 #if MAX_SKB_FRAGS
2553 else {
2554 dma_addr_t mapping;
2555 u32 vlan_tag = 0;
2556 int i, len = 0;
2558 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2559 flagsize = (skb_headlen(skb) << 16);
2560 if (skb->ip_summed == CHECKSUM_HW)
2561 flagsize |= BD_FLG_TCP_UDP_SUM;
2562 #if ACENIC_DO_VLAN
2563 if (vlan_tx_tag_present(skb)) {
2564 flagsize |= BD_FLG_VLAN_TAG;
2565 vlan_tag = vlan_tx_tag_get(skb);
2567 #endif
2569 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2571 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2573 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2574 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 struct tx_ring_info *info;
2577 len += frag->size;
2578 info = ap->skb->tx_skbuff + idx;
2579 desc = ap->tx_ring + idx;
2581 mapping = pci_map_page(ap->pdev, frag->page,
2582 frag->page_offset, frag->size,
2583 PCI_DMA_TODEVICE);
2585 flagsize = (frag->size << 16);
2586 if (skb->ip_summed == CHECKSUM_HW)
2587 flagsize |= BD_FLG_TCP_UDP_SUM;
2588 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2590 if (i == skb_shinfo(skb)->nr_frags - 1) {
2591 flagsize |= BD_FLG_END;
2592 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2593 flagsize |= BD_FLG_COAL_NOW;
2596 * Only the last fragment frees
2597 * the skb!
2599 info->skb = skb;
2600 } else {
2601 info->skb = NULL;
2603 pci_unmap_addr_set(info, mapping, mapping);
2604 pci_unmap_len_set(info, maplen, frag->size);
2605 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2608 #endif
2610 wmb();
2611 ap->tx_prd = idx;
2612 ace_set_txprd(regs, ap, idx);
2614 if (flagsize & BD_FLG_COAL_NOW) {
2615 netif_stop_queue(dev);
2618 * A TX-descriptor producer (an IRQ) might have gotten
2619 * inbetween, making the ring free again. Since xmit is
2620 * serialized, this is the only situation we have to
2621 * re-test.
2623 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2624 netif_wake_queue(dev);
2627 dev->trans_start = jiffies;
2628 return 0;
2630 overflow:
2632 * This race condition is unavoidable with lock-free drivers.
2633 * We wake up the queue _before_ tx_prd is advanced, so that we can
2634 * enter hard_start_xmit too early, while tx ring still looks closed.
2635 * This happens ~1-4 times per 100000 packets, so that we can allow
2636 * to loop syncing to other CPU. Probably, we need an additional
2637 * wmb() in ace_tx_intr as well.
2639 * Note that this race is relieved by reserving one more entry
2640 * in tx ring than it is necessary (see original non-SG driver).
2641 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2642 * is already overkill.
2644 * Alternative is to return with 1 not throttling queue. In this
2645 * case loop becomes longer, no more useful effects.
2647 barrier();
2648 goto restart;
2652 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2654 struct ace_private *ap = netdev_priv(dev);
2655 struct ace_regs *regs = ap->regs;
2657 if (new_mtu > ACE_JUMBO_MTU)
2658 return -EINVAL;
2660 writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2661 dev->mtu = new_mtu;
2663 if (new_mtu > ACE_STD_MTU) {
2664 if (!(ap->jumbo)) {
2665 printk(KERN_INFO "%s: Enabling Jumbo frame "
2666 "support\n", dev->name);
2667 ap->jumbo = 1;
2668 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2669 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2670 ace_set_rxtx_parms(dev, 1);
2672 } else {
2673 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2674 ace_sync_irq(dev->irq);
2675 ace_set_rxtx_parms(dev, 0);
2676 if (ap->jumbo) {
2677 struct cmd cmd;
2679 cmd.evt = C_RESET_JUMBO_RNG;
2680 cmd.code = 0;
2681 cmd.idx = 0;
2682 ace_issue_cmd(regs, &cmd);
2686 return 0;
2689 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2691 struct ace_private *ap = netdev_priv(dev);
2692 struct ace_regs *regs = ap->regs;
2693 u32 link;
2695 memset(ecmd, 0, sizeof(struct ethtool_cmd));
2696 ecmd->supported =
2697 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2698 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2699 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2700 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2702 ecmd->port = PORT_FIBRE;
2703 ecmd->transceiver = XCVR_INTERNAL;
2705 link = readl(&regs->GigLnkState);
2706 if (link & LNK_1000MB)
2707 ecmd->speed = SPEED_1000;
2708 else {
2709 link = readl(&regs->FastLnkState);
2710 if (link & LNK_100MB)
2711 ecmd->speed = SPEED_100;
2712 else if (link & LNK_10MB)
2713 ecmd->speed = SPEED_10;
2714 else
2715 ecmd->speed = 0;
2717 if (link & LNK_FULL_DUPLEX)
2718 ecmd->duplex = DUPLEX_FULL;
2719 else
2720 ecmd->duplex = DUPLEX_HALF;
2722 if (link & LNK_NEGOTIATE)
2723 ecmd->autoneg = AUTONEG_ENABLE;
2724 else
2725 ecmd->autoneg = AUTONEG_DISABLE;
2727 #if 0
2729 * Current struct ethtool_cmd is insufficient
2731 ecmd->trace = readl(&regs->TuneTrace);
2733 ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2734 ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2735 #endif
2736 ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2737 ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2739 return 0;
2742 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2744 struct ace_private *ap = netdev_priv(dev);
2745 struct ace_regs *regs = ap->regs;
2746 u32 link, speed;
2748 link = readl(&regs->GigLnkState);
2749 if (link & LNK_1000MB)
2750 speed = SPEED_1000;
2751 else {
2752 link = readl(&regs->FastLnkState);
2753 if (link & LNK_100MB)
2754 speed = SPEED_100;
2755 else if (link & LNK_10MB)
2756 speed = SPEED_10;
2757 else
2758 speed = SPEED_100;
2761 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2762 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2763 if (!ACE_IS_TIGON_I(ap))
2764 link |= LNK_TX_FLOW_CTL_Y;
2765 if (ecmd->autoneg == AUTONEG_ENABLE)
2766 link |= LNK_NEGOTIATE;
2767 if (ecmd->speed != speed) {
2768 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2769 switch (speed) {
2770 case SPEED_1000:
2771 link |= LNK_1000MB;
2772 break;
2773 case SPEED_100:
2774 link |= LNK_100MB;
2775 break;
2776 case SPEED_10:
2777 link |= LNK_10MB;
2778 break;
2782 if (ecmd->duplex == DUPLEX_FULL)
2783 link |= LNK_FULL_DUPLEX;
2785 if (link != ap->link) {
2786 struct cmd cmd;
2787 printk(KERN_INFO "%s: Renegotiating link state\n",
2788 dev->name);
2790 ap->link = link;
2791 writel(link, &regs->TuneLink);
2792 if (!ACE_IS_TIGON_I(ap))
2793 writel(link, &regs->TuneFastLink);
2794 wmb();
2796 cmd.evt = C_LNK_NEGOTIATION;
2797 cmd.code = 0;
2798 cmd.idx = 0;
2799 ace_issue_cmd(regs, &cmd);
2801 return 0;
2804 static void ace_get_drvinfo(struct net_device *dev,
2805 struct ethtool_drvinfo *info)
2807 struct ace_private *ap = netdev_priv(dev);
2809 strlcpy(info->driver, "acenic", sizeof(info->driver));
2810 snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2811 tigonFwReleaseMajor, tigonFwReleaseMinor,
2812 tigonFwReleaseFix);
2814 if (ap->pdev)
2815 strlcpy(info->bus_info, pci_name(ap->pdev),
2816 sizeof(info->bus_info));
2821 * Set the hardware MAC address.
2823 static int ace_set_mac_addr(struct net_device *dev, void *p)
2825 struct sockaddr *addr=p;
2826 struct ace_regs *regs;
2827 u8 *da;
2828 struct cmd cmd;
2830 if(netif_running(dev))
2831 return -EBUSY;
2833 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2835 da = (u8 *)dev->dev_addr;
2837 regs = ((struct ace_private *)netdev_priv(dev))->regs;
2838 writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2839 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2840 &regs->MacAddrLo);
2842 cmd.evt = C_SET_MAC_ADDR;
2843 cmd.code = 0;
2844 cmd.idx = 0;
2845 ace_issue_cmd(regs, &cmd);
2847 return 0;
2851 static void ace_set_multicast_list(struct net_device *dev)
2853 struct ace_private *ap = netdev_priv(dev);
2854 struct ace_regs *regs = ap->regs;
2855 struct cmd cmd;
2857 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2858 cmd.evt = C_SET_MULTICAST_MODE;
2859 cmd.code = C_C_MCAST_ENABLE;
2860 cmd.idx = 0;
2861 ace_issue_cmd(regs, &cmd);
2862 ap->mcast_all = 1;
2863 } else if (ap->mcast_all) {
2864 cmd.evt = C_SET_MULTICAST_MODE;
2865 cmd.code = C_C_MCAST_DISABLE;
2866 cmd.idx = 0;
2867 ace_issue_cmd(regs, &cmd);
2868 ap->mcast_all = 0;
2871 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2872 cmd.evt = C_SET_PROMISC_MODE;
2873 cmd.code = C_C_PROMISC_ENABLE;
2874 cmd.idx = 0;
2875 ace_issue_cmd(regs, &cmd);
2876 ap->promisc = 1;
2877 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2878 cmd.evt = C_SET_PROMISC_MODE;
2879 cmd.code = C_C_PROMISC_DISABLE;
2880 cmd.idx = 0;
2881 ace_issue_cmd(regs, &cmd);
2882 ap->promisc = 0;
2886 * For the time being multicast relies on the upper layers
2887 * filtering it properly. The Firmware does not allow one to
2888 * set the entire multicast list at a time and keeping track of
2889 * it here is going to be messy.
2891 if ((dev->mc_count) && !(ap->mcast_all)) {
2892 cmd.evt = C_SET_MULTICAST_MODE;
2893 cmd.code = C_C_MCAST_ENABLE;
2894 cmd.idx = 0;
2895 ace_issue_cmd(regs, &cmd);
2896 }else if (!ap->mcast_all) {
2897 cmd.evt = C_SET_MULTICAST_MODE;
2898 cmd.code = C_C_MCAST_DISABLE;
2899 cmd.idx = 0;
2900 ace_issue_cmd(regs, &cmd);
2905 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2907 struct ace_private *ap = netdev_priv(dev);
2908 struct ace_mac_stats *mac_stats =
2909 (struct ace_mac_stats *)ap->regs->Stats;
2911 ap->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2912 ap->stats.multicast = readl(&mac_stats->kept_mc);
2913 ap->stats.collisions = readl(&mac_stats->coll);
2915 return &ap->stats;
2919 static void __init ace_copy(struct ace_regs *regs, void *src,
2920 u32 dest, int size)
2922 unsigned long tdest;
2923 u32 *wsrc;
2924 short tsize, i;
2926 if (size <= 0)
2927 return;
2929 while (size > 0) {
2930 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2931 min_t(u32, size, ACE_WINDOW_SIZE));
2932 tdest = (unsigned long)&regs->Window +
2933 (dest & (ACE_WINDOW_SIZE - 1));
2934 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2936 * This requires byte swapping on big endian, however
2937 * writel does that for us
2939 wsrc = src;
2940 for (i = 0; i < (tsize / 4); i++) {
2941 writel(wsrc[i], tdest + i*4);
2943 dest += tsize;
2944 src += tsize;
2945 size -= tsize;
2948 return;
2952 static void __init ace_clear(struct ace_regs *regs, u32 dest, int size)
2954 unsigned long tdest;
2955 short tsize = 0, i;
2957 if (size <= 0)
2958 return;
2960 while (size > 0) {
2961 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2962 min_t(u32, size, ACE_WINDOW_SIZE));
2963 tdest = (unsigned long)&regs->Window +
2964 (dest & (ACE_WINDOW_SIZE - 1));
2965 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2967 for (i = 0; i < (tsize / 4); i++) {
2968 writel(0, tdest + i*4);
2971 dest += tsize;
2972 size -= tsize;
2975 return;
2980 * Download the firmware into the SRAM on the NIC
2982 * This operation requires the NIC to be halted and is performed with
2983 * interrupts disabled and with the spinlock hold.
2985 int __init ace_load_firmware(struct net_device *dev)
2987 struct ace_private *ap;
2988 struct ace_regs *regs;
2990 ap = netdev_priv(dev);
2991 regs = ap->regs;
2993 if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2994 printk(KERN_ERR "%s: trying to download firmware while the "
2995 "CPU is running!\n", ap->name);
2996 return -EFAULT;
3000 * Do not try to clear more than 512KB or we end up seeing
3001 * funny things on NICs with only 512KB SRAM
3003 ace_clear(regs, 0x2000, 0x80000-0x2000);
3004 if (ACE_IS_TIGON_I(ap)) {
3005 ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen);
3006 ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen);
3007 ace_copy(regs, tigonFwRodata, tigonFwRodataAddr,
3008 tigonFwRodataLen);
3009 ace_clear(regs, tigonFwBssAddr, tigonFwBssLen);
3010 ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen);
3011 }else if (ap->version == 2) {
3012 ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen);
3013 ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen);
3014 ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen);
3015 ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr,
3016 tigon2FwRodataLen);
3017 ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen);
3020 return 0;
3025 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
3027 * Accessing the EEPROM is `interesting' to say the least - don't read
3028 * this code right after dinner.
3030 * This is all about black magic and bit-banging the device .... I
3031 * wonder in what hospital they have put the guy who designed the i2c
3032 * specs.
3034 * Oh yes, this is only the beginning!
3036 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3037 * code i2c readout code by beta testing all my hacks.
3039 static void __init eeprom_start(struct ace_regs *regs)
3041 u32 local;
3043 readl(&regs->LocalCtrl);
3044 udelay(ACE_SHORT_DELAY);
3045 local = readl(&regs->LocalCtrl);
3046 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
3047 writel(local, &regs->LocalCtrl);
3048 readl(&regs->LocalCtrl);
3049 mb();
3050 udelay(ACE_SHORT_DELAY);
3051 local |= EEPROM_CLK_OUT;
3052 writel(local, &regs->LocalCtrl);
3053 readl(&regs->LocalCtrl);
3054 mb();
3055 udelay(ACE_SHORT_DELAY);
3056 local &= ~EEPROM_DATA_OUT;
3057 writel(local, &regs->LocalCtrl);
3058 readl(&regs->LocalCtrl);
3059 mb();
3060 udelay(ACE_SHORT_DELAY);
3061 local &= ~EEPROM_CLK_OUT;
3062 writel(local, &regs->LocalCtrl);
3063 readl(&regs->LocalCtrl);
3064 mb();
3068 static void __init eeprom_prep(struct ace_regs *regs, u8 magic)
3070 short i;
3071 u32 local;
3073 udelay(ACE_SHORT_DELAY);
3074 local = readl(&regs->LocalCtrl);
3075 local &= ~EEPROM_DATA_OUT;
3076 local |= EEPROM_WRITE_ENABLE;
3077 writel(local, &regs->LocalCtrl);
3078 readl(&regs->LocalCtrl);
3079 mb();
3081 for (i = 0; i < 8; i++, magic <<= 1) {
3082 udelay(ACE_SHORT_DELAY);
3083 if (magic & 0x80)
3084 local |= EEPROM_DATA_OUT;
3085 else
3086 local &= ~EEPROM_DATA_OUT;
3087 writel(local, &regs->LocalCtrl);
3088 readl(&regs->LocalCtrl);
3089 mb();
3091 udelay(ACE_SHORT_DELAY);
3092 local |= EEPROM_CLK_OUT;
3093 writel(local, &regs->LocalCtrl);
3094 readl(&regs->LocalCtrl);
3095 mb();
3096 udelay(ACE_SHORT_DELAY);
3097 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3098 writel(local, &regs->LocalCtrl);
3099 readl(&regs->LocalCtrl);
3100 mb();
3105 static int __init eeprom_check_ack(struct ace_regs *regs)
3107 int state;
3108 u32 local;
3110 local = readl(&regs->LocalCtrl);
3111 local &= ~EEPROM_WRITE_ENABLE;
3112 writel(local, &regs->LocalCtrl);
3113 readl(&regs->LocalCtrl);
3114 mb();
3115 udelay(ACE_LONG_DELAY);
3116 local |= EEPROM_CLK_OUT;
3117 writel(local, &regs->LocalCtrl);
3118 readl(&regs->LocalCtrl);
3119 mb();
3120 udelay(ACE_SHORT_DELAY);
3121 /* sample data in middle of high clk */
3122 state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3123 udelay(ACE_SHORT_DELAY);
3124 mb();
3125 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3126 readl(&regs->LocalCtrl);
3127 mb();
3129 return state;
3133 static void __init eeprom_stop(struct ace_regs *regs)
3135 u32 local;
3137 udelay(ACE_SHORT_DELAY);
3138 local = readl(&regs->LocalCtrl);
3139 local |= EEPROM_WRITE_ENABLE;
3140 writel(local, &regs->LocalCtrl);
3141 readl(&regs->LocalCtrl);
3142 mb();
3143 udelay(ACE_SHORT_DELAY);
3144 local &= ~EEPROM_DATA_OUT;
3145 writel(local, &regs->LocalCtrl);
3146 readl(&regs->LocalCtrl);
3147 mb();
3148 udelay(ACE_SHORT_DELAY);
3149 local |= EEPROM_CLK_OUT;
3150 writel(local, &regs->LocalCtrl);
3151 readl(&regs->LocalCtrl);
3152 mb();
3153 udelay(ACE_SHORT_DELAY);
3154 local |= EEPROM_DATA_OUT;
3155 writel(local, &regs->LocalCtrl);
3156 readl(&regs->LocalCtrl);
3157 mb();
3158 udelay(ACE_LONG_DELAY);
3159 local &= ~EEPROM_CLK_OUT;
3160 writel(local, &regs->LocalCtrl);
3161 mb();
3166 * Read a whole byte from the EEPROM.
3168 static int __init read_eeprom_byte(struct net_device *dev,
3169 unsigned long offset)
3171 struct ace_private *ap;
3172 struct ace_regs *regs;
3173 unsigned long flags;
3174 u32 local;
3175 int result = 0;
3176 short i;
3178 if (!dev) {
3179 printk(KERN_ERR "No device!\n");
3180 result = -ENODEV;
3181 goto out;
3184 ap = netdev_priv(dev);
3185 regs = ap->regs;
3188 * Don't take interrupts on this CPU will bit banging
3189 * the %#%#@$ I2C device
3191 local_irq_save(flags);
3193 eeprom_start(regs);
3195 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3196 if (eeprom_check_ack(regs)) {
3197 local_irq_restore(flags);
3198 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3199 result = -EIO;
3200 goto eeprom_read_error;
3203 eeprom_prep(regs, (offset >> 8) & 0xff);
3204 if (eeprom_check_ack(regs)) {
3205 local_irq_restore(flags);
3206 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3207 ap->name);
3208 result = -EIO;
3209 goto eeprom_read_error;
3212 eeprom_prep(regs, offset & 0xff);
3213 if (eeprom_check_ack(regs)) {
3214 local_irq_restore(flags);
3215 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3216 ap->name);
3217 result = -EIO;
3218 goto eeprom_read_error;
3221 eeprom_start(regs);
3222 eeprom_prep(regs, EEPROM_READ_SELECT);
3223 if (eeprom_check_ack(regs)) {
3224 local_irq_restore(flags);
3225 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3226 ap->name);
3227 result = -EIO;
3228 goto eeprom_read_error;
3231 for (i = 0; i < 8; i++) {
3232 local = readl(&regs->LocalCtrl);
3233 local &= ~EEPROM_WRITE_ENABLE;
3234 writel(local, &regs->LocalCtrl);
3235 readl(&regs->LocalCtrl);
3236 udelay(ACE_LONG_DELAY);
3237 mb();
3238 local |= EEPROM_CLK_OUT;
3239 writel(local, &regs->LocalCtrl);
3240 readl(&regs->LocalCtrl);
3241 mb();
3242 udelay(ACE_SHORT_DELAY);
3243 /* sample data mid high clk */
3244 result = (result << 1) |
3245 ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3246 udelay(ACE_SHORT_DELAY);
3247 mb();
3248 local = readl(&regs->LocalCtrl);
3249 local &= ~EEPROM_CLK_OUT;
3250 writel(local, &regs->LocalCtrl);
3251 readl(&regs->LocalCtrl);
3252 udelay(ACE_SHORT_DELAY);
3253 mb();
3254 if (i == 7) {
3255 local |= EEPROM_WRITE_ENABLE;
3256 writel(local, &regs->LocalCtrl);
3257 readl(&regs->LocalCtrl);
3258 mb();
3259 udelay(ACE_SHORT_DELAY);
3263 local |= EEPROM_DATA_OUT;
3264 writel(local, &regs->LocalCtrl);
3265 readl(&regs->LocalCtrl);
3266 mb();
3267 udelay(ACE_SHORT_DELAY);
3268 writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3269 readl(&regs->LocalCtrl);
3270 udelay(ACE_LONG_DELAY);
3271 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3272 readl(&regs->LocalCtrl);
3273 mb();
3274 udelay(ACE_SHORT_DELAY);
3275 eeprom_stop(regs);
3277 local_irq_restore(flags);
3278 out:
3279 return result;
3281 eeprom_read_error:
3282 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3283 ap->name, offset);
3284 goto out;
3289 * Local variables:
3290 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"
3291 * End: