2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/version.h>
57 #include <linux/types.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/pci.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
68 #include <linux/highmem.h>
69 #include <linux/sockios.h>
71 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72 #include <linux/if_vlan.h>
76 #include <linux/ethtool.h>
82 #include <asm/system.h>
85 #include <asm/byteorder.h>
86 #include <asm/uaccess.h>
89 #define DRV_NAME "acenic"
93 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
94 #define ACE_IS_TIGON_I(ap) 0
95 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
97 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
98 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
101 #ifndef PCI_VENDOR_ID_ALTEON
102 #define PCI_VENDOR_ID_ALTEON 0x12ae
104 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
105 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
106 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
108 #ifndef PCI_DEVICE_ID_3COM_3C985
109 #define PCI_DEVICE_ID_3COM_3C985 0x0001
111 #ifndef PCI_VENDOR_ID_NETGEAR
112 #define PCI_VENDOR_ID_NETGEAR 0x1385
113 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
115 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
116 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
121 * Farallon used the DEC vendor ID by mistake and they seem not
124 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
125 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
127 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
128 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
130 #ifndef PCI_VENDOR_ID_SGI
131 #define PCI_VENDOR_ID_SGI 0x10a9
133 #ifndef PCI_DEVICE_ID_SGI_ACENIC
134 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
137 static struct pci_device_id acenic_pci_tbl
[] = {
138 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
,
139 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
140 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER
,
141 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
142 { PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C985
,
143 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
144 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620
,
145 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
146 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620T
,
147 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
149 * Farallon used the DEC vendor ID on their cards incorrectly,
150 * then later Alteon's ID.
152 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_FARALLON_PN9000SX
,
153 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
154 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_FARALLON_PN9100T
,
155 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
156 { PCI_VENDOR_ID_SGI
, PCI_DEVICE_ID_SGI_ACENIC
,
157 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
160 MODULE_DEVICE_TABLE(pci
, acenic_pci_tbl
);
162 #ifndef SET_NETDEV_DEV
163 #define SET_NETDEV_DEV(net, pdev) do{} while(0)
166 #if LINUX_VERSION_CODE >= 0x2051c
167 #define ace_sync_irq(irq) synchronize_irq(irq)
169 #define ace_sync_irq(irq) synchronize_irq()
172 #ifndef offset_in_page
173 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
176 #define ACE_MAX_MOD_PARMS 8
177 #define BOARD_IDX_STATIC 0
178 #define BOARD_IDX_OVERFLOW -1
180 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
181 defined(NETIF_F_HW_VLAN_RX)
182 #define ACENIC_DO_VLAN 1
183 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
185 #define ACENIC_DO_VLAN 0
186 #define ACE_RCB_VLAN_FLAG 0
192 * These must be defined before the firmware is included.
194 #define MAX_TEXT_LEN 96*1024
195 #define MAX_RODATA_LEN 8*1024
196 #define MAX_DATA_LEN 2*1024
198 #include "acenic_firmware.h"
200 #ifndef tigon2FwReleaseLocal
201 #define tigon2FwReleaseLocal 0
205 * This driver currently supports Tigon I and Tigon II based cards
206 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
207 * GA620. The driver should also work on the SGI, DEC and Farallon
208 * versions of the card, however I have not been able to test that
211 * This card is really neat, it supports receive hardware checksumming
212 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
213 * firmware. Also the programming interface is quite neat, except for
214 * the parts dealing with the i2c eeprom on the card ;-)
216 * Using jumbo frames:
218 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
219 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
220 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
221 * interface number and <MTU> being the MTU value.
225 * When compiled as a loadable module, the driver allows for a number
226 * of module parameters to be specified. The driver supports the
227 * following module parameters:
229 * trace=<val> - Firmware trace level. This requires special traced
230 * firmware to replace the firmware supplied with
231 * the driver - for debugging purposes only.
233 * link=<val> - Link state. Normally you want to use the default link
234 * parameters set by the driver. This can be used to
235 * override these in case your switch doesn't negotiate
236 * the link properly. Valid values are:
237 * 0x0001 - Force half duplex link.
238 * 0x0002 - Do not negotiate line speed with the other end.
239 * 0x0010 - 10Mbit/sec link.
240 * 0x0020 - 100Mbit/sec link.
241 * 0x0040 - 1000Mbit/sec link.
242 * 0x0100 - Do not negotiate flow control.
243 * 0x0200 - Enable RX flow control Y
244 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
245 * Default value is 0x0270, ie. enable link+flow
246 * control negotiation. Negotiating the highest
247 * possible link speed with RX flow control enabled.
249 * When disabling link speed negotiation, only one link
250 * speed is allowed to be specified!
252 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
253 * to wait for more packets to arive before
254 * interrupting the host, from the time the first
257 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
258 * to wait for more packets to arive in the transmit ring,
259 * before interrupting the host, after transmitting the
260 * first packet in the ring.
262 * max_tx_desc=<val> - maximum number of transmit descriptors
263 * (packets) transmitted before interrupting the host.
265 * max_rx_desc=<val> - maximum number of receive descriptors
266 * (packets) received before interrupting the host.
268 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
269 * increments of the NIC's on board memory to be used for
270 * transmit and receive buffers. For the 1MB NIC app. 800KB
271 * is available, on the 1/2MB NIC app. 300KB is available.
272 * 68KB will always be available as a minimum for both
273 * directions. The default value is a 50/50 split.
274 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
275 * operations, default (1) is to always disable this as
276 * that is what Alteon does on NT. I have not been able
277 * to measure any real performance differences with
278 * this on my systems. Set <val>=0 if you want to
279 * enable these operations.
281 * If you use more than one NIC, specify the parameters for the
282 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
283 * run tracing on NIC #2 but not on NIC #1 and #3.
287 * - Proper multicast support.
288 * - NIC dump support.
289 * - More tuning parameters.
291 * The mini ring is not used under Linux and I am not sure it makes sense
292 * to actually use it.
294 * New interrupt handler strategy:
296 * The old interrupt handler worked using the traditional method of
297 * replacing an skbuff with a new one when a packet arrives. However
298 * the rx rings do not need to contain a static number of buffer
299 * descriptors, thus it makes sense to move the memory allocation out
300 * of the main interrupt handler and do it in a bottom half handler
301 * and only allocate new buffers when the number of buffers in the
302 * ring is below a certain threshold. In order to avoid starving the
303 * NIC under heavy load it is however necessary to force allocation
304 * when hitting a minimum threshold. The strategy for alloction is as
307 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
308 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
309 * the buffers in the interrupt handler
310 * RX_RING_THRES - maximum number of buffers in the rx ring
311 * RX_MINI_THRES - maximum number of buffers in the mini ring
312 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
314 * One advantagous side effect of this allocation approach is that the
315 * entire rx processing can be done without holding any spin lock
316 * since the rx rings and registers are totally independent of the tx
317 * ring and its registers. This of course includes the kmalloc's of
318 * new skb's. Thus start_xmit can run in parallel with rx processing
319 * and the memory allocation on SMP systems.
321 * Note that running the skb reallocation in a bottom half opens up
322 * another can of races which needs to be handled properly. In
323 * particular it can happen that the interrupt handler tries to run
324 * the reallocation while the bottom half is either running on another
325 * CPU or was interrupted on the same CPU. To get around this the
326 * driver uses bitops to prevent the reallocation routines from being
329 * TX handling can also be done without holding any spin lock, wheee
330 * this is fun! since tx_ret_csm is only written to by the interrupt
331 * handler. The case to be aware of is when shutting down the device
332 * and cleaning up where it is necessary to make sure that
333 * start_xmit() is not running while this is happening. Well DaveM
334 * informs me that this case is already protected against ... bye bye
335 * Mr. Spin Lock, it was nice to know you.
337 * TX interrupts are now partly disabled so the NIC will only generate
338 * TX interrupts for the number of coal ticks, not for the number of
339 * TX packets in the queue. This should reduce the number of TX only,
340 * ie. when no RX processing is done, interrupts seen.
344 * Threshold values for RX buffer allocation - the low water marks for
345 * when to start refilling the rings are set to 75% of the ring
346 * sizes. It seems to make sense to refill the rings entirely from the
347 * intrrupt handler once it gets below the panic threshold, that way
348 * we don't risk that the refilling is moved to another CPU when the
349 * one running the interrupt handler just got the slab code hot in its
352 #define RX_RING_SIZE 72
353 #define RX_MINI_SIZE 64
354 #define RX_JUMBO_SIZE 48
356 #define RX_PANIC_STD_THRES 16
357 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
358 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
359 #define RX_PANIC_MINI_THRES 12
360 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
361 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
362 #define RX_PANIC_JUMBO_THRES 6
363 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
364 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
368 * Size of the mini ring entries, basically these just should be big
369 * enough to take TCP ACKs
371 #define ACE_MINI_SIZE 100
373 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
374 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
375 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
378 * There seems to be a magic difference in the effect between 995 and 996
379 * but little difference between 900 and 995 ... no idea why.
381 * There is now a default set of tuning parameters which is set, depending
382 * on whether or not the user enables Jumbo frames. It's assumed that if
383 * Jumbo frames are enabled, the user wants optimal tuning for that case.
385 #define DEF_TX_COAL 400 /* 996 */
386 #define DEF_TX_MAX_DESC 60 /* was 40 */
387 #define DEF_RX_COAL 120 /* 1000 */
388 #define DEF_RX_MAX_DESC 25
389 #define DEF_TX_RATIO 21 /* 24 */
391 #define DEF_JUMBO_TX_COAL 20
392 #define DEF_JUMBO_TX_MAX_DESC 60
393 #define DEF_JUMBO_RX_COAL 30
394 #define DEF_JUMBO_RX_MAX_DESC 6
395 #define DEF_JUMBO_TX_RATIO 21
397 #if tigon2FwReleaseLocal < 20001118
399 * Standard firmware and early modifications duplicate
400 * IRQ load without this flag (coal timer is never reset).
401 * Note that with this flag tx_coal should be less than
402 * time to xmit full tx ring.
403 * 400usec is not so bad for tx ring size of 128.
405 #define TX_COAL_INTS_ONLY 1 /* worth it */
408 * With modified firmware, this is not necessary, but still useful.
410 #define TX_COAL_INTS_ONLY 1
414 #define DEF_STAT (2 * TICKS_PER_SEC)
417 static int link
[ACE_MAX_MOD_PARMS
];
418 static int trace
[ACE_MAX_MOD_PARMS
];
419 static int tx_coal_tick
[ACE_MAX_MOD_PARMS
];
420 static int rx_coal_tick
[ACE_MAX_MOD_PARMS
];
421 static int max_tx_desc
[ACE_MAX_MOD_PARMS
];
422 static int max_rx_desc
[ACE_MAX_MOD_PARMS
];
423 static int tx_ratio
[ACE_MAX_MOD_PARMS
];
424 static int dis_pci_mem_inval
[ACE_MAX_MOD_PARMS
] = {1, 1, 1, 1, 1, 1, 1, 1};
426 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
427 MODULE_LICENSE("GPL");
428 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
430 static int num_params
;
431 module_param_array(link
, int, num_params
, 0);
432 module_param_array(trace
, int, num_params
, 0);
433 module_param_array(tx_coal_tick
, int, num_params
, 0);
434 module_param_array(max_tx_desc
, int, num_params
, 0);
435 module_param_array(rx_coal_tick
, int, num_params
, 0);
436 module_param_array(max_rx_desc
, int, num_params
, 0);
437 module_param_array(tx_ratio
, int, num_params
, 0);
438 MODULE_PARM_DESC(link
, "AceNIC/3C985/NetGear link state");
439 MODULE_PARM_DESC(trace
, "AceNIC/3C985/NetGear firmware trace level");
440 MODULE_PARM_DESC(tx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
441 MODULE_PARM_DESC(max_tx_desc
, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
442 MODULE_PARM_DESC(rx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
443 MODULE_PARM_DESC(max_rx_desc
, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
444 MODULE_PARM_DESC(tx_ratio
, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
447 static char version
[] __initdata
=
448 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
449 " http://home.cern.ch/~jes/gige/acenic.html\n";
451 static int ace_get_settings(struct net_device
*, struct ethtool_cmd
*);
452 static int ace_set_settings(struct net_device
*, struct ethtool_cmd
*);
453 static void ace_get_drvinfo(struct net_device
*, struct ethtool_drvinfo
*);
455 static struct ethtool_ops ace_ethtool_ops
= {
456 .get_settings
= ace_get_settings
,
457 .set_settings
= ace_set_settings
,
458 .get_drvinfo
= ace_get_drvinfo
,
461 static int __devinit
acenic_probe_one(struct pci_dev
*pdev
,
462 const struct pci_device_id
*id
)
464 struct net_device
*dev
;
465 struct ace_private
*ap
;
466 static int boards_found
;
468 dev
= alloc_etherdev(sizeof(struct ace_private
));
470 printk(KERN_ERR
"acenic: Unable to allocate "
471 "net_device structure!\n");
475 SET_MODULE_OWNER(dev
);
476 SET_NETDEV_DEV(dev
, &pdev
->dev
);
480 ap
->name
= pci_name(pdev
);
482 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
484 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
485 dev
->vlan_rx_register
= ace_vlan_rx_register
;
486 dev
->vlan_rx_kill_vid
= ace_vlan_rx_kill_vid
;
489 static void ace_watchdog(struct net_device
*dev
);
490 dev
->tx_timeout
= &ace_watchdog
;
491 dev
->watchdog_timeo
= 5*HZ
;
494 dev
->open
= &ace_open
;
495 dev
->stop
= &ace_close
;
496 dev
->hard_start_xmit
= &ace_start_xmit
;
497 dev
->get_stats
= &ace_get_stats
;
498 dev
->set_multicast_list
= &ace_set_multicast_list
;
499 SET_ETHTOOL_OPS(dev
, &ace_ethtool_ops
);
500 dev
->set_mac_address
= &ace_set_mac_addr
;
501 dev
->change_mtu
= &ace_change_mtu
;
503 /* we only display this string ONCE */
507 if (pci_enable_device(pdev
))
508 goto fail_free_netdev
;
511 * Enable master mode before we start playing with the
512 * pci_command word since pci_set_master() will modify
515 pci_set_master(pdev
);
517 pci_read_config_word(pdev
, PCI_COMMAND
, &ap
->pci_command
);
519 /* OpenFirmware on Mac's does not set this - DOH.. */
520 if (!(ap
->pci_command
& PCI_COMMAND_MEMORY
)) {
521 printk(KERN_INFO
"%s: Enabling PCI Memory Mapped "
522 "access - was not enabled by BIOS/Firmware\n",
524 ap
->pci_command
= ap
->pci_command
| PCI_COMMAND_MEMORY
;
525 pci_write_config_word(ap
->pdev
, PCI_COMMAND
,
530 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &ap
->pci_latency
);
531 if (ap
->pci_latency
<= 0x40) {
532 ap
->pci_latency
= 0x40;
533 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, ap
->pci_latency
);
537 * Remap the regs into kernel space - this is abuse of
538 * dev->base_addr since it was means for I/O port
539 * addresses but who gives a damn.
541 dev
->base_addr
= pci_resource_start(pdev
, 0);
542 ap
->regs
= (struct ace_regs
*)ioremap(dev
->base_addr
, 0x4000);
544 printk(KERN_ERR
"%s: Unable to map I/O register, "
545 "AceNIC %i will be disabled.\n",
546 ap
->name
, boards_found
);
547 goto fail_free_netdev
;
550 switch(pdev
->vendor
) {
551 case PCI_VENDOR_ID_ALTEON
:
552 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9100T
) {
553 printk(KERN_INFO
"%s: Farallon PN9100-T ",
556 printk(KERN_INFO
"%s: Alteon AceNIC ",
560 case PCI_VENDOR_ID_3COM
:
561 printk(KERN_INFO
"%s: 3Com 3C985 ", ap
->name
);
563 case PCI_VENDOR_ID_NETGEAR
:
564 printk(KERN_INFO
"%s: NetGear GA620 ", ap
->name
);
566 case PCI_VENDOR_ID_DEC
:
567 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9000SX
) {
568 printk(KERN_INFO
"%s: Farallon PN9000-SX ",
572 case PCI_VENDOR_ID_SGI
:
573 printk(KERN_INFO
"%s: SGI AceNIC ", ap
->name
);
576 printk(KERN_INFO
"%s: Unknown AceNIC ", ap
->name
);
580 printk("Gigabit Ethernet at 0x%08lx, ", dev
->base_addr
);
582 printk("irq %s\n", __irq_itoa(pdev
->irq
));
584 printk("irq %i\n", pdev
->irq
);
587 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
588 if ((readl(&ap
->regs
->HostCtrl
) >> 28) == 4) {
589 printk(KERN_ERR
"%s: Driver compiled without Tigon I"
590 " support - NIC disabled\n", dev
->name
);
595 if (ace_allocate_descriptors(dev
))
596 goto fail_free_netdev
;
599 if (boards_found
>= ACE_MAX_MOD_PARMS
)
600 ap
->board_idx
= BOARD_IDX_OVERFLOW
;
602 ap
->board_idx
= boards_found
;
604 ap
->board_idx
= BOARD_IDX_STATIC
;
608 goto fail_free_netdev
;
610 if (register_netdev(dev
)) {
611 printk(KERN_ERR
"acenic: device registration failed\n");
614 ap
->name
= dev
->name
;
616 if (ap
->pci_using_dac
)
617 dev
->features
|= NETIF_F_HIGHDMA
;
619 pci_set_drvdata(pdev
, dev
);
625 ace_init_cleanup(dev
);
631 static void __devexit
acenic_remove_one(struct pci_dev
*pdev
)
633 struct net_device
*dev
= pci_get_drvdata(pdev
);
634 struct ace_private
*ap
= netdev_priv(dev
);
635 struct ace_regs
*regs
= ap
->regs
;
638 unregister_netdev(dev
);
640 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
641 if (ap
->version
>= 2)
642 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
645 * This clears any pending interrupts
647 writel(1, ®s
->Mb0Lo
);
648 readl(®s
->CpuCtrl
); /* flush */
651 * Make sure no other CPUs are processing interrupts
652 * on the card before the buffers are being released.
653 * Otherwise one might experience some `interesting'
656 * Then release the RX buffers - jumbo buffers were
657 * already released in ace_close().
659 ace_sync_irq(dev
->irq
);
661 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++) {
662 struct sk_buff
*skb
= ap
->skb
->rx_std_skbuff
[i
].skb
;
665 struct ring_info
*ringp
;
668 ringp
= &ap
->skb
->rx_std_skbuff
[i
];
669 mapping
= pci_unmap_addr(ringp
, mapping
);
670 pci_unmap_page(ap
->pdev
, mapping
,
674 ap
->rx_std_ring
[i
].size
= 0;
675 ap
->skb
->rx_std_skbuff
[i
].skb
= NULL
;
680 if (ap
->version
>= 2) {
681 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++) {
682 struct sk_buff
*skb
= ap
->skb
->rx_mini_skbuff
[i
].skb
;
685 struct ring_info
*ringp
;
688 ringp
= &ap
->skb
->rx_mini_skbuff
[i
];
689 mapping
= pci_unmap_addr(ringp
,mapping
);
690 pci_unmap_page(ap
->pdev
, mapping
,
694 ap
->rx_mini_ring
[i
].size
= 0;
695 ap
->skb
->rx_mini_skbuff
[i
].skb
= NULL
;
701 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
702 struct sk_buff
*skb
= ap
->skb
->rx_jumbo_skbuff
[i
].skb
;
704 struct ring_info
*ringp
;
707 ringp
= &ap
->skb
->rx_jumbo_skbuff
[i
];
708 mapping
= pci_unmap_addr(ringp
, mapping
);
709 pci_unmap_page(ap
->pdev
, mapping
,
713 ap
->rx_jumbo_ring
[i
].size
= 0;
714 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
719 ace_init_cleanup(dev
);
723 static struct pci_driver acenic_pci_driver
= {
725 .id_table
= acenic_pci_tbl
,
726 .probe
= acenic_probe_one
,
727 .remove
= __devexit_p(acenic_remove_one
),
730 static int __init
acenic_init(void)
732 return pci_module_init(&acenic_pci_driver
);
735 static void __exit
acenic_exit(void)
737 pci_unregister_driver(&acenic_pci_driver
);
740 module_init(acenic_init
);
741 module_exit(acenic_exit
);
743 static void ace_free_descriptors(struct net_device
*dev
)
745 struct ace_private
*ap
= netdev_priv(dev
);
748 if (ap
->rx_std_ring
!= NULL
) {
749 size
= (sizeof(struct rx_desc
) *
750 (RX_STD_RING_ENTRIES
+
751 RX_JUMBO_RING_ENTRIES
+
752 RX_MINI_RING_ENTRIES
+
753 RX_RETURN_RING_ENTRIES
));
754 pci_free_consistent(ap
->pdev
, size
, ap
->rx_std_ring
,
755 ap
->rx_ring_base_dma
);
756 ap
->rx_std_ring
= NULL
;
757 ap
->rx_jumbo_ring
= NULL
;
758 ap
->rx_mini_ring
= NULL
;
759 ap
->rx_return_ring
= NULL
;
761 if (ap
->evt_ring
!= NULL
) {
762 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
763 pci_free_consistent(ap
->pdev
, size
, ap
->evt_ring
,
767 if (ap
->tx_ring
!= NULL
&& !ACE_IS_TIGON_I(ap
)) {
768 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
769 pci_free_consistent(ap
->pdev
, size
, ap
->tx_ring
,
774 if (ap
->evt_prd
!= NULL
) {
775 pci_free_consistent(ap
->pdev
, sizeof(u32
),
776 (void *)ap
->evt_prd
, ap
->evt_prd_dma
);
779 if (ap
->rx_ret_prd
!= NULL
) {
780 pci_free_consistent(ap
->pdev
, sizeof(u32
),
781 (void *)ap
->rx_ret_prd
,
783 ap
->rx_ret_prd
= NULL
;
785 if (ap
->tx_csm
!= NULL
) {
786 pci_free_consistent(ap
->pdev
, sizeof(u32
),
787 (void *)ap
->tx_csm
, ap
->tx_csm_dma
);
793 static int ace_allocate_descriptors(struct net_device
*dev
)
795 struct ace_private
*ap
= netdev_priv(dev
);
798 size
= (sizeof(struct rx_desc
) *
799 (RX_STD_RING_ENTRIES
+
800 RX_JUMBO_RING_ENTRIES
+
801 RX_MINI_RING_ENTRIES
+
802 RX_RETURN_RING_ENTRIES
));
804 ap
->rx_std_ring
= pci_alloc_consistent(ap
->pdev
, size
,
805 &ap
->rx_ring_base_dma
);
806 if (ap
->rx_std_ring
== NULL
)
809 ap
->rx_jumbo_ring
= ap
->rx_std_ring
+ RX_STD_RING_ENTRIES
;
810 ap
->rx_mini_ring
= ap
->rx_jumbo_ring
+ RX_JUMBO_RING_ENTRIES
;
811 ap
->rx_return_ring
= ap
->rx_mini_ring
+ RX_MINI_RING_ENTRIES
;
813 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
815 ap
->evt_ring
= pci_alloc_consistent(ap
->pdev
, size
, &ap
->evt_ring_dma
);
817 if (ap
->evt_ring
== NULL
)
821 * Only allocate a host TX ring for the Tigon II, the Tigon I
822 * has to use PCI registers for this ;-(
824 if (!ACE_IS_TIGON_I(ap
)) {
825 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
827 ap
->tx_ring
= pci_alloc_consistent(ap
->pdev
, size
,
830 if (ap
->tx_ring
== NULL
)
834 ap
->evt_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
836 if (ap
->evt_prd
== NULL
)
839 ap
->rx_ret_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
840 &ap
->rx_ret_prd_dma
);
841 if (ap
->rx_ret_prd
== NULL
)
844 ap
->tx_csm
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
846 if (ap
->tx_csm
== NULL
)
853 ace_init_cleanup(dev
);
859 * Generic cleanup handling data allocated during init. Used when the
860 * module is unloaded or if an error occurs during initialization
862 static void ace_init_cleanup(struct net_device
*dev
)
864 struct ace_private
*ap
;
866 ap
= netdev_priv(dev
);
868 ace_free_descriptors(dev
);
871 pci_free_consistent(ap
->pdev
, sizeof(struct ace_info
),
872 ap
->info
, ap
->info_dma
);
876 kfree(ap
->trace_buf
);
879 free_irq(dev
->irq
, dev
);
886 * Commands are considered to be slow.
888 static inline void ace_issue_cmd(struct ace_regs
*regs
, struct cmd
*cmd
)
892 idx
= readl(®s
->CmdPrd
);
894 writel(*(u32
*)(cmd
), ®s
->CmdRng
[idx
]);
895 idx
= (idx
+ 1) % CMD_RING_ENTRIES
;
897 writel(idx
, ®s
->CmdPrd
);
901 static int __init
ace_init(struct net_device
*dev
)
903 struct ace_private
*ap
;
904 struct ace_regs
*regs
;
905 struct ace_info
*info
= NULL
;
906 struct pci_dev
*pdev
;
909 u32 tig_ver
, mac1
, mac2
, tmp
, pci_state
;
910 int board_idx
, ecode
= 0;
912 unsigned char cache_size
;
914 ap
= netdev_priv(dev
);
917 board_idx
= ap
->board_idx
;
920 * aman@sgi.com - its useful to do a NIC reset here to
921 * address the `Firmware not running' problem subsequent
922 * to any crashes involving the NIC
924 writel(HW_RESET
| (HW_RESET
<< 24), ®s
->HostCtrl
);
925 readl(®s
->HostCtrl
); /* PCI write posting */
929 * Don't access any other registers before this point!
933 * This will most likely need BYTE_SWAP once we switch
934 * to using __raw_writel()
936 writel((WORD_SWAP
| CLR_INT
| ((WORD_SWAP
| CLR_INT
) << 24)),
939 writel((CLR_INT
| WORD_SWAP
| ((CLR_INT
| WORD_SWAP
) << 24)),
942 readl(®s
->HostCtrl
); /* PCI write posting */
945 * Stop the NIC CPU and clear pending interrupts
947 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
948 readl(®s
->CpuCtrl
); /* PCI write posting */
949 writel(0, ®s
->Mb0Lo
);
951 tig_ver
= readl(®s
->HostCtrl
) >> 28;
954 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
957 printk(KERN_INFO
" Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
958 tig_ver
, tigonFwReleaseMajor
, tigonFwReleaseMinor
,
960 writel(0, ®s
->LocalCtrl
);
962 ap
->tx_ring_entries
= TIGON_I_TX_RING_ENTRIES
;
966 printk(KERN_INFO
" Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
967 tig_ver
, tigon2FwReleaseMajor
, tigon2FwReleaseMinor
,
969 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
970 readl(®s
->CpuBCtrl
); /* PCI write posting */
972 * The SRAM bank size does _not_ indicate the amount
973 * of memory on the card, it controls the _bank_ size!
974 * Ie. a 1MB AceNIC will have two banks of 512KB.
976 writel(SRAM_BANK_512K
, ®s
->LocalCtrl
);
977 writel(SYNC_SRAM_TIMING
, ®s
->MiscCfg
);
979 ap
->tx_ring_entries
= MAX_TX_RING_ENTRIES
;
982 printk(KERN_WARNING
" Unsupported Tigon version detected "
989 * ModeStat _must_ be set after the SRAM settings as this change
990 * seems to corrupt the ModeStat and possible other registers.
991 * The SRAM settings survive resets and setting it to the same
992 * value a second time works as well. This is what caused the
993 * `Firmware not running' problem on the Tigon II.
996 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
| ACE_BYTE_SWAP_BD
|
997 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
999 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
|
1000 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
1002 readl(®s
->ModeStat
); /* PCI write posting */
1005 for(i
= 0; i
< 4; i
++) {
1007 tmp
= read_eeprom_byte(dev
, 0x8c+i
);
1012 mac1
|= (tmp
& 0xff);
1015 for(i
= 4; i
< 8; i
++) {
1017 tmp
= read_eeprom_byte(dev
, 0x8c+i
);
1022 mac2
|= (tmp
& 0xff);
1025 writel(mac1
, ®s
->MacAddrHi
);
1026 writel(mac2
, ®s
->MacAddrLo
);
1028 printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
1029 (mac1
>> 8) & 0xff, mac1
& 0xff, (mac2
>> 24) &0xff,
1030 (mac2
>> 16) & 0xff, (mac2
>> 8) & 0xff, mac2
& 0xff);
1032 dev
->dev_addr
[0] = (mac1
>> 8) & 0xff;
1033 dev
->dev_addr
[1] = mac1
& 0xff;
1034 dev
->dev_addr
[2] = (mac2
>> 24) & 0xff;
1035 dev
->dev_addr
[3] = (mac2
>> 16) & 0xff;
1036 dev
->dev_addr
[4] = (mac2
>> 8) & 0xff;
1037 dev
->dev_addr
[5] = mac2
& 0xff;
1040 * Looks like this is necessary to deal with on all architectures,
1041 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1042 * Ie. having two NICs in the machine, one will have the cache
1043 * line set at boot time, the other will not.
1046 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &cache_size
);
1048 if (cache_size
!= SMP_CACHE_BYTES
) {
1049 printk(KERN_INFO
" PCI cache line size set incorrectly "
1050 "(%i bytes) by BIOS/FW, ", cache_size
);
1051 if (cache_size
> SMP_CACHE_BYTES
)
1052 printk("expecting %i\n", SMP_CACHE_BYTES
);
1054 printk("correcting to %i\n", SMP_CACHE_BYTES
);
1055 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
1056 SMP_CACHE_BYTES
>> 2);
1060 pci_state
= readl(®s
->PciState
);
1061 printk(KERN_INFO
" PCI bus width: %i bits, speed: %iMHz, "
1062 "latency: %i clks\n",
1063 (pci_state
& PCI_32BIT
) ? 32 : 64,
1064 (pci_state
& PCI_66MHZ
) ? 66 : 33,
1068 * Set the max DMA transfer size. Seems that for most systems
1069 * the performance is better when no MAX parameter is
1070 * set. However for systems enabling PCI write and invalidate,
1071 * DMA writes must be set to the L1 cache line size to get
1072 * optimal performance.
1074 * The default is now to turn the PCI write and invalidate off
1075 * - that is what Alteon does for NT.
1077 tmp
= READ_CMD_MEM
| WRITE_CMD_MEM
;
1078 if (ap
->version
>= 2) {
1079 tmp
|= (MEM_READ_MULTIPLE
| (pci_state
& PCI_66MHZ
));
1081 * Tuning parameters only supported for 8 cards
1083 if (board_idx
== BOARD_IDX_OVERFLOW
||
1084 dis_pci_mem_inval
[board_idx
]) {
1085 if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1086 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1087 pci_write_config_word(pdev
, PCI_COMMAND
,
1089 printk(KERN_INFO
" Disabling PCI memory "
1090 "write and invalidate\n");
1092 } else if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1093 printk(KERN_INFO
" PCI memory write & invalidate "
1094 "enabled by BIOS, enabling counter measures\n");
1096 switch(SMP_CACHE_BYTES
) {
1098 tmp
|= DMA_WRITE_MAX_16
;
1101 tmp
|= DMA_WRITE_MAX_32
;
1104 tmp
|= DMA_WRITE_MAX_64
;
1107 tmp
|= DMA_WRITE_MAX_128
;
1110 printk(KERN_INFO
" Cache line size %i not "
1111 "supported, PCI write and invalidate "
1112 "disabled\n", SMP_CACHE_BYTES
);
1113 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1114 pci_write_config_word(pdev
, PCI_COMMAND
,
1122 * On this platform, we know what the best dma settings
1123 * are. We use 64-byte maximum bursts, because if we
1124 * burst larger than the cache line size (or even cross
1125 * a 64byte boundary in a single burst) the UltraSparc
1126 * PCI controller will disconnect at 64-byte multiples.
1128 * Read-multiple will be properly enabled above, and when
1129 * set will give the PCI controller proper hints about
1132 tmp
&= ~DMA_READ_WRITE_MASK
;
1133 tmp
|= DMA_READ_MAX_64
;
1134 tmp
|= DMA_WRITE_MAX_64
;
1137 tmp
&= ~DMA_READ_WRITE_MASK
;
1138 tmp
|= DMA_READ_MAX_128
;
1140 * All the docs say MUST NOT. Well, I did.
1141 * Nothing terrible happens, if we load wrong size.
1142 * Bit w&i still works better!
1144 tmp
|= DMA_WRITE_MAX_128
;
1146 writel(tmp
, ®s
->PciState
);
1150 * The Host PCI bus controller driver has to set FBB.
1151 * If all devices on that PCI bus support FBB, then the controller
1152 * can enable FBB support in the Host PCI Bus controller (or on
1153 * the PCI-PCI bridge if that applies).
1157 * I have received reports from people having problems when this
1160 if (!(ap
->pci_command
& PCI_COMMAND_FAST_BACK
)) {
1161 printk(KERN_INFO
" Enabling PCI Fast Back to Back\n");
1162 ap
->pci_command
|= PCI_COMMAND_FAST_BACK
;
1163 pci_write_config_word(pdev
, PCI_COMMAND
, ap
->pci_command
);
1168 * Configure DMA attributes.
1170 if (!pci_set_dma_mask(pdev
, 0xffffffffffffffffULL
)) {
1171 ap
->pci_using_dac
= 1;
1172 } else if (!pci_set_dma_mask(pdev
, 0xffffffffULL
)) {
1173 ap
->pci_using_dac
= 0;
1180 * Initialize the generic info block and the command+event rings
1181 * and the control blocks for the transmit and receive rings
1182 * as they need to be setup once and for all.
1184 if (!(info
= pci_alloc_consistent(ap
->pdev
, sizeof(struct ace_info
),
1192 * Get the memory for the skb rings.
1194 if (!(ap
->skb
= kmalloc(sizeof(struct ace_skb
), GFP_KERNEL
))) {
1199 ecode
= request_irq(pdev
->irq
, ace_interrupt
, SA_SHIRQ
,
1202 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1203 DRV_NAME
, pdev
->irq
);
1206 dev
->irq
= pdev
->irq
;
1209 spin_lock_init(&ap
->debug_lock
);
1210 ap
->last_tx
= ACE_TX_RING_ENTRIES(ap
) - 1;
1211 ap
->last_std_rx
= 0;
1212 ap
->last_mini_rx
= 0;
1215 memset(ap
->info
, 0, sizeof(struct ace_info
));
1216 memset(ap
->skb
, 0, sizeof(struct ace_skb
));
1218 ace_load_firmware(dev
);
1221 tmp_ptr
= ap
->info_dma
;
1222 writel(tmp_ptr
>> 32, ®s
->InfoPtrHi
);
1223 writel(tmp_ptr
& 0xffffffff, ®s
->InfoPtrLo
);
1225 memset(ap
->evt_ring
, 0, EVT_RING_ENTRIES
* sizeof(struct event
));
1227 set_aceaddr(&info
->evt_ctrl
.rngptr
, ap
->evt_ring_dma
);
1228 info
->evt_ctrl
.flags
= 0;
1232 set_aceaddr(&info
->evt_prd_ptr
, ap
->evt_prd_dma
);
1233 writel(0, ®s
->EvtCsm
);
1235 set_aceaddr(&info
->cmd_ctrl
.rngptr
, 0x100);
1236 info
->cmd_ctrl
.flags
= 0;
1237 info
->cmd_ctrl
.max_len
= 0;
1239 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1240 writel(0, ®s
->CmdRng
[i
]);
1242 writel(0, ®s
->CmdPrd
);
1243 writel(0, ®s
->CmdCsm
);
1245 tmp_ptr
= ap
->info_dma
;
1246 tmp_ptr
+= (unsigned long) &(((struct ace_info
*)0)->s
.stats
);
1247 set_aceaddr(&info
->stats2_ptr
, (dma_addr_t
) tmp_ptr
);
1249 set_aceaddr(&info
->rx_std_ctrl
.rngptr
, ap
->rx_ring_base_dma
);
1250 info
->rx_std_ctrl
.max_len
= ACE_STD_BUFSIZE
;
1251 info
->rx_std_ctrl
.flags
=
1252 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1254 memset(ap
->rx_std_ring
, 0,
1255 RX_STD_RING_ENTRIES
* sizeof(struct rx_desc
));
1257 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++)
1258 ap
->rx_std_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
;
1260 ap
->rx_std_skbprd
= 0;
1261 atomic_set(&ap
->cur_rx_bufs
, 0);
1263 set_aceaddr(&info
->rx_jumbo_ctrl
.rngptr
,
1264 (ap
->rx_ring_base_dma
+
1265 (sizeof(struct rx_desc
) * RX_STD_RING_ENTRIES
)));
1266 info
->rx_jumbo_ctrl
.max_len
= 0;
1267 info
->rx_jumbo_ctrl
.flags
=
1268 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1270 memset(ap
->rx_jumbo_ring
, 0,
1271 RX_JUMBO_RING_ENTRIES
* sizeof(struct rx_desc
));
1273 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++)
1274 ap
->rx_jumbo_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
| BD_FLG_JUMBO
;
1276 ap
->rx_jumbo_skbprd
= 0;
1277 atomic_set(&ap
->cur_jumbo_bufs
, 0);
1279 memset(ap
->rx_mini_ring
, 0,
1280 RX_MINI_RING_ENTRIES
* sizeof(struct rx_desc
));
1282 if (ap
->version
>= 2) {
1283 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
,
1284 (ap
->rx_ring_base_dma
+
1285 (sizeof(struct rx_desc
) *
1286 (RX_STD_RING_ENTRIES
+
1287 RX_JUMBO_RING_ENTRIES
))));
1288 info
->rx_mini_ctrl
.max_len
= ACE_MINI_SIZE
;
1289 info
->rx_mini_ctrl
.flags
=
1290 RCB_FLG_TCP_UDP_SUM
|RCB_FLG_NO_PSEUDO_HDR
|ACE_RCB_VLAN_FLAG
;
1292 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++)
1293 ap
->rx_mini_ring
[i
].flags
=
1294 BD_FLG_TCP_UDP_SUM
| BD_FLG_MINI
;
1296 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
, 0);
1297 info
->rx_mini_ctrl
.flags
= RCB_FLG_RNG_DISABLE
;
1298 info
->rx_mini_ctrl
.max_len
= 0;
1301 ap
->rx_mini_skbprd
= 0;
1302 atomic_set(&ap
->cur_mini_bufs
, 0);
1304 set_aceaddr(&info
->rx_return_ctrl
.rngptr
,
1305 (ap
->rx_ring_base_dma
+
1306 (sizeof(struct rx_desc
) *
1307 (RX_STD_RING_ENTRIES
+
1308 RX_JUMBO_RING_ENTRIES
+
1309 RX_MINI_RING_ENTRIES
))));
1310 info
->rx_return_ctrl
.flags
= 0;
1311 info
->rx_return_ctrl
.max_len
= RX_RETURN_RING_ENTRIES
;
1313 memset(ap
->rx_return_ring
, 0,
1314 RX_RETURN_RING_ENTRIES
* sizeof(struct rx_desc
));
1316 set_aceaddr(&info
->rx_ret_prd_ptr
, ap
->rx_ret_prd_dma
);
1317 *(ap
->rx_ret_prd
) = 0;
1319 writel(TX_RING_BASE
, ®s
->WinBase
);
1321 if (ACE_IS_TIGON_I(ap
)) {
1322 ap
->tx_ring
= (struct tx_desc
*)regs
->Window
;
1323 for (i
= 0; i
< (TIGON_I_TX_RING_ENTRIES
*
1324 sizeof(struct tx_desc
) / 4); i
++) {
1325 writel(0, (unsigned long)ap
->tx_ring
+ i
* 4);
1328 set_aceaddr(&info
->tx_ctrl
.rngptr
, TX_RING_BASE
);
1330 memset(ap
->tx_ring
, 0,
1331 MAX_TX_RING_ENTRIES
* sizeof(struct tx_desc
));
1333 set_aceaddr(&info
->tx_ctrl
.rngptr
, ap
->tx_ring_dma
);
1336 info
->tx_ctrl
.max_len
= ACE_TX_RING_ENTRIES(ap
);
1337 tmp
= RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| ACE_RCB_VLAN_FLAG
;
1340 * The Tigon I does not like having the TX ring in host memory ;-(
1342 if (!ACE_IS_TIGON_I(ap
))
1343 tmp
|= RCB_FLG_TX_HOST_RING
;
1344 #if TX_COAL_INTS_ONLY
1345 tmp
|= RCB_FLG_COAL_INT_ONLY
;
1347 info
->tx_ctrl
.flags
= tmp
;
1349 set_aceaddr(&info
->tx_csm_ptr
, ap
->tx_csm_dma
);
1352 * Potential item for tuning parameter
1355 writel(DMA_THRESH_16W
, ®s
->DmaReadCfg
);
1356 writel(DMA_THRESH_16W
, ®s
->DmaWriteCfg
);
1358 writel(DMA_THRESH_8W
, ®s
->DmaReadCfg
);
1359 writel(DMA_THRESH_8W
, ®s
->DmaWriteCfg
);
1362 writel(0, ®s
->MaskInt
);
1363 writel(1, ®s
->IfIdx
);
1366 * McKinley boxes do not like us fiddling with AssistState
1369 writel(1, ®s
->AssistState
);
1372 writel(DEF_STAT
, ®s
->TuneStatTicks
);
1373 writel(DEF_TRACE
, ®s
->TuneTrace
);
1375 ace_set_rxtx_parms(dev
, 0);
1377 if (board_idx
== BOARD_IDX_OVERFLOW
) {
1378 printk(KERN_WARNING
"%s: more than %i NICs detected, "
1379 "ignoring module parameters!\n",
1380 ap
->name
, ACE_MAX_MOD_PARMS
);
1381 } else if (board_idx
>= 0) {
1382 if (tx_coal_tick
[board_idx
])
1383 writel(tx_coal_tick
[board_idx
],
1384 ®s
->TuneTxCoalTicks
);
1385 if (max_tx_desc
[board_idx
])
1386 writel(max_tx_desc
[board_idx
], ®s
->TuneMaxTxDesc
);
1388 if (rx_coal_tick
[board_idx
])
1389 writel(rx_coal_tick
[board_idx
],
1390 ®s
->TuneRxCoalTicks
);
1391 if (max_rx_desc
[board_idx
])
1392 writel(max_rx_desc
[board_idx
], ®s
->TuneMaxRxDesc
);
1394 if (trace
[board_idx
])
1395 writel(trace
[board_idx
], ®s
->TuneTrace
);
1397 if ((tx_ratio
[board_idx
] > 0) && (tx_ratio
[board_idx
] < 64))
1398 writel(tx_ratio
[board_idx
], ®s
->TxBufRat
);
1402 * Default link parameters
1404 tmp
= LNK_ENABLE
| LNK_FULL_DUPLEX
| LNK_1000MB
| LNK_100MB
|
1405 LNK_10MB
| LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
| LNK_NEGOTIATE
;
1406 if(ap
->version
>= 2)
1407 tmp
|= LNK_TX_FLOW_CTL_Y
;
1410 * Override link default parameters
1412 if ((board_idx
>= 0) && link
[board_idx
]) {
1413 int option
= link
[board_idx
];
1417 if (option
& 0x01) {
1418 printk(KERN_INFO
"%s: Setting half duplex link\n",
1420 tmp
&= ~LNK_FULL_DUPLEX
;
1423 tmp
&= ~LNK_NEGOTIATE
;
1430 if ((option
& 0x70) == 0) {
1431 printk(KERN_WARNING
"%s: No media speed specified, "
1432 "forcing auto negotiation\n", ap
->name
);
1433 tmp
|= LNK_NEGOTIATE
| LNK_1000MB
|
1434 LNK_100MB
| LNK_10MB
;
1436 if ((option
& 0x100) == 0)
1437 tmp
|= LNK_NEG_FCTL
;
1439 printk(KERN_INFO
"%s: Disabling flow control "
1440 "negotiation\n", ap
->name
);
1442 tmp
|= LNK_RX_FLOW_CTL_Y
;
1443 if ((option
& 0x400) && (ap
->version
>= 2)) {
1444 printk(KERN_INFO
"%s: Enabling TX flow control\n",
1446 tmp
|= LNK_TX_FLOW_CTL_Y
;
1451 writel(tmp
, ®s
->TuneLink
);
1452 if (ap
->version
>= 2)
1453 writel(tmp
, ®s
->TuneFastLink
);
1455 if (ACE_IS_TIGON_I(ap
))
1456 writel(tigonFwStartAddr
, ®s
->Pc
);
1457 if (ap
->version
== 2)
1458 writel(tigon2FwStartAddr
, ®s
->Pc
);
1460 writel(0, ®s
->Mb0Lo
);
1463 * Set tx_csm before we start receiving interrupts, otherwise
1464 * the interrupt handler might think it is supposed to process
1465 * tx ints before we are up and running, which may cause a null
1466 * pointer access in the int handler.
1469 ap
->tx_prd
= *(ap
->tx_csm
) = ap
->tx_ret_csm
= 0;
1472 ace_set_txprd(regs
, ap
, 0);
1473 writel(0, ®s
->RxRetCsm
);
1476 * Zero the stats before starting the interface
1478 memset(&ap
->stats
, 0, sizeof(ap
->stats
));
1481 * Enable DMA engine now.
1482 * If we do this sooner, Mckinley box pukes.
1483 * I assume it's because Tigon II DMA engine wants to check
1484 * *something* even before the CPU is started.
1486 writel(1, ®s
->AssistState
); /* enable DMA */
1491 writel(readl(®s
->CpuCtrl
) & ~(CPU_HALT
|CPU_TRACE
), ®s
->CpuCtrl
);
1492 readl(®s
->CpuCtrl
);
1495 * Wait for the firmware to spin up - max 3 seconds.
1497 myjif
= jiffies
+ 3 * HZ
;
1498 while (time_before(jiffies
, myjif
) && !ap
->fw_running
)
1501 if (!ap
->fw_running
) {
1502 printk(KERN_ERR
"%s: Firmware NOT running!\n", ap
->name
);
1505 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
1506 readl(®s
->CpuCtrl
);
1508 /* aman@sgi.com - account for badly behaving firmware/NIC:
1509 * - have observed that the NIC may continue to generate
1510 * interrupts for some reason; attempt to stop it - halt
1511 * second CPU for Tigon II cards, and also clear Mb0
1512 * - if we're a module, we'll fail to load if this was
1513 * the only GbE card in the system => if the kernel does
1514 * see an interrupt from the NIC, code to handle it is
1515 * gone and OOps! - so free_irq also
1517 if (ap
->version
>= 2)
1518 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
,
1520 writel(0, ®s
->Mb0Lo
);
1521 readl(®s
->Mb0Lo
);
1528 * We load the ring here as there seem to be no way to tell the
1529 * firmware to wipe the ring without re-initializing it.
1531 if (!test_and_set_bit(0, &ap
->std_refill_busy
))
1532 ace_load_std_rx_ring(ap
, RX_RING_SIZE
);
1534 printk(KERN_ERR
"%s: Someone is busy refilling the RX ring\n",
1536 if (ap
->version
>= 2) {
1537 if (!test_and_set_bit(0, &ap
->mini_refill_busy
))
1538 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
);
1540 printk(KERN_ERR
"%s: Someone is busy refilling "
1541 "the RX mini ring\n", ap
->name
);
1546 ace_init_cleanup(dev
);
1551 static void ace_set_rxtx_parms(struct net_device
*dev
, int jumbo
)
1553 struct ace_private
*ap
;
1554 struct ace_regs
*regs
;
1557 ap
= netdev_priv(dev
);
1560 board_idx
= ap
->board_idx
;
1562 if (board_idx
>= 0) {
1564 if (!tx_coal_tick
[board_idx
])
1565 writel(DEF_TX_COAL
, ®s
->TuneTxCoalTicks
);
1566 if (!max_tx_desc
[board_idx
])
1567 writel(DEF_TX_MAX_DESC
, ®s
->TuneMaxTxDesc
);
1568 if (!rx_coal_tick
[board_idx
])
1569 writel(DEF_RX_COAL
, ®s
->TuneRxCoalTicks
);
1570 if (!max_rx_desc
[board_idx
])
1571 writel(DEF_RX_MAX_DESC
, ®s
->TuneMaxRxDesc
);
1572 if (!tx_ratio
[board_idx
])
1573 writel(DEF_TX_RATIO
, ®s
->TxBufRat
);
1575 if (!tx_coal_tick
[board_idx
])
1576 writel(DEF_JUMBO_TX_COAL
,
1577 ®s
->TuneTxCoalTicks
);
1578 if (!max_tx_desc
[board_idx
])
1579 writel(DEF_JUMBO_TX_MAX_DESC
,
1580 ®s
->TuneMaxTxDesc
);
1581 if (!rx_coal_tick
[board_idx
])
1582 writel(DEF_JUMBO_RX_COAL
,
1583 ®s
->TuneRxCoalTicks
);
1584 if (!max_rx_desc
[board_idx
])
1585 writel(DEF_JUMBO_RX_MAX_DESC
,
1586 ®s
->TuneMaxRxDesc
);
1587 if (!tx_ratio
[board_idx
])
1588 writel(DEF_JUMBO_TX_RATIO
, ®s
->TxBufRat
);
1594 static void ace_watchdog(struct net_device
*data
)
1596 struct net_device
*dev
= data
;
1597 struct ace_private
*ap
= netdev_priv(dev
);
1598 struct ace_regs
*regs
= ap
->regs
;
1601 * We haven't received a stats update event for more than 2.5
1602 * seconds and there is data in the transmit queue, thus we
1603 * asume the card is stuck.
1605 if (*ap
->tx_csm
!= ap
->tx_ret_csm
) {
1606 printk(KERN_WARNING
"%s: Transmitter is stuck, %08x\n",
1607 dev
->name
, (unsigned int)readl(®s
->HostCtrl
));
1608 /* This can happen due to ieee flow control. */
1610 printk(KERN_DEBUG
"%s: BUG... transmitter died. Kicking it.\n",
1613 netif_wake_queue(dev
);
1619 static void ace_tasklet(unsigned long dev
)
1621 struct ace_private
*ap
= ((struct net_device
*)dev
)->priv
;
1624 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
1625 if ((cur_size
< RX_LOW_STD_THRES
) &&
1626 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
1628 printk("refilling buffers (current %i)\n", cur_size
);
1630 ace_load_std_rx_ring(ap
, RX_RING_SIZE
- cur_size
);
1633 if (ap
->version
>= 2) {
1634 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
1635 if ((cur_size
< RX_LOW_MINI_THRES
) &&
1636 !test_and_set_bit(0, &ap
->mini_refill_busy
)) {
1638 printk("refilling mini buffers (current %i)\n",
1641 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
1645 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
1646 if (ap
->jumbo
&& (cur_size
< RX_LOW_JUMBO_THRES
) &&
1647 !test_and_set_bit(0, &ap
->jumbo_refill_busy
)) {
1649 printk("refilling jumbo buffers (current %i)\n", cur_size
);
1651 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
1653 ap
->tasklet_pending
= 0;
1658 * Copy the contents of the NIC's trace buffer to kernel memory.
1660 static void ace_dump_trace(struct ace_private
*ap
)
1664 if (!(ap
->trace_buf
= kmalloc(ACE_TRACE_SIZE
, GFP_KERNEL
)))
1671 * Load the standard rx ring.
1673 * Loading rings is safe without holding the spin lock since this is
1674 * done only before the device is enabled, thus no interrupts are
1675 * generated and by the interrupt handler/tasklet handler.
1677 static void ace_load_std_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1679 struct ace_regs
*regs
;
1684 prefetchw(&ap
->cur_rx_bufs
);
1686 idx
= ap
->rx_std_skbprd
;
1688 for (i
= 0; i
< nr_bufs
; i
++) {
1689 struct sk_buff
*skb
;
1693 skb
= alloc_skb(ACE_STD_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1697 skb_reserve(skb
, NET_IP_ALIGN
);
1698 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1699 offset_in_page(skb
->data
),
1701 PCI_DMA_FROMDEVICE
);
1702 ap
->skb
->rx_std_skbuff
[idx
].skb
= skb
;
1703 pci_unmap_addr_set(&ap
->skb
->rx_std_skbuff
[idx
],
1706 rd
= &ap
->rx_std_ring
[idx
];
1707 set_aceaddr(&rd
->addr
, mapping
);
1708 rd
->size
= ACE_STD_BUFSIZE
;
1710 idx
= (idx
+ 1) % RX_STD_RING_ENTRIES
;
1716 atomic_add(i
, &ap
->cur_rx_bufs
);
1717 ap
->rx_std_skbprd
= idx
;
1719 if (ACE_IS_TIGON_I(ap
)) {
1721 cmd
.evt
= C_SET_RX_PRD_IDX
;
1723 cmd
.idx
= ap
->rx_std_skbprd
;
1724 ace_issue_cmd(regs
, &cmd
);
1726 writel(idx
, ®s
->RxStdPrd
);
1731 clear_bit(0, &ap
->std_refill_busy
);
1735 printk(KERN_INFO
"Out of memory when allocating "
1736 "standard receive buffers\n");
1741 static void ace_load_mini_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1743 struct ace_regs
*regs
;
1748 prefetchw(&ap
->cur_mini_bufs
);
1750 idx
= ap
->rx_mini_skbprd
;
1751 for (i
= 0; i
< nr_bufs
; i
++) {
1752 struct sk_buff
*skb
;
1756 skb
= alloc_skb(ACE_MINI_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1760 skb_reserve(skb
, NET_IP_ALIGN
);
1761 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1762 offset_in_page(skb
->data
),
1764 PCI_DMA_FROMDEVICE
);
1765 ap
->skb
->rx_mini_skbuff
[idx
].skb
= skb
;
1766 pci_unmap_addr_set(&ap
->skb
->rx_mini_skbuff
[idx
],
1769 rd
= &ap
->rx_mini_ring
[idx
];
1770 set_aceaddr(&rd
->addr
, mapping
);
1771 rd
->size
= ACE_MINI_BUFSIZE
;
1773 idx
= (idx
+ 1) % RX_MINI_RING_ENTRIES
;
1779 atomic_add(i
, &ap
->cur_mini_bufs
);
1781 ap
->rx_mini_skbprd
= idx
;
1783 writel(idx
, ®s
->RxMiniPrd
);
1787 clear_bit(0, &ap
->mini_refill_busy
);
1790 printk(KERN_INFO
"Out of memory when allocating "
1791 "mini receive buffers\n");
1797 * Load the jumbo rx ring, this may happen at any time if the MTU
1798 * is changed to a value > 1500.
1800 static void ace_load_jumbo_rx_ring(struct ace_private
*ap
, int nr_bufs
)
1802 struct ace_regs
*regs
;
1807 idx
= ap
->rx_jumbo_skbprd
;
1809 for (i
= 0; i
< nr_bufs
; i
++) {
1810 struct sk_buff
*skb
;
1814 skb
= alloc_skb(ACE_JUMBO_BUFSIZE
+ NET_IP_ALIGN
, GFP_ATOMIC
);
1818 skb_reserve(skb
, NET_IP_ALIGN
);
1819 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1820 offset_in_page(skb
->data
),
1822 PCI_DMA_FROMDEVICE
);
1823 ap
->skb
->rx_jumbo_skbuff
[idx
].skb
= skb
;
1824 pci_unmap_addr_set(&ap
->skb
->rx_jumbo_skbuff
[idx
],
1827 rd
= &ap
->rx_jumbo_ring
[idx
];
1828 set_aceaddr(&rd
->addr
, mapping
);
1829 rd
->size
= ACE_JUMBO_BUFSIZE
;
1831 idx
= (idx
+ 1) % RX_JUMBO_RING_ENTRIES
;
1837 atomic_add(i
, &ap
->cur_jumbo_bufs
);
1838 ap
->rx_jumbo_skbprd
= idx
;
1840 if (ACE_IS_TIGON_I(ap
)) {
1842 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1844 cmd
.idx
= ap
->rx_jumbo_skbprd
;
1845 ace_issue_cmd(regs
, &cmd
);
1847 writel(idx
, ®s
->RxJumboPrd
);
1852 clear_bit(0, &ap
->jumbo_refill_busy
);
1855 if (net_ratelimit())
1856 printk(KERN_INFO
"Out of memory when allocating "
1857 "jumbo receive buffers\n");
1863 * All events are considered to be slow (RX/TX ints do not generate
1864 * events) and are handled here, outside the main interrupt handler,
1865 * to reduce the size of the handler.
1867 static u32
ace_handle_event(struct net_device
*dev
, u32 evtcsm
, u32 evtprd
)
1869 struct ace_private
*ap
;
1871 ap
= netdev_priv(dev
);
1873 while (evtcsm
!= evtprd
) {
1874 switch (ap
->evt_ring
[evtcsm
].evt
) {
1876 printk(KERN_INFO
"%s: Firmware up and running\n",
1881 case E_STATS_UPDATED
:
1885 u16 code
= ap
->evt_ring
[evtcsm
].code
;
1889 u32 state
= readl(&ap
->regs
->GigLnkState
);
1890 printk(KERN_WARNING
"%s: Optical link UP "
1891 "(%s Duplex, Flow Control: %s%s)\n",
1893 state
& LNK_FULL_DUPLEX
? "Full":"Half",
1894 state
& LNK_TX_FLOW_CTL_Y
? "TX " : "",
1895 state
& LNK_RX_FLOW_CTL_Y
? "RX" : "");
1899 printk(KERN_WARNING
"%s: Optical link DOWN\n",
1902 case E_C_LINK_10_100
:
1903 printk(KERN_WARNING
"%s: 10/100BaseT link "
1907 printk(KERN_ERR
"%s: Unknown optical link "
1908 "state %02x\n", ap
->name
, code
);
1913 switch(ap
->evt_ring
[evtcsm
].code
) {
1914 case E_C_ERR_INVAL_CMD
:
1915 printk(KERN_ERR
"%s: invalid command error\n",
1918 case E_C_ERR_UNIMP_CMD
:
1919 printk(KERN_ERR
"%s: unimplemented command "
1920 "error\n", ap
->name
);
1922 case E_C_ERR_BAD_CFG
:
1923 printk(KERN_ERR
"%s: bad config error\n",
1927 printk(KERN_ERR
"%s: unknown error %02x\n",
1928 ap
->name
, ap
->evt_ring
[evtcsm
].code
);
1931 case E_RESET_JUMBO_RNG
:
1934 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
1935 if (ap
->skb
->rx_jumbo_skbuff
[i
].skb
) {
1936 ap
->rx_jumbo_ring
[i
].size
= 0;
1937 set_aceaddr(&ap
->rx_jumbo_ring
[i
].addr
, 0);
1938 dev_kfree_skb(ap
->skb
->rx_jumbo_skbuff
[i
].skb
);
1939 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
1943 if (ACE_IS_TIGON_I(ap
)) {
1945 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1948 ace_issue_cmd(ap
->regs
, &cmd
);
1950 writel(0, &((ap
->regs
)->RxJumboPrd
));
1955 ap
->rx_jumbo_skbprd
= 0;
1956 printk(KERN_INFO
"%s: Jumbo ring flushed\n",
1958 clear_bit(0, &ap
->jumbo_refill_busy
);
1962 printk(KERN_ERR
"%s: Unhandled event 0x%02x\n",
1963 ap
->name
, ap
->evt_ring
[evtcsm
].evt
);
1965 evtcsm
= (evtcsm
+ 1) % EVT_RING_ENTRIES
;
1972 static void ace_rx_int(struct net_device
*dev
, u32 rxretprd
, u32 rxretcsm
)
1974 struct ace_private
*ap
= netdev_priv(dev
);
1976 int mini_count
= 0, std_count
= 0;
1980 prefetchw(&ap
->cur_rx_bufs
);
1981 prefetchw(&ap
->cur_mini_bufs
);
1983 while (idx
!= rxretprd
) {
1984 struct ring_info
*rip
;
1985 struct sk_buff
*skb
;
1986 struct rx_desc
*rxdesc
, *retdesc
;
1988 int bd_flags
, desc_type
, mapsize
;
1992 /* make sure the rx descriptor isn't read before rxretprd */
1993 if (idx
== rxretcsm
)
1996 retdesc
= &ap
->rx_return_ring
[idx
];
1997 skbidx
= retdesc
->idx
;
1998 bd_flags
= retdesc
->flags
;
1999 desc_type
= bd_flags
& (BD_FLG_JUMBO
| BD_FLG_MINI
);
2003 * Normal frames do not have any flags set
2005 * Mini and normal frames arrive frequently,
2006 * so use a local counter to avoid doing
2007 * atomic operations for each packet arriving.
2010 rip
= &ap
->skb
->rx_std_skbuff
[skbidx
];
2011 mapsize
= ACE_STD_BUFSIZE
;
2012 rxdesc
= &ap
->rx_std_ring
[skbidx
];
2016 rip
= &ap
->skb
->rx_jumbo_skbuff
[skbidx
];
2017 mapsize
= ACE_JUMBO_BUFSIZE
;
2018 rxdesc
= &ap
->rx_jumbo_ring
[skbidx
];
2019 atomic_dec(&ap
->cur_jumbo_bufs
);
2022 rip
= &ap
->skb
->rx_mini_skbuff
[skbidx
];
2023 mapsize
= ACE_MINI_BUFSIZE
;
2024 rxdesc
= &ap
->rx_mini_ring
[skbidx
];
2028 printk(KERN_INFO
"%s: unknown frame type (0x%02x) "
2029 "returned by NIC\n", dev
->name
,
2036 pci_unmap_page(ap
->pdev
,
2037 pci_unmap_addr(rip
, mapping
),
2039 PCI_DMA_FROMDEVICE
);
2040 skb_put(skb
, retdesc
->size
);
2045 csum
= retdesc
->tcp_udp_csum
;
2048 skb
->protocol
= eth_type_trans(skb
, dev
);
2051 * Instead of forcing the poor tigon mips cpu to calculate
2052 * pseudo hdr checksum, we do this ourselves.
2054 if (bd_flags
& BD_FLG_TCP_UDP_SUM
) {
2055 skb
->csum
= htons(csum
);
2056 skb
->ip_summed
= CHECKSUM_HW
;
2058 skb
->ip_summed
= CHECKSUM_NONE
;
2063 if (ap
->vlgrp
&& (bd_flags
& BD_FLG_VLAN_TAG
)) {
2064 vlan_hwaccel_rx(skb
, ap
->vlgrp
, retdesc
->vlan
);
2069 dev
->last_rx
= jiffies
;
2070 ap
->stats
.rx_packets
++;
2071 ap
->stats
.rx_bytes
+= retdesc
->size
;
2073 idx
= (idx
+ 1) % RX_RETURN_RING_ENTRIES
;
2076 atomic_sub(std_count
, &ap
->cur_rx_bufs
);
2077 if (!ACE_IS_TIGON_I(ap
))
2078 atomic_sub(mini_count
, &ap
->cur_mini_bufs
);
2082 * According to the documentation RxRetCsm is obsolete with
2083 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2085 if (ACE_IS_TIGON_I(ap
)) {
2086 struct ace_regs
*regs
= ap
->regs
;
2087 writel(idx
, ®s
->RxRetCsm
);
2098 static inline void ace_tx_int(struct net_device
*dev
,
2101 struct ace_private
*ap
= netdev_priv(dev
);
2104 struct sk_buff
*skb
;
2106 struct tx_ring_info
*info
;
2108 info
= ap
->skb
->tx_skbuff
+ idx
;
2110 mapping
= pci_unmap_addr(info
, mapping
);
2113 pci_unmap_page(ap
->pdev
, mapping
,
2114 pci_unmap_len(info
, maplen
),
2116 pci_unmap_addr_set(info
, mapping
, 0);
2120 ap
->stats
.tx_packets
++;
2121 ap
->stats
.tx_bytes
+= skb
->len
;
2122 dev_kfree_skb_irq(skb
);
2126 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2127 } while (idx
!= txcsm
);
2129 if (netif_queue_stopped(dev
))
2130 netif_wake_queue(dev
);
2133 ap
->tx_ret_csm
= txcsm
;
2135 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2137 * We could try to make it before. In this case we would get
2138 * the following race condition: hard_start_xmit on other cpu
2139 * enters after we advanced tx_ret_csm and fills space,
2140 * which we have just freed, so that we make illegal device wakeup.
2141 * There is no good way to workaround this (at entry
2142 * to ace_start_xmit detects this condition and prevents
2143 * ring corruption, but it is not a good workaround.)
2145 * When tx_ret_csm is advanced after, we wake up device _only_
2146 * if we really have some space in ring (though the core doing
2147 * hard_start_xmit can see full ring for some period and has to
2148 * synchronize.) Superb.
2149 * BUT! We get another subtle race condition. hard_start_xmit
2150 * may think that ring is full between wakeup and advancing
2151 * tx_ret_csm and will stop device instantly! It is not so bad.
2152 * We are guaranteed that there is something in ring, so that
2153 * the next irq will resume transmission. To speedup this we could
2154 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2155 * (see ace_start_xmit).
2157 * Well, this dilemma exists in all lock-free devices.
2158 * We, following scheme used in drivers by Donald Becker,
2159 * select the least dangerous.
2165 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
, struct pt_regs
*ptregs
)
2167 struct ace_private
*ap
;
2168 struct ace_regs
*regs
;
2169 struct net_device
*dev
= (struct net_device
*)dev_id
;
2171 u32 txcsm
, rxretcsm
, rxretprd
;
2174 ap
= netdev_priv(dev
);
2178 * In case of PCI shared interrupts or spurious interrupts,
2179 * we want to make sure it is actually our interrupt before
2180 * spending any time in here.
2182 if (!(readl(®s
->HostCtrl
) & IN_INT
))
2186 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2187 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2188 * writel(0, ®s->Mb0Lo).
2190 * "IRQ avoidance" recommended in docs applies to IRQs served
2191 * threads and it is wrong even for that case.
2193 writel(0, ®s
->Mb0Lo
);
2194 readl(®s
->Mb0Lo
);
2197 * There is no conflict between transmit handling in
2198 * start_xmit and receive processing, thus there is no reason
2199 * to take a spin lock for RX handling. Wait until we start
2200 * working on the other stuff - hey we don't need a spin lock
2203 rxretprd
= *ap
->rx_ret_prd
;
2204 rxretcsm
= ap
->cur_rx
;
2206 if (rxretprd
!= rxretcsm
)
2207 ace_rx_int(dev
, rxretprd
, rxretcsm
);
2209 txcsm
= *ap
->tx_csm
;
2210 idx
= ap
->tx_ret_csm
;
2214 * If each skb takes only one descriptor this check degenerates
2215 * to identity, because new space has just been opened.
2216 * But if skbs are fragmented we must check that this index
2217 * update releases enough of space, otherwise we just
2218 * wait for device to make more work.
2220 if (!tx_ring_full(ap
, txcsm
, ap
->tx_prd
))
2221 ace_tx_int(dev
, txcsm
, idx
);
2224 evtcsm
= readl(®s
->EvtCsm
);
2225 evtprd
= *ap
->evt_prd
;
2227 if (evtcsm
!= evtprd
) {
2228 evtcsm
= ace_handle_event(dev
, evtcsm
, evtprd
);
2229 writel(evtcsm
, ®s
->EvtCsm
);
2233 * This has to go last in the interrupt handler and run with
2234 * the spin lock released ... what lock?
2236 if (netif_running(dev
)) {
2238 int run_tasklet
= 0;
2240 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
2241 if (cur_size
< RX_LOW_STD_THRES
) {
2242 if ((cur_size
< RX_PANIC_STD_THRES
) &&
2243 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
2245 printk("low on std buffers %i\n", cur_size
);
2247 ace_load_std_rx_ring(ap
,
2248 RX_RING_SIZE
- cur_size
);
2253 if (!ACE_IS_TIGON_I(ap
)) {
2254 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
2255 if (cur_size
< RX_LOW_MINI_THRES
) {
2256 if ((cur_size
< RX_PANIC_MINI_THRES
) &&
2257 !test_and_set_bit(0,
2258 &ap
->mini_refill_busy
)) {
2260 printk("low on mini buffers %i\n",
2263 ace_load_mini_rx_ring(ap
, RX_MINI_SIZE
- cur_size
);
2270 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
2271 if (cur_size
< RX_LOW_JUMBO_THRES
) {
2272 if ((cur_size
< RX_PANIC_JUMBO_THRES
) &&
2273 !test_and_set_bit(0,
2274 &ap
->jumbo_refill_busy
)){
2276 printk("low on jumbo buffers %i\n",
2279 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
- cur_size
);
2284 if (run_tasklet
&& !ap
->tasklet_pending
) {
2285 ap
->tasklet_pending
= 1;
2286 tasklet_schedule(&ap
->ace_tasklet
);
2295 static void ace_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*grp
)
2297 struct ace_private
*ap
= netdev_priv(dev
);
2298 unsigned long flags
;
2300 local_irq_save(flags
);
2305 ace_unmask_irq(dev
);
2306 local_irq_restore(flags
);
2310 static void ace_vlan_rx_kill_vid(struct net_device
*dev
, unsigned short vid
)
2312 struct ace_private
*ap
= netdev_priv(dev
);
2313 unsigned long flags
;
2315 local_irq_save(flags
);
2319 ap
->vlgrp
->vlan_devices
[vid
] = NULL
;
2321 ace_unmask_irq(dev
);
2322 local_irq_restore(flags
);
2324 #endif /* ACENIC_DO_VLAN */
2327 static int ace_open(struct net_device
*dev
)
2329 struct ace_private
*ap
;
2330 struct ace_regs
*regs
;
2333 ap
= netdev_priv(dev
);
2336 if (!(ap
->fw_running
)) {
2337 printk(KERN_WARNING
"%s: Firmware not running!\n", dev
->name
);
2341 writel(dev
->mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2343 cmd
.evt
= C_CLEAR_STATS
;
2346 ace_issue_cmd(regs
, &cmd
);
2348 cmd
.evt
= C_HOST_STATE
;
2349 cmd
.code
= C_C_STACK_UP
;
2351 ace_issue_cmd(regs
, &cmd
);
2354 !test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2355 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2357 if (dev
->flags
& IFF_PROMISC
) {
2358 cmd
.evt
= C_SET_PROMISC_MODE
;
2359 cmd
.code
= C_C_PROMISC_ENABLE
;
2361 ace_issue_cmd(regs
, &cmd
);
2369 cmd
.evt
= C_LNK_NEGOTIATION
;
2372 ace_issue_cmd(regs
, &cmd
);
2375 netif_start_queue(dev
);
2378 * Setup the bottom half rx ring refill handler
2380 tasklet_init(&ap
->ace_tasklet
, ace_tasklet
, (unsigned long)dev
);
2385 static int ace_close(struct net_device
*dev
)
2387 struct ace_private
*ap
;
2388 struct ace_regs
*regs
;
2390 unsigned long flags
;
2394 * Without (or before) releasing irq and stopping hardware, this
2395 * is an absolute non-sense, by the way. It will be reset instantly
2398 netif_stop_queue(dev
);
2400 ap
= netdev_priv(dev
);
2404 cmd
.evt
= C_SET_PROMISC_MODE
;
2405 cmd
.code
= C_C_PROMISC_DISABLE
;
2407 ace_issue_cmd(regs
, &cmd
);
2411 cmd
.evt
= C_HOST_STATE
;
2412 cmd
.code
= C_C_STACK_DOWN
;
2414 ace_issue_cmd(regs
, &cmd
);
2416 tasklet_kill(&ap
->ace_tasklet
);
2419 * Make sure one CPU is not processing packets while
2420 * buffers are being released by another.
2423 local_irq_save(flags
);
2426 for (i
= 0; i
< ACE_TX_RING_ENTRIES(ap
); i
++) {
2427 struct sk_buff
*skb
;
2429 struct tx_ring_info
*info
;
2431 info
= ap
->skb
->tx_skbuff
+ i
;
2433 mapping
= pci_unmap_addr(info
, mapping
);
2436 if (ACE_IS_TIGON_I(ap
)) {
2437 writel(0, &ap
->tx_ring
[i
].addr
.addrhi
);
2438 writel(0, &ap
->tx_ring
[i
].addr
.addrlo
);
2439 writel(0, &ap
->tx_ring
[i
].flagsize
);
2441 memset(ap
->tx_ring
+ i
, 0,
2442 sizeof(struct tx_desc
));
2443 pci_unmap_page(ap
->pdev
, mapping
,
2444 pci_unmap_len(info
, maplen
),
2446 pci_unmap_addr_set(info
, mapping
, 0);
2455 cmd
.evt
= C_RESET_JUMBO_RNG
;
2458 ace_issue_cmd(regs
, &cmd
);
2461 ace_unmask_irq(dev
);
2462 local_irq_restore(flags
);
2468 static inline dma_addr_t
2469 ace_map_tx_skb(struct ace_private
*ap
, struct sk_buff
*skb
,
2470 struct sk_buff
*tail
, u32 idx
)
2473 struct tx_ring_info
*info
;
2475 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
2476 offset_in_page(skb
->data
),
2477 skb
->len
, PCI_DMA_TODEVICE
);
2479 info
= ap
->skb
->tx_skbuff
+ idx
;
2481 pci_unmap_addr_set(info
, mapping
, mapping
);
2482 pci_unmap_len_set(info
, maplen
, skb
->len
);
2488 ace_load_tx_bd(struct ace_private
*ap
, struct tx_desc
*desc
, u64 addr
,
2489 u32 flagsize
, u32 vlan_tag
)
2491 #if !USE_TX_COAL_NOW
2492 flagsize
&= ~BD_FLG_COAL_NOW
;
2495 if (ACE_IS_TIGON_I(ap
)) {
2496 writel(addr
>> 32, &desc
->addr
.addrhi
);
2497 writel(addr
& 0xffffffff, &desc
->addr
.addrlo
);
2498 writel(flagsize
, &desc
->flagsize
);
2500 writel(vlan_tag
, &desc
->vlanres
);
2503 desc
->addr
.addrhi
= addr
>> 32;
2504 desc
->addr
.addrlo
= addr
;
2505 desc
->flagsize
= flagsize
;
2507 desc
->vlanres
= vlan_tag
;
2513 static int ace_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2515 struct ace_private
*ap
= netdev_priv(dev
);
2516 struct ace_regs
*regs
= ap
->regs
;
2517 struct tx_desc
*desc
;
2523 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2527 if (!skb_shinfo(skb
)->nr_frags
)
2533 mapping
= ace_map_tx_skb(ap
, skb
, skb
, idx
);
2534 flagsize
= (skb
->len
<< 16) | (BD_FLG_END
);
2535 if (skb
->ip_summed
== CHECKSUM_HW
)
2536 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2538 if (vlan_tx_tag_present(skb
)) {
2539 flagsize
|= BD_FLG_VLAN_TAG
;
2540 vlan_tag
= vlan_tx_tag_get(skb
);
2543 desc
= ap
->tx_ring
+ idx
;
2544 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2546 /* Look at ace_tx_int for explanations. */
2547 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2548 flagsize
|= BD_FLG_COAL_NOW
;
2550 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2558 mapping
= ace_map_tx_skb(ap
, skb
, NULL
, idx
);
2559 flagsize
= (skb_headlen(skb
) << 16);
2560 if (skb
->ip_summed
== CHECKSUM_HW
)
2561 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2563 if (vlan_tx_tag_present(skb
)) {
2564 flagsize
|= BD_FLG_VLAN_TAG
;
2565 vlan_tag
= vlan_tx_tag_get(skb
);
2569 ace_load_tx_bd(ap
, ap
->tx_ring
+ idx
, mapping
, flagsize
, vlan_tag
);
2571 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2573 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2574 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2575 struct tx_ring_info
*info
;
2578 info
= ap
->skb
->tx_skbuff
+ idx
;
2579 desc
= ap
->tx_ring
+ idx
;
2581 mapping
= pci_map_page(ap
->pdev
, frag
->page
,
2582 frag
->page_offset
, frag
->size
,
2585 flagsize
= (frag
->size
<< 16);
2586 if (skb
->ip_summed
== CHECKSUM_HW
)
2587 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2588 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2590 if (i
== skb_shinfo(skb
)->nr_frags
- 1) {
2591 flagsize
|= BD_FLG_END
;
2592 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2593 flagsize
|= BD_FLG_COAL_NOW
;
2596 * Only the last fragment frees
2603 pci_unmap_addr_set(info
, mapping
, mapping
);
2604 pci_unmap_len_set(info
, maplen
, frag
->size
);
2605 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2612 ace_set_txprd(regs
, ap
, idx
);
2614 if (flagsize
& BD_FLG_COAL_NOW
) {
2615 netif_stop_queue(dev
);
2618 * A TX-descriptor producer (an IRQ) might have gotten
2619 * inbetween, making the ring free again. Since xmit is
2620 * serialized, this is the only situation we have to
2623 if (!tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2624 netif_wake_queue(dev
);
2627 dev
->trans_start
= jiffies
;
2632 * This race condition is unavoidable with lock-free drivers.
2633 * We wake up the queue _before_ tx_prd is advanced, so that we can
2634 * enter hard_start_xmit too early, while tx ring still looks closed.
2635 * This happens ~1-4 times per 100000 packets, so that we can allow
2636 * to loop syncing to other CPU. Probably, we need an additional
2637 * wmb() in ace_tx_intr as well.
2639 * Note that this race is relieved by reserving one more entry
2640 * in tx ring than it is necessary (see original non-SG driver).
2641 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2642 * is already overkill.
2644 * Alternative is to return with 1 not throttling queue. In this
2645 * case loop becomes longer, no more useful effects.
2652 static int ace_change_mtu(struct net_device
*dev
, int new_mtu
)
2654 struct ace_private
*ap
= netdev_priv(dev
);
2655 struct ace_regs
*regs
= ap
->regs
;
2657 if (new_mtu
> ACE_JUMBO_MTU
)
2660 writel(new_mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2663 if (new_mtu
> ACE_STD_MTU
) {
2665 printk(KERN_INFO
"%s: Enabling Jumbo frame "
2666 "support\n", dev
->name
);
2668 if (!test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2669 ace_load_jumbo_rx_ring(ap
, RX_JUMBO_SIZE
);
2670 ace_set_rxtx_parms(dev
, 1);
2673 while (test_and_set_bit(0, &ap
->jumbo_refill_busy
));
2674 ace_sync_irq(dev
->irq
);
2675 ace_set_rxtx_parms(dev
, 0);
2679 cmd
.evt
= C_RESET_JUMBO_RNG
;
2682 ace_issue_cmd(regs
, &cmd
);
2689 static int ace_get_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2691 struct ace_private
*ap
= netdev_priv(dev
);
2692 struct ace_regs
*regs
= ap
->regs
;
2695 memset(ecmd
, 0, sizeof(struct ethtool_cmd
));
2697 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2698 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2699 SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
|
2700 SUPPORTED_Autoneg
| SUPPORTED_FIBRE
);
2702 ecmd
->port
= PORT_FIBRE
;
2703 ecmd
->transceiver
= XCVR_INTERNAL
;
2705 link
= readl(®s
->GigLnkState
);
2706 if (link
& LNK_1000MB
)
2707 ecmd
->speed
= SPEED_1000
;
2709 link
= readl(®s
->FastLnkState
);
2710 if (link
& LNK_100MB
)
2711 ecmd
->speed
= SPEED_100
;
2712 else if (link
& LNK_10MB
)
2713 ecmd
->speed
= SPEED_10
;
2717 if (link
& LNK_FULL_DUPLEX
)
2718 ecmd
->duplex
= DUPLEX_FULL
;
2720 ecmd
->duplex
= DUPLEX_HALF
;
2722 if (link
& LNK_NEGOTIATE
)
2723 ecmd
->autoneg
= AUTONEG_ENABLE
;
2725 ecmd
->autoneg
= AUTONEG_DISABLE
;
2729 * Current struct ethtool_cmd is insufficient
2731 ecmd
->trace
= readl(®s
->TuneTrace
);
2733 ecmd
->txcoal
= readl(®s
->TuneTxCoalTicks
);
2734 ecmd
->rxcoal
= readl(®s
->TuneRxCoalTicks
);
2736 ecmd
->maxtxpkt
= readl(®s
->TuneMaxTxDesc
);
2737 ecmd
->maxrxpkt
= readl(®s
->TuneMaxRxDesc
);
2742 static int ace_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2744 struct ace_private
*ap
= netdev_priv(dev
);
2745 struct ace_regs
*regs
= ap
->regs
;
2748 link
= readl(®s
->GigLnkState
);
2749 if (link
& LNK_1000MB
)
2752 link
= readl(®s
->FastLnkState
);
2753 if (link
& LNK_100MB
)
2755 else if (link
& LNK_10MB
)
2761 link
= LNK_ENABLE
| LNK_1000MB
| LNK_100MB
| LNK_10MB
|
2762 LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
;
2763 if (!ACE_IS_TIGON_I(ap
))
2764 link
|= LNK_TX_FLOW_CTL_Y
;
2765 if (ecmd
->autoneg
== AUTONEG_ENABLE
)
2766 link
|= LNK_NEGOTIATE
;
2767 if (ecmd
->speed
!= speed
) {
2768 link
&= ~(LNK_1000MB
| LNK_100MB
| LNK_10MB
);
2782 if (ecmd
->duplex
== DUPLEX_FULL
)
2783 link
|= LNK_FULL_DUPLEX
;
2785 if (link
!= ap
->link
) {
2787 printk(KERN_INFO
"%s: Renegotiating link state\n",
2791 writel(link
, ®s
->TuneLink
);
2792 if (!ACE_IS_TIGON_I(ap
))
2793 writel(link
, ®s
->TuneFastLink
);
2796 cmd
.evt
= C_LNK_NEGOTIATION
;
2799 ace_issue_cmd(regs
, &cmd
);
2804 static void ace_get_drvinfo(struct net_device
*dev
,
2805 struct ethtool_drvinfo
*info
)
2807 struct ace_private
*ap
= netdev_priv(dev
);
2809 strlcpy(info
->driver
, "acenic", sizeof(info
->driver
));
2810 snprintf(info
->version
, sizeof(info
->version
), "%i.%i.%i",
2811 tigonFwReleaseMajor
, tigonFwReleaseMinor
,
2815 strlcpy(info
->bus_info
, pci_name(ap
->pdev
),
2816 sizeof(info
->bus_info
));
2821 * Set the hardware MAC address.
2823 static int ace_set_mac_addr(struct net_device
*dev
, void *p
)
2825 struct sockaddr
*addr
=p
;
2826 struct ace_regs
*regs
;
2830 if(netif_running(dev
))
2833 memcpy(dev
->dev_addr
, addr
->sa_data
,dev
->addr_len
);
2835 da
= (u8
*)dev
->dev_addr
;
2837 regs
= ((struct ace_private
*)netdev_priv(dev
))->regs
;
2838 writel(da
[0] << 8 | da
[1], ®s
->MacAddrHi
);
2839 writel((da
[2] << 24) | (da
[3] << 16) | (da
[4] << 8) | da
[5],
2842 cmd
.evt
= C_SET_MAC_ADDR
;
2845 ace_issue_cmd(regs
, &cmd
);
2851 static void ace_set_multicast_list(struct net_device
*dev
)
2853 struct ace_private
*ap
= netdev_priv(dev
);
2854 struct ace_regs
*regs
= ap
->regs
;
2857 if ((dev
->flags
& IFF_ALLMULTI
) && !(ap
->mcast_all
)) {
2858 cmd
.evt
= C_SET_MULTICAST_MODE
;
2859 cmd
.code
= C_C_MCAST_ENABLE
;
2861 ace_issue_cmd(regs
, &cmd
);
2863 } else if (ap
->mcast_all
) {
2864 cmd
.evt
= C_SET_MULTICAST_MODE
;
2865 cmd
.code
= C_C_MCAST_DISABLE
;
2867 ace_issue_cmd(regs
, &cmd
);
2871 if ((dev
->flags
& IFF_PROMISC
) && !(ap
->promisc
)) {
2872 cmd
.evt
= C_SET_PROMISC_MODE
;
2873 cmd
.code
= C_C_PROMISC_ENABLE
;
2875 ace_issue_cmd(regs
, &cmd
);
2877 }else if (!(dev
->flags
& IFF_PROMISC
) && (ap
->promisc
)) {
2878 cmd
.evt
= C_SET_PROMISC_MODE
;
2879 cmd
.code
= C_C_PROMISC_DISABLE
;
2881 ace_issue_cmd(regs
, &cmd
);
2886 * For the time being multicast relies on the upper layers
2887 * filtering it properly. The Firmware does not allow one to
2888 * set the entire multicast list at a time and keeping track of
2889 * it here is going to be messy.
2891 if ((dev
->mc_count
) && !(ap
->mcast_all
)) {
2892 cmd
.evt
= C_SET_MULTICAST_MODE
;
2893 cmd
.code
= C_C_MCAST_ENABLE
;
2895 ace_issue_cmd(regs
, &cmd
);
2896 }else if (!ap
->mcast_all
) {
2897 cmd
.evt
= C_SET_MULTICAST_MODE
;
2898 cmd
.code
= C_C_MCAST_DISABLE
;
2900 ace_issue_cmd(regs
, &cmd
);
2905 static struct net_device_stats
*ace_get_stats(struct net_device
*dev
)
2907 struct ace_private
*ap
= netdev_priv(dev
);
2908 struct ace_mac_stats
*mac_stats
=
2909 (struct ace_mac_stats
*)ap
->regs
->Stats
;
2911 ap
->stats
.rx_missed_errors
= readl(&mac_stats
->drop_space
);
2912 ap
->stats
.multicast
= readl(&mac_stats
->kept_mc
);
2913 ap
->stats
.collisions
= readl(&mac_stats
->coll
);
2919 static void __init
ace_copy(struct ace_regs
*regs
, void *src
,
2922 unsigned long tdest
;
2930 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2931 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2932 tdest
= (unsigned long)®s
->Window
+
2933 (dest
& (ACE_WINDOW_SIZE
- 1));
2934 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2936 * This requires byte swapping on big endian, however
2937 * writel does that for us
2940 for (i
= 0; i
< (tsize
/ 4); i
++) {
2941 writel(wsrc
[i
], tdest
+ i
*4);
2952 static void __init
ace_clear(struct ace_regs
*regs
, u32 dest
, int size
)
2954 unsigned long tdest
;
2961 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2962 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2963 tdest
= (unsigned long)®s
->Window
+
2964 (dest
& (ACE_WINDOW_SIZE
- 1));
2965 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2967 for (i
= 0; i
< (tsize
/ 4); i
++) {
2968 writel(0, tdest
+ i
*4);
2980 * Download the firmware into the SRAM on the NIC
2982 * This operation requires the NIC to be halted and is performed with
2983 * interrupts disabled and with the spinlock hold.
2985 int __init
ace_load_firmware(struct net_device
*dev
)
2987 struct ace_private
*ap
;
2988 struct ace_regs
*regs
;
2990 ap
= netdev_priv(dev
);
2993 if (!(readl(®s
->CpuCtrl
) & CPU_HALTED
)) {
2994 printk(KERN_ERR
"%s: trying to download firmware while the "
2995 "CPU is running!\n", ap
->name
);
3000 * Do not try to clear more than 512KB or we end up seeing
3001 * funny things on NICs with only 512KB SRAM
3003 ace_clear(regs
, 0x2000, 0x80000-0x2000);
3004 if (ACE_IS_TIGON_I(ap
)) {
3005 ace_copy(regs
, tigonFwText
, tigonFwTextAddr
, tigonFwTextLen
);
3006 ace_copy(regs
, tigonFwData
, tigonFwDataAddr
, tigonFwDataLen
);
3007 ace_copy(regs
, tigonFwRodata
, tigonFwRodataAddr
,
3009 ace_clear(regs
, tigonFwBssAddr
, tigonFwBssLen
);
3010 ace_clear(regs
, tigonFwSbssAddr
, tigonFwSbssLen
);
3011 }else if (ap
->version
== 2) {
3012 ace_clear(regs
, tigon2FwBssAddr
, tigon2FwBssLen
);
3013 ace_clear(regs
, tigon2FwSbssAddr
, tigon2FwSbssLen
);
3014 ace_copy(regs
, tigon2FwText
, tigon2FwTextAddr
,tigon2FwTextLen
);
3015 ace_copy(regs
, tigon2FwRodata
, tigon2FwRodataAddr
,
3017 ace_copy(regs
, tigon2FwData
, tigon2FwDataAddr
,tigon2FwDataLen
);
3025 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
3027 * Accessing the EEPROM is `interesting' to say the least - don't read
3028 * this code right after dinner.
3030 * This is all about black magic and bit-banging the device .... I
3031 * wonder in what hospital they have put the guy who designed the i2c
3034 * Oh yes, this is only the beginning!
3036 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3037 * code i2c readout code by beta testing all my hacks.
3039 static void __init
eeprom_start(struct ace_regs
*regs
)
3043 readl(®s
->LocalCtrl
);
3044 udelay(ACE_SHORT_DELAY
);
3045 local
= readl(®s
->LocalCtrl
);
3046 local
|= EEPROM_DATA_OUT
| EEPROM_WRITE_ENABLE
;
3047 writel(local
, ®s
->LocalCtrl
);
3048 readl(®s
->LocalCtrl
);
3050 udelay(ACE_SHORT_DELAY
);
3051 local
|= EEPROM_CLK_OUT
;
3052 writel(local
, ®s
->LocalCtrl
);
3053 readl(®s
->LocalCtrl
);
3055 udelay(ACE_SHORT_DELAY
);
3056 local
&= ~EEPROM_DATA_OUT
;
3057 writel(local
, ®s
->LocalCtrl
);
3058 readl(®s
->LocalCtrl
);
3060 udelay(ACE_SHORT_DELAY
);
3061 local
&= ~EEPROM_CLK_OUT
;
3062 writel(local
, ®s
->LocalCtrl
);
3063 readl(®s
->LocalCtrl
);
3068 static void __init
eeprom_prep(struct ace_regs
*regs
, u8 magic
)
3073 udelay(ACE_SHORT_DELAY
);
3074 local
= readl(®s
->LocalCtrl
);
3075 local
&= ~EEPROM_DATA_OUT
;
3076 local
|= EEPROM_WRITE_ENABLE
;
3077 writel(local
, ®s
->LocalCtrl
);
3078 readl(®s
->LocalCtrl
);
3081 for (i
= 0; i
< 8; i
++, magic
<<= 1) {
3082 udelay(ACE_SHORT_DELAY
);
3084 local
|= EEPROM_DATA_OUT
;
3086 local
&= ~EEPROM_DATA_OUT
;
3087 writel(local
, ®s
->LocalCtrl
);
3088 readl(®s
->LocalCtrl
);
3091 udelay(ACE_SHORT_DELAY
);
3092 local
|= EEPROM_CLK_OUT
;
3093 writel(local
, ®s
->LocalCtrl
);
3094 readl(®s
->LocalCtrl
);
3096 udelay(ACE_SHORT_DELAY
);
3097 local
&= ~(EEPROM_CLK_OUT
| EEPROM_DATA_OUT
);
3098 writel(local
, ®s
->LocalCtrl
);
3099 readl(®s
->LocalCtrl
);
3105 static int __init
eeprom_check_ack(struct ace_regs
*regs
)
3110 local
= readl(®s
->LocalCtrl
);
3111 local
&= ~EEPROM_WRITE_ENABLE
;
3112 writel(local
, ®s
->LocalCtrl
);
3113 readl(®s
->LocalCtrl
);
3115 udelay(ACE_LONG_DELAY
);
3116 local
|= EEPROM_CLK_OUT
;
3117 writel(local
, ®s
->LocalCtrl
);
3118 readl(®s
->LocalCtrl
);
3120 udelay(ACE_SHORT_DELAY
);
3121 /* sample data in middle of high clk */
3122 state
= (readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0;
3123 udelay(ACE_SHORT_DELAY
);
3125 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3126 readl(®s
->LocalCtrl
);
3133 static void __init
eeprom_stop(struct ace_regs
*regs
)
3137 udelay(ACE_SHORT_DELAY
);
3138 local
= readl(®s
->LocalCtrl
);
3139 local
|= EEPROM_WRITE_ENABLE
;
3140 writel(local
, ®s
->LocalCtrl
);
3141 readl(®s
->LocalCtrl
);
3143 udelay(ACE_SHORT_DELAY
);
3144 local
&= ~EEPROM_DATA_OUT
;
3145 writel(local
, ®s
->LocalCtrl
);
3146 readl(®s
->LocalCtrl
);
3148 udelay(ACE_SHORT_DELAY
);
3149 local
|= EEPROM_CLK_OUT
;
3150 writel(local
, ®s
->LocalCtrl
);
3151 readl(®s
->LocalCtrl
);
3153 udelay(ACE_SHORT_DELAY
);
3154 local
|= EEPROM_DATA_OUT
;
3155 writel(local
, ®s
->LocalCtrl
);
3156 readl(®s
->LocalCtrl
);
3158 udelay(ACE_LONG_DELAY
);
3159 local
&= ~EEPROM_CLK_OUT
;
3160 writel(local
, ®s
->LocalCtrl
);
3166 * Read a whole byte from the EEPROM.
3168 static int __init
read_eeprom_byte(struct net_device
*dev
,
3169 unsigned long offset
)
3171 struct ace_private
*ap
;
3172 struct ace_regs
*regs
;
3173 unsigned long flags
;
3179 printk(KERN_ERR
"No device!\n");
3184 ap
= netdev_priv(dev
);
3188 * Don't take interrupts on this CPU will bit banging
3189 * the %#%#@$ I2C device
3191 local_irq_save(flags
);
3195 eeprom_prep(regs
, EEPROM_WRITE_SELECT
);
3196 if (eeprom_check_ack(regs
)) {
3197 local_irq_restore(flags
);
3198 printk(KERN_ERR
"%s: Unable to sync eeprom\n", ap
->name
);
3200 goto eeprom_read_error
;
3203 eeprom_prep(regs
, (offset
>> 8) & 0xff);
3204 if (eeprom_check_ack(regs
)) {
3205 local_irq_restore(flags
);
3206 printk(KERN_ERR
"%s: Unable to set address byte 0\n",
3209 goto eeprom_read_error
;
3212 eeprom_prep(regs
, offset
& 0xff);
3213 if (eeprom_check_ack(regs
)) {
3214 local_irq_restore(flags
);
3215 printk(KERN_ERR
"%s: Unable to set address byte 1\n",
3218 goto eeprom_read_error
;
3222 eeprom_prep(regs
, EEPROM_READ_SELECT
);
3223 if (eeprom_check_ack(regs
)) {
3224 local_irq_restore(flags
);
3225 printk(KERN_ERR
"%s: Unable to set READ_SELECT\n",
3228 goto eeprom_read_error
;
3231 for (i
= 0; i
< 8; i
++) {
3232 local
= readl(®s
->LocalCtrl
);
3233 local
&= ~EEPROM_WRITE_ENABLE
;
3234 writel(local
, ®s
->LocalCtrl
);
3235 readl(®s
->LocalCtrl
);
3236 udelay(ACE_LONG_DELAY
);
3238 local
|= EEPROM_CLK_OUT
;
3239 writel(local
, ®s
->LocalCtrl
);
3240 readl(®s
->LocalCtrl
);
3242 udelay(ACE_SHORT_DELAY
);
3243 /* sample data mid high clk */
3244 result
= (result
<< 1) |
3245 ((readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0);
3246 udelay(ACE_SHORT_DELAY
);
3248 local
= readl(®s
->LocalCtrl
);
3249 local
&= ~EEPROM_CLK_OUT
;
3250 writel(local
, ®s
->LocalCtrl
);
3251 readl(®s
->LocalCtrl
);
3252 udelay(ACE_SHORT_DELAY
);
3255 local
|= EEPROM_WRITE_ENABLE
;
3256 writel(local
, ®s
->LocalCtrl
);
3257 readl(®s
->LocalCtrl
);
3259 udelay(ACE_SHORT_DELAY
);
3263 local
|= EEPROM_DATA_OUT
;
3264 writel(local
, ®s
->LocalCtrl
);
3265 readl(®s
->LocalCtrl
);
3267 udelay(ACE_SHORT_DELAY
);
3268 writel(readl(®s
->LocalCtrl
) | EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3269 readl(®s
->LocalCtrl
);
3270 udelay(ACE_LONG_DELAY
);
3271 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3272 readl(®s
->LocalCtrl
);
3274 udelay(ACE_SHORT_DELAY
);
3277 local_irq_restore(flags
);
3282 printk(KERN_ERR
"%s: Unable to read eeprom byte 0x%02lx\n",
3290 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"