2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * Driver for FEC on MPC8540 and TSEC on MPC8540/MPC8560
6 * Based on 8260_io/fcc_enet.c
9 * Maintainer: Kumar Gala (kumar.gala@freescale.com)
11 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
18 * Gianfar: AKA Lambda Draconis, "Dragon"
25 * This driver is designed for the Triple-speed Ethernet
26 * controllers on the Freescale 8540/8560 integrated processors,
27 * as well as the Fast Ethernet Controller on the 8540.
29 * The driver is initialized through OCP. Structures which
30 * define the configuration needed by the board are defined in a
31 * board structure in arch/ppc/platforms (though I do not
32 * discount the possibility that other architectures could one
33 * day be supported. One assumption the driver currently makes
34 * is that the PHY is configured in such a way to advertise all
35 * capabilities. This is a sensible default, and on certain
36 * PHYs, changing this default encounters substantial errata
37 * issues. Future versions may remove this requirement, but for
38 * now, it is best for the firmware to ensure this is the case.
40 * The Gianfar Ethernet Controller uses a ring of buffer
41 * descriptors. The beginning is indicated by a register
42 * pointing to the physical address of the start of the ring.
43 * The end is determined by a "wrap" bit being set in the
44 * last descriptor of the ring.
46 * When a packet is received, the RXF bit in the
47 * IEVENT register is set, triggering an interrupt when the
48 * corresponding bit in the IMASK register is also set (if
49 * interrupt coalescing is active, then the interrupt may not
50 * happen immediately, but will wait until either a set number
51 * of frames or amount of time have passed.). In NAPI, the
52 * interrupt handler will signal there is work to be done, and
53 * exit. Without NAPI, the packet(s) will be handled
54 * immediately. Both methods will start at the last known empty
55 * descriptor, and process every subsequent descriptor until there
56 * are none left with data (NAPI will stop after a set number of
57 * packets to give time to other tasks, but will eventually
58 * process all the packets). The data arrives inside a
59 * pre-allocated skb, and so after the skb is passed up to the
60 * stack, a new skb must be allocated, and the address field in
61 * the buffer descriptor must be updated to indicate this new
64 * When the kernel requests that a packet be transmitted, the
65 * driver starts where it left off last time, and points the
66 * descriptor at the buffer which was passed in. The driver
67 * then informs the DMA engine that there are packets ready to
68 * be transmitted. Once the controller is finished transmitting
69 * the packet, an interrupt may be triggered (under the same
70 * conditions as for reception, but depending on the TXF bit).
71 * The driver then cleans up the buffer.
74 #include <linux/config.h>
75 #include <linux/kernel.h>
76 #include <linux/sched.h>
77 #include <linux/string.h>
78 #include <linux/errno.h>
79 #include <linux/slab.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/delay.h>
83 #include <linux/netdevice.h>
84 #include <linux/etherdevice.h>
85 #include <linux/skbuff.h>
86 #include <linux/spinlock.h>
91 #include <asm/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/version.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
98 #include "gianfar_phy.h"
100 #define TX_TIMEOUT (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
108 #define RECEIVE(x) netif_rx(x)
111 const char gfar_driver_name
[] = "Gianfar Ethernet";
112 const char gfar_driver_version
[] = "1.1";
114 int startup_gfar(struct net_device
*dev
);
115 static int gfar_enet_open(struct net_device
*dev
);
116 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
117 static void gfar_timeout(struct net_device
*dev
);
118 static int gfar_close(struct net_device
*dev
);
119 struct sk_buff
*gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
);
120 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
);
121 static int gfar_set_mac_address(struct net_device
*dev
);
122 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
123 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
);
124 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
);
125 irqreturn_t
gfar_receive(int irq
, void *dev_id
, struct pt_regs
*regs
);
126 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
127 static irqreturn_t
phy_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
128 static void gfar_phy_change(void *data
);
129 static void gfar_phy_timer(unsigned long data
);
130 static void adjust_link(struct net_device
*dev
);
131 static void init_registers(struct net_device
*dev
);
132 static int init_phy(struct net_device
*dev
);
133 static int gfar_probe(struct ocp_device
*ocpdev
);
134 static void gfar_remove(struct ocp_device
*ocpdev
);
135 void free_skb_resources(struct gfar_private
*priv
);
136 static void gfar_set_multi(struct net_device
*dev
);
137 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
138 #ifdef CONFIG_GFAR_NAPI
139 static int gfar_poll(struct net_device
*dev
, int *budget
);
141 static int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
142 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
, int length
);
143 static void gfar_phy_startup_timer(unsigned long data
);
145 extern struct ethtool_ops gfar_ethtool_ops
;
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
151 /* Called by the ocp code to initialize device data structures
152 * required for bringing up the device
153 * returns 0 on success */
154 static int gfar_probe(struct ocp_device
*ocpdev
)
157 struct ocp_device
*mdiodev
;
158 struct net_device
*dev
= NULL
;
159 struct gfar_private
*priv
= NULL
;
160 struct ocp_gfar_data
*einfo
;
163 int dev_ethtool_ops
= 0;
165 einfo
= (struct ocp_gfar_data
*) ocpdev
->def
->additions
;
168 printk(KERN_ERR
"gfar %d: Missing additional data!\n",
174 /* get a pointer to the register memory which can
175 * configure the PHYs. If it's different from this set,
176 * get the device which has those regs */
177 if ((einfo
->phyregidx
>= 0) &&
178 (einfo
->phyregidx
!= ocpdev
->def
->index
)) {
179 mdiodev
= ocp_find_device(OCP_ANY_ID
,
180 OCP_FUNC_GFAR
, einfo
->phyregidx
);
182 /* If the device which holds the MDIO regs isn't
183 * up, wait for it to come up */
190 /* Create an ethernet device instance */
191 dev
= alloc_etherdev(sizeof (*priv
));
196 priv
= netdev_priv(dev
);
198 /* Set the info in the priv to the current info */
201 /* get a pointer to the register memory */
202 priv
->regs
= (struct gfar
*)
203 ioremap(ocpdev
->def
->paddr
, sizeof (struct gfar
));
205 if (priv
->regs
== NULL
) {
210 /* Set the PHY base address */
211 priv
->phyregs
= (struct gfar
*)
212 ioremap(mdiodev
->def
->paddr
, sizeof (struct gfar
));
214 if (priv
->phyregs
== NULL
) {
219 spin_lock_init(&priv
->lock
);
221 ocp_set_drvdata(ocpdev
, dev
);
223 /* Stop the DMA engine now, in case it was running before */
224 /* (The firmware could have used it, and left it running). */
225 /* To do this, we write Graceful Receive Stop and Graceful */
226 /* Transmit Stop, and then wait until the corresponding bits */
227 /* in IEVENT indicate the stops have completed. */
228 tempval
= gfar_read(&priv
->regs
->dmactrl
);
229 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
230 gfar_write(&priv
->regs
->dmactrl
, tempval
);
232 tempval
= gfar_read(&priv
->regs
->dmactrl
);
233 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
234 gfar_write(&priv
->regs
->dmactrl
, tempval
);
236 while (!(gfar_read(&priv
->regs
->ievent
) & (IEVENT_GRSC
| IEVENT_GTSC
)))
239 /* Reset MAC layer */
240 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
242 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
243 gfar_write(&priv
->regs
->maccfg1
, tempval
);
245 /* Initialize MACCFG2. */
246 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
248 /* Initialize ECNTRL */
249 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
251 /* Copy the station address into the dev structure, */
252 memcpy(dev
->dev_addr
, einfo
->mac_addr
, MAC_ADDR_LEN
);
254 /* Set the dev->base_addr to the gfar reg region */
255 dev
->base_addr
= (unsigned long) (priv
->regs
);
257 SET_MODULE_OWNER(dev
);
258 SET_NETDEV_DEV(dev
, &ocpdev
->dev
);
260 /* Fill in the dev structure */
261 dev
->open
= gfar_enet_open
;
262 dev
->hard_start_xmit
= gfar_start_xmit
;
263 dev
->tx_timeout
= gfar_timeout
;
264 dev
->watchdog_timeo
= TX_TIMEOUT
;
265 #ifdef CONFIG_GFAR_NAPI
266 dev
->poll
= gfar_poll
;
267 dev
->weight
= GFAR_DEV_WEIGHT
;
269 dev
->stop
= gfar_close
;
270 dev
->get_stats
= gfar_get_stats
;
271 dev
->change_mtu
= gfar_change_mtu
;
273 dev
->set_multicast_list
= gfar_set_multi
;
275 /* Index into the array of possible ethtool
276 * ops to catch all 4 possibilities */
277 if((priv
->einfo
->flags
& GFAR_HAS_RMON
) == 0)
278 dev_ethtool_ops
+= 1;
280 if((priv
->einfo
->flags
& GFAR_HAS_COALESCE
) == 0)
281 dev_ethtool_ops
+= 2;
283 dev
->ethtool_ops
= gfar_op_array
[dev_ethtool_ops
];
285 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
286 #ifdef CONFIG_GFAR_BUFSTASH
287 priv
->rx_stash_size
= STASH_LENGTH
;
289 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
290 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
292 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
293 priv
->txcount
= DEFAULT_TXCOUNT
;
294 priv
->txtime
= DEFAULT_TXTIME
;
295 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
296 priv
->rxcount
= DEFAULT_RXCOUNT
;
297 priv
->rxtime
= DEFAULT_RXTIME
;
299 err
= register_netdev(dev
);
302 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
307 /* Print out the device info */
308 printk(KERN_INFO DEVICE_NAME
, dev
->name
);
309 for (idx
= 0; idx
< 6; idx
++)
310 printk("%2.2x%c", dev
->dev_addr
[idx
], idx
== 5 ? ' ' : ':');
313 /* Even more device info helps when determining which kernel */
314 /* provided which set of benchmarks. Since this is global for all */
315 /* devices, we only print it once */
316 #ifdef CONFIG_GFAR_NAPI
317 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
319 printk(KERN_INFO
"%s: Running with NAPI disabled\n", dev
->name
);
321 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
322 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
327 iounmap((void *) priv
->phyregs
);
329 iounmap((void *) priv
->regs
);
335 static void gfar_remove(struct ocp_device
*ocpdev
)
337 struct net_device
*dev
= ocp_get_drvdata(ocpdev
);
338 struct gfar_private
*priv
= netdev_priv(dev
);
340 ocp_set_drvdata(ocpdev
, NULL
);
342 iounmap((void *) priv
->regs
);
343 iounmap((void *) priv
->phyregs
);
347 /* Configure the PHY for dev.
348 * returns 0 if success. -1 if failure
350 static int init_phy(struct net_device
*dev
)
352 struct gfar_private
*priv
= netdev_priv(dev
);
353 struct phy_info
*curphy
;
354 unsigned int timeout
= PHY_INIT_TIMEOUT
;
355 struct gfar
*phyregs
= priv
->phyregs
;
356 struct gfar_mii_info
*mii_info
;
361 priv
->oldduplex
= -1;
363 mii_info
= kmalloc(sizeof(struct gfar_mii_info
),
366 if(NULL
== mii_info
) {
367 printk(KERN_ERR
"%s: Could not allocate mii_info\n",
372 mii_info
->speed
= SPEED_1000
;
373 mii_info
->duplex
= DUPLEX_FULL
;
377 mii_info
->advertising
= (ADVERTISED_10baseT_Half
|
378 ADVERTISED_10baseT_Full
|
379 ADVERTISED_100baseT_Half
|
380 ADVERTISED_100baseT_Full
|
381 ADVERTISED_1000baseT_Full
);
382 mii_info
->autoneg
= 1;
384 mii_info
->mii_id
= priv
->einfo
->phyid
;
388 mii_info
->mdio_read
= &read_phy_reg
;
389 mii_info
->mdio_write
= &write_phy_reg
;
391 priv
->mii_info
= mii_info
;
393 /* Reset the management interface */
394 gfar_write(&phyregs
->miimcfg
, MIIMCFG_RESET
);
396 /* Setup the MII Mgmt clock speed */
397 gfar_write(&phyregs
->miimcfg
, MIIMCFG_INIT_VALUE
);
399 /* Wait until the bus is free */
400 while ((gfar_read(&phyregs
->miimind
) & MIIMIND_BUSY
) &&
405 printk(KERN_ERR
"%s: The MII Bus is stuck!\n",
411 /* get info for this PHY */
412 curphy
= get_phy_info(priv
->mii_info
);
414 if (curphy
== NULL
) {
415 printk(KERN_ERR
"%s: No PHY found\n", dev
->name
);
420 mii_info
->phyinfo
= curphy
;
422 /* Run the commands which initialize the PHY */
424 err
= curphy
->init(priv
->mii_info
);
440 static void init_registers(struct net_device
*dev
)
442 struct gfar_private
*priv
= netdev_priv(dev
);
445 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
447 /* Initialize IMASK */
448 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
450 /* Init hash registers to zero */
451 gfar_write(&priv
->regs
->iaddr0
, 0);
452 gfar_write(&priv
->regs
->iaddr1
, 0);
453 gfar_write(&priv
->regs
->iaddr2
, 0);
454 gfar_write(&priv
->regs
->iaddr3
, 0);
455 gfar_write(&priv
->regs
->iaddr4
, 0);
456 gfar_write(&priv
->regs
->iaddr5
, 0);
457 gfar_write(&priv
->regs
->iaddr6
, 0);
458 gfar_write(&priv
->regs
->iaddr7
, 0);
460 gfar_write(&priv
->regs
->gaddr0
, 0);
461 gfar_write(&priv
->regs
->gaddr1
, 0);
462 gfar_write(&priv
->regs
->gaddr2
, 0);
463 gfar_write(&priv
->regs
->gaddr3
, 0);
464 gfar_write(&priv
->regs
->gaddr4
, 0);
465 gfar_write(&priv
->regs
->gaddr5
, 0);
466 gfar_write(&priv
->regs
->gaddr6
, 0);
467 gfar_write(&priv
->regs
->gaddr7
, 0);
470 gfar_write(&priv
->regs
->rctrl
, 0x00000000);
472 /* Zero out the rmon mib registers if it has them */
473 if (priv
->einfo
->flags
& GFAR_HAS_RMON
) {
474 memset((void *) &(priv
->regs
->rmon
), 0,
475 sizeof (struct rmon_mib
));
477 /* Mask off the CAM interrupts */
478 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
479 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
482 /* Initialize the max receive buffer length */
483 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
485 #ifdef CONFIG_GFAR_BUFSTASH
486 /* If we are stashing buffers, we need to set the
487 * extraction length to the size of the buffer */
488 gfar_write(&priv
->regs
->attreli
, priv
->rx_stash_size
<< 16);
491 /* Initialize the Minimum Frame Length Register */
492 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
494 /* Setup Attributes so that snooping is on for rx */
495 gfar_write(&priv
->regs
->attr
, ATTR_INIT_SETTINGS
);
496 gfar_write(&priv
->regs
->attreli
, ATTRELI_INIT_SETTINGS
);
498 /* Assign the TBI an address which won't conflict with the PHYs */
499 gfar_write(&priv
->regs
->tbipa
, TBIPA_VALUE
);
502 void stop_gfar(struct net_device
*dev
)
504 struct gfar_private
*priv
= netdev_priv(dev
);
505 struct gfar
*regs
= priv
->regs
;
510 spin_lock_irqsave(&priv
->lock
, flags
);
512 /* Tell the kernel the link is down */
513 priv
->mii_info
->link
= 0;
516 /* Mask all interrupts */
517 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
519 /* Clear all interrupts */
520 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
522 /* Stop the DMA, and wait for it to stop */
523 tempval
= gfar_read(&priv
->regs
->dmactrl
);
524 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
525 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
526 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
527 gfar_write(&priv
->regs
->dmactrl
, tempval
);
529 while (!(gfar_read(&priv
->regs
->ievent
) &
530 (IEVENT_GRSC
| IEVENT_GTSC
)))
534 /* Disable Rx and Tx */
535 tempval
= gfar_read(®s
->maccfg1
);
536 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
537 gfar_write(®s
->maccfg1
, tempval
);
539 if (priv
->einfo
->flags
& GFAR_HAS_PHY_INTR
) {
540 /* Clear any pending interrupts */
541 mii_clear_phy_interrupt(priv
->mii_info
);
543 /* Disable PHY Interrupts */
544 mii_configure_phy_interrupt(priv
->mii_info
,
545 MII_INTERRUPT_DISABLED
);
548 spin_unlock_irqrestore(&priv
->lock
, flags
);
551 if (priv
->einfo
->flags
& GFAR_HAS_MULTI_INTR
) {
552 free_irq(priv
->einfo
->interruptError
, dev
);
553 free_irq(priv
->einfo
->interruptTransmit
, dev
);
554 free_irq(priv
->einfo
->interruptReceive
, dev
);
556 free_irq(priv
->einfo
->interruptTransmit
, dev
);
559 if (priv
->einfo
->flags
& GFAR_HAS_PHY_INTR
) {
560 free_irq(priv
->einfo
->interruptPHY
, dev
);
562 del_timer_sync(&priv
->phy_info_timer
);
565 free_skb_resources(priv
);
567 dma_free_coherent(NULL
,
568 sizeof(struct txbd8
)*priv
->tx_ring_size
569 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
571 gfar_read(®s
->tbase
));
574 /* If there are any tx skbs or rx skbs still around, free them.
575 * Then free tx_skbuff and rx_skbuff */
576 void free_skb_resources(struct gfar_private
*priv
)
582 /* Go through all the buffer descriptors and free their data buffers */
583 txbdp
= priv
->tx_bd_base
;
585 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
587 if (priv
->tx_skbuff
[i
]) {
588 dma_unmap_single(NULL
, txbdp
->bufPtr
,
591 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
592 priv
->tx_skbuff
[i
] = NULL
;
596 kfree(priv
->tx_skbuff
);
598 rxbdp
= priv
->rx_bd_base
;
600 /* rx_skbuff is not guaranteed to be allocated, so only
601 * free it and its contents if it is allocated */
602 if(priv
->rx_skbuff
!= NULL
) {
603 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
604 if (priv
->rx_skbuff
[i
]) {
605 dma_unmap_single(NULL
, rxbdp
->bufPtr
,
610 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
611 priv
->rx_skbuff
[i
] = NULL
;
621 kfree(priv
->rx_skbuff
);
625 /* Bring the controller up and running */
626 int startup_gfar(struct net_device
*dev
)
633 struct gfar_private
*priv
= netdev_priv(dev
);
634 struct gfar
*regs
= priv
->regs
;
638 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
640 /* Allocate memory for the buffer descriptors */
641 vaddr
= (unsigned long) dma_alloc_coherent(NULL
,
642 sizeof (struct txbd8
) * priv
->tx_ring_size
+
643 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
647 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
652 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
654 /* enet DMA only understands physical addresses */
655 gfar_write(®s
->tbase
, addr
);
657 /* Start the rx descriptor ring where the tx ring leaves off */
658 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
659 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
660 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
661 gfar_write(®s
->rbase
, addr
);
663 /* Setup the skbuff rings */
665 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
666 priv
->tx_ring_size
, GFP_KERNEL
);
668 if (priv
->tx_skbuff
== NULL
) {
669 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
675 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
676 priv
->tx_skbuff
[i
] = NULL
;
679 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
680 priv
->rx_ring_size
, GFP_KERNEL
);
682 if (priv
->rx_skbuff
== NULL
) {
683 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
689 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
690 priv
->rx_skbuff
[i
] = NULL
;
692 /* Initialize some variables in our dev structure */
693 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
694 priv
->cur_rx
= priv
->rx_bd_base
;
695 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
698 /* Initialize Transmit Descriptor Ring */
699 txbdp
= priv
->tx_bd_base
;
700 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
707 /* Set the last descriptor in the ring to indicate wrap */
709 txbdp
->status
|= TXBD_WRAP
;
711 rxbdp
= priv
->rx_bd_base
;
712 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
713 struct sk_buff
*skb
= NULL
;
717 skb
= gfar_new_skb(dev
, rxbdp
);
719 priv
->rx_skbuff
[i
] = skb
;
724 /* Set the last descriptor in the ring to wrap */
726 rxbdp
->status
|= RXBD_WRAP
;
728 /* If the device has multiple interrupts, register for
729 * them. Otherwise, only register for the one */
730 if (priv
->einfo
->flags
& GFAR_HAS_MULTI_INTR
) {
731 /* Install our interrupt handlers for Error,
732 * Transmit, and Receive */
733 if (request_irq(priv
->einfo
->interruptError
, gfar_error
,
734 0, "enet_error", dev
) < 0) {
735 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
736 dev
->name
, priv
->einfo
->interruptError
);
742 if (request_irq(priv
->einfo
->interruptTransmit
, gfar_transmit
,
743 0, "enet_tx", dev
) < 0) {
744 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
745 dev
->name
, priv
->einfo
->interruptTransmit
);
752 if (request_irq(priv
->einfo
->interruptReceive
, gfar_receive
,
753 0, "enet_rx", dev
) < 0) {
754 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
755 dev
->name
, priv
->einfo
->interruptReceive
);
761 if (request_irq(priv
->einfo
->interruptTransmit
, gfar_interrupt
,
762 0, "gfar_interrupt", dev
) < 0) {
763 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
764 dev
->name
, priv
->einfo
->interruptError
);
771 /* Set up the PHY change work queue */
772 INIT_WORK(&priv
->tq
, gfar_phy_change
, dev
);
774 init_timer(&priv
->phy_info_timer
);
775 priv
->phy_info_timer
.function
= &gfar_phy_startup_timer
;
776 priv
->phy_info_timer
.data
= (unsigned long) priv
->mii_info
;
777 mod_timer(&priv
->phy_info_timer
, jiffies
+ HZ
);
779 /* Configure the coalescing support */
780 if (priv
->txcoalescing
)
781 gfar_write(®s
->txic
,
782 mk_ic_value(priv
->txcount
, priv
->txtime
));
784 gfar_write(®s
->txic
, 0);
786 if (priv
->rxcoalescing
)
787 gfar_write(®s
->rxic
,
788 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
790 gfar_write(®s
->rxic
, 0);
792 init_waitqueue_head(&priv
->rxcleanupq
);
794 /* Enable Rx and Tx in MACCFG1 */
795 tempval
= gfar_read(®s
->maccfg1
);
796 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
797 gfar_write(®s
->maccfg1
, tempval
);
799 /* Initialize DMACTRL to have WWR and WOP */
800 tempval
= gfar_read(&priv
->regs
->dmactrl
);
801 tempval
|= DMACTRL_INIT_SETTINGS
;
802 gfar_write(&priv
->regs
->dmactrl
, tempval
);
804 /* Clear THLT, so that the DMA starts polling now */
805 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
807 /* Make sure we aren't stopped */
808 tempval
= gfar_read(&priv
->regs
->dmactrl
);
809 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
810 gfar_write(&priv
->regs
->dmactrl
, tempval
);
812 /* Unmask the interrupts we look for */
813 gfar_write(®s
->imask
, IMASK_DEFAULT
);
818 free_irq(priv
->einfo
->interruptTransmit
, dev
);
820 free_irq(priv
->einfo
->interruptError
, dev
);
823 free_skb_resources(priv
);
825 dma_free_coherent(NULL
,
826 sizeof(struct txbd8
)*priv
->tx_ring_size
827 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
829 gfar_read(®s
->tbase
));
831 if (priv
->mii_info
->phyinfo
->close
)
832 priv
->mii_info
->phyinfo
->close(priv
->mii_info
);
834 kfree(priv
->mii_info
);
839 /* Called when something needs to use the ethernet device */
840 /* Returns 0 for success. */
841 static int gfar_enet_open(struct net_device
*dev
)
845 /* Initialize a bunch of registers */
848 gfar_set_mac_address(dev
);
855 err
= startup_gfar(dev
);
857 netif_start_queue(dev
);
862 /* This is called by the kernel when a frame is ready for transmission. */
863 /* It is pointed to by the dev->hard_start_xmit function pointer */
864 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
866 struct gfar_private
*priv
= netdev_priv(dev
);
869 /* Update transmit stats */
870 priv
->stats
.tx_bytes
+= skb
->len
;
873 spin_lock_irq(&priv
->lock
);
875 /* Point at the first free tx descriptor */
876 txbdp
= priv
->cur_tx
;
878 /* Clear all but the WRAP status flags */
879 txbdp
->status
&= TXBD_WRAP
;
881 /* Set buffer length and pointer */
882 txbdp
->length
= skb
->len
;
883 txbdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
884 skb
->len
, DMA_TO_DEVICE
);
886 /* Save the skb pointer so we can free it later */
887 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
889 /* Update the current skb pointer (wrapping if this was the last) */
891 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
893 /* Flag the BD as interrupt-causing */
894 txbdp
->status
|= TXBD_INTERRUPT
;
896 /* Flag the BD as ready to go, last in frame, and */
898 txbdp
->status
|= (TXBD_READY
| TXBD_LAST
| TXBD_CRC
);
900 dev
->trans_start
= jiffies
;
902 /* If this was the last BD in the ring, the next one */
903 /* is at the beginning of the ring */
904 if (txbdp
->status
& TXBD_WRAP
)
905 txbdp
= priv
->tx_bd_base
;
909 /* If the next BD still needs to be cleaned up, then the bds
910 are full. We need to tell the kernel to stop sending us stuff. */
911 if (txbdp
== priv
->dirty_tx
) {
912 netif_stop_queue(dev
);
914 priv
->stats
.tx_fifo_errors
++;
917 /* Update the current txbd to the next one */
918 priv
->cur_tx
= txbdp
;
920 /* Tell the DMA to go go go */
921 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
924 spin_unlock_irq(&priv
->lock
);
929 /* Stops the kernel queue, and halts the controller */
930 static int gfar_close(struct net_device
*dev
)
932 struct gfar_private
*priv
= netdev_priv(dev
);
935 /* Shutdown the PHY */
936 if (priv
->mii_info
->phyinfo
->close
)
937 priv
->mii_info
->phyinfo
->close(priv
->mii_info
);
939 kfree(priv
->mii_info
);
941 netif_stop_queue(dev
);
946 /* returns a net_device_stats structure pointer */
947 static struct net_device_stats
* gfar_get_stats(struct net_device
*dev
)
949 struct gfar_private
*priv
= netdev_priv(dev
);
951 return &(priv
->stats
);
954 /* Changes the mac address if the controller is not running. */
955 int gfar_set_mac_address(struct net_device
*dev
)
957 struct gfar_private
*priv
= netdev_priv(dev
);
959 char tmpbuf
[MAC_ADDR_LEN
];
962 /* Now copy it into the mac registers backwards, cuz */
963 /* little endian is silly */
964 for (i
= 0; i
< MAC_ADDR_LEN
; i
++)
965 tmpbuf
[MAC_ADDR_LEN
- 1 - i
] = dev
->dev_addr
[i
];
967 gfar_write(&priv
->regs
->macstnaddr1
, *((u32
*) (tmpbuf
)));
969 tempval
= *((u32
*) (tmpbuf
+ 4));
971 gfar_write(&priv
->regs
->macstnaddr2
, tempval
);
977 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
979 int tempsize
, tempval
;
980 struct gfar_private
*priv
= netdev_priv(dev
);
981 int oldsize
= priv
->rx_buffer_size
;
982 int frame_size
= new_mtu
+ 18;
984 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
985 printk(KERN_ERR
"%s: Invalid MTU setting\n", dev
->name
);
990 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
991 INCREMENTAL_BUFFER_SIZE
;
993 /* Only stop and start the controller if it isn't already
995 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
998 priv
->rx_buffer_size
= tempsize
;
1002 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1003 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1005 /* If the mtu is larger than the max size for standard
1006 * ethernet frames (ie, a jumbo frame), then set maccfg2
1007 * to allow huge frames, and to check the length */
1008 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1010 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1011 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1013 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1015 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1017 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1023 /* gfar_timeout gets called when a packet has not been
1024 * transmitted after a set amount of time.
1025 * For now, assume that clearing out all the structures, and
1026 * starting over will fix the problem. */
1027 static void gfar_timeout(struct net_device
*dev
)
1029 struct gfar_private
*priv
= netdev_priv(dev
);
1031 priv
->stats
.tx_errors
++;
1033 if (dev
->flags
& IFF_UP
) {
1038 netif_schedule(dev
);
1041 /* Interrupt Handler for Transmit complete */
1042 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
)
1044 struct net_device
*dev
= (struct net_device
*) dev_id
;
1045 struct gfar_private
*priv
= netdev_priv(dev
);
1049 gfar_write(&priv
->regs
->ievent
, IEVENT_TX_MASK
);
1052 spin_lock(&priv
->lock
);
1053 bdp
= priv
->dirty_tx
;
1054 while ((bdp
->status
& TXBD_READY
) == 0) {
1055 /* If dirty_tx and cur_tx are the same, then either the */
1056 /* ring is empty or full now (it could only be full in the beginning, */
1057 /* obviously). If it is empty, we are done. */
1058 if ((bdp
== priv
->cur_tx
) && (netif_queue_stopped(dev
) == 0))
1061 priv
->stats
.tx_packets
++;
1063 /* Deferred means some collisions occurred during transmit, */
1064 /* but we eventually sent the packet. */
1065 if (bdp
->status
& TXBD_DEF
)
1066 priv
->stats
.collisions
++;
1068 /* Free the sk buffer associated with this TxBD */
1069 dev_kfree_skb_irq(priv
->tx_skbuff
[priv
->skb_dirtytx
]);
1070 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
1072 (priv
->skb_dirtytx
+
1073 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1075 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1076 if (bdp
->status
& TXBD_WRAP
)
1077 bdp
= priv
->tx_bd_base
;
1081 /* Move dirty_tx to be the next bd */
1082 priv
->dirty_tx
= bdp
;
1084 /* We freed a buffer, so now we can restart transmission */
1085 if (netif_queue_stopped(dev
))
1086 netif_wake_queue(dev
);
1087 } /* while ((bdp->status & TXBD_READY) == 0) */
1089 /* If we are coalescing the interrupts, reset the timer */
1090 /* Otherwise, clear it */
1091 if (priv
->txcoalescing
)
1092 gfar_write(&priv
->regs
->txic
,
1093 mk_ic_value(priv
->txcount
, priv
->txtime
));
1095 gfar_write(&priv
->regs
->txic
, 0);
1097 spin_unlock(&priv
->lock
);
1102 struct sk_buff
* gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
)
1104 struct gfar_private
*priv
= netdev_priv(dev
);
1105 struct sk_buff
*skb
= NULL
;
1106 unsigned int timeout
= SKB_ALLOC_TIMEOUT
;
1108 /* We have to allocate the skb, so keep trying till we succeed */
1109 while ((!skb
) && timeout
--)
1110 skb
= dev_alloc_skb(priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1115 /* We need the data buffer to be aligned properly. We will reserve
1116 * as many bytes as needed to align the data properly
1120 (((unsigned) skb
->data
) & (RXBUF_ALIGNMENT
- 1)));
1124 bdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
1125 priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
,
1130 /* Mark the buffer empty */
1131 bdp
->status
|= (RXBD_EMPTY
| RXBD_INTERRUPT
);
1136 static inline void count_errors(unsigned short status
, struct gfar_private
*priv
)
1138 struct net_device_stats
*stats
= &priv
->stats
;
1139 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1141 /* If the packet was truncated, none of the other errors
1143 if (status
& RXBD_TRUNCATED
) {
1144 stats
->rx_length_errors
++;
1150 /* Count the errors, if there were any */
1151 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1152 stats
->rx_length_errors
++;
1154 if (status
& RXBD_LARGE
)
1159 if (status
& RXBD_NONOCTET
) {
1160 stats
->rx_frame_errors
++;
1161 estats
->rx_nonoctet
++;
1163 if (status
& RXBD_CRCERR
) {
1164 estats
->rx_crcerr
++;
1165 stats
->rx_crc_errors
++;
1167 if (status
& RXBD_OVERRUN
) {
1168 estats
->rx_overrun
++;
1169 stats
->rx_crc_errors
++;
1173 irqreturn_t
gfar_receive(int irq
, void *dev_id
, struct pt_regs
*regs
)
1175 struct net_device
*dev
= (struct net_device
*) dev_id
;
1176 struct gfar_private
*priv
= netdev_priv(dev
);
1178 #ifdef CONFIG_GFAR_NAPI
1182 /* Clear IEVENT, so rx interrupt isn't called again
1183 * because of this interrupt */
1184 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1187 #ifdef CONFIG_GFAR_NAPI
1188 if (netif_rx_schedule_prep(dev
)) {
1189 tempval
= gfar_read(&priv
->regs
->imask
);
1190 tempval
&= IMASK_RX_DISABLED
;
1191 gfar_write(&priv
->regs
->imask
, tempval
);
1193 __netif_rx_schedule(dev
);
1195 #ifdef VERBOSE_GFAR_ERRORS
1196 printk(KERN_DEBUG
"%s: receive called twice (%x)[%x]\n",
1197 dev
->name
, gfar_read(priv
->regs
->ievent
),
1198 gfar_read(priv
->regs
->imask
));
1203 spin_lock(&priv
->lock
);
1204 gfar_clean_rx_ring(dev
, priv
->rx_ring_size
);
1206 /* If we are coalescing interrupts, update the timer */
1207 /* Otherwise, clear it */
1208 if (priv
->rxcoalescing
)
1209 gfar_write(&priv
->regs
->rxic
,
1210 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1212 gfar_write(&priv
->regs
->rxic
, 0);
1214 /* Just in case we need to wake the ring param changer */
1217 spin_unlock(&priv
->lock
);
1224 /* gfar_process_frame() -- handle one incoming packet if skb
1226 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1229 struct gfar_private
*priv
= netdev_priv(dev
);
1232 #ifdef BRIEF_GFAR_ERRORS
1233 printk(KERN_WARNING
"%s: Missing skb!!.\n",
1236 priv
->stats
.rx_dropped
++;
1237 priv
->extra_stats
.rx_skbmissing
++;
1239 /* Prep the skb for the packet */
1240 skb_put(skb
, length
);
1242 /* Tell the skb what kind of packet this is */
1243 skb
->protocol
= eth_type_trans(skb
, dev
);
1245 /* Send the packet up the stack */
1246 if (RECEIVE(skb
) == NET_RX_DROP
) {
1247 priv
->extra_stats
.kernel_dropped
++;
1254 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1255 * until the budget/quota has been reached. Returns the number
1258 static int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1261 struct sk_buff
*skb
;
1264 struct gfar_private
*priv
= netdev_priv(dev
);
1266 /* Get the first full descriptor */
1269 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1270 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1273 (RXBD_LARGE
| RXBD_SHORT
| RXBD_NONOCTET
1274 | RXBD_CRCERR
| RXBD_OVERRUN
| RXBD_TRUNCATED
))) {
1275 /* Increment the number of packets */
1276 priv
->stats
.rx_packets
++;
1279 /* Remove the FCS from the packet length */
1280 pkt_len
= bdp
->length
- 4;
1282 gfar_process_frame(dev
, skb
, pkt_len
);
1284 priv
->stats
.rx_bytes
+= pkt_len
;
1286 count_errors(bdp
->status
, priv
);
1289 dev_kfree_skb_any(skb
);
1291 priv
->rx_skbuff
[priv
->skb_currx
] = NULL
;
1294 dev
->last_rx
= jiffies
;
1296 /* Clear the status flags for this buffer */
1297 bdp
->status
&= ~RXBD_STATS
;
1299 /* Add another skb for the future */
1300 skb
= gfar_new_skb(dev
, bdp
);
1301 priv
->rx_skbuff
[priv
->skb_currx
] = skb
;
1303 /* Update to the next pointer */
1304 if (bdp
->status
& RXBD_WRAP
)
1305 bdp
= priv
->rx_bd_base
;
1309 /* update to point at the next skb */
1312 1) & RX_RING_MOD_MASK(priv
->rx_ring_size
);
1316 /* Update the current rxbd pointer to be the next one */
1319 /* If no packets have arrived since the
1320 * last one we processed, clear the IEVENT RX and
1321 * BSY bits so that another interrupt won't be
1322 * generated when we set IMASK */
1323 if (bdp
->status
& RXBD_EMPTY
)
1324 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1329 #ifdef CONFIG_GFAR_NAPI
1330 static int gfar_poll(struct net_device
*dev
, int *budget
)
1333 struct gfar_private
*priv
= netdev_priv(dev
);
1334 int rx_work_limit
= *budget
;
1336 if (rx_work_limit
> dev
->quota
)
1337 rx_work_limit
= dev
->quota
;
1339 howmany
= gfar_clean_rx_ring(dev
, rx_work_limit
);
1341 dev
->quota
-= howmany
;
1342 rx_work_limit
-= howmany
;
1345 if (rx_work_limit
>= 0) {
1346 netif_rx_complete(dev
);
1348 /* Clear the halt bit in RSTAT */
1349 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1351 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1353 /* If we are coalescing interrupts, update the timer */
1354 /* Otherwise, clear it */
1355 if (priv
->rxcoalescing
)
1356 gfar_write(&priv
->regs
->rxic
,
1357 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1359 gfar_write(&priv
->regs
->rxic
, 0);
1361 /* Signal to the ring size changer that it's safe to go */
1365 return (rx_work_limit
< 0) ? 1 : 0;
1369 /* The interrupt handler for devices with one interrupt */
1370 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
1372 struct net_device
*dev
= dev_id
;
1373 struct gfar_private
*priv
= netdev_priv(dev
);
1375 /* Save ievent for future reference */
1376 u32 events
= gfar_read(&priv
->regs
->ievent
);
1379 gfar_write(&priv
->regs
->ievent
, events
);
1381 /* Check for reception */
1382 if ((events
& IEVENT_RXF0
) || (events
& IEVENT_RXB0
))
1383 gfar_receive(irq
, dev_id
, regs
);
1385 /* Check for transmit completion */
1386 if ((events
& IEVENT_TXF
) || (events
& IEVENT_TXB
))
1387 gfar_transmit(irq
, dev_id
, regs
);
1389 /* Update error statistics */
1390 if (events
& IEVENT_TXE
) {
1391 priv
->stats
.tx_errors
++;
1393 if (events
& IEVENT_LC
)
1394 priv
->stats
.tx_window_errors
++;
1395 if (events
& IEVENT_CRL
)
1396 priv
->stats
.tx_aborted_errors
++;
1397 if (events
& IEVENT_XFUN
) {
1398 #ifdef VERBOSE_GFAR_ERRORS
1399 printk(KERN_WARNING
"%s: tx underrun. dropped packet\n",
1402 priv
->stats
.tx_dropped
++;
1403 priv
->extra_stats
.tx_underrun
++;
1405 /* Reactivate the Tx Queues */
1406 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1409 if (events
& IEVENT_BSY
) {
1410 priv
->stats
.rx_errors
++;
1411 priv
->extra_stats
.rx_bsy
++;
1413 gfar_receive(irq
, dev_id
, regs
);
1415 #ifndef CONFIG_GFAR_NAPI
1416 /* Clear the halt bit in RSTAT */
1417 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1420 #ifdef VERBOSE_GFAR_ERRORS
1421 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n", dev
->name
,
1422 gfar_read(priv
->regs
->rstat
));
1425 if (events
& IEVENT_BABR
) {
1426 priv
->stats
.rx_errors
++;
1427 priv
->extra_stats
.rx_babr
++;
1429 #ifdef VERBOSE_GFAR_ERRORS
1430 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1433 if (events
& IEVENT_EBERR
) {
1434 priv
->extra_stats
.eberr
++;
1435 #ifdef VERBOSE_GFAR_ERRORS
1436 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1439 if (events
& IEVENT_RXC
) {
1440 #ifdef VERBOSE_GFAR_ERRORS
1441 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1445 if (events
& IEVENT_BABT
) {
1446 priv
->extra_stats
.tx_babt
++;
1447 #ifdef VERBOSE_GFAR_ERRORS
1448 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1455 static irqreturn_t
phy_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
1457 struct net_device
*dev
= (struct net_device
*) dev_id
;
1458 struct gfar_private
*priv
= netdev_priv(dev
);
1460 /* Clear the interrupt */
1461 mii_clear_phy_interrupt(priv
->mii_info
);
1463 /* Disable PHY interrupts */
1464 mii_configure_phy_interrupt(priv
->mii_info
,
1465 MII_INTERRUPT_DISABLED
);
1467 /* Schedule the phy change */
1468 schedule_work(&priv
->tq
);
1473 /* Scheduled by the phy_interrupt/timer to handle PHY changes */
1474 static void gfar_phy_change(void *data
)
1476 struct net_device
*dev
= (struct net_device
*) data
;
1477 struct gfar_private
*priv
= netdev_priv(dev
);
1480 /* Delay to give the PHY a chance to change the
1484 /* Update the link, speed, duplex */
1485 result
= priv
->mii_info
->phyinfo
->read_status(priv
->mii_info
);
1487 /* Adjust the known status as long as the link
1488 * isn't still coming up */
1489 if((0 == result
) || (priv
->mii_info
->link
== 0))
1492 /* Reenable interrupts, if needed */
1493 if (priv
->einfo
->flags
& GFAR_HAS_PHY_INTR
)
1494 mii_configure_phy_interrupt(priv
->mii_info
,
1495 MII_INTERRUPT_ENABLED
);
1498 /* Called every so often on systems that don't interrupt
1499 * the core for PHY changes */
1500 static void gfar_phy_timer(unsigned long data
)
1502 struct net_device
*dev
= (struct net_device
*) data
;
1503 struct gfar_private
*priv
= netdev_priv(dev
);
1505 schedule_work(&priv
->tq
);
1507 mod_timer(&priv
->phy_info_timer
, jiffies
+
1508 GFAR_PHY_CHANGE_TIME
* HZ
);
1511 /* Keep trying aneg for some time
1512 * If, after GFAR_AN_TIMEOUT seconds, it has not
1513 * finished, we switch to forced.
1514 * Either way, once the process has completed, we either
1515 * request the interrupt, or switch the timer over to
1516 * using gfar_phy_timer to check status */
1517 static void gfar_phy_startup_timer(unsigned long data
)
1520 static int secondary
= GFAR_AN_TIMEOUT
;
1521 struct gfar_mii_info
*mii_info
= (struct gfar_mii_info
*)data
;
1522 struct gfar_private
*priv
= netdev_priv(mii_info
->dev
);
1524 /* Configure the Auto-negotiation */
1525 result
= mii_info
->phyinfo
->config_aneg(mii_info
);
1527 /* If autonegotiation failed to start, and
1528 * we haven't timed out, reset the timer, and return */
1529 if (result
&& secondary
--) {
1530 mod_timer(&priv
->phy_info_timer
, jiffies
+ HZ
);
1532 } else if (result
) {
1533 /* Couldn't start autonegotiation.
1534 * Try switching to forced */
1535 mii_info
->autoneg
= 0;
1536 result
= mii_info
->phyinfo
->config_aneg(mii_info
);
1538 /* Forcing failed! Give up */
1540 printk(KERN_ERR
"%s: Forcing failed!\n",
1541 mii_info
->dev
->name
);
1546 /* Kill the timer so it can be restarted */
1547 del_timer_sync(&priv
->phy_info_timer
);
1549 /* Grab the PHY interrupt, if necessary/possible */
1550 if (priv
->einfo
->flags
& GFAR_HAS_PHY_INTR
) {
1551 if (request_irq(priv
->einfo
->interruptPHY
,
1555 mii_info
->dev
) < 0) {
1556 printk(KERN_ERR
"%s: Can't get IRQ %d (PHY)\n",
1557 mii_info
->dev
->name
,
1558 priv
->einfo
->interruptPHY
);
1560 mii_configure_phy_interrupt(priv
->mii_info
,
1561 MII_INTERRUPT_ENABLED
);
1566 /* Start the timer again, this time in order to
1567 * handle a change in status */
1568 init_timer(&priv
->phy_info_timer
);
1569 priv
->phy_info_timer
.function
= &gfar_phy_timer
;
1570 priv
->phy_info_timer
.data
= (unsigned long) mii_info
->dev
;
1571 mod_timer(&priv
->phy_info_timer
, jiffies
+
1572 GFAR_PHY_CHANGE_TIME
* HZ
);
1575 /* Called every time the controller might need to be made
1576 * aware of new link state. The PHY code conveys this
1577 * information through variables in the priv structure, and this
1578 * function converts those variables into the appropriate
1579 * register values, and can bring down the device if needed.
1581 static void adjust_link(struct net_device
*dev
)
1583 struct gfar_private
*priv
= netdev_priv(dev
);
1584 struct gfar
*regs
= priv
->regs
;
1586 struct gfar_mii_info
*mii_info
= priv
->mii_info
;
1588 if (mii_info
->link
) {
1589 /* Now we make sure that we can be in full duplex mode.
1590 * If not, we operate in half-duplex mode. */
1591 if (mii_info
->duplex
!= priv
->oldduplex
) {
1592 if (!(mii_info
->duplex
)) {
1593 tempval
= gfar_read(®s
->maccfg2
);
1594 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
1595 gfar_write(®s
->maccfg2
, tempval
);
1597 printk(KERN_INFO
"%s: Half Duplex\n",
1600 tempval
= gfar_read(®s
->maccfg2
);
1601 tempval
|= MACCFG2_FULL_DUPLEX
;
1602 gfar_write(®s
->maccfg2
, tempval
);
1604 printk(KERN_INFO
"%s: Full Duplex\n",
1608 priv
->oldduplex
= mii_info
->duplex
;
1611 if (mii_info
->speed
!= priv
->oldspeed
) {
1612 switch (mii_info
->speed
) {
1614 tempval
= gfar_read(®s
->maccfg2
);
1616 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
1617 gfar_write(®s
->maccfg2
, tempval
);
1621 tempval
= gfar_read(®s
->maccfg2
);
1623 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
1624 gfar_write(®s
->maccfg2
, tempval
);
1628 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1629 dev
->name
, mii_info
->speed
);
1633 printk(KERN_INFO
"%s: Speed %dBT\n", dev
->name
,
1636 priv
->oldspeed
= mii_info
->speed
;
1639 if (!priv
->oldlink
) {
1640 printk(KERN_INFO
"%s: Link is up\n", dev
->name
);
1642 netif_carrier_on(dev
);
1643 netif_schedule(dev
);
1646 if (priv
->oldlink
) {
1647 printk(KERN_INFO
"%s: Link is down\n", dev
->name
);
1650 priv
->oldduplex
= -1;
1651 netif_carrier_off(dev
);
1657 /* Update the hash table based on the current list of multicast
1658 * addresses we subscribe to. Also, change the promiscuity of
1659 * the device based on the flags (this function is called
1660 * whenever dev->flags is changed */
1661 static void gfar_set_multi(struct net_device
*dev
)
1663 struct dev_mc_list
*mc_ptr
;
1664 struct gfar_private
*priv
= netdev_priv(dev
);
1665 struct gfar
*regs
= priv
->regs
;
1668 if(dev
->flags
& IFF_PROMISC
) {
1669 printk(KERN_INFO
"%s: Entering promiscuous mode.\n",
1671 /* Set RCTRL to PROM */
1672 tempval
= gfar_read(®s
->rctrl
);
1673 tempval
|= RCTRL_PROM
;
1674 gfar_write(®s
->rctrl
, tempval
);
1676 /* Set RCTRL to not PROM */
1677 tempval
= gfar_read(®s
->rctrl
);
1678 tempval
&= ~(RCTRL_PROM
);
1679 gfar_write(®s
->rctrl
, tempval
);
1682 if(dev
->flags
& IFF_ALLMULTI
) {
1683 /* Set the hash to rx all multicast frames */
1684 gfar_write(®s
->gaddr0
, 0xffffffff);
1685 gfar_write(®s
->gaddr1
, 0xffffffff);
1686 gfar_write(®s
->gaddr2
, 0xffffffff);
1687 gfar_write(®s
->gaddr3
, 0xffffffff);
1688 gfar_write(®s
->gaddr4
, 0xffffffff);
1689 gfar_write(®s
->gaddr5
, 0xffffffff);
1690 gfar_write(®s
->gaddr6
, 0xffffffff);
1691 gfar_write(®s
->gaddr7
, 0xffffffff);
1693 /* zero out the hash */
1694 gfar_write(®s
->gaddr0
, 0x0);
1695 gfar_write(®s
->gaddr1
, 0x0);
1696 gfar_write(®s
->gaddr2
, 0x0);
1697 gfar_write(®s
->gaddr3
, 0x0);
1698 gfar_write(®s
->gaddr4
, 0x0);
1699 gfar_write(®s
->gaddr5
, 0x0);
1700 gfar_write(®s
->gaddr6
, 0x0);
1701 gfar_write(®s
->gaddr7
, 0x0);
1703 if(dev
->mc_count
== 0)
1706 /* Parse the list, and set the appropriate bits */
1707 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
1708 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
1715 /* Set the appropriate hash bit for the given addr */
1716 /* The algorithm works like so:
1717 * 1) Take the Destination Address (ie the multicast address), and
1718 * do a CRC on it (little endian), and reverse the bits of the
1720 * 2) Use the 8 most significant bits as a hash into a 256-entry
1721 * table. The table is controlled through 8 32-bit registers:
1722 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1723 * gaddr7. This means that the 3 most significant bits in the
1724 * hash index which gaddr register to use, and the 5 other bits
1725 * indicate which bit (assuming an IBM numbering scheme, which
1726 * for PowerPC (tm) is usually the case) in the register holds
1728 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
1731 struct gfar_private
*priv
= netdev_priv(dev
);
1732 struct gfar
*regs
= priv
->regs
;
1733 u32
*hash
= ®s
->gaddr0
;
1734 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
1735 u8 whichreg
= ((result
>> 29) & 0x7);
1736 u8 whichbit
= ((result
>> 24) & 0x1f);
1737 u32 value
= (1 << (31-whichbit
));
1739 tempval
= gfar_read(&hash
[whichreg
]);
1741 gfar_write(&hash
[whichreg
], tempval
);
1746 /* GFAR error interrupt handler */
1747 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
)
1749 struct net_device
*dev
= dev_id
;
1750 struct gfar_private
*priv
= netdev_priv(dev
);
1752 /* Save ievent for future reference */
1753 u32 events
= gfar_read(&priv
->regs
->ievent
);
1756 gfar_write(&priv
->regs
->ievent
, IEVENT_ERR_MASK
);
1759 #if defined (BRIEF_GFAR_ERRORS) || defined (VERBOSE_GFAR_ERRORS)
1760 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1761 dev
->name
, events
, gfar_read(priv
->regs
->imask
));
1764 /* Update the error counters */
1765 if (events
& IEVENT_TXE
) {
1766 priv
->stats
.tx_errors
++;
1768 if (events
& IEVENT_LC
)
1769 priv
->stats
.tx_window_errors
++;
1770 if (events
& IEVENT_CRL
)
1771 priv
->stats
.tx_aborted_errors
++;
1772 if (events
& IEVENT_XFUN
) {
1773 #ifdef VERBOSE_GFAR_ERRORS
1774 printk(KERN_DEBUG
"%s: underrun. packet dropped.\n",
1777 priv
->stats
.tx_dropped
++;
1778 priv
->extra_stats
.tx_underrun
++;
1780 /* Reactivate the Tx Queues */
1781 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1783 #ifdef VERBOSE_GFAR_ERRORS
1784 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
1787 if (events
& IEVENT_BSY
) {
1788 priv
->stats
.rx_errors
++;
1789 priv
->extra_stats
.rx_bsy
++;
1791 gfar_receive(irq
, dev_id
, regs
);
1793 #ifndef CONFIG_GFAR_NAPI
1794 /* Clear the halt bit in RSTAT */
1795 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1798 #ifdef VERBOSE_GFAR_ERRORS
1799 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n", dev
->name
,
1800 gfar_read(priv
->regs
->rstat
));
1803 if (events
& IEVENT_BABR
) {
1804 priv
->stats
.rx_errors
++;
1805 priv
->extra_stats
.rx_babr
++;
1807 #ifdef VERBOSE_GFAR_ERRORS
1808 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1811 if (events
& IEVENT_EBERR
) {
1812 priv
->extra_stats
.eberr
++;
1813 #ifdef VERBOSE_GFAR_ERRORS
1814 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1817 if (events
& IEVENT_RXC
)
1818 #ifdef VERBOSE_GFAR_ERRORS
1819 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1822 if (events
& IEVENT_BABT
) {
1823 priv
->extra_stats
.tx_babt
++;
1824 #ifdef VERBOSE_GFAR_ERRORS
1825 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1831 /* Structure for a device driver */
1832 static struct ocp_device_id gfar_ids
[] = {
1833 {.vendor
= OCP_ANY_ID
,.function
= OCP_FUNC_GFAR
},
1834 {.vendor
= OCP_VENDOR_INVALID
}
1837 static struct ocp_driver gfar_driver
= {
1839 .id_table
= gfar_ids
,
1841 .probe
= gfar_probe
,
1842 .remove
= gfar_remove
,
1845 static int __init
gfar_init(void)
1849 rc
= ocp_register_driver(&gfar_driver
);
1851 ocp_unregister_driver(&gfar_driver
);
1858 static void __exit
gfar_exit(void)
1860 ocp_unregister_driver(&gfar_driver
);
1863 module_init(gfar_init
);
1864 module_exit(gfar_exit
);