MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / net / natsemi.c
blobfd44cb7229902babeeb5d5259c427c2f36652479
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL. License for under other terms may be
13 available. Contact the original author for details.
15 The original author may be reached as becker@scyld.com, or at
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Support information and updates available at
21 http://www.scyld.com/network/netsemi.html
24 Linux kernel modifications:
26 Version 1.0.1:
27 - Spinlock fixes
28 - Bug fixes and better intr performance (Tjeerd)
29 Version 1.0.2:
30 - Now reads correct MAC address from eeprom
31 Version 1.0.3:
32 - Eliminate redundant priv->tx_full flag
33 - Call netif_start_queue from dev->tx_timeout
34 - wmb() in start_tx() to flush data
35 - Update Tx locking
36 - Clean up PCI enable (davej)
37 Version 1.0.4:
38 - Merge Donald Becker's natsemi.c version 1.07
39 Version 1.0.5:
40 - { fill me in }
41 Version 1.0.6:
42 * ethtool support (jgarzik)
43 * Proper initialization of the card (which sometimes
44 fails to occur and leaves the card in a non-functional
45 state). (uzi)
47 * Some documented register settings to optimize some
48 of the 100Mbit autodetection circuitry in rev C cards. (uzi)
50 * Polling of the PHY intr for stuff like link state
51 change and auto- negotiation to finally work properly. (uzi)
53 * One-liner removal of a duplicate declaration of
54 netdev_error(). (uzi)
56 Version 1.0.7: (Manfred Spraul)
57 * pci dma
58 * SMP locking update
59 * full reset added into tx_timeout
60 * correct multicast hash generation (both big and little endian)
61 [copied from a natsemi driver version
62 from Myrio Corporation, Greg Smith]
63 * suspend/resume
65 version 1.0.8 (Tim Hockin <thockin@sun.com>)
66 * ETHTOOL_* support
67 * Wake on lan support (Erik Gilling)
68 * MXDMA fixes for serverworks
69 * EEPROM reload
71 version 1.0.9 (Manfred Spraul)
72 * Main change: fix lack of synchronize
73 netif_close/netif_suspend against a last interrupt
74 or packet.
75 * do not enable superflous interrupts (e.g. the
76 drivers relies on TxDone - TxIntr not needed)
77 * wait that the hardware has really stopped in close
78 and suspend.
79 * workaround for the (at least) gcc-2.95.1 compiler
80 problem. Also simplifies the code a bit.
81 * disable_irq() in tx_timeout - needed to protect
82 against rx interrupts.
83 * stop the nic before switching into silent rx mode
84 for wol (required according to docu).
86 version 1.0.10:
87 * use long for ee_addr (various)
88 * print pointers properly (DaveM)
89 * include asm/irq.h (?)
91 version 1.0.11:
92 * check and reset if PHY errors appear (Adrian Sun)
93 * WoL cleanup (Tim Hockin)
94 * Magic number cleanup (Tim Hockin)
95 * Don't reload EEPROM on every reset (Tim Hockin)
96 * Save and restore EEPROM state across reset (Tim Hockin)
97 * MDIO Cleanup (Tim Hockin)
98 * Reformat register offsets/bits (jgarzik)
100 version 1.0.12:
101 * ETHTOOL_* further support (Tim Hockin)
103 version 1.0.13:
104 * ETHTOOL_[G]EEPROM support (Tim Hockin)
106 version 1.0.13:
107 * crc cleanup (Matt Domsch <Matt_Domsch@dell.com>)
109 version 1.0.14:
110 * Cleanup some messages and autoneg in ethtool (Tim Hockin)
112 version 1.0.15:
113 * Get rid of cable_magic flag
114 * use new (National provided) solution for cable magic issue
116 version 1.0.16:
117 * call netdev_rx() for RxErrors (Manfred Spraul)
118 * formatting and cleanups
119 * change options and full_duplex arrays to be zero
120 initialized
121 * enable only the WoL and PHY interrupts in wol mode
123 version 1.0.17:
124 * only do cable_magic on 83815 and early 83816 (Tim Hockin)
125 * create a function for rx refill (Manfred Spraul)
126 * combine drain_ring and init_ring (Manfred Spraul)
127 * oom handling (Manfred Spraul)
128 * hands_off instead of playing with netif_device_{de,a}ttach
129 (Manfred Spraul)
130 * be sure to write the MAC back to the chip (Manfred Spraul)
131 * lengthen EEPROM timeout, and always warn about timeouts
132 (Manfred Spraul)
133 * comments update (Manfred)
134 * do the right thing on a phy-reset (Manfred and Tim)
136 TODO:
137 * big endian support with CFG:BEM instead of cpu_to_le32
138 * support for an external PHY
139 * NAPI
142 #include <linux/config.h>
143 #include <linux/module.h>
144 #include <linux/kernel.h>
145 #include <linux/string.h>
146 #include <linux/timer.h>
147 #include <linux/errno.h>
148 #include <linux/ioport.h>
149 #include <linux/slab.h>
150 #include <linux/interrupt.h>
151 #include <linux/pci.h>
152 #include <linux/netdevice.h>
153 #include <linux/etherdevice.h>
154 #include <linux/skbuff.h>
155 #include <linux/init.h>
156 #include <linux/spinlock.h>
157 #include <linux/ethtool.h>
158 #include <linux/delay.h>
159 #include <linux/rtnetlink.h>
160 #include <linux/mii.h>
161 #include <linux/crc32.h>
162 #include <asm/processor.h> /* Processor type for cache alignment. */
163 #include <asm/bitops.h>
164 #include <asm/io.h>
165 #include <asm/irq.h>
166 #include <asm/uaccess.h>
168 #define DRV_NAME "natsemi"
169 #define DRV_VERSION "1.07+LK1.0.17"
170 #define DRV_RELDATE "Sep 27, 2002"
172 #define RX_OFFSET 2
174 /* Updated to recommendations in pci-skeleton v2.03. */
176 /* The user-configurable values.
177 These may be modified when a driver module is loaded.*/
179 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
180 NETIF_MSG_LINK | \
181 NETIF_MSG_WOL | \
182 NETIF_MSG_RX_ERR | \
183 NETIF_MSG_TX_ERR)
184 static int debug = -1;
186 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
187 static int max_interrupt_work = 20;
188 static int mtu;
190 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
191 This chip uses a 512 element hash table based on the Ethernet CRC. */
192 static int multicast_filter_limit = 100;
194 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
195 Setting to > 1518 effectively disables this feature. */
196 static int rx_copybreak;
198 /* Used to pass the media type, etc.
199 Both 'options[]' and 'full_duplex[]' should exist for driver
200 interoperability.
201 The media type is usually passed in 'options[]'.
203 #define MAX_UNITS 8 /* More are supported, limit only on options */
204 static int options[MAX_UNITS];
205 static int full_duplex[MAX_UNITS];
207 /* Operational parameters that are set at compile time. */
209 /* Keep the ring sizes a power of two for compile efficiency.
210 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
211 Making the Tx ring too large decreases the effectiveness of channel
212 bonding and packet priority.
213 There are no ill effects from too-large receive rings. */
214 #define TX_RING_SIZE 16
215 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
216 #define RX_RING_SIZE 32
218 /* Operational parameters that usually are not changed. */
219 /* Time in jiffies before concluding the transmitter is hung. */
220 #define TX_TIMEOUT (2*HZ)
222 #define NATSEMI_HW_TIMEOUT 400
223 #define NATSEMI_TIMER_FREQ 3*HZ
224 #define NATSEMI_PG0_NREGS 64
225 #define NATSEMI_RFDR_NREGS 8
226 #define NATSEMI_PG1_NREGS 4
227 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
228 NATSEMI_PG1_NREGS)
229 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
230 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
231 #define NATSEMI_EEPROM_SIZE 24 /* 12 16-bit values */
233 /* Buffer sizes:
234 * The nic writes 32-bit values, even if the upper bytes of
235 * a 32-bit value are beyond the end of the buffer.
237 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
238 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
239 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
240 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
242 /* These identify the driver base version and may not be removed. */
243 static char version[] __devinitdata =
244 KERN_INFO DRV_NAME " dp8381x driver, version "
245 DRV_VERSION ", " DRV_RELDATE "\n"
246 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
247 KERN_INFO " http://www.scyld.com/network/natsemi.html\n"
248 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
250 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
251 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
252 MODULE_LICENSE("GPL");
254 MODULE_PARM(max_interrupt_work, "i");
255 MODULE_PARM(mtu, "i");
256 MODULE_PARM(debug, "i");
257 MODULE_PARM(rx_copybreak, "i");
258 MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i");
259 MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i");
260 MODULE_PARM_DESC(max_interrupt_work,
261 "DP8381x maximum events handled per interrupt");
262 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
263 MODULE_PARM_DESC(debug, "DP8381x default debug level");
264 MODULE_PARM_DESC(rx_copybreak,
265 "DP8381x copy breakpoint for copy-only-tiny-frames");
266 MODULE_PARM_DESC(options,
267 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
268 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
271 Theory of Operation
273 I. Board Compatibility
275 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
276 It also works with other chips in in the DP83810 series.
278 II. Board-specific settings
280 This driver requires the PCI interrupt line to be valid.
281 It honors the EEPROM-set values.
283 III. Driver operation
285 IIIa. Ring buffers
287 This driver uses two statically allocated fixed-size descriptor lists
288 formed into rings by a branch from the final descriptor to the beginning of
289 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
290 The NatSemi design uses a 'next descriptor' pointer that the driver forms
291 into a list.
293 IIIb/c. Transmit/Receive Structure
295 This driver uses a zero-copy receive and transmit scheme.
296 The driver allocates full frame size skbuffs for the Rx ring buffers at
297 open() time and passes the skb->data field to the chip as receive data
298 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
299 a fresh skbuff is allocated and the frame is copied to the new skbuff.
300 When the incoming frame is larger, the skbuff is passed directly up the
301 protocol stack. Buffers consumed this way are replaced by newly allocated
302 skbuffs in a later phase of receives.
304 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
305 using a full-sized skbuff for small frames vs. the copying costs of larger
306 frames. New boards are typically used in generously configured machines
307 and the underfilled buffers have negligible impact compared to the benefit of
308 a single allocation size, so the default value of zero results in never
309 copying packets. When copying is done, the cost is usually mitigated by using
310 a combined copy/checksum routine. Copying also preloads the cache, which is
311 most useful with small frames.
313 A subtle aspect of the operation is that unaligned buffers are not permitted
314 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
315 longword aligned for further processing. On copies frames are put into the
316 skbuff at an offset of "+2", 16-byte aligning the IP header.
318 IIId. Synchronization
320 Most operations are synchronized on the np->lock irq spinlock, except the
321 performance critical codepaths:
323 The rx process only runs in the interrupt handler. Access from outside
324 the interrupt handler is only permitted after disable_irq().
326 The rx process usually runs under the dev->xmit_lock. If np->intr_tx_reap
327 is set, then access is permitted under spin_lock_irq(&np->lock).
329 Thus configuration functions that want to access everything must call
330 disable_irq(dev->irq);
331 spin_lock_bh(dev->xmit_lock);
332 spin_lock_irq(&np->lock);
334 IV. Notes
336 NatSemi PCI network controllers are very uncommon.
338 IVb. References
340 http://www.scyld.com/expert/100mbps.html
341 http://www.scyld.com/expert/NWay.html
342 Datasheet is available from:
343 http://www.national.com/pf/DP/DP83815.html
345 IVc. Errata
347 None characterised.
352 enum pcistuff {
353 PCI_USES_IO = 0x01,
354 PCI_USES_MEM = 0x02,
355 PCI_USES_MASTER = 0x04,
356 PCI_ADDR0 = 0x08,
357 PCI_ADDR1 = 0x10,
360 /* MMIO operations required */
361 #define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_MEM | PCI_ADDR1)
365 * Support for fibre connections on Am79C874:
366 * This phy needs a special setup when connected to a fibre cable.
367 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
369 #define PHYID_AM79C874 0x0022561b
371 #define MII_MCTRL 0x15 /* mode control register */
372 #define MII_FX_SEL 0x0001 /* 100BASE-FX (fiber) */
373 #define MII_EN_SCRM 0x0004 /* enable scrambler (tp) */
376 /* array of board data directly indexed by pci_tbl[x].driver_data */
377 static struct {
378 const char *name;
379 unsigned long flags;
380 } natsemi_pci_info[] __devinitdata = {
381 { "NatSemi DP8381[56]", PCI_IOTYPE },
384 static struct pci_device_id natsemi_pci_tbl[] = {
385 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_83815, PCI_ANY_ID, PCI_ANY_ID, },
386 { 0, },
388 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
390 /* Offsets to the device registers.
391 Unlike software-only systems, device drivers interact with complex hardware.
392 It's not useful to define symbolic names for every register bit in the
393 device.
395 enum register_offsets {
396 ChipCmd = 0x00,
397 ChipConfig = 0x04,
398 EECtrl = 0x08,
399 PCIBusCfg = 0x0C,
400 IntrStatus = 0x10,
401 IntrMask = 0x14,
402 IntrEnable = 0x18,
403 IntrHoldoff = 0x1C, /* DP83816 only */
404 TxRingPtr = 0x20,
405 TxConfig = 0x24,
406 RxRingPtr = 0x30,
407 RxConfig = 0x34,
408 ClkRun = 0x3C,
409 WOLCmd = 0x40,
410 PauseCmd = 0x44,
411 RxFilterAddr = 0x48,
412 RxFilterData = 0x4C,
413 BootRomAddr = 0x50,
414 BootRomData = 0x54,
415 SiliconRev = 0x58,
416 StatsCtrl = 0x5C,
417 StatsData = 0x60,
418 RxPktErrs = 0x60,
419 RxMissed = 0x68,
420 RxCRCErrs = 0x64,
421 BasicControl = 0x80,
422 BasicStatus = 0x84,
423 AnegAdv = 0x90,
424 AnegPeer = 0x94,
425 PhyStatus = 0xC0,
426 MIntrCtrl = 0xC4,
427 MIntrStatus = 0xC8,
428 PhyCtrl = 0xE4,
430 /* These are from the spec, around page 78... on a separate table.
431 * The meaning of these registers depend on the value of PGSEL. */
432 PGSEL = 0xCC,
433 PMDCSR = 0xE4,
434 TSTDAT = 0xFC,
435 DSPCFG = 0xF4,
436 SDCFG = 0xF8
438 /* the values for the 'magic' registers above (PGSEL=1) */
439 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
440 #define TSTDAT_VAL 0x0
441 #define DSPCFG_VAL 0x5040
442 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
443 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
444 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
446 /* misc PCI space registers */
447 enum pci_register_offsets {
448 PCIPM = 0x44,
451 enum ChipCmd_bits {
452 ChipReset = 0x100,
453 RxReset = 0x20,
454 TxReset = 0x10,
455 RxOff = 0x08,
456 RxOn = 0x04,
457 TxOff = 0x02,
458 TxOn = 0x01,
461 enum ChipConfig_bits {
462 CfgPhyDis = 0x200,
463 CfgPhyRst = 0x400,
464 CfgExtPhy = 0x1000,
465 CfgAnegEnable = 0x2000,
466 CfgAneg100 = 0x4000,
467 CfgAnegFull = 0x8000,
468 CfgAnegDone = 0x8000000,
469 CfgFullDuplex = 0x20000000,
470 CfgSpeed100 = 0x40000000,
471 CfgLink = 0x80000000,
474 enum EECtrl_bits {
475 EE_ShiftClk = 0x04,
476 EE_DataIn = 0x01,
477 EE_ChipSelect = 0x08,
478 EE_DataOut = 0x02,
479 MII_Data = 0x10,
480 MII_Write = 0x20,
481 MII_ShiftClk = 0x40,
484 enum PCIBusCfg_bits {
485 EepromReload = 0x4,
488 /* Bits in the interrupt status/mask registers. */
489 enum IntrStatus_bits {
490 IntrRxDone = 0x0001,
491 IntrRxIntr = 0x0002,
492 IntrRxErr = 0x0004,
493 IntrRxEarly = 0x0008,
494 IntrRxIdle = 0x0010,
495 IntrRxOverrun = 0x0020,
496 IntrTxDone = 0x0040,
497 IntrTxIntr = 0x0080,
498 IntrTxErr = 0x0100,
499 IntrTxIdle = 0x0200,
500 IntrTxUnderrun = 0x0400,
501 StatsMax = 0x0800,
502 SWInt = 0x1000,
503 WOLPkt = 0x2000,
504 LinkChange = 0x4000,
505 IntrHighBits = 0x8000,
506 RxStatusFIFOOver = 0x10000,
507 IntrPCIErr = 0xf00000,
508 RxResetDone = 0x1000000,
509 TxResetDone = 0x2000000,
510 IntrAbnormalSummary = 0xCD20,
514 * Default Interrupts:
515 * Rx OK, Rx Packet Error, Rx Overrun,
516 * Tx OK, Tx Packet Error, Tx Underrun,
517 * MIB Service, Phy Interrupt, High Bits,
518 * Rx Status FIFO overrun,
519 * Received Target Abort, Received Master Abort,
520 * Signalled System Error, Received Parity Error
522 #define DEFAULT_INTR 0x00f1cd65
524 enum TxConfig_bits {
525 TxDrthMask = 0x3f,
526 TxFlthMask = 0x3f00,
527 TxMxdmaMask = 0x700000,
528 TxMxdma_512 = 0x0,
529 TxMxdma_4 = 0x100000,
530 TxMxdma_8 = 0x200000,
531 TxMxdma_16 = 0x300000,
532 TxMxdma_32 = 0x400000,
533 TxMxdma_64 = 0x500000,
534 TxMxdma_128 = 0x600000,
535 TxMxdma_256 = 0x700000,
536 TxCollRetry = 0x800000,
537 TxAutoPad = 0x10000000,
538 TxMacLoop = 0x20000000,
539 TxHeartIgn = 0x40000000,
540 TxCarrierIgn = 0x80000000
544 * Tx Configuration:
545 * - 256 byte DMA burst length
546 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
547 * - 64 bytes initial drain threshold (i.e. begin actual transmission
548 * when 64 byte are in the fifo)
549 * - on tx underruns, increase drain threshold by 64.
550 * - at most use a drain threshold of 1472 bytes: The sum of the fill
551 * threshold and the drain threshold must be less than 2016 bytes.
554 #define TX_FLTH_VAL ((512/32) << 8)
555 #define TX_DRTH_VAL_START (64/32)
556 #define TX_DRTH_VAL_INC 2
557 #define TX_DRTH_VAL_LIMIT (1472/32)
559 enum RxConfig_bits {
560 RxDrthMask = 0x3e,
561 RxMxdmaMask = 0x700000,
562 RxMxdma_512 = 0x0,
563 RxMxdma_4 = 0x100000,
564 RxMxdma_8 = 0x200000,
565 RxMxdma_16 = 0x300000,
566 RxMxdma_32 = 0x400000,
567 RxMxdma_64 = 0x500000,
568 RxMxdma_128 = 0x600000,
569 RxMxdma_256 = 0x700000,
570 RxAcceptLong = 0x8000000,
571 RxAcceptTx = 0x10000000,
572 RxAcceptRunt = 0x40000000,
573 RxAcceptErr = 0x80000000
575 #define RX_DRTH_VAL (128/8)
577 enum ClkRun_bits {
578 PMEEnable = 0x100,
579 PMEStatus = 0x8000,
582 enum WolCmd_bits {
583 WakePhy = 0x1,
584 WakeUnicast = 0x2,
585 WakeMulticast = 0x4,
586 WakeBroadcast = 0x8,
587 WakeArp = 0x10,
588 WakePMatch0 = 0x20,
589 WakePMatch1 = 0x40,
590 WakePMatch2 = 0x80,
591 WakePMatch3 = 0x100,
592 WakeMagic = 0x200,
593 WakeMagicSecure = 0x400,
594 SecureHack = 0x100000,
595 WokePhy = 0x400000,
596 WokeUnicast = 0x800000,
597 WokeMulticast = 0x1000000,
598 WokeBroadcast = 0x2000000,
599 WokeArp = 0x4000000,
600 WokePMatch0 = 0x8000000,
601 WokePMatch1 = 0x10000000,
602 WokePMatch2 = 0x20000000,
603 WokePMatch3 = 0x40000000,
604 WokeMagic = 0x80000000,
605 WakeOptsSummary = 0x7ff
608 enum RxFilterAddr_bits {
609 RFCRAddressMask = 0x3ff,
610 AcceptMulticast = 0x00200000,
611 AcceptMyPhys = 0x08000000,
612 AcceptAllPhys = 0x10000000,
613 AcceptAllMulticast = 0x20000000,
614 AcceptBroadcast = 0x40000000,
615 RxFilterEnable = 0x80000000
618 enum StatsCtrl_bits {
619 StatsWarn = 0x1,
620 StatsFreeze = 0x2,
621 StatsClear = 0x4,
622 StatsStrobe = 0x8,
625 enum MIntrCtrl_bits {
626 MICRIntEn = 0x2,
629 enum PhyCtrl_bits {
630 PhyAddrMask = 0x1f,
633 #define PHY_ADDR_NONE 32
634 #define PHY_ADDR_INTERNAL 1
636 /* values we might find in the silicon revision register */
637 #define SRR_DP83815_C 0x0302
638 #define SRR_DP83815_D 0x0403
639 #define SRR_DP83816_A4 0x0504
640 #define SRR_DP83816_A5 0x0505
642 /* The Rx and Tx buffer descriptors. */
643 /* Note that using only 32 bit fields simplifies conversion to big-endian
644 architectures. */
645 struct netdev_desc {
646 u32 next_desc;
647 s32 cmd_status;
648 u32 addr;
649 u32 software_use;
652 /* Bits in network_desc.status */
653 enum desc_status_bits {
654 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
655 DescNoCRC=0x10000000, DescPktOK=0x08000000,
656 DescSizeMask=0xfff,
658 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
659 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
660 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
661 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
663 DescRxAbort=0x04000000, DescRxOver=0x02000000,
664 DescRxDest=0x01800000, DescRxLong=0x00400000,
665 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
666 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
667 DescRxLoop=0x00020000, DesRxColl=0x00010000,
670 struct netdev_private {
671 /* Descriptor rings first for alignment */
672 dma_addr_t ring_dma;
673 struct netdev_desc *rx_ring;
674 struct netdev_desc *tx_ring;
675 /* The addresses of receive-in-place skbuffs */
676 struct sk_buff *rx_skbuff[RX_RING_SIZE];
677 dma_addr_t rx_dma[RX_RING_SIZE];
678 /* address of a sent-in-place packet/buffer, for later free() */
679 struct sk_buff *tx_skbuff[TX_RING_SIZE];
680 dma_addr_t tx_dma[TX_RING_SIZE];
681 struct net_device_stats stats;
682 /* Media monitoring timer */
683 struct timer_list timer;
684 /* Frequently used values: keep some adjacent for cache effect */
685 struct pci_dev *pci_dev;
686 struct netdev_desc *rx_head_desc;
687 /* Producer/consumer ring indices */
688 unsigned int cur_rx, dirty_rx;
689 unsigned int cur_tx, dirty_tx;
690 /* Based on MTU+slack. */
691 unsigned int rx_buf_sz;
692 int oom;
693 /* Do not touch the nic registers */
694 int hands_off;
695 /* external phy that is used: only valid if dev->if_port != PORT_TP */
696 int mii;
697 int phy_addr_external;
698 unsigned int full_duplex;
699 /* Rx filter */
700 u32 cur_rx_mode;
701 u32 rx_filter[16];
702 /* FIFO and PCI burst thresholds */
703 u32 tx_config, rx_config;
704 /* original contents of ClkRun register */
705 u32 SavedClkRun;
706 /* silicon revision */
707 u32 srr;
708 /* expected DSPCFG value */
709 u16 dspcfg;
710 /* parms saved in ethtool format */
711 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
712 u8 duplex; /* Duplex, half or full */
713 u8 autoneg; /* Autonegotiation enabled */
714 /* MII transceiver section */
715 u16 advertising;
716 unsigned int iosize;
717 spinlock_t lock;
718 u32 msg_enable;
721 static void move_int_phy(struct net_device *dev, int addr);
722 static int eeprom_read(void __iomem *ioaddr, int location);
723 static int mdio_read(struct net_device *dev, int reg);
724 static void mdio_write(struct net_device *dev, int reg, u16 data);
725 static void init_phy_fixup(struct net_device *dev);
726 static int miiport_read(struct net_device *dev, int phy_id, int reg);
727 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
728 static int find_mii(struct net_device *dev);
729 static void natsemi_reset(struct net_device *dev);
730 static void natsemi_reload_eeprom(struct net_device *dev);
731 static void natsemi_stop_rxtx(struct net_device *dev);
732 static int netdev_open(struct net_device *dev);
733 static void do_cable_magic(struct net_device *dev);
734 static void undo_cable_magic(struct net_device *dev);
735 static void check_link(struct net_device *dev);
736 static void netdev_timer(unsigned long data);
737 static void dump_ring(struct net_device *dev);
738 static void tx_timeout(struct net_device *dev);
739 static int alloc_ring(struct net_device *dev);
740 static void refill_rx(struct net_device *dev);
741 static void init_ring(struct net_device *dev);
742 static void drain_tx(struct net_device *dev);
743 static void drain_ring(struct net_device *dev);
744 static void free_ring(struct net_device *dev);
745 static void reinit_ring(struct net_device *dev);
746 static void init_registers(struct net_device *dev);
747 static int start_tx(struct sk_buff *skb, struct net_device *dev);
748 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
749 static void netdev_error(struct net_device *dev, int intr_status);
750 static void netdev_rx(struct net_device *dev);
751 static void netdev_tx_done(struct net_device *dev);
752 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
753 #ifdef CONFIG_NET_POLL_CONTROLLER
754 static void natsemi_poll_controller(struct net_device *dev);
755 #endif
756 static void __set_rx_mode(struct net_device *dev);
757 static void set_rx_mode(struct net_device *dev);
758 static void __get_stats(struct net_device *dev);
759 static struct net_device_stats *get_stats(struct net_device *dev);
760 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
761 static int netdev_set_wol(struct net_device *dev, u32 newval);
762 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
763 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
764 static int netdev_get_sopass(struct net_device *dev, u8 *data);
765 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
766 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
767 static void enable_wol_mode(struct net_device *dev, int enable_intr);
768 static int netdev_close(struct net_device *dev);
769 static int netdev_get_regs(struct net_device *dev, u8 *buf);
770 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
772 static inline void __iomem *ns_ioaddr(struct net_device *dev)
774 return (void __iomem *) dev->base_addr;
777 static void move_int_phy(struct net_device *dev, int addr)
779 struct netdev_private *np = netdev_priv(dev);
780 void __iomem *ioaddr = ns_ioaddr(dev);
781 int target = 31;
784 * The internal phy is visible on the external mii bus. Therefore we must
785 * move it away before we can send commands to an external phy.
786 * There are two addresses we must avoid:
787 * - the address on the external phy that is used for transmission.
788 * - the address that we want to access. User space can access phys
789 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
790 * phy that is used for transmission.
793 if (target == addr)
794 target--;
795 if (target == np->phy_addr_external)
796 target--;
797 writew(target, ioaddr + PhyCtrl);
798 readw(ioaddr + PhyCtrl);
799 udelay(1);
802 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
803 const struct pci_device_id *ent)
805 struct net_device *dev;
806 struct netdev_private *np;
807 int i, option, irq, chip_idx = ent->driver_data;
808 static int find_cnt = -1;
809 unsigned long iostart, iosize;
810 void __iomem *ioaddr;
811 const int pcibar = 1; /* PCI base address register */
812 int prev_eedata;
813 u32 tmp;
815 /* when built into the kernel, we only print version if device is found */
816 #ifndef MODULE
817 static int printed_version;
818 if (!printed_version++)
819 printk(version);
820 #endif
822 i = pci_enable_device(pdev);
823 if (i) return i;
825 /* natsemi has a non-standard PM control register
826 * in PCI config space. Some boards apparently need
827 * to be brought to D0 in this manner.
829 pci_read_config_dword(pdev, PCIPM, &tmp);
830 if (tmp & PCI_PM_CTRL_STATE_MASK) {
831 /* D0 state, disable PME assertion */
832 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
833 pci_write_config_dword(pdev, PCIPM, newtmp);
836 find_cnt++;
837 iostart = pci_resource_start(pdev, pcibar);
838 iosize = pci_resource_len(pdev, pcibar);
839 irq = pdev->irq;
841 if (natsemi_pci_info[chip_idx].flags & PCI_USES_MASTER)
842 pci_set_master(pdev);
844 dev = alloc_etherdev(sizeof (struct netdev_private));
845 if (!dev)
846 return -ENOMEM;
847 SET_MODULE_OWNER(dev);
848 SET_NETDEV_DEV(dev, &pdev->dev);
850 i = pci_request_regions(pdev, DRV_NAME);
851 if (i)
852 goto err_pci_request_regions;
854 ioaddr = ioremap(iostart, iosize);
855 if (!ioaddr) {
856 i = -ENOMEM;
857 goto err_ioremap;
860 /* Work around the dropped serial bit. */
861 prev_eedata = eeprom_read(ioaddr, 6);
862 for (i = 0; i < 3; i++) {
863 int eedata = eeprom_read(ioaddr, i + 7);
864 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
865 dev->dev_addr[i*2+1] = eedata >> 7;
866 prev_eedata = eedata;
869 dev->base_addr = (unsigned long __force) ioaddr;
870 dev->irq = irq;
872 np = netdev_priv(dev);
874 np->pci_dev = pdev;
875 pci_set_drvdata(pdev, dev);
876 np->iosize = iosize;
877 spin_lock_init(&np->lock);
878 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
879 np->hands_off = 0;
881 /* Initial port:
882 * - If the nic was configured to use an external phy and if find_mii
883 * finds a phy: use external port, first phy that replies.
884 * - Otherwise: internal port.
885 * Note that the phy address for the internal phy doesn't matter:
886 * The address would be used to access a phy over the mii bus, but
887 * the internal phy is accessed through mapped registers.
889 if (readl(ioaddr + ChipConfig) & CfgExtPhy)
890 dev->if_port = PORT_MII;
891 else
892 dev->if_port = PORT_TP;
893 /* Reset the chip to erase previous misconfiguration. */
894 natsemi_reload_eeprom(dev);
895 natsemi_reset(dev);
897 if (dev->if_port != PORT_TP) {
898 np->phy_addr_external = find_mii(dev);
899 if (np->phy_addr_external == PHY_ADDR_NONE) {
900 dev->if_port = PORT_TP;
901 np->phy_addr_external = PHY_ADDR_INTERNAL;
903 } else {
904 np->phy_addr_external = PHY_ADDR_INTERNAL;
907 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
908 if (dev->mem_start)
909 option = dev->mem_start;
911 /* The lower four bits are the media type. */
912 if (option) {
913 if (option & 0x200)
914 np->full_duplex = 1;
915 if (option & 15)
916 printk(KERN_INFO
917 "natsemi %s: ignoring user supplied media type %d",
918 pci_name(np->pci_dev), option & 15);
920 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
921 np->full_duplex = 1;
923 /* The chip-specific entries in the device structure. */
924 dev->open = &netdev_open;
925 dev->hard_start_xmit = &start_tx;
926 dev->stop = &netdev_close;
927 dev->get_stats = &get_stats;
928 dev->set_multicast_list = &set_rx_mode;
929 dev->change_mtu = &natsemi_change_mtu;
930 dev->do_ioctl = &netdev_ioctl;
931 dev->tx_timeout = &tx_timeout;
932 dev->watchdog_timeo = TX_TIMEOUT;
933 #ifdef CONFIG_NET_POLL_CONTROLLER
934 dev->poll_controller = &natsemi_poll_controller;
935 #endif
937 if (mtu)
938 dev->mtu = mtu;
940 netif_carrier_off(dev);
942 /* get the initial settings from hardware */
943 tmp = mdio_read(dev, MII_BMCR);
944 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
945 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
946 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
947 np->advertising= mdio_read(dev, MII_ADVERTISE);
949 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
950 && netif_msg_probe(np)) {
951 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
952 "10%s %s duplex.\n",
953 pci_name(np->pci_dev),
954 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
955 "enabled, advertise" : "disabled, force",
956 (np->advertising &
957 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
958 "0" : "",
959 (np->advertising &
960 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
961 "full" : "half");
963 if (netif_msg_probe(np))
964 printk(KERN_INFO
965 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
966 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
967 np->advertising);
969 /* save the silicon revision for later querying */
970 np->srr = readl(ioaddr + SiliconRev);
971 if (netif_msg_hw(np))
972 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
973 pci_name(np->pci_dev), np->srr);
975 i = register_netdev(dev);
976 if (i)
977 goto err_register_netdev;
979 if (netif_msg_drv(np)) {
980 printk(KERN_INFO "natsemi %s: %s at %#08lx (%s), ",
981 dev->name, natsemi_pci_info[chip_idx].name, iostart,
982 pci_name(np->pci_dev));
983 for (i = 0; i < ETH_ALEN-1; i++)
984 printk("%02x:", dev->dev_addr[i]);
985 printk("%02x, IRQ %d", dev->dev_addr[i], irq);
986 if (dev->if_port == PORT_TP)
987 printk(", port TP.\n");
988 else
989 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
991 return 0;
993 err_register_netdev:
994 iounmap(ioaddr);
996 err_ioremap:
997 pci_release_regions(pdev);
998 pci_set_drvdata(pdev, NULL);
1000 err_pci_request_regions:
1001 free_netdev(dev);
1002 return i;
1006 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
1007 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
1009 /* Delay between EEPROM clock transitions.
1010 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
1011 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
1012 made udelay() unreliable.
1013 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
1014 depricated.
1016 #define eeprom_delay(ee_addr) readl(ee_addr)
1018 #define EE_Write0 (EE_ChipSelect)
1019 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
1021 /* The EEPROM commands include the alway-set leading bit. */
1022 enum EEPROM_Cmds {
1023 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1026 static int eeprom_read(void __iomem *addr, int location)
1028 int i;
1029 int retval = 0;
1030 void __iomem *ee_addr = addr + EECtrl;
1031 int read_cmd = location | EE_ReadCmd;
1033 writel(EE_Write0, ee_addr);
1035 /* Shift the read command bits out. */
1036 for (i = 10; i >= 0; i--) {
1037 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1038 writel(dataval, ee_addr);
1039 eeprom_delay(ee_addr);
1040 writel(dataval | EE_ShiftClk, ee_addr);
1041 eeprom_delay(ee_addr);
1043 writel(EE_ChipSelect, ee_addr);
1044 eeprom_delay(ee_addr);
1046 for (i = 0; i < 16; i++) {
1047 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1048 eeprom_delay(ee_addr);
1049 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1050 writel(EE_ChipSelect, ee_addr);
1051 eeprom_delay(ee_addr);
1054 /* Terminate the EEPROM access. */
1055 writel(EE_Write0, ee_addr);
1056 writel(0, ee_addr);
1057 return retval;
1060 /* MII transceiver control section.
1061 * The 83815 series has an internal transceiver, and we present the
1062 * internal management registers as if they were MII connected.
1063 * External Phy registers are referenced through the MII interface.
1066 /* clock transitions >= 20ns (25MHz)
1067 * One readl should be good to PCI @ 100MHz
1069 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1071 static int mii_getbit (struct net_device *dev)
1073 int data;
1074 void __iomem *ioaddr = ns_ioaddr(dev);
1076 writel(MII_ShiftClk, ioaddr + EECtrl);
1077 data = readl(ioaddr + EECtrl);
1078 writel(0, ioaddr + EECtrl);
1079 mii_delay(ioaddr);
1080 return (data & MII_Data)? 1 : 0;
1083 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1085 u32 i;
1086 void __iomem *ioaddr = ns_ioaddr(dev);
1088 for (i = (1 << (len-1)); i; i >>= 1)
1090 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1091 writel(mdio_val, ioaddr + EECtrl);
1092 mii_delay(ioaddr);
1093 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1094 mii_delay(ioaddr);
1096 writel(0, ioaddr + EECtrl);
1097 mii_delay(ioaddr);
1100 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1102 u32 cmd;
1103 int i;
1104 u32 retval = 0;
1106 /* Ensure sync */
1107 mii_send_bits (dev, 0xffffffff, 32);
1108 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1109 /* ST,OP = 0110'b for read operation */
1110 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1111 mii_send_bits (dev, cmd, 14);
1112 /* Turnaround */
1113 if (mii_getbit (dev))
1114 return 0;
1115 /* Read data */
1116 for (i = 0; i < 16; i++) {
1117 retval <<= 1;
1118 retval |= mii_getbit (dev);
1120 /* End cycle */
1121 mii_getbit (dev);
1122 return retval;
1125 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1127 u32 cmd;
1129 /* Ensure sync */
1130 mii_send_bits (dev, 0xffffffff, 32);
1131 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1132 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1133 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1134 mii_send_bits (dev, cmd, 32);
1135 /* End cycle */
1136 mii_getbit (dev);
1139 static int mdio_read(struct net_device *dev, int reg)
1141 struct netdev_private *np = netdev_priv(dev);
1142 void __iomem *ioaddr = ns_ioaddr(dev);
1144 /* The 83815 series has two ports:
1145 * - an internal transceiver
1146 * - an external mii bus
1148 if (dev->if_port == PORT_TP)
1149 return readw(ioaddr+BasicControl+(reg<<2));
1150 else
1151 return miiport_read(dev, np->phy_addr_external, reg);
1154 static void mdio_write(struct net_device *dev, int reg, u16 data)
1156 struct netdev_private *np = netdev_priv(dev);
1157 void __iomem *ioaddr = ns_ioaddr(dev);
1159 /* The 83815 series has an internal transceiver; handle separately */
1160 if (dev->if_port == PORT_TP)
1161 writew(data, ioaddr+BasicControl+(reg<<2));
1162 else
1163 miiport_write(dev, np->phy_addr_external, reg, data);
1166 static void init_phy_fixup(struct net_device *dev)
1168 struct netdev_private *np = netdev_priv(dev);
1169 void __iomem *ioaddr = ns_ioaddr(dev);
1170 int i;
1171 u32 cfg;
1172 u16 tmp;
1174 /* restore stuff lost when power was out */
1175 tmp = mdio_read(dev, MII_BMCR);
1176 if (np->autoneg == AUTONEG_ENABLE) {
1177 /* renegotiate if something changed */
1178 if ((tmp & BMCR_ANENABLE) == 0
1179 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1181 /* turn on autonegotiation and force negotiation */
1182 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1183 mdio_write(dev, MII_ADVERTISE, np->advertising);
1185 } else {
1186 /* turn off auto negotiation, set speed and duplexity */
1187 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1188 if (np->speed == SPEED_100)
1189 tmp |= BMCR_SPEED100;
1190 if (np->duplex == DUPLEX_FULL)
1191 tmp |= BMCR_FULLDPLX;
1193 * Note: there is no good way to inform the link partner
1194 * that our capabilities changed. The user has to unplug
1195 * and replug the network cable after some changes, e.g.
1196 * after switching from 10HD, autoneg off to 100 HD,
1197 * autoneg off.
1200 mdio_write(dev, MII_BMCR, tmp);
1201 readl(ioaddr + ChipConfig);
1202 udelay(1);
1204 /* find out what phy this is */
1205 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1206 + mdio_read(dev, MII_PHYSID2);
1208 /* handle external phys here */
1209 switch (np->mii) {
1210 case PHYID_AM79C874:
1211 /* phy specific configuration for fibre/tp operation */
1212 tmp = mdio_read(dev, MII_MCTRL);
1213 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1214 if (dev->if_port == PORT_FIBRE)
1215 tmp |= MII_FX_SEL;
1216 else
1217 tmp |= MII_EN_SCRM;
1218 mdio_write(dev, MII_MCTRL, tmp);
1219 break;
1220 default:
1221 break;
1223 cfg = readl(ioaddr + ChipConfig);
1224 if (cfg & CfgExtPhy)
1225 return;
1227 /* On page 78 of the spec, they recommend some settings for "optimum
1228 performance" to be done in sequence. These settings optimize some
1229 of the 100Mbit autodetection circuitry. They say we only want to
1230 do this for rev C of the chip, but engineers at NSC (Bradley
1231 Kennedy) recommends always setting them. If you don't, you get
1232 errors on some autonegotiations that make the device unusable.
1234 It seems that the DSP needs a few usec to reinitialize after
1235 the start of the phy. Just retry writing these values until they
1236 stick.
1238 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1240 int dspcfg;
1241 writew(1, ioaddr + PGSEL);
1242 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1243 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1244 np->dspcfg = DSPCFG_VAL;
1245 writew(np->dspcfg, ioaddr + DSPCFG);
1246 writew(SDCFG_VAL, ioaddr + SDCFG);
1247 writew(0, ioaddr + PGSEL);
1248 readl(ioaddr + ChipConfig);
1249 udelay(10);
1251 writew(1, ioaddr + PGSEL);
1252 dspcfg = readw(ioaddr + DSPCFG);
1253 writew(0, ioaddr + PGSEL);
1254 if (np->dspcfg == dspcfg)
1255 break;
1258 if (netif_msg_link(np)) {
1259 if (i==NATSEMI_HW_TIMEOUT) {
1260 printk(KERN_INFO
1261 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1262 dev->name, i*10);
1263 } else {
1264 printk(KERN_INFO
1265 "%s: DSPCFG accepted after %d usec.\n",
1266 dev->name, i*10);
1270 * Enable PHY Specific event based interrupts. Link state change
1271 * and Auto-Negotiation Completion are among the affected.
1272 * Read the intr status to clear it (needed for wake events).
1274 readw(ioaddr + MIntrStatus);
1275 writew(MICRIntEn, ioaddr + MIntrCtrl);
1278 static int switch_port_external(struct net_device *dev)
1280 struct netdev_private *np = netdev_priv(dev);
1281 void __iomem *ioaddr = ns_ioaddr(dev);
1282 u32 cfg;
1284 cfg = readl(ioaddr + ChipConfig);
1285 if (cfg & CfgExtPhy)
1286 return 0;
1288 if (netif_msg_link(np)) {
1289 printk(KERN_INFO "%s: switching to external transceiver.\n",
1290 dev->name);
1293 /* 1) switch back to external phy */
1294 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1295 readl(ioaddr + ChipConfig);
1296 udelay(1);
1298 /* 2) reset the external phy: */
1299 /* resetting the external PHY has been known to cause a hub supplying
1300 * power over Ethernet to kill the power. We don't want to kill
1301 * power to this computer, so we avoid resetting the phy.
1304 /* 3) reinit the phy fixup, it got lost during power down. */
1305 move_int_phy(dev, np->phy_addr_external);
1306 init_phy_fixup(dev);
1308 return 1;
1311 static int switch_port_internal(struct net_device *dev)
1313 struct netdev_private *np = netdev_priv(dev);
1314 void __iomem *ioaddr = ns_ioaddr(dev);
1315 int i;
1316 u32 cfg;
1317 u16 bmcr;
1319 cfg = readl(ioaddr + ChipConfig);
1320 if (!(cfg &CfgExtPhy))
1321 return 0;
1323 if (netif_msg_link(np)) {
1324 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1325 dev->name);
1327 /* 1) switch back to internal phy: */
1328 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1329 writel(cfg, ioaddr + ChipConfig);
1330 readl(ioaddr + ChipConfig);
1331 udelay(1);
1333 /* 2) reset the internal phy: */
1334 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1335 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1336 readl(ioaddr + ChipConfig);
1337 udelay(10);
1338 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1339 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1340 if (!(bmcr & BMCR_RESET))
1341 break;
1342 udelay(10);
1344 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1345 printk(KERN_INFO
1346 "%s: phy reset did not complete in %d usec.\n",
1347 dev->name, i*10);
1349 /* 3) reinit the phy fixup, it got lost during power down. */
1350 init_phy_fixup(dev);
1352 return 1;
1355 /* Scan for a PHY on the external mii bus.
1356 * There are two tricky points:
1357 * - Do not scan while the internal phy is enabled. The internal phy will
1358 * crash: e.g. reads from the DSPCFG register will return odd values and
1359 * the nasty random phy reset code will reset the nic every few seconds.
1360 * - The internal phy must be moved around, an external phy could
1361 * have the same address as the internal phy.
1363 static int find_mii(struct net_device *dev)
1365 struct netdev_private *np = netdev_priv(dev);
1366 int tmp;
1367 int i;
1368 int did_switch;
1370 /* Switch to external phy */
1371 did_switch = switch_port_external(dev);
1373 /* Scan the possible phy addresses:
1375 * PHY address 0 means that the phy is in isolate mode. Not yet
1376 * supported due to lack of test hardware. User space should
1377 * handle it through ethtool.
1379 for (i = 1; i <= 31; i++) {
1380 move_int_phy(dev, i);
1381 tmp = miiport_read(dev, i, MII_BMSR);
1382 if (tmp != 0xffff && tmp != 0x0000) {
1383 /* found something! */
1384 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1385 + mdio_read(dev, MII_PHYSID2);
1386 if (netif_msg_probe(np)) {
1387 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1388 pci_name(np->pci_dev), np->mii, i);
1390 break;
1393 /* And switch back to internal phy: */
1394 if (did_switch)
1395 switch_port_internal(dev);
1396 return i;
1399 /* CFG bits [13:16] [18:23] */
1400 #define CFG_RESET_SAVE 0xfde000
1401 /* WCSR bits [0:4] [9:10] */
1402 #define WCSR_RESET_SAVE 0x61f
1403 /* RFCR bits [20] [22] [27:31] */
1404 #define RFCR_RESET_SAVE 0xf8500000;
1406 static void natsemi_reset(struct net_device *dev)
1408 int i;
1409 u32 cfg;
1410 u32 wcsr;
1411 u32 rfcr;
1412 u16 pmatch[3];
1413 u16 sopass[3];
1414 struct netdev_private *np = netdev_priv(dev);
1415 void __iomem *ioaddr = ns_ioaddr(dev);
1418 * Resetting the chip causes some registers to be lost.
1419 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1420 * we save the state that would have been loaded from EEPROM
1421 * on a normal power-up (see the spec EEPROM map). This assumes
1422 * whoever calls this will follow up with init_registers() eventually.
1425 /* CFG */
1426 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1427 /* WCSR */
1428 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1429 /* RFCR */
1430 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1431 /* PMATCH */
1432 for (i = 0; i < 3; i++) {
1433 writel(i*2, ioaddr + RxFilterAddr);
1434 pmatch[i] = readw(ioaddr + RxFilterData);
1436 /* SOPAS */
1437 for (i = 0; i < 3; i++) {
1438 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1439 sopass[i] = readw(ioaddr + RxFilterData);
1442 /* now whack the chip */
1443 writel(ChipReset, ioaddr + ChipCmd);
1444 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1445 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1446 break;
1447 udelay(5);
1449 if (i==NATSEMI_HW_TIMEOUT) {
1450 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1451 dev->name, i*5);
1452 } else if (netif_msg_hw(np)) {
1453 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1454 dev->name, i*5);
1457 /* restore CFG */
1458 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1459 /* turn on external phy if it was selected */
1460 if (dev->if_port == PORT_TP)
1461 cfg &= ~(CfgExtPhy | CfgPhyDis);
1462 else
1463 cfg |= (CfgExtPhy | CfgPhyDis);
1464 writel(cfg, ioaddr + ChipConfig);
1465 /* restore WCSR */
1466 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1467 writel(wcsr, ioaddr + WOLCmd);
1468 /* read RFCR */
1469 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1470 /* restore PMATCH */
1471 for (i = 0; i < 3; i++) {
1472 writel(i*2, ioaddr + RxFilterAddr);
1473 writew(pmatch[i], ioaddr + RxFilterData);
1475 for (i = 0; i < 3; i++) {
1476 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1477 writew(sopass[i], ioaddr + RxFilterData);
1479 /* restore RFCR */
1480 writel(rfcr, ioaddr + RxFilterAddr);
1483 static void natsemi_reload_eeprom(struct net_device *dev)
1485 struct netdev_private *np = netdev_priv(dev);
1486 void __iomem *ioaddr = ns_ioaddr(dev);
1487 int i;
1489 writel(EepromReload, ioaddr + PCIBusCfg);
1490 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1491 udelay(50);
1492 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1493 break;
1495 if (i==NATSEMI_HW_TIMEOUT) {
1496 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1497 pci_name(np->pci_dev), i*50);
1498 } else if (netif_msg_hw(np)) {
1499 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1500 pci_name(np->pci_dev), i*50);
1504 static void natsemi_stop_rxtx(struct net_device *dev)
1506 void __iomem * ioaddr = ns_ioaddr(dev);
1507 struct netdev_private *np = netdev_priv(dev);
1508 int i;
1510 writel(RxOff | TxOff, ioaddr + ChipCmd);
1511 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1512 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1513 break;
1514 udelay(5);
1516 if (i==NATSEMI_HW_TIMEOUT) {
1517 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1518 dev->name, i*5);
1519 } else if (netif_msg_hw(np)) {
1520 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1521 dev->name, i*5);
1525 static int netdev_open(struct net_device *dev)
1527 struct netdev_private *np = netdev_priv(dev);
1528 void __iomem * ioaddr = ns_ioaddr(dev);
1529 int i;
1531 /* Reset the chip, just in case. */
1532 natsemi_reset(dev);
1534 i = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev);
1535 if (i) return i;
1537 if (netif_msg_ifup(np))
1538 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1539 dev->name, dev->irq);
1540 i = alloc_ring(dev);
1541 if (i < 0) {
1542 free_irq(dev->irq, dev);
1543 return i;
1545 init_ring(dev);
1546 spin_lock_irq(&np->lock);
1547 init_registers(dev);
1548 /* now set the MAC address according to dev->dev_addr */
1549 for (i = 0; i < 3; i++) {
1550 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1552 writel(i*2, ioaddr + RxFilterAddr);
1553 writew(mac, ioaddr + RxFilterData);
1555 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1556 spin_unlock_irq(&np->lock);
1558 netif_start_queue(dev);
1560 if (netif_msg_ifup(np))
1561 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1562 dev->name, (int)readl(ioaddr + ChipCmd));
1564 /* Set the timer to check for link beat. */
1565 init_timer(&np->timer);
1566 np->timer.expires = jiffies + NATSEMI_TIMER_FREQ;
1567 np->timer.data = (unsigned long)dev;
1568 np->timer.function = &netdev_timer; /* timer handler */
1569 add_timer(&np->timer);
1571 return 0;
1574 static void do_cable_magic(struct net_device *dev)
1576 struct netdev_private *np = netdev_priv(dev);
1577 void __iomem *ioaddr = ns_ioaddr(dev);
1579 if (dev->if_port != PORT_TP)
1580 return;
1582 if (np->srr >= SRR_DP83816_A5)
1583 return;
1586 * 100 MBit links with short cables can trip an issue with the chip.
1587 * The problem manifests as lots of CRC errors and/or flickering
1588 * activity LED while idle. This process is based on instructions
1589 * from engineers at National.
1591 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1592 u16 data;
1594 writew(1, ioaddr + PGSEL);
1596 * coefficient visibility should already be enabled via
1597 * DSPCFG | 0x1000
1599 data = readw(ioaddr + TSTDAT) & 0xff;
1601 * the value must be negative, and within certain values
1602 * (these values all come from National)
1604 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1605 struct netdev_private *np = netdev_priv(dev);
1607 /* the bug has been triggered - fix the coefficient */
1608 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1609 /* lock the value */
1610 data = readw(ioaddr + DSPCFG);
1611 np->dspcfg = data | DSPCFG_LOCK;
1612 writew(np->dspcfg, ioaddr + DSPCFG);
1614 writew(0, ioaddr + PGSEL);
1618 static void undo_cable_magic(struct net_device *dev)
1620 u16 data;
1621 struct netdev_private *np = netdev_priv(dev);
1622 void __iomem * ioaddr = ns_ioaddr(dev);
1624 if (dev->if_port != PORT_TP)
1625 return;
1627 if (np->srr >= SRR_DP83816_A5)
1628 return;
1630 writew(1, ioaddr + PGSEL);
1631 /* make sure the lock bit is clear */
1632 data = readw(ioaddr + DSPCFG);
1633 np->dspcfg = data & ~DSPCFG_LOCK;
1634 writew(np->dspcfg, ioaddr + DSPCFG);
1635 writew(0, ioaddr + PGSEL);
1638 static void check_link(struct net_device *dev)
1640 struct netdev_private *np = netdev_priv(dev);
1641 void __iomem * ioaddr = ns_ioaddr(dev);
1642 int duplex;
1643 u16 bmsr;
1645 /* The link status field is latched: it remains low after a temporary
1646 * link failure until it's read. We need the current link status,
1647 * thus read twice.
1649 mdio_read(dev, MII_BMSR);
1650 bmsr = mdio_read(dev, MII_BMSR);
1652 if (!(bmsr & BMSR_LSTATUS)) {
1653 if (netif_carrier_ok(dev)) {
1654 if (netif_msg_link(np))
1655 printk(KERN_NOTICE "%s: link down.\n",
1656 dev->name);
1657 netif_carrier_off(dev);
1658 undo_cable_magic(dev);
1660 return;
1662 if (!netif_carrier_ok(dev)) {
1663 if (netif_msg_link(np))
1664 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1665 netif_carrier_on(dev);
1666 do_cable_magic(dev);
1669 duplex = np->full_duplex;
1670 if (!duplex) {
1671 if (bmsr & BMSR_ANEGCOMPLETE) {
1672 int tmp = mii_nway_result(
1673 np->advertising & mdio_read(dev, MII_LPA));
1674 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1675 duplex = 1;
1676 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1677 duplex = 1;
1680 /* if duplex is set then bit 28 must be set, too */
1681 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1682 if (netif_msg_link(np))
1683 printk(KERN_INFO
1684 "%s: Setting %s-duplex based on negotiated "
1685 "link capability.\n", dev->name,
1686 duplex ? "full" : "half");
1687 if (duplex) {
1688 np->rx_config |= RxAcceptTx;
1689 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1690 } else {
1691 np->rx_config &= ~RxAcceptTx;
1692 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1694 writel(np->tx_config, ioaddr + TxConfig);
1695 writel(np->rx_config, ioaddr + RxConfig);
1699 static void init_registers(struct net_device *dev)
1701 struct netdev_private *np = netdev_priv(dev);
1702 void __iomem * ioaddr = ns_ioaddr(dev);
1704 init_phy_fixup(dev);
1706 /* clear any interrupts that are pending, such as wake events */
1707 readl(ioaddr + IntrStatus);
1709 writel(np->ring_dma, ioaddr + RxRingPtr);
1710 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1711 ioaddr + TxRingPtr);
1713 /* Initialize other registers.
1714 * Configure the PCI bus bursts and FIFO thresholds.
1715 * Configure for standard, in-spec Ethernet.
1716 * Start with half-duplex. check_link will update
1717 * to the correct settings.
1720 /* DRTH: 2: start tx if 64 bytes are in the fifo
1721 * FLTH: 0x10: refill with next packet if 512 bytes are free
1722 * MXDMA: 0: up to 256 byte bursts.
1723 * MXDMA must be <= FLTH
1724 * ECRETRY=1
1725 * ATP=1
1727 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1728 TX_FLTH_VAL | TX_DRTH_VAL_START;
1729 writel(np->tx_config, ioaddr + TxConfig);
1731 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1732 * MXDMA 0: up to 256 byte bursts
1734 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1735 /* if receive ring now has bigger buffers than normal, enable jumbo */
1736 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1737 np->rx_config |= RxAcceptLong;
1739 writel(np->rx_config, ioaddr + RxConfig);
1741 /* Disable PME:
1742 * The PME bit is initialized from the EEPROM contents.
1743 * PCI cards probably have PME disabled, but motherboard
1744 * implementations may have PME set to enable WakeOnLan.
1745 * With PME set the chip will scan incoming packets but
1746 * nothing will be written to memory. */
1747 np->SavedClkRun = readl(ioaddr + ClkRun);
1748 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1749 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1750 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1751 dev->name, readl(ioaddr + WOLCmd));
1754 check_link(dev);
1755 __set_rx_mode(dev);
1757 /* Enable interrupts by setting the interrupt mask. */
1758 writel(DEFAULT_INTR, ioaddr + IntrMask);
1759 writel(1, ioaddr + IntrEnable);
1761 writel(RxOn | TxOn, ioaddr + ChipCmd);
1762 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1766 * netdev_timer:
1767 * Purpose:
1768 * 1) check for link changes. Usually they are handled by the MII interrupt
1769 * but it doesn't hurt to check twice.
1770 * 2) check for sudden death of the NIC:
1771 * It seems that a reference set for this chip went out with incorrect info,
1772 * and there exist boards that aren't quite right. An unexpected voltage
1773 * drop can cause the PHY to get itself in a weird state (basically reset).
1774 * NOTE: this only seems to affect revC chips.
1775 * 3) check of death of the RX path due to OOM
1777 static void netdev_timer(unsigned long data)
1779 struct net_device *dev = (struct net_device *)data;
1780 struct netdev_private *np = netdev_priv(dev);
1781 void __iomem * ioaddr = ns_ioaddr(dev);
1782 int next_tick = 5*HZ;
1784 if (netif_msg_timer(np)) {
1785 /* DO NOT read the IntrStatus register,
1786 * a read clears any pending interrupts.
1788 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1789 dev->name);
1792 if (dev->if_port == PORT_TP) {
1793 u16 dspcfg;
1795 spin_lock_irq(&np->lock);
1796 /* check for a nasty random phy-reset - use dspcfg as a flag */
1797 writew(1, ioaddr+PGSEL);
1798 dspcfg = readw(ioaddr+DSPCFG);
1799 writew(0, ioaddr+PGSEL);
1800 if (dspcfg != np->dspcfg) {
1801 if (!netif_queue_stopped(dev)) {
1802 spin_unlock_irq(&np->lock);
1803 if (netif_msg_hw(np))
1804 printk(KERN_NOTICE "%s: possible phy reset: "
1805 "re-initializing\n", dev->name);
1806 disable_irq(dev->irq);
1807 spin_lock_irq(&np->lock);
1808 natsemi_stop_rxtx(dev);
1809 dump_ring(dev);
1810 reinit_ring(dev);
1811 init_registers(dev);
1812 spin_unlock_irq(&np->lock);
1813 enable_irq(dev->irq);
1814 } else {
1815 /* hurry back */
1816 next_tick = HZ;
1817 spin_unlock_irq(&np->lock);
1819 } else {
1820 /* init_registers() calls check_link() for the above case */
1821 check_link(dev);
1822 spin_unlock_irq(&np->lock);
1824 } else {
1825 spin_lock_irq(&np->lock);
1826 check_link(dev);
1827 spin_unlock_irq(&np->lock);
1829 if (np->oom) {
1830 disable_irq(dev->irq);
1831 np->oom = 0;
1832 refill_rx(dev);
1833 enable_irq(dev->irq);
1834 if (!np->oom) {
1835 writel(RxOn, ioaddr + ChipCmd);
1836 } else {
1837 next_tick = 1;
1840 mod_timer(&np->timer, jiffies + next_tick);
1843 static void dump_ring(struct net_device *dev)
1845 struct netdev_private *np = netdev_priv(dev);
1847 if (netif_msg_pktdata(np)) {
1848 int i;
1849 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1850 for (i = 0; i < TX_RING_SIZE; i++) {
1851 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1852 i, np->tx_ring[i].next_desc,
1853 np->tx_ring[i].cmd_status,
1854 np->tx_ring[i].addr);
1856 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1857 for (i = 0; i < RX_RING_SIZE; i++) {
1858 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1859 i, np->rx_ring[i].next_desc,
1860 np->rx_ring[i].cmd_status,
1861 np->rx_ring[i].addr);
1866 static void tx_timeout(struct net_device *dev)
1868 struct netdev_private *np = netdev_priv(dev);
1869 void __iomem * ioaddr = ns_ioaddr(dev);
1871 disable_irq(dev->irq);
1872 spin_lock_irq(&np->lock);
1873 if (!np->hands_off) {
1874 if (netif_msg_tx_err(np))
1875 printk(KERN_WARNING
1876 "%s: Transmit timed out, status %#08x,"
1877 " resetting...\n",
1878 dev->name, readl(ioaddr + IntrStatus));
1879 dump_ring(dev);
1881 natsemi_reset(dev);
1882 reinit_ring(dev);
1883 init_registers(dev);
1884 } else {
1885 printk(KERN_WARNING
1886 "%s: tx_timeout while in hands_off state?\n",
1887 dev->name);
1889 spin_unlock_irq(&np->lock);
1890 enable_irq(dev->irq);
1892 dev->trans_start = jiffies;
1893 np->stats.tx_errors++;
1894 netif_wake_queue(dev);
1897 static int alloc_ring(struct net_device *dev)
1899 struct netdev_private *np = netdev_priv(dev);
1900 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1901 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1902 &np->ring_dma);
1903 if (!np->rx_ring)
1904 return -ENOMEM;
1905 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1906 return 0;
1909 static void refill_rx(struct net_device *dev)
1911 struct netdev_private *np = netdev_priv(dev);
1913 /* Refill the Rx ring buffers. */
1914 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1915 struct sk_buff *skb;
1916 int entry = np->dirty_rx % RX_RING_SIZE;
1917 if (np->rx_skbuff[entry] == NULL) {
1918 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1919 skb = dev_alloc_skb(buflen);
1920 np->rx_skbuff[entry] = skb;
1921 if (skb == NULL)
1922 break; /* Better luck next round. */
1923 skb->dev = dev; /* Mark as being used by this device. */
1924 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1925 skb->tail, buflen, PCI_DMA_FROMDEVICE);
1926 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1928 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1930 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1931 if (netif_msg_rx_err(np))
1932 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1933 np->oom = 1;
1937 static void set_bufsize(struct net_device *dev)
1939 struct netdev_private *np = netdev_priv(dev);
1940 if (dev->mtu <= ETH_DATA_LEN)
1941 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1942 else
1943 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1946 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1947 static void init_ring(struct net_device *dev)
1949 struct netdev_private *np = netdev_priv(dev);
1950 int i;
1952 /* 1) TX ring */
1953 np->dirty_tx = np->cur_tx = 0;
1954 for (i = 0; i < TX_RING_SIZE; i++) {
1955 np->tx_skbuff[i] = NULL;
1956 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1957 +sizeof(struct netdev_desc)
1958 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1959 np->tx_ring[i].cmd_status = 0;
1962 /* 2) RX ring */
1963 np->dirty_rx = 0;
1964 np->cur_rx = RX_RING_SIZE;
1965 np->oom = 0;
1966 set_bufsize(dev);
1968 np->rx_head_desc = &np->rx_ring[0];
1970 /* Please be carefull before changing this loop - at least gcc-2.95.1
1971 * miscompiles it otherwise.
1973 /* Initialize all Rx descriptors. */
1974 for (i = 0; i < RX_RING_SIZE; i++) {
1975 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1976 +sizeof(struct netdev_desc)
1977 *((i+1)%RX_RING_SIZE));
1978 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1979 np->rx_skbuff[i] = NULL;
1981 refill_rx(dev);
1982 dump_ring(dev);
1985 static void drain_tx(struct net_device *dev)
1987 struct netdev_private *np = netdev_priv(dev);
1988 int i;
1990 for (i = 0; i < TX_RING_SIZE; i++) {
1991 if (np->tx_skbuff[i]) {
1992 pci_unmap_single(np->pci_dev,
1993 np->tx_dma[i], np->tx_skbuff[i]->len,
1994 PCI_DMA_TODEVICE);
1995 dev_kfree_skb(np->tx_skbuff[i]);
1996 np->stats.tx_dropped++;
1998 np->tx_skbuff[i] = NULL;
2002 static void drain_rx(struct net_device *dev)
2004 struct netdev_private *np = netdev_priv(dev);
2005 unsigned int buflen = np->rx_buf_sz;
2006 int i;
2008 /* Free all the skbuffs in the Rx queue. */
2009 for (i = 0; i < RX_RING_SIZE; i++) {
2010 np->rx_ring[i].cmd_status = 0;
2011 np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
2012 if (np->rx_skbuff[i]) {
2013 pci_unmap_single(np->pci_dev,
2014 np->rx_dma[i], buflen,
2015 PCI_DMA_FROMDEVICE);
2016 dev_kfree_skb(np->rx_skbuff[i]);
2018 np->rx_skbuff[i] = NULL;
2022 static void drain_ring(struct net_device *dev)
2024 drain_rx(dev);
2025 drain_tx(dev);
2028 static void free_ring(struct net_device *dev)
2030 struct netdev_private *np = netdev_priv(dev);
2031 pci_free_consistent(np->pci_dev,
2032 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2033 np->rx_ring, np->ring_dma);
2036 static void reinit_rx(struct net_device *dev)
2038 struct netdev_private *np = netdev_priv(dev);
2039 int i;
2041 /* RX Ring */
2042 np->dirty_rx = 0;
2043 np->cur_rx = RX_RING_SIZE;
2044 np->rx_head_desc = &np->rx_ring[0];
2045 /* Initialize all Rx descriptors. */
2046 for (i = 0; i < RX_RING_SIZE; i++)
2047 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2049 refill_rx(dev);
2052 static void reinit_ring(struct net_device *dev)
2054 struct netdev_private *np = netdev_priv(dev);
2055 int i;
2057 /* drain TX ring */
2058 drain_tx(dev);
2059 np->dirty_tx = np->cur_tx = 0;
2060 for (i=0;i<TX_RING_SIZE;i++)
2061 np->tx_ring[i].cmd_status = 0;
2063 reinit_rx(dev);
2066 static int start_tx(struct sk_buff *skb, struct net_device *dev)
2068 struct netdev_private *np = netdev_priv(dev);
2069 void __iomem * ioaddr = ns_ioaddr(dev);
2070 unsigned entry;
2072 /* Note: Ordering is important here, set the field with the
2073 "ownership" bit last, and only then increment cur_tx. */
2075 /* Calculate the next Tx descriptor entry. */
2076 entry = np->cur_tx % TX_RING_SIZE;
2078 np->tx_skbuff[entry] = skb;
2079 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2080 skb->data,skb->len, PCI_DMA_TODEVICE);
2082 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2084 spin_lock_irq(&np->lock);
2086 if (!np->hands_off) {
2087 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2088 /* StrongARM: Explicitly cache flush np->tx_ring and
2089 * skb->data,skb->len. */
2090 wmb();
2091 np->cur_tx++;
2092 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2093 netdev_tx_done(dev);
2094 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2095 netif_stop_queue(dev);
2097 /* Wake the potentially-idle transmit channel. */
2098 writel(TxOn, ioaddr + ChipCmd);
2099 } else {
2100 dev_kfree_skb_irq(skb);
2101 np->stats.tx_dropped++;
2103 spin_unlock_irq(&np->lock);
2105 dev->trans_start = jiffies;
2107 if (netif_msg_tx_queued(np)) {
2108 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2109 dev->name, np->cur_tx, entry);
2111 return 0;
2114 static void netdev_tx_done(struct net_device *dev)
2116 struct netdev_private *np = netdev_priv(dev);
2118 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2119 int entry = np->dirty_tx % TX_RING_SIZE;
2120 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2121 break;
2122 if (netif_msg_tx_done(np))
2123 printk(KERN_DEBUG
2124 "%s: tx frame #%d finished, status %#08x.\n",
2125 dev->name, np->dirty_tx,
2126 le32_to_cpu(np->tx_ring[entry].cmd_status));
2127 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2128 np->stats.tx_packets++;
2129 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2130 } else { /* Various Tx errors */
2131 int tx_status =
2132 le32_to_cpu(np->tx_ring[entry].cmd_status);
2133 if (tx_status & (DescTxAbort|DescTxExcColl))
2134 np->stats.tx_aborted_errors++;
2135 if (tx_status & DescTxFIFO)
2136 np->stats.tx_fifo_errors++;
2137 if (tx_status & DescTxCarrier)
2138 np->stats.tx_carrier_errors++;
2139 if (tx_status & DescTxOOWCol)
2140 np->stats.tx_window_errors++;
2141 np->stats.tx_errors++;
2143 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2144 np->tx_skbuff[entry]->len,
2145 PCI_DMA_TODEVICE);
2146 /* Free the original skb. */
2147 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2148 np->tx_skbuff[entry] = NULL;
2150 if (netif_queue_stopped(dev)
2151 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2152 /* The ring is no longer full, wake queue. */
2153 netif_wake_queue(dev);
2157 /* The interrupt handler does all of the Rx thread work and cleans up
2158 after the Tx thread. */
2159 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
2161 struct net_device *dev = dev_instance;
2162 struct netdev_private *np = netdev_priv(dev);
2163 void __iomem * ioaddr = ns_ioaddr(dev);
2164 int boguscnt = max_interrupt_work;
2165 unsigned int handled = 0;
2167 if (np->hands_off)
2168 return IRQ_NONE;
2169 do {
2170 /* Reading automatically acknowledges all int sources. */
2171 u32 intr_status = readl(ioaddr + IntrStatus);
2173 if (netif_msg_intr(np))
2174 printk(KERN_DEBUG
2175 "%s: Interrupt, status %#08x, mask %#08x.\n",
2176 dev->name, intr_status,
2177 readl(ioaddr + IntrMask));
2179 if (intr_status == 0)
2180 break;
2181 handled = 1;
2183 if (intr_status &
2184 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2185 IntrRxErr | IntrRxOverrun)) {
2186 netdev_rx(dev);
2189 if (intr_status &
2190 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2191 spin_lock(&np->lock);
2192 netdev_tx_done(dev);
2193 spin_unlock(&np->lock);
2196 /* Abnormal error summary/uncommon events handlers. */
2197 if (intr_status & IntrAbnormalSummary)
2198 netdev_error(dev, intr_status);
2200 if (--boguscnt < 0) {
2201 if (netif_msg_intr(np))
2202 printk(KERN_WARNING
2203 "%s: Too much work at interrupt, "
2204 "status=%#08x.\n",
2205 dev->name, intr_status);
2206 break;
2208 } while (1);
2210 if (netif_msg_intr(np))
2211 printk(KERN_DEBUG "%s: exiting interrupt.\n", dev->name);
2213 return IRQ_RETVAL(handled);
2216 /* This routine is logically part of the interrupt handler, but separated
2217 for clarity and better register allocation. */
2218 static void netdev_rx(struct net_device *dev)
2220 struct netdev_private *np = netdev_priv(dev);
2221 int entry = np->cur_rx % RX_RING_SIZE;
2222 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2223 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2224 unsigned int buflen = np->rx_buf_sz;
2225 void __iomem * ioaddr = ns_ioaddr(dev);
2227 /* If the driver owns the next entry it's a new packet. Send it up. */
2228 while (desc_status < 0) { /* e.g. & DescOwn */
2229 int pkt_len;
2230 if (netif_msg_rx_status(np))
2231 printk(KERN_DEBUG
2232 " netdev_rx() entry %d status was %#08x.\n",
2233 entry, desc_status);
2234 if (--boguscnt < 0)
2235 break;
2236 pkt_len = (desc_status & DescSizeMask) - 4;
2237 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2238 if (desc_status & DescMore) {
2239 if (netif_msg_rx_err(np))
2240 printk(KERN_WARNING
2241 "%s: Oversized(?) Ethernet "
2242 "frame spanned multiple "
2243 "buffers, entry %#08x "
2244 "status %#08x.\n", dev->name,
2245 np->cur_rx, desc_status);
2246 np->stats.rx_length_errors++;
2247 } else {
2248 /* There was an error. */
2249 np->stats.rx_errors++;
2250 if (desc_status & (DescRxAbort|DescRxOver))
2251 np->stats.rx_over_errors++;
2252 if (desc_status & (DescRxLong|DescRxRunt))
2253 np->stats.rx_length_errors++;
2254 if (desc_status & (DescRxInvalid|DescRxAlign))
2255 np->stats.rx_frame_errors++;
2256 if (desc_status & DescRxCRC)
2257 np->stats.rx_crc_errors++;
2259 } else if (pkt_len > np->rx_buf_sz) {
2260 /* if this is the tail of a double buffer
2261 * packet, we've already counted the error
2262 * on the first part. Ignore the second half.
2264 } else {
2265 struct sk_buff *skb;
2266 /* Omit CRC size. */
2267 /* Check if the packet is long enough to accept
2268 * without copying to a minimally-sized skbuff. */
2269 if (pkt_len < rx_copybreak
2270 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2271 skb->dev = dev;
2272 /* 16 byte align the IP header */
2273 skb_reserve(skb, RX_OFFSET);
2274 pci_dma_sync_single_for_cpu(np->pci_dev,
2275 np->rx_dma[entry],
2276 buflen,
2277 PCI_DMA_FROMDEVICE);
2278 eth_copy_and_sum(skb,
2279 np->rx_skbuff[entry]->tail, pkt_len, 0);
2280 skb_put(skb, pkt_len);
2281 pci_dma_sync_single_for_device(np->pci_dev,
2282 np->rx_dma[entry],
2283 buflen,
2284 PCI_DMA_FROMDEVICE);
2285 } else {
2286 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2287 buflen, PCI_DMA_FROMDEVICE);
2288 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2289 np->rx_skbuff[entry] = NULL;
2291 skb->protocol = eth_type_trans(skb, dev);
2292 netif_rx(skb);
2293 dev->last_rx = jiffies;
2294 np->stats.rx_packets++;
2295 np->stats.rx_bytes += pkt_len;
2297 entry = (++np->cur_rx) % RX_RING_SIZE;
2298 np->rx_head_desc = &np->rx_ring[entry];
2299 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2301 refill_rx(dev);
2303 /* Restart Rx engine if stopped. */
2304 if (np->oom)
2305 mod_timer(&np->timer, jiffies + 1);
2306 else
2307 writel(RxOn, ioaddr + ChipCmd);
2310 static void netdev_error(struct net_device *dev, int intr_status)
2312 struct netdev_private *np = netdev_priv(dev);
2313 void __iomem * ioaddr = ns_ioaddr(dev);
2315 spin_lock(&np->lock);
2316 if (intr_status & LinkChange) {
2317 u16 lpa = mdio_read(dev, MII_LPA);
2318 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2319 && netif_msg_link(np)) {
2320 printk(KERN_INFO
2321 "%s: Autonegotiation advertising"
2322 " %#04x partner %#04x.\n", dev->name,
2323 np->advertising, lpa);
2326 /* read MII int status to clear the flag */
2327 readw(ioaddr + MIntrStatus);
2328 check_link(dev);
2330 if (intr_status & StatsMax) {
2331 __get_stats(dev);
2333 if (intr_status & IntrTxUnderrun) {
2334 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2335 np->tx_config += TX_DRTH_VAL_INC;
2336 if (netif_msg_tx_err(np))
2337 printk(KERN_NOTICE
2338 "%s: increased tx threshold, txcfg %#08x.\n",
2339 dev->name, np->tx_config);
2340 } else {
2341 if (netif_msg_tx_err(np))
2342 printk(KERN_NOTICE
2343 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2344 dev->name, np->tx_config);
2346 writel(np->tx_config, ioaddr + TxConfig);
2348 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2349 int wol_status = readl(ioaddr + WOLCmd);
2350 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2351 dev->name, wol_status);
2353 if (intr_status & RxStatusFIFOOver) {
2354 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2355 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2356 dev->name);
2358 np->stats.rx_fifo_errors++;
2360 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2361 if (intr_status & IntrPCIErr) {
2362 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2363 intr_status & IntrPCIErr);
2364 np->stats.tx_fifo_errors++;
2365 np->stats.rx_fifo_errors++;
2367 spin_unlock(&np->lock);
2370 static void __get_stats(struct net_device *dev)
2372 void __iomem * ioaddr = ns_ioaddr(dev);
2373 struct netdev_private *np = netdev_priv(dev);
2375 /* The chip only need report frame silently dropped. */
2376 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2377 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2380 static struct net_device_stats *get_stats(struct net_device *dev)
2382 struct netdev_private *np = netdev_priv(dev);
2384 /* The chip only need report frame silently dropped. */
2385 spin_lock_irq(&np->lock);
2386 if (netif_running(dev) && !np->hands_off)
2387 __get_stats(dev);
2388 spin_unlock_irq(&np->lock);
2390 return &np->stats;
2393 #ifdef CONFIG_NET_POLL_CONTROLLER
2394 static void natsemi_poll_controller(struct net_device *dev)
2396 disable_irq(dev->irq);
2397 intr_handler(dev->irq, dev, NULL);
2398 enable_irq(dev->irq);
2400 #endif
2402 #define HASH_TABLE 0x200
2403 static void __set_rx_mode(struct net_device *dev)
2405 void __iomem * ioaddr = ns_ioaddr(dev);
2406 struct netdev_private *np = netdev_priv(dev);
2407 u8 mc_filter[64]; /* Multicast hash filter */
2408 u32 rx_mode;
2410 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2411 /* Unconditionally log net taps. */
2412 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n",
2413 dev->name);
2414 rx_mode = RxFilterEnable | AcceptBroadcast
2415 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2416 } else if ((dev->mc_count > multicast_filter_limit)
2417 || (dev->flags & IFF_ALLMULTI)) {
2418 rx_mode = RxFilterEnable | AcceptBroadcast
2419 | AcceptAllMulticast | AcceptMyPhys;
2420 } else {
2421 struct dev_mc_list *mclist;
2422 int i;
2423 memset(mc_filter, 0, sizeof(mc_filter));
2424 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2425 i++, mclist = mclist->next) {
2426 int i = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2427 mc_filter[i/8] |= (1 << (i & 0x07));
2429 rx_mode = RxFilterEnable | AcceptBroadcast
2430 | AcceptMulticast | AcceptMyPhys;
2431 for (i = 0; i < 64; i += 2) {
2432 writew(HASH_TABLE + i, ioaddr + RxFilterAddr);
2433 writew((mc_filter[i+1]<<8) + mc_filter[i],
2434 ioaddr + RxFilterData);
2437 writel(rx_mode, ioaddr + RxFilterAddr);
2438 np->cur_rx_mode = rx_mode;
2441 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2443 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2444 return -EINVAL;
2446 dev->mtu = new_mtu;
2448 /* synchronized against open : rtnl_lock() held by caller */
2449 if (netif_running(dev)) {
2450 struct netdev_private *np = netdev_priv(dev);
2451 void __iomem * ioaddr = ns_ioaddr(dev);
2453 disable_irq(dev->irq);
2454 spin_lock(&np->lock);
2455 /* stop engines */
2456 natsemi_stop_rxtx(dev);
2457 /* drain rx queue */
2458 drain_rx(dev);
2459 /* change buffers */
2460 set_bufsize(dev);
2461 reinit_rx(dev);
2462 writel(np->ring_dma, ioaddr + RxRingPtr);
2463 /* restart engines */
2464 writel(RxOn | TxOn, ioaddr + ChipCmd);
2465 spin_unlock(&np->lock);
2466 enable_irq(dev->irq);
2468 return 0;
2471 static void set_rx_mode(struct net_device *dev)
2473 struct netdev_private *np = netdev_priv(dev);
2474 spin_lock_irq(&np->lock);
2475 if (!np->hands_off)
2476 __set_rx_mode(dev);
2477 spin_unlock_irq(&np->lock);
2480 static int netdev_ethtool_ioctl(struct net_device *dev, void __user *useraddr)
2482 struct netdev_private *np = netdev_priv(dev);
2483 u32 cmd;
2485 if (get_user(cmd, (u32 __user *)useraddr))
2486 return -EFAULT;
2488 switch (cmd) {
2489 /* get driver info */
2490 case ETHTOOL_GDRVINFO: {
2491 struct ethtool_drvinfo info = {ETHTOOL_GDRVINFO};
2492 strncpy(info.driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2493 strncpy(info.version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2494 info.fw_version[0] = '\0';
2495 strncpy(info.bus_info, pci_name(np->pci_dev),
2496 ETHTOOL_BUSINFO_LEN);
2497 info.eedump_len = NATSEMI_EEPROM_SIZE;
2498 info.regdump_len = NATSEMI_REGS_SIZE;
2499 if (copy_to_user(useraddr, &info, sizeof(info)))
2500 return -EFAULT;
2501 return 0;
2503 /* get settings */
2504 case ETHTOOL_GSET: {
2505 struct ethtool_cmd ecmd = { ETHTOOL_GSET };
2506 spin_lock_irq(&np->lock);
2507 netdev_get_ecmd(dev, &ecmd);
2508 spin_unlock_irq(&np->lock);
2509 if (copy_to_user(useraddr, &ecmd, sizeof(ecmd)))
2510 return -EFAULT;
2511 return 0;
2513 /* set settings */
2514 case ETHTOOL_SSET: {
2515 struct ethtool_cmd ecmd;
2516 int r;
2517 if (copy_from_user(&ecmd, useraddr, sizeof(ecmd)))
2518 return -EFAULT;
2519 spin_lock_irq(&np->lock);
2520 r = netdev_set_ecmd(dev, &ecmd);
2521 spin_unlock_irq(&np->lock);
2522 return r;
2524 /* get wake-on-lan */
2525 case ETHTOOL_GWOL: {
2526 struct ethtool_wolinfo wol = {ETHTOOL_GWOL};
2527 spin_lock_irq(&np->lock);
2528 netdev_get_wol(dev, &wol.supported, &wol.wolopts);
2529 netdev_get_sopass(dev, wol.sopass);
2530 spin_unlock_irq(&np->lock);
2531 if (copy_to_user(useraddr, &wol, sizeof(wol)))
2532 return -EFAULT;
2533 return 0;
2535 /* set wake-on-lan */
2536 case ETHTOOL_SWOL: {
2537 struct ethtool_wolinfo wol;
2538 int r;
2539 if (copy_from_user(&wol, useraddr, sizeof(wol)))
2540 return -EFAULT;
2541 spin_lock_irq(&np->lock);
2542 netdev_set_wol(dev, wol.wolopts);
2543 r = netdev_set_sopass(dev, wol.sopass);
2544 spin_unlock_irq(&np->lock);
2545 return r;
2547 /* get registers */
2548 case ETHTOOL_GREGS: {
2549 struct ethtool_regs regs;
2550 u8 regbuf[NATSEMI_REGS_SIZE];
2551 int r;
2553 if (copy_from_user(&regs, useraddr, sizeof(regs)))
2554 return -EFAULT;
2556 if (regs.len > NATSEMI_REGS_SIZE) {
2557 regs.len = NATSEMI_REGS_SIZE;
2559 regs.version = NATSEMI_REGS_VER;
2560 if (copy_to_user(useraddr, &regs, sizeof(regs)))
2561 return -EFAULT;
2563 useraddr += offsetof(struct ethtool_regs, data);
2565 spin_lock_irq(&np->lock);
2566 r = netdev_get_regs(dev, regbuf);
2567 spin_unlock_irq(&np->lock);
2569 if (r)
2570 return r;
2571 if (copy_to_user(useraddr, regbuf, regs.len))
2572 return -EFAULT;
2573 return 0;
2575 /* get message-level */
2576 case ETHTOOL_GMSGLVL: {
2577 struct ethtool_value edata = {ETHTOOL_GMSGLVL};
2578 edata.data = np->msg_enable;
2579 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2580 return -EFAULT;
2581 return 0;
2583 /* set message-level */
2584 case ETHTOOL_SMSGLVL: {
2585 struct ethtool_value edata;
2586 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2587 return -EFAULT;
2588 np->msg_enable = edata.data;
2589 return 0;
2591 /* restart autonegotiation */
2592 case ETHTOOL_NWAY_RST: {
2593 int tmp;
2594 int r = -EINVAL;
2595 /* if autoneg is off, it's an error */
2596 tmp = mdio_read(dev, MII_BMCR);
2597 if (tmp & BMCR_ANENABLE) {
2598 tmp |= (BMCR_ANRESTART);
2599 mdio_write(dev, MII_BMCR, tmp);
2600 r = 0;
2602 return r;
2604 /* get link status */
2605 case ETHTOOL_GLINK: {
2606 struct ethtool_value edata = {ETHTOOL_GLINK};
2607 /* LSTATUS is latched low until a read - so read twice */
2608 mdio_read(dev, MII_BMSR);
2609 edata.data = (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2610 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2611 return -EFAULT;
2612 return 0;
2614 /* get EEPROM */
2615 case ETHTOOL_GEEPROM: {
2616 struct ethtool_eeprom eeprom;
2617 u8 eebuf[NATSEMI_EEPROM_SIZE];
2618 int r;
2620 if (copy_from_user(&eeprom, useraddr, sizeof(eeprom)))
2621 return -EFAULT;
2623 if (eeprom.offset > eeprom.offset+eeprom.len)
2624 return -EINVAL;
2626 if ((eeprom.offset+eeprom.len) > NATSEMI_EEPROM_SIZE) {
2627 eeprom.len = NATSEMI_EEPROM_SIZE-eeprom.offset;
2629 eeprom.magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2630 if (copy_to_user(useraddr, &eeprom, sizeof(eeprom)))
2631 return -EFAULT;
2633 useraddr += offsetof(struct ethtool_eeprom, data);
2635 spin_lock_irq(&np->lock);
2636 r = netdev_get_eeprom(dev, eebuf);
2637 spin_unlock_irq(&np->lock);
2639 if (r)
2640 return r;
2641 if (copy_to_user(useraddr, eebuf+eeprom.offset, eeprom.len))
2642 return -EFAULT;
2643 return 0;
2648 return -EOPNOTSUPP;
2651 static int netdev_set_wol(struct net_device *dev, u32 newval)
2653 struct netdev_private *np = netdev_priv(dev);
2654 void __iomem * ioaddr = ns_ioaddr(dev);
2655 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2657 /* translate to bitmasks this chip understands */
2658 if (newval & WAKE_PHY)
2659 data |= WakePhy;
2660 if (newval & WAKE_UCAST)
2661 data |= WakeUnicast;
2662 if (newval & WAKE_MCAST)
2663 data |= WakeMulticast;
2664 if (newval & WAKE_BCAST)
2665 data |= WakeBroadcast;
2666 if (newval & WAKE_ARP)
2667 data |= WakeArp;
2668 if (newval & WAKE_MAGIC)
2669 data |= WakeMagic;
2670 if (np->srr >= SRR_DP83815_D) {
2671 if (newval & WAKE_MAGICSECURE) {
2672 data |= WakeMagicSecure;
2676 writel(data, ioaddr + WOLCmd);
2678 return 0;
2681 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2683 struct netdev_private *np = netdev_priv(dev);
2684 void __iomem * ioaddr = ns_ioaddr(dev);
2685 u32 regval = readl(ioaddr + WOLCmd);
2687 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2688 | WAKE_ARP | WAKE_MAGIC);
2690 if (np->srr >= SRR_DP83815_D) {
2691 /* SOPASS works on revD and higher */
2692 *supported |= WAKE_MAGICSECURE;
2694 *cur = 0;
2696 /* translate from chip bitmasks */
2697 if (regval & WakePhy)
2698 *cur |= WAKE_PHY;
2699 if (regval & WakeUnicast)
2700 *cur |= WAKE_UCAST;
2701 if (regval & WakeMulticast)
2702 *cur |= WAKE_MCAST;
2703 if (regval & WakeBroadcast)
2704 *cur |= WAKE_BCAST;
2705 if (regval & WakeArp)
2706 *cur |= WAKE_ARP;
2707 if (regval & WakeMagic)
2708 *cur |= WAKE_MAGIC;
2709 if (regval & WakeMagicSecure) {
2710 /* this can be on in revC, but it's broken */
2711 *cur |= WAKE_MAGICSECURE;
2714 return 0;
2717 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2719 struct netdev_private *np = netdev_priv(dev);
2720 void __iomem * ioaddr = ns_ioaddr(dev);
2721 u16 *sval = (u16 *)newval;
2722 u32 addr;
2724 if (np->srr < SRR_DP83815_D) {
2725 return 0;
2728 /* enable writing to these registers by disabling the RX filter */
2729 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2730 addr &= ~RxFilterEnable;
2731 writel(addr, ioaddr + RxFilterAddr);
2733 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2734 writel(addr | 0xa, ioaddr + RxFilterAddr);
2735 writew(sval[0], ioaddr + RxFilterData);
2737 writel(addr | 0xc, ioaddr + RxFilterAddr);
2738 writew(sval[1], ioaddr + RxFilterData);
2740 writel(addr | 0xe, ioaddr + RxFilterAddr);
2741 writew(sval[2], ioaddr + RxFilterData);
2743 /* re-enable the RX filter */
2744 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2746 return 0;
2749 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2751 struct netdev_private *np = netdev_priv(dev);
2752 void __iomem * ioaddr = ns_ioaddr(dev);
2753 u16 *sval = (u16 *)data;
2754 u32 addr;
2756 if (np->srr < SRR_DP83815_D) {
2757 sval[0] = sval[1] = sval[2] = 0;
2758 return 0;
2761 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2762 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2764 writel(addr | 0xa, ioaddr + RxFilterAddr);
2765 sval[0] = readw(ioaddr + RxFilterData);
2767 writel(addr | 0xc, ioaddr + RxFilterAddr);
2768 sval[1] = readw(ioaddr + RxFilterData);
2770 writel(addr | 0xe, ioaddr + RxFilterAddr);
2771 sval[2] = readw(ioaddr + RxFilterData);
2773 writel(addr, ioaddr + RxFilterAddr);
2775 return 0;
2778 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2780 struct netdev_private *np = netdev_priv(dev);
2781 u32 tmp;
2783 ecmd->port = dev->if_port;
2784 ecmd->speed = np->speed;
2785 ecmd->duplex = np->duplex;
2786 ecmd->autoneg = np->autoneg;
2787 ecmd->advertising = 0;
2788 if (np->advertising & ADVERTISE_10HALF)
2789 ecmd->advertising |= ADVERTISED_10baseT_Half;
2790 if (np->advertising & ADVERTISE_10FULL)
2791 ecmd->advertising |= ADVERTISED_10baseT_Full;
2792 if (np->advertising & ADVERTISE_100HALF)
2793 ecmd->advertising |= ADVERTISED_100baseT_Half;
2794 if (np->advertising & ADVERTISE_100FULL)
2795 ecmd->advertising |= ADVERTISED_100baseT_Full;
2796 ecmd->supported = (SUPPORTED_Autoneg |
2797 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2798 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2799 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2800 ecmd->phy_address = np->phy_addr_external;
2802 * We intentionally report the phy address of the external
2803 * phy, even if the internal phy is used. This is necessary
2804 * to work around a deficiency of the ethtool interface:
2805 * It's only possible to query the settings of the active
2806 * port. Therefore
2807 * # ethtool -s ethX port mii
2808 * actually sends an ioctl to switch to port mii with the
2809 * settings that are used for the current active port.
2810 * If we would report a different phy address in this
2811 * command, then
2812 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2813 * would unintentionally change the phy address.
2815 * Fortunately the phy address doesn't matter with the
2816 * internal phy...
2819 /* set information based on active port type */
2820 switch (ecmd->port) {
2821 default:
2822 case PORT_TP:
2823 ecmd->advertising |= ADVERTISED_TP;
2824 ecmd->transceiver = XCVR_INTERNAL;
2825 break;
2826 case PORT_MII:
2827 ecmd->advertising |= ADVERTISED_MII;
2828 ecmd->transceiver = XCVR_EXTERNAL;
2829 break;
2830 case PORT_FIBRE:
2831 ecmd->advertising |= ADVERTISED_FIBRE;
2832 ecmd->transceiver = XCVR_EXTERNAL;
2833 break;
2836 /* if autonegotiation is on, try to return the active speed/duplex */
2837 if (ecmd->autoneg == AUTONEG_ENABLE) {
2838 ecmd->advertising |= ADVERTISED_Autoneg;
2839 tmp = mii_nway_result(
2840 np->advertising & mdio_read(dev, MII_LPA));
2841 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2842 ecmd->speed = SPEED_100;
2843 else
2844 ecmd->speed = SPEED_10;
2845 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2846 ecmd->duplex = DUPLEX_FULL;
2847 else
2848 ecmd->duplex = DUPLEX_HALF;
2851 /* ignore maxtxpkt, maxrxpkt for now */
2853 return 0;
2856 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2858 struct netdev_private *np = netdev_priv(dev);
2860 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2861 return -EINVAL;
2862 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2863 return -EINVAL;
2864 if (ecmd->autoneg == AUTONEG_ENABLE) {
2865 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2866 ADVERTISED_10baseT_Full |
2867 ADVERTISED_100baseT_Half |
2868 ADVERTISED_100baseT_Full)) == 0) {
2869 return -EINVAL;
2871 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2872 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2873 return -EINVAL;
2874 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2875 return -EINVAL;
2876 } else {
2877 return -EINVAL;
2881 * maxtxpkt, maxrxpkt: ignored for now.
2883 * transceiver:
2884 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2885 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2886 * selects based on ecmd->port.
2888 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2889 * phys that are connected to the mii bus. It's used to apply fibre
2890 * specific updates.
2893 /* WHEW! now lets bang some bits */
2895 /* save the parms */
2896 dev->if_port = ecmd->port;
2897 np->autoneg = ecmd->autoneg;
2898 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2899 if (np->autoneg == AUTONEG_ENABLE) {
2900 /* advertise only what has been requested */
2901 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2902 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2903 np->advertising |= ADVERTISE_10HALF;
2904 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2905 np->advertising |= ADVERTISE_10FULL;
2906 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2907 np->advertising |= ADVERTISE_100HALF;
2908 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2909 np->advertising |= ADVERTISE_100FULL;
2910 } else {
2911 np->speed = ecmd->speed;
2912 np->duplex = ecmd->duplex;
2913 /* user overriding the initial full duplex parm? */
2914 if (np->duplex == DUPLEX_HALF)
2915 np->full_duplex = 0;
2918 /* get the right phy enabled */
2919 if (ecmd->port == PORT_TP)
2920 switch_port_internal(dev);
2921 else
2922 switch_port_external(dev);
2924 /* set parms and see how this affected our link status */
2925 init_phy_fixup(dev);
2926 check_link(dev);
2927 return 0;
2930 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2932 int i;
2933 int j;
2934 u32 rfcr;
2935 u32 *rbuf = (u32 *)buf;
2936 void __iomem * ioaddr = ns_ioaddr(dev);
2938 /* read non-mii page 0 of registers */
2939 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2940 rbuf[i] = readl(ioaddr + i*4);
2943 /* read current mii registers */
2944 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2945 rbuf[i] = mdio_read(dev, i & 0x1f);
2947 /* read only the 'magic' registers from page 1 */
2948 writew(1, ioaddr + PGSEL);
2949 rbuf[i++] = readw(ioaddr + PMDCSR);
2950 rbuf[i++] = readw(ioaddr + TSTDAT);
2951 rbuf[i++] = readw(ioaddr + DSPCFG);
2952 rbuf[i++] = readw(ioaddr + SDCFG);
2953 writew(0, ioaddr + PGSEL);
2955 /* read RFCR indexed registers */
2956 rfcr = readl(ioaddr + RxFilterAddr);
2957 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
2958 writel(j*2, ioaddr + RxFilterAddr);
2959 rbuf[i++] = readw(ioaddr + RxFilterData);
2961 writel(rfcr, ioaddr + RxFilterAddr);
2963 /* the interrupt status is clear-on-read - see if we missed any */
2964 if (rbuf[4] & rbuf[5]) {
2965 printk(KERN_WARNING
2966 "%s: shoot, we dropped an interrupt (%#08x)\n",
2967 dev->name, rbuf[4] & rbuf[5]);
2970 return 0;
2973 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
2974 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
2975 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
2976 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
2977 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
2978 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
2979 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
2980 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
2982 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
2984 int i;
2985 u16 *ebuf = (u16 *)buf;
2986 void __iomem * ioaddr = ns_ioaddr(dev);
2988 /* eeprom_read reads 16 bits, and indexes by 16 bits */
2989 for (i = 0; i < NATSEMI_EEPROM_SIZE/2; i++) {
2990 ebuf[i] = eeprom_read(ioaddr, i);
2991 /* The EEPROM itself stores data bit-swapped, but eeprom_read
2992 * reads it back "sanely". So we swap it back here in order to
2993 * present it to userland as it is stored. */
2994 ebuf[i] = SWAP_BITS(ebuf[i]);
2996 return 0;
2999 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3001 struct mii_ioctl_data *data = if_mii(rq);
3002 struct netdev_private *np = netdev_priv(dev);
3004 switch(cmd) {
3005 case SIOCETHTOOL:
3006 return netdev_ethtool_ioctl(dev, rq->ifr_data);
3007 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
3008 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
3009 data->phy_id = np->phy_addr_external;
3010 /* Fall Through */
3012 case SIOCGMIIREG: /* Read MII PHY register. */
3013 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
3014 /* The phy_id is not enough to uniquely identify
3015 * the intended target. Therefore the command is sent to
3016 * the given mii on the current port.
3018 if (dev->if_port == PORT_TP) {
3019 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3020 data->val_out = mdio_read(dev,
3021 data->reg_num & 0x1f);
3022 else
3023 data->val_out = 0;
3024 } else {
3025 move_int_phy(dev, data->phy_id & 0x1f);
3026 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3027 data->reg_num & 0x1f);
3029 return 0;
3031 case SIOCSMIIREG: /* Write MII PHY register. */
3032 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
3033 if (!capable(CAP_NET_ADMIN))
3034 return -EPERM;
3035 if (dev->if_port == PORT_TP) {
3036 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3037 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3038 np->advertising = data->val_in;
3039 mdio_write(dev, data->reg_num & 0x1f,
3040 data->val_in);
3042 } else {
3043 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3044 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3045 np->advertising = data->val_in;
3047 move_int_phy(dev, data->phy_id & 0x1f);
3048 miiport_write(dev, data->phy_id & 0x1f,
3049 data->reg_num & 0x1f,
3050 data->val_in);
3052 return 0;
3053 default:
3054 return -EOPNOTSUPP;
3058 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3060 void __iomem * ioaddr = ns_ioaddr(dev);
3061 struct netdev_private *np = netdev_priv(dev);
3063 if (netif_msg_wol(np))
3064 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3065 dev->name);
3067 /* For WOL we must restart the rx process in silent mode.
3068 * Write NULL to the RxRingPtr. Only possible if
3069 * rx process is stopped
3071 writel(0, ioaddr + RxRingPtr);
3073 /* read WoL status to clear */
3074 readl(ioaddr + WOLCmd);
3076 /* PME on, clear status */
3077 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3079 /* and restart the rx process */
3080 writel(RxOn, ioaddr + ChipCmd);
3082 if (enable_intr) {
3083 /* enable the WOL interrupt.
3084 * Could be used to send a netlink message.
3086 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3087 writel(1, ioaddr + IntrEnable);
3091 static int netdev_close(struct net_device *dev)
3093 void __iomem * ioaddr = ns_ioaddr(dev);
3094 struct netdev_private *np = netdev_priv(dev);
3096 if (netif_msg_ifdown(np))
3097 printk(KERN_DEBUG
3098 "%s: Shutting down ethercard, status was %#04x.\n",
3099 dev->name, (int)readl(ioaddr + ChipCmd));
3100 if (netif_msg_pktdata(np))
3101 printk(KERN_DEBUG
3102 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3103 dev->name, np->cur_tx, np->dirty_tx,
3104 np->cur_rx, np->dirty_rx);
3107 * FIXME: what if someone tries to close a device
3108 * that is suspended?
3109 * Should we reenable the nic to switch to
3110 * the final WOL settings?
3113 del_timer_sync(&np->timer);
3114 disable_irq(dev->irq);
3115 spin_lock_irq(&np->lock);
3116 /* Disable interrupts, and flush posted writes */
3117 writel(0, ioaddr + IntrEnable);
3118 readl(ioaddr + IntrEnable);
3119 np->hands_off = 1;
3120 spin_unlock_irq(&np->lock);
3121 enable_irq(dev->irq);
3123 free_irq(dev->irq, dev);
3125 /* Interrupt disabled, interrupt handler released,
3126 * queue stopped, timer deleted, rtnl_lock held
3127 * All async codepaths that access the driver are disabled.
3129 spin_lock_irq(&np->lock);
3130 np->hands_off = 0;
3131 readl(ioaddr + IntrMask);
3132 readw(ioaddr + MIntrStatus);
3134 /* Freeze Stats */
3135 writel(StatsFreeze, ioaddr + StatsCtrl);
3137 /* Stop the chip's Tx and Rx processes. */
3138 natsemi_stop_rxtx(dev);
3140 __get_stats(dev);
3141 spin_unlock_irq(&np->lock);
3143 /* clear the carrier last - an interrupt could reenable it otherwise */
3144 netif_carrier_off(dev);
3145 netif_stop_queue(dev);
3147 dump_ring(dev);
3148 drain_ring(dev);
3149 free_ring(dev);
3152 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3153 if (wol) {
3154 /* restart the NIC in WOL mode.
3155 * The nic must be stopped for this.
3157 enable_wol_mode(dev, 0);
3158 } else {
3159 /* Restore PME enable bit unmolested */
3160 writel(np->SavedClkRun, ioaddr + ClkRun);
3163 return 0;
3167 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3169 struct net_device *dev = pci_get_drvdata(pdev);
3170 void __iomem * ioaddr = ns_ioaddr(dev);
3172 unregister_netdev (dev);
3173 pci_release_regions (pdev);
3174 iounmap(ioaddr);
3175 free_netdev (dev);
3176 pci_set_drvdata(pdev, NULL);
3179 #ifdef CONFIG_PM
3182 * The ns83815 chip doesn't have explicit RxStop bits.
3183 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3184 * of the nic, thus this function must be very careful:
3186 * suspend/resume synchronization:
3187 * entry points:
3188 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3189 * start_tx, tx_timeout
3191 * No function accesses the hardware without checking np->hands_off.
3192 * the check occurs under spin_lock_irq(&np->lock);
3193 * exceptions:
3194 * * netdev_ioctl: noncritical access.
3195 * * netdev_open: cannot happen due to the device_detach
3196 * * netdev_close: doesn't hurt.
3197 * * netdev_timer: timer stopped by natsemi_suspend.
3198 * * intr_handler: doesn't acquire the spinlock. suspend calls
3199 * disable_irq() to enforce synchronization.
3201 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3204 static int natsemi_suspend (struct pci_dev *pdev, u32 state)
3206 struct net_device *dev = pci_get_drvdata (pdev);
3207 struct netdev_private *np = netdev_priv(dev);
3208 void __iomem * ioaddr = ns_ioaddr(dev);
3210 rtnl_lock();
3211 if (netif_running (dev)) {
3212 del_timer_sync(&np->timer);
3214 disable_irq(dev->irq);
3215 spin_lock_irq(&np->lock);
3217 writel(0, ioaddr + IntrEnable);
3218 np->hands_off = 1;
3219 natsemi_stop_rxtx(dev);
3220 netif_stop_queue(dev);
3222 spin_unlock_irq(&np->lock);
3223 enable_irq(dev->irq);
3225 /* Update the error counts. */
3226 __get_stats(dev);
3228 /* pci_power_off(pdev, -1); */
3229 drain_ring(dev);
3231 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3232 /* Restore PME enable bit */
3233 if (wol) {
3234 /* restart the NIC in WOL mode.
3235 * The nic must be stopped for this.
3236 * FIXME: use the WOL interrupt
3238 enable_wol_mode(dev, 0);
3239 } else {
3240 /* Restore PME enable bit unmolested */
3241 writel(np->SavedClkRun, ioaddr + ClkRun);
3245 netif_device_detach(dev);
3246 rtnl_unlock();
3247 return 0;
3251 static int natsemi_resume (struct pci_dev *pdev)
3253 struct net_device *dev = pci_get_drvdata (pdev);
3254 struct netdev_private *np = netdev_priv(dev);
3256 rtnl_lock();
3257 if (netif_device_present(dev))
3258 goto out;
3259 if (netif_running(dev)) {
3260 BUG_ON(!np->hands_off);
3261 pci_enable_device(pdev);
3262 /* pci_power_on(pdev); */
3264 natsemi_reset(dev);
3265 init_ring(dev);
3266 disable_irq(dev->irq);
3267 spin_lock_irq(&np->lock);
3268 np->hands_off = 0;
3269 init_registers(dev);
3270 netif_device_attach(dev);
3271 spin_unlock_irq(&np->lock);
3272 enable_irq(dev->irq);
3274 mod_timer(&np->timer, jiffies + 1*HZ);
3276 netif_device_attach(dev);
3277 out:
3278 rtnl_unlock();
3279 return 0;
3282 #endif /* CONFIG_PM */
3284 static struct pci_driver natsemi_driver = {
3285 .name = DRV_NAME,
3286 .id_table = natsemi_pci_tbl,
3287 .probe = natsemi_probe1,
3288 .remove = __devexit_p(natsemi_remove1),
3289 #ifdef CONFIG_PM
3290 .suspend = natsemi_suspend,
3291 .resume = natsemi_resume,
3292 #endif
3295 static int __init natsemi_init_mod (void)
3297 /* when a module, this is printed whether or not devices are found in probe */
3298 #ifdef MODULE
3299 printk(version);
3300 #endif
3302 return pci_module_init (&natsemi_driver);
3305 static void __exit natsemi_exit_mod (void)
3307 pci_unregister_driver (&natsemi_driver);
3310 module_init(natsemi_init_mod);
3311 module_exit(natsemi_exit_mod);